File size: 1,259 Bytes
c9a33f2
 
 
 
 
6129ef7
c9a33f2
 
 
 
 
6129ef7
c9a33f2
 
 
6129ef7
c9a33f2
 
6129ef7
c9a33f2
 
6129ef7
c9a33f2
6129ef7
c9a33f2
 
 
 
 
 
 
 
 
 
 
3149c75
 
 
 
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
964b542
3149c75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
dataset_info:
  features:
  - name: Entry
    dtype: string
  - name: seqs
    dtype: string
  - name: EC number
    dtype: string
  - name: Active site
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: train
    num_bytes: 50935453
    num_examples: 80212
  - name: valid
    num_bytes: 686688
    num_examples: 1000
  - name: test
    num_bytes: 692134
    num_examples: 1000
  download_size: 49792005
  dataset_size: 52314275
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: valid
    path: data/valid-*
  - split: test
    path: data/test-*
---

Uniprot (ec:*) AND (go_manual:*) on 5/30/25

Remove any EC entries with '-'

Remove any EC entries with more than one EC number

Filter for sequences between 20 and 2048

Cluster at 80% sequence similarity

docker run -v `pwd`:/data -w /data cd-hit cd-hit -i ec.fasta -o output_ec_80 -c 0.8 -n 3 -T 72 -M 512000

Keep representative sequences

Keep EC numbers with 100 or more examples

Map each EC number to a unique integer

Remove any duplicates, favor entries with active site information

Shuffle

Split into 1000 valid and 1000 test randomly, make sure they all have active site info

13.8% of train entries have active site info