jmc255 commited on
Commit
ba3daf8
·
verified ·
1 Parent(s): e906c1d

Upload aphantasia_drawing_dataset.py

Browse files
Files changed (1) hide show
  1. aphantasia_drawing_dataset.py +65 -62
aphantasia_drawing_dataset.py CHANGED
@@ -1,13 +1,13 @@
1
  # -*- coding: utf-8 -*-
2
  """aphantasia_drawing_dataset.ipynb
3
 
4
- Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
- https://colab.research.google.com/drive/1FHMQJWfjSzSrtEpARqh7IKVrfF7LwyRA
8
  """
9
 
10
-
11
 
12
  # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
13
  #
@@ -26,9 +26,10 @@ Original file is located at
26
  """TODO: Add a description here."""
27
 
28
 
29
- #import csv
30
  import base64
31
  from PIL import Image
 
32
  import numpy as np
33
  import io
34
  import json
@@ -49,7 +50,6 @@ month={Sep}
49
  }
50
  """
51
 
52
-
53
  _DESCRIPTION = """\
54
  This dataset comes from the Brain Bridge Lab from the University of Chicago.
55
  It is from an online memory drawing experiment with 61 individuals with aphantasia
@@ -65,10 +65,7 @@ updated September 27, 2023.
65
  _HOMEPAGE = "https://osf.io/cahyd/"
66
 
67
 
68
-
69
-
70
-
71
- url = "https://drive.google.com/file/d/1aRhQlKPDk29yYPkx2kPhqaMwec5QZ4JE/view?usp=sharing"
72
 
73
  def _get_drive_url(url):
74
  base_url = 'https://drive.google.com/uc?id='
@@ -78,6 +75,7 @@ def _get_drive_url(url):
78
  _URL = {"train": _get_drive_url(url)}
79
 
80
 
 
81
  class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):
82
  """TODO: Short description of my dataset."""
83
 
@@ -141,67 +139,72 @@ class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):
141
  def _generate_examples(self, filepath):
142
  """This function returns the examples in the raw (text) form."""
143
  logging.info("generating examples from = %s", filepath)
 
 
 
 
 
 
144
 
145
  with open(filepath, "r") as subjects_file:
146
- subjects_data = json.load(subjects_file)
147
- idx = 0
148
- for sub in subjects_data:
149
- for room in subjects_data[sub]["drawings"].keys():
150
- if subjects_data[sub]["drawings"][room]["perception"] != "":
151
- img_byt = base64.b64decode(subjects_data[sub]["drawings"][room]["perception"])
152
- img = Image.open(io.BytesIO(img_byt))
153
- subjects_data[sub]["drawings"][room]["perception"] = img
154
- else:
155
- subjects_data[sub]["drawings"][room]["perception"] = None
156
-
157
- if subjects_data[sub]["drawings"][room]["memory"] != "":
158
- img_byt = base64.b64decode(subjects_data[sub]["drawings"][room]["memory"])
159
- img = Image.open(io.BytesIO(img_byt))
160
- subjects_data[sub]["drawings"][room]["memory"] = img
161
- else:
162
- subjects_data[sub]["drawings"][room]["memory"] = None
163
-
164
- for room in subjects_data[sub]["image"].keys():
165
- img_byt = base64.b64decode(subjects_data[sub]["image"][room])
166
- img = Image.open(io.BytesIO(img_byt))
167
- subjects_data[sub]["image"][room] = img.resize((500,500))
168
- idx += 1
169
- age = int(subjects_data[sub]["demographics"]["age"]) if subjects_data[sub]["demographics"]["age"] else np.nan
170
- yield idx-1, {
171
- "subject_id": subjects_data[sub]["subject_id"],
172
- "treatment": subjects_data[sub]["treatment"],
173
  "demographics": {
174
- "country": subjects_data[sub]["demographics"]["country"],
175
- "age": subjects_data[sub]["demographics"]["age"],
176
- "gender": subjects_data[sub]["demographics"]["gender"],
177
- "occupation": subjects_data[sub]["demographics"]["occupation"],
178
- "art_ability": subjects_data[sub]["demographics"]["art_ability"],
179
- "art_experience": subjects_data[sub]["demographics"]["art_experience"],
180
- "device": subjects_data[sub]["demographics"]["device"],
181
- "input": subjects_data[sub]["demographics"]["input"],
182
- "difficult": subjects_data[sub]["demographics"]["difficult"],
183
- "diff_explanation": subjects_data[sub]["demographics"]["diff_explanation"],
184
- "vviq_score": subjects_data[sub]["demographics"]["vviq_score"],
185
- "osiq_score": subjects_data[sub]["demographics"]["osiq_score"]
186
- },
187
  "drawings": {
188
  "kitchen": {
189
- "perception": subjects_data[sub]["drawings"]["kitchen"]["perception"],
190
- "memory": subjects_data[sub]["drawings"]["kitchen"]["memory"]
191
  },
192
  "livingroom": {
193
- "perception": subjects_data[sub]["drawings"]["livingroom"]["perception"],
194
- "memory": subjects_data[sub]["drawings"]["livingroom"]["memory"]
195
  },
196
  "bedroom": {
197
- "perception": subjects_data[sub]["drawings"]["bedroom"]["perception"],
198
- "memory": subjects_data[sub]["drawings"]["bedroom"]["memory"]
199
  }
200
- },
201
  "image": {
202
- "kitchen": subjects_data[sub]["image"]["kitchen"],
203
- "livingroom": subjects_data[sub]["image"]["livingroom"],
204
- "bedroom": subjects_data[sub]["image"]["bedroom"]
205
- }
206
- }
207
-
 
