|
""" |
|
|
|
import datasets |
|
import os |
|
import pyarrow.parquet as pq |
|
from PIL import Image |
|
from io import BytesIO |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
def load_data(data_dir): |
|
parquet_file = [file for file in os.listdir(data_dir) if file.endswith('.parquet')][0] |
|
print(parquet_file) |
|
parquet_path = os.path.join(data_dir, parquet_file) |
|
|
|
parquet_path = data_dir |
|
table = pq.read_table(parquet_path) |
|
|
|
for row in table.iterrecords(): |
|
image_bytes = row['image'] |
|
image = Image.open(BytesIO(image_bytes)) |
|
label = row['label'] |
|
yield image, label |
|
|
|
|
|
|
|
class SATINConfig(datasets.BuilderConfig): |
|
|
|
|
|
def __init__(self, name, description, data_url, class_names, **kwargs): |
|
|
|
Args: |
|
data_url: `string`, url to download the zip file from. |
|
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
|
|
super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.name = name |
|
self.data_url = data_url |
|
self.description = description |
|
self.class_names = class_names |
|
|
|
|
|
class SATIN(datasets.GeneratorBasedBuilder): |
|
SATIN Images dataset |
|
|
|
_SAT_4_NAMES = ['barren land', 'grassland', 'other', 'trees'] |
|
_SAT_6_NAMES = ['barren land', 'building', 'grassland', 'road', 'trees', 'water'] |
|
|
|
BUILDER_CONFIGS = [ |
|
SATINConfig( |
|
name="SAT_4", |
|
description="SAT_4.", |
|
data_url="https://huggingface.co/datasets/jonathan-roberts1/SAT-4/tree/main/data/",#train-00000-of-00001-e2dcb38bc165dfb0.parquet", |
|
class_names = _SAT_4_NAMES |
|
#metadata_urls={ |
|
# "train": "https://link-to-breakfast-foods-train.txt", |
|
), |
|
SATINConfig( |
|
name="SAT_6", |
|
description="SAT_6.", |
|
data_url="https://huggingface.co/datasets/jonathan-roberts1/SAT-6/tree/main/data/",#train-00000-of-00001-c47ada2c92f814d2.parquet", |
|
class_names = _SAT_6_NAMES |
|
) |
|
] |
|
|
|
@property |
|
def url_prefix(self): |
|
return { |
|
"SAT-4": "https://huggingface.co/datasets/jonathan-roberts1/SAT-4/tree/main/data/",#train-00000-of-00001-e2dcb38bc165dfb0.parquet",#train-00000-of-00001-e2dcb38bc165dfb0.parquet", |
|
"SAT-6": "https://huggingface.co/datasets/jonathan-roberts1/SAT-6/tree/main/data/", |
|
} |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=self.config.class_names), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
#homepage=_HOMEPAGE, |
|
#citation=_CITATION, |
|
#license=_LICENSE, |
|
#task_templates=[ImageClassification(image_column="image", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = self.config.data_url |
|
data_dir = dl_manager.download_and_extract(url)#, use_auth_token=True) |
|
print(data_dir) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dir": data_dir}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
#base_url = self.url_prefix[self.config.name] |
|
file_url = self.config.data_url |
|
use_auth_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
with NamedTemporaryFile() as file: |
|
download(file_url, file.name, use_auth_token=use_auth_token) |
|
df = pd.read_parquet(file.name) |
|
|
|
for idx, row in df.iterrows(): |
|
example = { |
|
"image": row["image"], |
|
"label": row["label"], |
|
} |
|
yield idx, example |
|
|
|
|
|
#def _generate_examples(self, data_dir): |
|
# for idx, (image, label) in enumerate(load_data(data_dir)): |
|
# image_array = np.array(image) |
|
# yield idx, {"image": image_array, "label": label} |
|
""" |
|
|
|
|
|
from datasets.utils.download_manager import DownloadManager |
|
import tempfile |
|
import datasets |
|
import os |
|
import pyarrow.parquet as pq |
|
from PIL import Image |
|
from io import BytesIO |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
class SATINConfig(datasets.BuilderConfig): |
|
|
|
|
|
def __init__(self, name, description, data_url, class_names, **kwargs): |
|
|
|
super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.name = name |
|
self.data_url = data_url |
|
self.description = description |
|
self.class_names = class_names |
|
|
|
|
|
|
|
class SATIN(datasets.GeneratorBasedBuilder): |
|
"""SATIN Images dataset""" |
|
|
|
_SAT_4_NAMES = ['barren land', 'grassland', 'other', 'trees'] |
|
_SAT_6_NAMES = ['barren land', 'building', 'grassland', 'road', 'trees', 'water'] |
|
|
|
BUILDER_CONFIGS = [ |
|
SATINConfig( |
|
name="SAT_4", |
|
description="SAT_4.", |
|
data_url="jonathan-roberts1/SAT-4", |
|
class_names=_SAT_4_NAMES |
|
), |
|
SATINConfig( |
|
name="SAT_6", |
|
description="SAT_6.", |
|
data_url="jonathan-roberts1/SAT-6", |
|
class_names=_SAT_6_NAMES |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=self.config.class_names), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_path": dataset}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_path): |
|
|
|
huggingface_dataset = data_path["train"] |
|
for idx, row in enumerate(huggingface_dataset): |
|
yield idx, {"image": row["image"], "label": row["label"]} |
|
|
|
|
|
|
|
|