File size: 14,813 Bytes
cb6fe6b 258a114 cb6fe6b d8ff8a1 cb6fe6b 8e3e8ad a581af9 258a114 4201212 4b9c392 c44b81d cc0f26b 411c244 cc0f26b f160e10 cc0f26b 1d51f23 c44b81d cc0f26b 1aa9557 cc0f26b a54a116 329ee2f 07e7913 c44b81d 258a114 cb6fe6b 05a86d3 cb6fe6b 329ee2f 05a86d3 411c244 99e6afb 258a114 c44b81d 258a114 cb6fe6b d49a95a 258a114 c5dd22a 258a114 c3a5a4f 1d51f23 c5dd22a 1d51f23 1aa9557 258a114 639c15e 258a114 a54a116 639c15e a54a116 258a114 c44b81d 258a114 eb42f09 1fa01aa 89c4572 258a114 cb6fe6b 258a114 c3a5a4f 1d51f23 1aa9557 cb6fe6b c5dd22a cb6fe6b a54a116 736e070 7f697e2 736e070 258a114 c3a5a4f 258a114 c5dd22a cb6fe6b 00eb333 258a114 1aa9557 258a114 c5dd22a 258a114 329ee2f 736e070 7f697e2 736e070 c44b81d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LogiQA dataset."""
import datasets
import json
import ast
import pandas as pd
import csv
_CITATION = """\
@ARTICLE{10174688,
author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding},
year={2023},
volume={},
number={},
pages={1-16},
doi={10.1109/TASLP.2023.3293046}}
"""
_DESCRIPTION = """\
The dataset is an amendment and re-annotation of LogiQA in 2020, a large-scale logical reasoning reading comprehension dataset adapted from the Chinese Civil Service Examination. We increase the data size, refine the texts with manual translation by professionals, and improve the quality by removing items with distinctive cultural features like Chinese idioms. Furthermore, we conduct a fine-grained annotation on the dataset and turn it into a two-way natural language inference (NLI) task, resulting in 35k premise-hypothesis pairs with gold labels, making it the first large-scale NLI dataset for complex logical reasoning
"""
_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main"
_LICENSE = (
"Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
)
HEAD= 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/v1/'
_URLS = {
"sat_en": {
"test": HEAD+'sat-en.jsonl',
},
"sat_en_without_passage": {
"test": HEAD+'sat-en-without-passage.jsonl',
},
"sat_math": {
"test": HEAD+'sat-math.jsonl'
},
"lsat_ar": {
"test": HEAD+'lsat-ar.jsonl'
},
"lsat_lr": {
"test": HEAD+'lsat-lr.jsonl'
},
"lsat_rc": {
"test": HEAD+'lsat-rc.jsonl'
},
"logiqa_en": {
"test": HEAD+'logiqa-en.jsonl'
},
"logiqa_zh": {
"test": HEAD+'logiqa-zh.jsonl'
},
"aqua_rat": {
"test": HEAD+'aqua-rat.jsonl'
},
'math': {
"test": HEAD+'math.jsonl'
},
'jec_qa_ca': {
"test": HEAD+'jec-qa-ca.jsonl'
},
'jec_qa_kd': {
"test": HEAD+'jec-qa-kd.jsonl'
},
'gaokao_biology': {
"test": HEAD+'gaokao-biology.jsonl'
},
'gaokao_chemistry': {
"test": HEAD+'gaokao-chemistry.jsonl'
},
'gaokao_chinese': {
"test": HEAD+'gaokao-chinese.jsonl'
},
'gaokao_chemistry': {
"test": HEAD+'gaokao-chemistry.jsonl'
},
'gaokao_english': {
"test": HEAD+'gaokao-english.jsonl'
},
'gaokao_geography': {
"test": HEAD+'gaokao-geography.jsonl'
},
'gaokao_history': {
"test": HEAD+'gaokao-history.jsonl'
},
'gaokao_physics': {
"test": HEAD+'gaokao-physics.jsonl'
},
'gaokao_mathqa': {
"test": HEAD+'gaokao-mathqa.jsonl'
},
'gaokao_mathcloze': {
"test": HEAD+'gaokao-mathcloze.jsonl'
},
'few_shot': {
'few_shot':'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/few_shot_prompts.csv'