1
  # -*- coding: utf-8 -*-
2
  """aphantasia_drawing_dataset.ipynb
3
 
4
+ Automatically generated by Colab.
5
 
6
  Original file is located at
7
+ https://colab.research.google.com/drive/1DYVroeFqoNK7DDiw_3OIczPeqEME-rbh
8
  """
9
 
10
+ !pip install -q datasets
11
 
12
  # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
13
  #
 
26
  """TODO: Add a description here."""
27
 
28
 
29
+
30
  import base64
31
  from PIL import Image
32
+ import pandas as pd
33
  import numpy as np
34
  import io
35
  import json
 
50
  }
51
  """
52
 
 
53
  _DESCRIPTION = """\
54
  This dataset comes from the Brain Bridge Lab from the University of Chicago.
55
  It is from an online memory drawing experiment with 61 individuals with aphantasia
 
65
  _HOMEPAGE = "https://osf.io/cahyd/"
66
 
67
 
68
+ url = "https://drive.google.com/file/d/1v1oaZog5j5dD_vIElOEWLCZUrXvJ3jzx/view?usp=drive_link"
 
 
 
69
 
70
  def _get_drive_url(url):
71
  base_url = 'https://drive.google.com/uc?id='
 
75
  _URL = {"train": _get_drive_url(url)}
76
 
77
 
78
+
79
  class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):
80
  """TODO: Short description of my dataset."""
81
 
 
139
  def _generate_examples(self, filepath):
140
  """This function returns the examples in the raw (text) form."""
141
  logging.info("generating examples from = %s", filepath)
142
+ def byt_to_image(image_bytes):
143
+ if image_bytes is not None:
144
+ image_buffer = io.BytesIO(image_bytes)
145
+ image = Image.open(image_buffer)
146
+ return image
147
+ return None
148
 
149
  with open(filepath, "r") as subjects_file:
150
+ subjects_data = pd.read_parquet(subjects_file)
151
+ #idx = 0
152
+ for sub_row in subjects_data.iterrows():
153
+ # for room in subjects_data[sub]["drawings"].keys():
154
+ # if subjects_data[sub]["drawings"][room]["perception"] != "":
155
+ # img_byt = base64.b64decode(subjects_data[sub]["drawings"][room]["perception"])
156
+ # img = Image.open(io.BytesIO(img_byt))
157
+ # subjects_data[sub]["drawings"][room]["perception"] = img
158
+ # else:
159
+ # subjects_data[sub]["drawings"][room]["perception"] = None
160
+
161
+ # if subjects_data[sub]["drawings"][room]["memory"] != "":
162
+ # img_byt = base64.b64decode(subjects_data[sub]["drawings"][room]["memory"])
163
+ # img = Image.open(io.BytesIO(img_byt))
164
+ # subjects_data[sub]["drawings"][room]["memory"] = img
165
+ # else:
166
+ # subjects_data[sub]["drawings"][room]["memory"] = None
167
+
168
+ # for room in subjects_data[sub]["image"].keys():
169
+ # img_byt = base64.b64decode(subjects_data[sub]["image"][room])
170
+ # img = Image.open(io.BytesIO(img_byt))
171
+ # subjects_data[sub]["image"][room] = img.resize((500,500))
172
+ # idx += 1
173
+ age = int(sub_row["demographics.age"]) if sub_row["demographics.age"] else np.nan
174
+ yield {
175
+ "subject_id": sub_row["subject_id"],
176
+ "treatment": sub_row["treatment"],
177
  "demographics": {
178
+ "country": sub_row["demographics.country"],
179
+ "age": age, #sub_row["demographics.age"],
180
+ "gender": sub_row["demographics.gender"],
181
+ "occupation": sub_row["demographics.occupation"],
182
+ "art_ability": sub_row["demographics.art_ability"],
183
+ "art_experience": sub_row["demographics.art_experience"],
184
+ "device": sub_row["demographics.device"],
185
+ "input": sub_row["demographics.input"],
186
+ "difficult": sub_row["demographics.difficult"],
187
+ "diff_explanation": sub_row["demographics.diff_explanation"],
188
+ "vviq_score": sub_row["demographics.vviq_score"],
189
+ "osiq_score": sub_row["demographics.osiq_score"]
190
+ },
191
  "drawings": {
192
  "kitchen": {
193
+ "perception": byt_to_image(sub_row["drawings.kitchen.perception"]),
194
+ "memory": byt_to_image(sub_row["drawings.kitchen.memory"])
195
  },
196
  "livingroom": {
197
+ "perception": byt_to_image(sub_row["drawings.livingroom.perception"]),
198
+ "memory": byt_to_image(sub_row["drawings.livingroom.memory"])
199
  },
200
  "bedroom": {
201
+ "perception": byt_to_image(sub_row["drawings.bedroom.perception"]),
202
+ "memory": byt_to_image(sub_row["drawings.bedroom.memory"])
203
  }
204
+ },
205
  "image": {
206
+ "kitchen": byt_to_image(sub_row["image.kitchen"]),
207
+ "livingroom": byt_to_image(sub_row["image.livingroom"]),
208
+ "bedroom": byt_to_image(sub_row["image.bedroom"])
209
+ }
210
+ }