--- dataset_info: features: - name: id dtype: int32 - name: image dtype: image - name: conversations list: - name: role dtype: string - name: content dtype: string - name: metadata struct: - name: doc_title dtype: string - name: publisher dtype: string - name: publish_year dtype: string - name: table_type dtype: string - name: table_field dtype: string - name: table_unit dtype: string - name: table_title dtype: string - name: table_header dtype: string - name: table_row_number dtype: int32 - name: table_column_number dtype: int32 - name: table_header_bold dtype: string - name: table_background dtype: string - name: html_path dtype: string - name: width dtype: int32 - name: height dtype: int32 - name: summary list: string - name: html dtype: string splits: - name: train num_bytes: 40931400228.0 num_examples: 323264 - name: validation num_bytes: 4185978223.25 num_examples: 40406 download_size: 38033928568 dataset_size: 45117378451.25 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* --- 이거 HTML 데이터 Naver-OCR 이용해서 만든 데이터임. HTML 한정 부정확한 데이터가 있을 수 있음. llava 학습 할 때의 recap 데이터로 활용할 수 있지? 있을 듯?