ATOMICA / process_atomica.py
karina-zadorozhny's picture
Upload process_atomica.py
d5fe9b8 verified
import os
import tempfile
import logging
import requests
import pandas as pd
from tqdm import tqdm
from rdkit import Chem
import pooch
from concurrent.futures import ThreadPoolExecutor, as_completed
from lobster.data import upload_to_s3
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
S3_BASE_URI = os.environ["S3_BASE_URI"]
S3_RAW = f"{S3_BASE_URI}/raw"
S3_PROCESSED = f"{S3_BASE_URI}/pre-processed"
MAX_WORKERS = 16 # for threading
MODALITY_MAPPING = {
"polypeptide(L)": "amino_acid",
"polynucleotide": "nucleotide",
"polyribonucleotide": "nucleotide",
"polynucleotide (RNA)": "nucleotide",
"polynucleotide (DNA)": "nucleotide",
"polydeoxyribonucleotide": "nucleotide",
"polydeoxyribonucleotide/polyribonucleotide hybrid ": "nucleotide",
"smiles": "smiles",
}
IDENTIFIERS = {
"protein-peptide": "11033993",
"protein-rna": "11033983",
"protein-protein": "11033984",
"rna-small_molecule": "11033985",
"protein-small_molecule": "11033996",
"protein-ion": "11033989",
"protein-dna": "11033982",
"small_molecule-small_molecule": "11033997",
}
def upload_raw_datasets_to_s3() -> None:
for fname, identifier in IDENTIFIERS.items():
with tempfile.TemporaryDirectory() as tmpdir:
local_path = pooch.retrieve(
f"https://dataverse.harvard.edu/api/access/datafile/{identifier}",
fname=f"{fname}.csv",
known_hash=None,
path=tmpdir,
progressbar=True,
)
upload_to_s3(
s3_uri=f"{S3_RAW}/{fname}.csv",
local_filepath=local_path,
)
def _canonicalize_smiles(smiles: str) -> str | None:
"""Canonicalize SMILES string."""
mol = Chem.MolFromSmiles(smiles)
return Chem.MolToSmiles(mol, canonical=True) if mol else None
def _fetch_pdb_data(pdb_id: str) -> list[dict]:
"""Fetch molecular data from PDBe API for a given PDB ID."""
res = requests.get(f"https://www.ebi.ac.uk/pdbe/api/pdb/entry/molecules/{pdb_id}")
if res.status_code != 200:
raise Exception(f"Failed to fetch data for {pdb_id}: {res.status_code}")
return res.json().get(pdb_id.lower(), [])
def _fetch_smiles_data(ligand_id: str) -> str | None:
"""Fetch SMILES string for ligand from PDBe."""
try:
res = requests.get(f"https://www.ebi.ac.uk/pdbe/api/pdb/compound/summary/{ligand_id.lower()}")
if res.status_code != 200:
raise Exception(f"Failed to fetch data for {ligand_id}: {res.status_code}")
ligand_data = res.json().get(ligand_id)[0]
ligand_data = iter(ligand_data["smiles"])
while True:
try:
smiles = next(ligand_data)["name"]
return _canonicalize_smiles(smiles)
except StopIteration:
break
except Exception:
continue
except Exception as e:
raise Exception(f"Failed to fetch SMILES for {ligand_id}") from e
def _safe_extract(row_id: str, sequence_extractor: callable) -> dict | None:
"""Safely extract sequences and modalities given a row ID and extractor."""
try:
sequences, modalities = sequence_extractor(row_id)
except Exception as e:
logger.info(f"Error processing {row_id}: {e}")
return None
combined = list(zip(sequences, modalities))
combined.sort(key=lambda x: x[1] != "polypeptide(L)")
sequences, modalities = zip(*combined) if combined else ([], [])
sequences = (list(sequences) + [None] * 5)[:5]
modalities = (list(modalities) + [None] * 5)[:5]
return {
"id": row_id,
**{f"sequence{i + 1}": sequences[i] for i in range(5)},
**{f"modality{i + 1}": modalities[i] for i in range(5)},
}
def process_rows(df: pd.DataFrame, sequence_extractor: callable, debug: bool = False) -> pd.DataFrame:
"""
Process rows in the dataframe to extract sequence and modality information.
Parameters
----------
df : pd.DataFrame
Input dataframe with 'id' column.
sequence_extractor : callable
Function to extract sequences and modalities given a row id.
debug : bool, optional
If True, only processes first 10 rows.
Returns
-------
pd.DataFrame
Dataframe with sequence and modality columns.
