--- dataset_info: features: - name: label dtype: class_label: names: '0': all-domains '1': it-domain - name: images list: image - name: text dtype: string splits: - name: train num_bytes: 115281378.25917527 num_examples: 1585 download_size: 114806537 dataset_size: 115281378.25917527 configs: - config_name: default data_files: - split: train path: data/train-* --- Extracted lists of pages from PDF resumes and the PDF texts. Created using this code: ```python import io import PIL.Image from datasets import load_dataset def render(pdf): images = [] for page in pdf.pages: buffer = io.BytesIO() page.to_image(height=840).save(buffer) images.append(PIL.Image.open(buffer)) return images def extract_text(pdf): return "\n".join(page.extract_text() for page in pdf.pages) ds = load_dataset("d4rk3r/resumes-raw-pdf", split="train") ds = ds.map(lambda x: { "images": render(x["pdf"]), "text": extract_text(x["pdf"]) }, remove_columns=["pdf"]) ds = ds.filter(lambda x: len(x["text"].strip()) > 0) ds.push_to_hub("lhoestq/resumes-raw-pdf-for-ocr") ```