CodeConvo / pytorch /i2c /dev /corpus.jsonl
jiebi's picture
Upload CodeConvo dataset
c2b8f63 verified
{"_id":"doc-en-pytorch-0765e1f807790457a0c3360c08023ee1cafbdc4e0a83eeafeb47a39cc98ed1e4","title":"","text":"return type(self), (self.tolist(),) def __repr__(self): <del> return repr(str(self)) </del> <ins> return str(self) </ins> def __str__(self): # All strings are unicode in Python 3, while we have to encode unicode"}
{"_id":"doc-en-pytorch-19f6e3c49e2f982b4b2c74a0b82f1cc7984c7aea051e47c00252a959cb536395","title":"","text":"from numbers import Integral import warnings import math <ins> from operator import mul from functools import reduce </ins> import torch from torch._C import _infer_size"}
{"_id":"doc-en-pytorch-56fb18ffabc8cfdce2f8006735710b90051e1b57b19b53998e8aa3ac7511d892","title":"","text":"def batch_norm(input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-5): <ins> size = list(input.size()) if reduce(mul, size[2:], size[0]) == 1: raise ValueError('Expected more than 1 value per channel, got input size {}'.format(size)) </ins> f = torch._C._functions.BatchNorm(running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled) return f(input, weight, bias)"}
{"_id":"doc-en-pytorch-070db6c4fc6f6f907a67f5eff63dda2759f93a2cf19670bccc99c9ab7375a073","title":"","text":"| :attr:`stride` controls the stride for the cross-correlation. | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides <del> for :attr:`padding` number of points | :attr:`dilation` controls the spacing between the kernel points. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. </del> <ins> for :attr:`padding` number of points. | :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. </ins> | At groups=1, all inputs are convolved to all outputs. | At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. <ins> At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`). </ins> .. note::"}
{"_id":"doc-en-pytorch-f7031e660f7387bb371e278ab1f5e0deba5828cc04c655b5e42a5cb6a283bf7f","title":"","text":"| :attr:`stride` controls the stride for the cross-correlation. | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides <del> for :attr:`padding` number of points | :attr:`dilation` controls the spacing between the kernel points. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. </del> <ins> for :attr:`padding` number of points. | :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. </ins> | At groups=1, all inputs are convolved to all outputs. | At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. <ins> At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`). </ins> The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:"}
{"_id":"doc-en-pytorch-ca8a9e7cde8b3e302e9883c007c0b71c952ec4d2b1b23b639294d25fe54d87c8","title":"","text":"composed of several input planes. This module can be seen as the gradient of Conv1d with respect to its input. <del> It is sometimes (but incorrectly) refered to as a deconvolutional operation. </del> <ins> It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation). | :attr:`stride` controls the stride for the cross-correlation. | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides for :attr:`padding` number of points. | If :attr:`output_padding` is non-zero, then the output is implicitly zero-padded on one side for :attr:`output_padding` number of points. | :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. | At groups=1, all inputs are convolved to all outputs. | At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`). </ins> .. note::"}
{"_id":"doc-en-pytorch-2a4353f25e6b66254df4b7bf1a55ef91eb3c6280d482b7114d6ee0c1c2abfae1","title":"","text":"output_padding (int or tuple, optional): Zero-padding added to one side of the output groups (int, optional): Number of blocked connections from input channels to output channels bias (bool, optional): If True, adds a learnable bias to the output <ins> dilation (int or tuple, optional): Spacing between kernel elements </ins> Shape: - Input: :math:`(N, C_{in}, L_{in})`"}