}
}
class AgiEval(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
# VERSION = datasets.Version("2.0.1")
# 25/08/2023: Removed row 56 of `sat_en`(label > num_of_choices).
BUILDER_CONFIGS = []
BUILDER_CONFIGS = [datasets.BuilderConfig(
name=e,
version=datasets.Version("2.0.1"),
description="",
) for e in list(_URLS.keys()) if e!="few_shot"
]
DEFAULT_CONFIG_NAME = "aqua_rat"
def _info(self):
if self.config.name in ["aqua_rat", 'lsat_lr', 'lsat_rc', 'lsat_ar']:
features = datasets.Features(
{
"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
"solution": datasets.Value("string"),
}
)
elif self.config.name in ["sat_math", "sat_en_without_passage", "sat_en", "logiqa_en", "logiqa_zh", 'gaokao_mathqa', 'gaokao_chinese', 'gaokao_history', 'gaokao_geography', 'gaokao_biology', 'gaokao_chemistry', 'gaokao_english']:
features = datasets.Features(
{
"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
"solution": datasets.Value("string"),
}
)
elif self.config.name == "math":
features = datasets.Features(
{
"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"solution": datasets.Value("string"),
"level": datasets.Value("int32"),
"type": datasets.Value("string"),
}
)
elif self.config.name in ['gaokao_physics', 'jec_qa_ca', 'jec_qa_kd']:
features = datasets.Features(
{
"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.features.Sequence(datasets.Value("string")),
"solution": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
_urls = _URLS[self.config.name]
urls = {
"test": _urls["test"],
"few_shot": _URLS["few_shot"]["few_shot"],
}
data_dir = dl_manager.download_and_extract(urls)
splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
),
]
splits.append(datasets.SplitGenerator(
name="few_shot",
gen_kwargs={"filepath": data_dir["few_shot"], "split": "few_shot"},
))
return splits
def _generate_examples(self, filepath, split):
# Mapping for column names in CSV to dataset names
names = {'aqua_rat': 'aqua-rat', 'sat_en': 'sat-en', 'sat_math': 'sat-math',
'lsat_ar': 'lsat-ar', 'lsat_lr': 'lsat-lr', 'lsat_rc': 'lsat-rc',
'logiqa_en': 'logiqa-en', 'logiqa_zh': 'logiqa-zh', 'math': 'math',
'sat_en_without_passage': 'sat-en', 'jec_qa_ca':'jec-qa-ca',
'jec_qa_kd':'jec-qa-kd', 'gaokao_mathqa':'gaokao-mathqa', 'gaokao_chinese':'gaokao-chinese',
'gaokao_history':'gaokao-history', 'gaokao_geography':'gaokao-geography',
'gaokao_biology':'gaokao-biology', 'gaokao_chemistry':'gaokao-chemistry',
'gaokao_english':"gaokao-english", "gaokao_physics":"gaokao-physics"}
if split == "few_shot":
# Load the data from the CSV
df = pd.read_csv(filepath, keep_default_na=False)
# Extract samples and explanations
samples = df[df.index % 2 == 0].reset_index(drop=True)
explanations = df[df.index % 2 != 0].reset_index(drop=True)
for key in range(samples.shape[0]):
try:
data = ast.literal_eval(samples[names[self.config.name]][key])
explanation_row = explanations[names[self.config.name]][key]
if self.config.name in ["aqua_rat", 'lsat_lr', 'lsat_rc', 'lsat_ar', "sat_math", "sat_en_without_passage", "logiqa_en","logiqa_zh", "sat_en"]:
label_index = "ABCDE".index(data["label"])
if label_index > len(data["options"]) - 1:
continue
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name == "math":
if not data.get("level"):
data["level"] = data['other']['level']
if not data.get("type"):
data["type"] = data['other']['type']
yield key, {
"passage": data["passage"],
"question": data["question"],
"answer": data["answer"],
"level": data["level"],
"type": data["type"],
"solution": str(explanation_row),
}
elif self.config.name in ['gaokao_physics', 'jec_qa_ca', 'jec_qa_kd']:
if isinstance(data["label"], str):
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": [data["label"]],
"solution": str(explanation_row),
}
else:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name in ['gaokao_mathqa', 'gaokao_chinese', 'gaokao_history', 'gaokao_geography', 'gaokao_biology', 'gaokao_chemistry', 'gaokao_english']:
if data["label"] in ["A", "B", "C", "D", "E"]:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
except:
pass
else:
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name in ["aqua_rat", 'lsat_lr', 'lsat_rc', 'lsat_ar', "sat_math", "sat_en_without_passage", "logiqa_en","logiqa_zh", "sat_en"]:
label_index = "ABCDE".index(data["label"])
if label_index > len(data["options"]) - 1:
continue
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["other"]["solution"] if data["other"] is not None else data["label"],
}
elif self.config.name == "math":
if not data.get("level"):
data["level"] = data['other']['level']
if not data.get("type"):
data["type"] = data['other']['type']
yield key, {
"passage": data["passage"],
"question": data["question"],
"answer": data["answer"],
"solution": data["other"]["solution"],
"level": data["level"],
"type": data["type"],
}
elif self.config.name in ['gaokao_physics', 'jec_qa_ca', 'jec_qa_kd']:
if isinstance(data["label"], str):
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": [data["label"]],
"solution": data["label"],
}
else:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["label"],
}
elif self.config.name in ['gaokao_mathqa', 'gaokao_chinese', 'gaokao_history', 'gaokao_geography', 'gaokao_biology', 'gaokao_chemistry', 'gaokao_english']:
if data["label"] in ["A", "B", "C", "D", "E"]:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["label"],
}
|