karanwxlia commited on
Commit
294d20f
·
verified ·
1 Parent(s): eb1cd30

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Underwater Trash Detection Dataset
2
+
3
+ ## Overview
4
+ The **Underwater Trash Detection Dataset** is a custom-annotated dataset designed to address the challenges of underwater trash detection caused by varying environmental features. Publicly available datasets alone are insufficient for training deep learning models due to domain-specific variations in underwater conditions. This dataset offers a cumulative, self-annotated collection of underwater images for detecting and classifying trash, providing a strong foundation for deep learning research and benchmark testing.
5
+
6
+ ---
7
+
8
+ ## Dataset Summary
9
+
10
+ - **Total Images:** 9,576
11
+ - **Annotation Types:** Trash classification (plastic, trash, underwater debris) vs. environmental factors (fish, flora, fauna).
12
+
13
+ ---
14
+
15
+ ## Dataset Split
16
+
17
+ | **Split** | **Percentage** | **Number of Images** |
18
+ |-------------|----------------|-----------------------|
19
+ | Train Set | 76% | 7,308 |
20
+ | Validation | 19% | 1,795 |
21
+ | Test Set | 5% | 473 |
22
+
23
+ ---
24
+
25
+ ## Preprocessing
26
+
27
+ - **Image Resize:** All images are resized to **256x256** pixels using stretching for uniform input dimensions.
28
+
29
+ ---
30
+
31
+ ## Purpose
32
+ This dataset supports research in underwater trash detection while addressing storage and computational constraints in underwater mobile devices. It enables the development of optimized algorithms for efficient trash detection and classification using minimal resources.
33
+
34
+ ---
35
+
36
+ ## Citation
37
+
38
+ If you use this dataset in your research, please cite:
39
+
40
+ ```bibtex
41
+ @InProceedings{10.1007/978-3-031-43360-3_24,
42
+ author="Walia, Jaskaran Singh and Seemakurthy, Karthik",
43
+ editor="Iida, Fumiya
44
+ and Maiolino, Perla
45
+ and Abdulali, Arsen
46
+ and Wang, Mingfeng",
47
+ title="Optimized Custom Dataset for Efficient Detection of Underwater Trash",
48
+ booktitle="Towards Autonomous Robotic Systems",
49
+ year="2023",
50
+ publisher="Springer Nature Switzerland",
51
+ address="Cham",
52
+ pages="292--303",
53
+ }