{"_id":"doc-en-pytorch-29428830a26059a849496a55d799332d3518e5869a3f91cc1c2fde212359f495","title":"","text":"composed of several input planes. This module can be seen as the gradient of Conv2d with respect to its input. <del> It is sometimes (but incorrectly) refered to as a deconvolutional operation. </del> <ins> It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation). </ins> | :attr:`stride` controls the stride for the cross-correlation. | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides <del> for :attr:`padding` number of points </del> <ins> for :attr:`padding` number of points. </ins> | If :attr:`output_padding` is non-zero, then the output is implicitly zero-padded on one side <del> for :attr:`output_padding` number of points | :attr:`dilation` controls the spacing between the kernel points. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. </del> <ins> for :attr:`output_padding` number of points. | :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. </ins> | At groups=1, all inputs are convolved to all outputs. | At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. <ins> At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`). </ins> The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` can either be: <del> - a single ``int`` -- in which case the same value is used for the height and width dimension </del> <ins> - a single ``int`` -- in which case the same value is used for the height and width dimensions </ins> - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, and the second `int` for the width dimension"}
{"_id":"doc-en-pytorch-89807e395c83aa297144688018ba65eda0cbd3a26f5906aad71ea90d8b1422e8","title":"","text":"The transposed convolution operator multiplies each input value element-wise by a learnable kernel, and sums over the outputs from all input feature planes. <del> **This module can be seen as the exact reverse of Conv3d**. It is sometimes (but incorrectly) refered to as a deconvolutional operation. </del> <ins> This module can be seen as the gradient of Conv3d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation). </ins> | :attr:`stride` controls the stride for the cross-correlation. | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides <del> for :attr:`padding` number of points </del> <ins> for :attr:`padding` number of points. </ins> | If :attr:`output_padding` is non-zero, then the output is implicitly zero-padded on one side <del> for :attr:`output_padding` number of points | :attr:`groups` controls the connections between inputs and outputs. </del> <ins> for :attr:`output_padding` number of points. | :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. </ins> | At groups=1, all inputs are convolved to all outputs. | At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. <ins> At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`). </ins> The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` can either be: <del> - a single ``int`` -- in which case the same value is used for the height and width dimension </del> <ins> - a single ``int`` -- in which case the same value is used for the depth, height and width dimensions </ins> - a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension, the second `int` for the width dimension and the third `int` for the width dimension"}
{"_id":"doc-en-pytorch-28b67a4b9138c2387f5881d8944477dc35c28a9bb9bd1c5f9753dae90fc8f2d2","title":"","text":"template<typename FnType, FnType fn, typename ...Args> static PyObject* wrap_tuple_fn(Args ... args) { <del> PyObject *result = (*fn)(std::forward<Args>(args)...); </del> <ins> THPObjectPtr result((*fn)(std::forward<Args>(args)...)); </ins> if (!result) return NULL; <del> if (PyTuple_Check(result)) { return PyObject_CallFunctionObjArgs((PyObject*)&THPSizeType, result, NULL); </del> <ins> if (PyTuple_Check(result.get())) { return PyObject_CallFunctionObjArgs((PyObject*)&THPSizeType, result.get(), NULL); </ins> } <del> Py_INCREF(result); return result; </del> <ins> return result.release(); </ins> } static auto sq_concat = PyTuple_Type.tp_as_sequence->sq_concat;"}
