| import re | |
| from pathlib import Path | |
| from datasets import Dataset | |
| import pandas as pd | |
| def generate_chunks(text: str, chunk_size: int = 128) -> list[str]: | |
| sentences = re.split("[?.!]", text) | |
| chunks = [] | |
| current_chunk_tokens = [] | |
| for sentence in sentences: | |
| tokens = sentence.split() | |
| if (len(current_chunk_tokens) + len(tokens)) <= 128: | |
| current_chunk_tokens.extend(tokens) | |
| else: | |
| chunks.append(" ".join(current_chunk_tokens)) | |
| current_chunk_tokens = [*tokens] | |
| return chunks | |
| textfiles = Path("Corpus-v1.1/texts").glob("*.txt") | |
| entries = [] | |
| for file in textfiles: | |
| year, author, work, *_ = file.stem.split("_") | |
| with file.open() as in_file: | |
| text = in_file.read() | |
| entries.append(dict(year=year, author=author, work=work, text=text)) | |
| data = pd.DataFrame.from_records(entries) | |
| data["full_title"] = data["author"] + " - " + data["work"] | |
| data["text"] = data["text"].map(generate_chunks) | |
| data = data.explode("text") | |
| seed = 42 | |
| n_works = 64 | |
| n_chunks_per_work = 32 | |
| sampled_titles = pd.Series(data["full_title"].unique()).sample( | |
| n_works, random_state=seed | |
| ) | |
| sampled_data = data[data["full_title"].isin(sampled_titles)] | |
| sampled_data = sampled_data.groupby(["full_title"]).sample( | |
| n_chunks_per_work, random_state=seed | |
| ) | |
| ds = Dataset.from_pandas( | |
| sampled_data[["year", "author", "work", "text", "full_title"]].reset_index() | |
| ).shuffle(seed=seed) | |
| ds.push_to_hub("kardosdrur/historical-danish-clustering") | |