"""
row_ids = df["id"].tolist()[:10] if debug else df["id"].tolist()
results = []
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
futures = {executor.submit(_safe_extract, rid, sequence_extractor): rid for rid in row_ids}
for future in tqdm(as_completed(futures), total=len(futures)):
result = future.result()
if result:
results.append(result)
return pd.DataFrame(results).replace(MODALITY_MAPPING)
def extract_protein_nucleotide(row_id: str) -> tuple[list[str], list[str]]:
"""Example ID: 3adi_1.pdb_3adi_1_RNA_D&E.pdb"""
pdb_id = row_id.split("_")[0]
pdb_data = _fetch_pdb_data(pdb_id)
sequences, types = (
zip(*[(m["sequence"], m["molecule_type"]) for m in pdb_data if "sequence" in m]) if pdb_data else ([], [])
)
return list(sequences), list(types)
def extract_protein_small_molecule(row_id: str) -> tuple[list[str], list[str]]:
"""Example ID: 4h4e_1.pdb_4h4e_1_10G_D.pdb"""
parts = row_id.split("_")
pdb_id, ligand_id = parts[2], parts[4]
pdb_data = _fetch_pdb_data(pdb_id)
sequences, types = (
zip(*[(m["sequence"], m["molecule_type"]) for m in pdb_data if "sequence" in m]) if pdb_data else ([], [])
)
ligand = _fetch_smiles_data(ligand_id)
if ligand:
sequences += (ligand,)
types += ("smiles",)
return list(sequences), list(types)
def extract_interacting_chains(row_id: str) -> tuple[list[str], list[str]]:
"""Example ID: 2uxq_2_A_B"""
pdb_id, _, chain_a, chain_b = row_id.split("_")
chains_of_interest = {chain_a, chain_b}
molecules = _fetch_pdb_data(pdb_id)
chain_map = {}
for m in molecules:
if "sequence" not in m or "in_chains" not in m:
continue
for chain in m["in_chains"]:
if chain in chains_of_interest:
chain_map[chain] = (m["sequence"], m["molecule_type"])
sequences, types = [], []
for chain in [chain_a, chain_b]:
if chain in chain_map:
seq, mol_type = chain_map[chain]
sequences.append(seq)
types.append(mol_type)
else:
sequences.append(None)
types.append(None)
return sequences, types
def process_protein_nucleotide(debug: bool = False) -> None:
df = pd.read_csv(f"{S3_RAW}/protein-dna.csv", sep="\t")
df_out = process_rows(df, extract_protein_nucleotide, debug=debug)
df_out = df_out.drop_duplicates().reset_index(drop=True)
df_out.to_parquet(f"{S3_PROCESSED}/protein-dna.parquet", index=False)
df = pd.read_csv(f"{S3_RAW}/protein-rna.csv", sep="\t")
df_out = process_rows(df, extract_protein_nucleotide, debug=debug)
df_out = df_out.drop_duplicates().reset_index(drop=True)
df_out.to_parquet(f"{S3_PROCESSED}/protein-rna.parquet", index=False)
def process_protein_protein(debug: bool = False) -> None:
df = pd.read_csv(f"{S3_RAW}/protein-protein.csv", sep="\t")
df_out = process_rows(df, extract_interacting_chains, debug=debug)
df_out = df_out.drop_duplicates().reset_index(drop=True)
df_out.to_parquet(f"{S3_PROCESSED}/protein-protein.parquet", index=False)
def process_protein_small_molecule(debug: bool = False) -> None:
df = pd.read_csv(f"{S3_RAW}/protein-small_molecule.csv", sep="\t")
df_out = process_rows(df, extract_protein_small_molecule, debug=debug)
df_out = df_out.dropna(how="all", axis=1).drop_duplicates().reset_index(drop=True)
df_out.to_parquet(f"{S3_PROCESSED}/protein-small_molecule.parquet", index=False)
def process_smiles_smiles() -> None:
df = pd.read_csv(f"{S3_RAW}/small_molecule-small_molecule.csv")
df = df["id"].str.split("_", expand=True)
df.columns = ["id", "sequence1", "num_1", "sequence2", "num_2"]
df = df[df["sequence1"] != df["sequence2"]][["sequence1", "sequence2"]]
df.insert(1, "modality1", "smiles")
df.insert(3, "modality2", "smiles")
df = df.drop_duplicates().reset_index(drop=True)
df.to_parquet(f"{S3_PROCESSED}/small_molecule-small_molecule.parquet", index=False)
if __name__ == "__main__":
upload_raw_datasets_to_s3()
process_protein_nucleotide(debug=False)
process_protein_protein(debug=False)
process_protein_small_molecule(debug=False)
process_smiles_smiles()