import datasets import json import numpy import torch _DESCRIPTION = """\ Dataset of pre-processed samples from a small portion of the \ Waymo Open Motion Data for our risk-biased prediction task. """ _CITATION = """\ @InProceedings{NiMe:2022, author = {Haruki Nishimura, Jean Mercat, Blake Wulfe, Rowan McAllister}, title = {RAP: Risk-Aware Prediction for Robust Planning}, booktitle = {Proceedings of the 2022 IEEE International Conference on Robot Learning (CoRL)}, month = {December}, year = {2022}, address = {Grafton Road, Auckland CBD, Auckland 1010}, url = {}, } """ _URL = "https://huggingface.co/datasets/jmercat/risk_biased_dataset/resolve/main/" _URLS = { "test": _URL + "data.json", } class RiskBiasedDataset(datasets.GeneratorBasedBuilder): """Dataset of pre-processed samples from a portion of the Waymo Open Motion Data for the risk-biased prediction task.""" VERSION = datasets.Version("0.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="risk_biased_dataset", version=VERSION, description="Dataset of pre-processed samples from a portion of the Waymo Open Motion Data for the risk-biased prediction task."), ] DEFAULT_CONFIG_NAME = "risk_biased_dataset" def _info(self): return datasets.DatasetInfo( description= _DESCRIPTION, features=datasets.Features( {"x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), "mask_x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), "y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), "mask_y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), "mask_loss": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), "map_data": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), "mask_map": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), "offset": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))), "x_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), "y_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), } ), supervised_keys=None, homepage="https://sites.google.com/view/corl-risk/home", citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}),] def _generate_examples(self, filepath, split): """Yields examples.""" assert split == "test" with open(filepath, "r") as f: data = json.load(f) x = torch.from_numpy(numpy.array(data["x"]).astype(numpy.float32)) mask_x = torch.from_numpy(numpy.array(data["mask_x"]).astype(numpy.bool_)) y = torch.from_numpy(numpy.array(data["y"]).astype(numpy.float32)) mask_y = torch.from_numpy(numpy.array(data["mask_y"]).astype(numpy.bool_)) mask_loss = torch.from_numpy( numpy.array(data["mask_loss"]).astype(numpy.bool_)) map_data = torch.from_numpy(numpy.array(data["map_data"]).astype(numpy.float32)) mask_map = torch.from_numpy(numpy.array(data["mask_map"]).astype(numpy.bool_)) offset = torch.from_numpy(numpy.array(data["offset"]).astype(numpy.float32)) x_ego = torch.from_numpy(numpy.array(data["x_ego"]).astype(numpy.float32)) y_ego = torch.from_numpy(numpy.array(data["y_ego"]).astype(numpy.float32)) batch_size = x.shape[0] for i in range(batch_size): # yield i, {"x": x[i], "mask_x": mask_x[i], # "y": y[i], "mask_y": mask_y[i], "mask_loss": mask_loss[i], # "map_data": map_data[i], "mask_map": mask_map[i], # "offset": offset[i], # "x_ego": x_ego[i], # "y_ego": y_ego[i]} yield i, {"x": x[i:i+1], "mask_x": mask_x[i:i+1], "y": y[i:i+1], "mask_y": mask_y[i:i+1], "mask_loss": mask_loss[i:i+1], "map_data": map_data[i:i+1], "mask_map": mask_map[i:i+1], "offset": offset[i:i+1], "x_ego": x_ego[i:i+1], "y_ego": y_ego[i:i+1]}