Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K - 10K
ArXiv:
License:
| # coding=utf-8 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """ETPC: The Extended Typology Paraphrase Corpus""" | |
| import os | |
| from typing import Any, Dict, Generator, List, Optional, Tuple, Union | |
| import datasets | |
| import numpy as np | |
| from datasets.tasks import TextClassification | |
| from lxml import etree | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @inproceedings{kovatchev-etal-2018-etpc, | |
| title = "{ETPC} - A Paraphrase Identification Corpus Annotated with Extended Paraphrase Typology and Negation", | |
| author = "Kovatchev, Venelin and | |
| Mart{\'\i}, M. Ant{\`o}nia and | |
| Salam{\'o}, Maria", | |
| booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)", | |
| month = may, | |
| year = "2018", | |
| address = "Miyazaki, Japan", | |
| publisher = "European Language Resources Association (ELRA)", | |
| url = "https://aclanthology.org/L18-1221", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The EPT typology addresses several practical limitations of existing paraphrase typologies: it is the first typology that copes with the non-paraphrase pairs in the paraphrase identification corpora and distinguishes between contextual and habitual paraphrase types. ETPC is the largest corpus to date annotated with atomic paraphrase types. | |
| """ | |
| _HOMEPAGE = "https://github.com/venelink/ETPC" | |
| _LICENSE = "Unknown" | |
| _URLS = [ | |
| "https://raw.githubusercontent.com/venelink/ETPC/master/Corpus/text_pairs.xml", | |
| "https://raw.githubusercontent.com/venelink/ETPC/master/Corpus/textual_paraphrases.xml", | |
| ] | |
| class ETPC(datasets.GeneratorBasedBuilder): | |
| """ETPC dataset.""" | |
| VERSION = datasets.Version("0.95.0") | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "idx": datasets.Value("string"), | |
| "sentence1": datasets.Value("string"), | |
| "sentence2": datasets.Value("string"), | |
| "sentence1_tokenized": datasets.Sequence( | |
| datasets.Value("string") | |
| ), | |
| "sentence2_tokenized": datasets.Sequence( | |
| datasets.Value("string") | |
| ), | |
| "etpc_label": datasets.Value("int8"), | |
| "mrpc_label": datasets.Value("int8"), | |
| "negation": datasets.Value("int8"), | |
| "paraphrase_types": datasets.Sequence( | |
| datasets.Value("string") | |
| ), | |
| "paraphrase_type_ids": datasets.Sequence( | |
| datasets.Value("string") | |
| ), | |
| "sentence1_segment_location": datasets.Sequence( | |
| datasets.Value("int32") | |
| ), | |
| "sentence2_segment_location": datasets.Sequence( | |
| datasets.Value("int32") | |
| ), | |
| "sentence1_segment_location_indices": datasets.Sequence( | |
| datasets.Sequence(datasets.Value("int32")) | |
| ), | |
| "sentence2_segment_location_indices": datasets.Sequence( | |
| datasets.Sequence(datasets.Value("int32")) | |
| ), | |
| "sentence1_segment_text": datasets.Sequence( | |
| datasets.Value("string") | |
| ), | |
| "sentence2_segment_text": datasets.Sequence( | |
| datasets.Value("string") | |
| ), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| dl_dir = dl_manager.download_and_extract(_URLS) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "file_paths": dl_manager.iter_files(dl_dir), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, file_paths): | |
| file_paths = list(file_paths) | |
| text_pairs_path = file_paths[0] | |
| paraphrase_types_path = file_paths[1] | |
| parser = etree.XMLParser(encoding="utf-8", recover=True) | |
| tree_text_pairs = etree.parse(text_pairs_path, parser=parser) | |
| tree_paraphrase_types = etree.parse( | |
| paraphrase_types_path, parser=parser | |
| ) | |
| root_text_pairs = tree_text_pairs.getroot() | |
| root_paraphrase_types = tree_paraphrase_types.getroot() | |
| idx = 0 | |
| for row in root_text_pairs: | |
| current_pair_id = row.find(".//pair_id").text | |
| paraphrase_types = root_paraphrase_types.xpath( | |
| f".//pair_id[text()='{current_pair_id}']/parent::relation/type_name/text()" | |
| ) | |
| paraphrase_type_ids = root_paraphrase_types.xpath( | |
| f".//pair_id[text()='{current_pair_id}']/parent::relation/type_id/text()" | |
| ) | |
| sentence1_segment_location = root_paraphrase_types.xpath( | |
| f".//pair_id[text()='{current_pair_id}']/parent::relation/s1_scope/text()" | |
| ) | |
| sentence2_segment_location = root_paraphrase_types.xpath( | |
| f".//pair_id[text()='{current_pair_id}']/parent::relation/s2_scope/text()" | |
| ) | |
| sentence1_segment_text = root_paraphrase_types.xpath( | |
| f".//pair_id[text()='{current_pair_id}']/parent::relation/s1_text/text()" | |
| ) | |
| sentence2_segment_text = root_paraphrase_types.xpath( | |
| f".//pair_id[text()='{current_pair_id}']/parent::relation/s2_text/text()" | |
| ) | |
| sentence1_tokenized = row.find(".//sent1_tokenized").text.split( | |
| " " | |
| ) | |
| sentence2_tokenized = row.find(".//sent2_tokenized").text.split( | |
| " " | |
| ) | |
| sentence1_segment_location_full = np.zeros( | |
| len(sentence1_tokenized) | |
| ) | |
| sentence2_segment_location_full = np.zeros( | |
| len(sentence2_tokenized) | |
| ) | |
| sentence1_segment_indices = [] | |
| sentence2_segment_indices = [] | |
| for ( | |
| sentence1_segment_locations, | |
| sentence2_segment_locations, | |
| paraphrase_type_id, | |
| ) in zip( | |
| sentence1_segment_location, | |
| sentence2_segment_location, | |
| paraphrase_type_ids, | |
| ): | |
| segment_locations_1 = [ | |
| int(i) for i in sentence1_segment_locations.split(",") | |
| ] | |
| sentence1_segment_indices.append(segment_locations_1) | |
| sentence1_segment_location_full[segment_locations_1] = [ | |
| paraphrase_type_id | |
| ] * len(segment_locations_1) | |
| segment_locations_2 = [ | |
| int(i) for i in sentence2_segment_locations.split(",") | |
| ] | |
| sentence2_segment_indices.append(segment_locations_2) | |
| sentence2_segment_location_full[segment_locations_2] = [ | |
| paraphrase_type_id | |
| ] * len(segment_locations_2) | |
| yield idx, { | |
| "idx": row.find(".//pair_id").text + "_" + str(idx), | |
| "sentence1": row.find(".//sent1_raw").text, | |
| "sentence2": row.find(".//sent2_raw").text, | |
| "sentence1_tokenized": sentence1_tokenized, | |
| "sentence2_tokenized": sentence2_tokenized, | |
| "etpc_label": int(row.find(".//etpc_label").text), | |
| "mrpc_label": int(row.find(".//mrpc_label").text), | |
| "negation": int(row.find(".//negation").text), | |
| "paraphrase_types": paraphrase_types, | |
| "paraphrase_type_ids": paraphrase_type_ids, | |
| "sentence1_segment_location": sentence1_segment_location_full, | |
| "sentence2_segment_location": sentence2_segment_location_full, | |
| "sentence1_segment_location_indices": sentence1_segment_indices, | |
| "sentence2_segment_location_indices": sentence2_segment_indices, | |
| "sentence1_segment_text": sentence1_segment_text, | |
| "sentence2_segment_text": sentence2_segment_text, | |
| } | |
| idx += 1 | |