{"_id":"doc-en-pytorch-6cf5108df98855d196ce5921666304c199405c8558e9226ccfb264a5fa21b4d5","title":"","text":"<del> FROM nvidia/cuda:8.0-devel-ubuntu16.04 </del> <ins> FROM nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04 </ins> RUN echo \"deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64 /\" > /etc/apt/sources.list.d/nvidia-ml.list <del> ENV CUDNN_VERSION 6.0.20 </del> RUN apt-get update && apt-get install -y --no-install-recommends build-essential cmake git curl <ins> vim </ins> ca-certificates libjpeg-dev <del> libpng-dev libcudnn6=$CUDNN_VERSION-1+cuda8.0 libcudnn6-dev=$CUDNN_VERSION-1+cuda8.0 && </del> <ins> libpng-dev && </ins> rm -rf /var/lib/apt/lists/* RUN curl -o ~/miniconda.sh -O https://repo.continuum.io/miniconda/Miniconda3-4.2.12-Linux-x86_64.sh && "}
{"_id":"doc-en-pytorch-42b42fcaec1107f5b1e1e9203eb6d65a0f52c9b39f6376f110e60f106ca5d808","title":"","text":"CMAKE_PREFIX_PATH=\"$(dirname $(which conda))/../\" pip install -v . <ins> RUN git clone https://github.com/pytorch/vision.git && cd vision && pip install -v . </ins> WORKDIR /workspace RUN chmod -R a+w /workspace"}
{"_id":"doc-en-pytorch-06405422fd745b4c40f12f712d4a5d5c8b0538cc2e3c793902e24fdf9b7b87b3","title":"","text":"# (3) initialize mean square values and square gradient storage if not 'm' in state: <del> state['m'] = x.new().resize_as_(dfdx).fill_(1) </del> <ins> state['m'] = x.new().resize_as_(dfdx).zero_() </ins> state['tmp'] = x.new().resize_as_(dfdx)"}
{"_id":"doc-en-pytorch-d135710ef973222ecdc593d43b4acb154189b4178c2fd4ce3644b483113544c1","title":"","text":"# State initialization if len(state) == 0: state['step'] = 0 <del> state['square_avg'] = grad.new().resize_as_(grad).fill_(1) </del> <ins> state['square_avg'] = grad.new().resize_as_(grad).zero_() </ins> square_avg = state['square_avg'] alpha = group['alpha']"}
{"_id":"doc-en-pytorch-5d92750acac5053bde0067d760f33443260ed7937c34b3643b554d44f571ae4b","title":"","text":"# This will segfault if things have been erroneously released out.backward(torch.randn(out.size())) <ins> def test_norm_subgradient(self): def run_test(input_size, norm_deg): input = Variable(torch.zeros(*input_size), requires_grad=True) out = input.norm(norm_deg) out.backward() self.assertEqual(input.grad.data.abs().sum(), 0) run_test((10,), 2) run_test((10, 10), 2) run_test((10,), 3) </ins> def index_variable(shape, max_indices): if not isinstance(shape, tuple):"}
{"_id":"doc-en-pytorch-bb88e9a82610e455b2dfa75780521f23fcc10eb355dc449531dd48f740dfbaac","title":"","text":"ctx.keepdim = False if keepdim is None else keepdim if dim is None: <del> ctx.norm = input.norm(p) ctx.save_for_backward(input) return input.new((ctx.norm,)) </del> <ins> norm = input.norm(p) output = input.new((norm,)) </ins> else: if keepdim is not None: output = input.norm(p, dim, keepdim=keepdim) else: output = input.norm(p, dim) <del> ctx.save_for_backward(input, output) return output </del> <ins> ctx.save_for_backward(input, output) return output </ins> @staticmethod def backward(ctx, grad_output): <del> if ctx.dim is None: input, = ctx.saved_variables if ctx.p == 2: scale_v = (grad_output / ctx.norm).expand_as(input) return input.mul(scale_v), None, None, None else: pow = input.abs().pow(ctx.p - 2) scale_v = (grad_output / ctx.norm ** (ctx.p - 1)).expand_as(input) return input.mul(pow).mul(scale_v), None, None, None </del> <ins> input, output = ctx.saved_variables if ctx.dim is not None and ctx.keepdim is False and input.dim() != 1: grad_output = grad_output.unsqueeze(ctx.dim) output = output.unsqueeze(ctx.dim) if ctx.p == 2: grad_input = input.mul(grad_output).div(output) </ins> else: <del> input, output = ctx.saved_variables </del> <ins> input_pow = input.abs().pow(ctx.p - 2) output_pow = output.pow(ctx.p - 1) grad_input = input.mul(input_pow).mul(grad_output).div(output_pow) </ins> <del> if ctx.keepdim is False and input.dim() != 1: grad_output = grad_output.unsqueeze(ctx.dim) output = output.unsqueeze(ctx.dim) </del> <ins> # Special case at 0 where we return a subgradient containing 0 grad_input.masked_fill_(output == 0, 0) </ins> <del> big_grad_output = grad_output.expand_as(input) if ctx.p == 2: big_output = output.expand_as(input) return input.mul(big_grad_output).div(big_output), None, None, None else: pow = input.abs().pow(ctx.p - 2) big_output = output.pow(ctx.p - 1).expand_as(input) return input.mul(pow).mul(big_grad_output).div(big_output), None, None, None </del> <ins> return grad_input, None, None, None </ins> # TODO: renorm"}
