File size: 1,259 Bytes
c9a33f2 6129ef7 c9a33f2 6129ef7 c9a33f2 6129ef7 c9a33f2 6129ef7 c9a33f2 6129ef7 c9a33f2 6129ef7 c9a33f2 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 964b542 3149c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
dataset_info:
features:
- name: Entry
dtype: string
- name: seqs
dtype: string
- name: EC number
dtype: string
- name: Active site
dtype: string
- name: labels
dtype: int64
splits:
- name: train
num_bytes: 50935453
num_examples: 80212
- name: valid
num_bytes: 686688
num_examples: 1000
- name: test
num_bytes: 692134
num_examples: 1000
download_size: 49792005
dataset_size: 52314275
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: valid
path: data/valid-*
- split: test
path: data/test-*
---
Uniprot (ec:*) AND (go_manual:*) on 5/30/25
Remove any EC entries with '-'
Remove any EC entries with more than one EC number
Filter for sequences between 20 and 2048
Cluster at 80% sequence similarity
docker run -v `pwd`:/data -w /data cd-hit cd-hit -i ec.fasta -o output_ec_80 -c 0.8 -n 3 -T 72 -M 512000
Keep representative sequences
Keep EC numbers with 100 or more examples
Map each EC number to a unique integer
Remove any duplicates, favor entries with active site information
Shuffle
Split into 1000 valid and 1000 test randomly, make sure they all have active site info
13.8% of train entries have active site info |