{"_id":"doc-en-pytorch-2c28eb7e15016b4b59150140e984b4b28d906b8cabf3829f0b24c75313ac0a6b","title":"","text":"self.assertEqual(torch.mm(flattened_tensor, flattened_tensor.t()), torch.eye(rows) * gain ** 2, prec=1e-6) <ins> # Generates rand tensor with non-equal values. This ensures that duplicate # values won't be causing test failure for modules like MaxPooling. # size should be small, otherwise randperm fails / long overflows. def _rand_tensor_non_equal(*size): total = reduce(mul, size, 1) return torch.randperm(total).view(*size).double() </ins> def add_test(test): test_name = test.get_name()"}
{"_id":"doc-en-pytorch-41bb727092e60ecb2d77543a553d9973d50e33f29f86b2efd751b45004ffab9a","title":"","text":"dict( module_name='AdaptiveMaxPool1d', constructor_args=(3,), <del> input=torch.rand(1, 3, 5), </del> <ins> input=_rand_tensor_non_equal(1, 3, 5), </ins> ), dict( module_name='AdaptiveMaxPool2d', constructor_args=(3,), <del> input=torch.rand(1, 3, 5, 6), </del> <ins> input=_rand_tensor_non_equal(1, 3, 5, 6), </ins> desc='single', ), dict( module_name='AdaptiveMaxPool2d', constructor_args=((3, 4),), <del> input=torch.rand(1, 3, 5, 6), </del> <ins> input=_rand_tensor_non_equal(1, 3, 5, 6), </ins> desc='tuple', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=(3,), <del> input=torch.rand(2, 3, 5, 6, 7), </del> <ins> input=_rand_tensor_non_equal(2, 3, 5, 6, 7), </ins> desc='single', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=((3, 4, 5),), <del> input=torch.rand(2, 3, 5, 6, 7), </del> <ins> input=_rand_tensor_non_equal(2, 3, 5, 6, 7), </ins> desc='tuple', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=(3,), <del> input=torch.rand(2, 3, 12, 9, 3), </del> <ins> input=_rand_tensor_non_equal(2, 3, 12, 9, 3), </ins> desc='single_nonatomic', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=((3, 4, 5),), <del> input=torch.rand(2, 3, 6, 4, 10), </del> <ins> input=_rand_tensor_non_equal(2, 3, 6, 4, 10), </ins> desc='tuple_nonatomic', ), dict("}
{"_id":"doc-en-pytorch-28eb48af51e6a342b66680c0195c7b6db80fb09f911f090631a17f1d96f7c63f","title":"","text":"if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: <del> buf = param_state['momentum_buffer'] = d_p.clone() </del> <ins> buf = param_state['momentum_buffer'] = p.data.new().resize_as_(p.data).zero_() buf.mul_(momentum).add_(d_p) </ins> else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p)"}
{"_id":"doc-en-pytorch-b45df8f12b7e3a66648d614e89960dbcc5572080953cfb9f3d1f0df99052f025","title":"","text":"THArgCheckWithCleanup(n_sample > 0, THCleanup(if (start_dim == 1) THTensor_(resize1d)(prob_dist, n_categories);), 2, <del> \"cannot sample n_sample < 0 samples\"); </del> <ins> \"cannot sample n_sample <= 0 samples\"); </ins> if (!with_replacement) {"}
{"_id":"doc-en-pytorch-41b3d62528c6fc247ca44188b09c63bd1502ada4282a0c3d265da4e409ab0026","title":"","text":"{ /* Get normalized cumulative distribution from prob distribution */ double sum = 0; <ins> double val; </ins> for (j=0; j<n_categories; j++) { <del> sum += THStorage_(get)( </del> <ins> val = THStorage_(get)( </ins> prob_dist->storage, prob_dist->storageOffset+i*prob_dist->stride[0]+j*prob_dist->stride[1] ); <ins> THArgCheckWithCleanup((val >= 0), THCleanup(THDoubleTensor_free(cum_dist); if (start_dim == 1) THTensor_(resize1d)(prob_dist, n_categories);), 2, \"invalid multinomial distribution (encountering probability entry < 0)\"); sum += val; </ins> THDoubleStorage_set( cum_dist->storage, cum_dist->storageOffset+j*cum_dist->stride[0], "}
{"_id":"doc-en-pytorch-d4d9807cf1a0f886d9cc6f63a72e2547d29c1b94170dabaab7b057692976be91","title":"","text":"T bern_uniform = bernoulli[idx]; int _mask = (int) THCNumerics<T>::lt(bern_uniform, q[rand_ind]); output[idx] = J[rand_ind]*(1 -_mask) + (rand_ind+1L) * _mask; <del> } </del> <ins> } </ins> } template <typename T>"}
{"_id":"doc-en-pytorch-5a75ac4cec00f52f5abb88353120ed574a4ba743dba026200b80f979d2f991dd","title":"","text":"__global__ void renormRowsL1(T* dist, long rows, long cols) { extern __shared__ unsigned char my_smem[]; T *smem = reinterpret_cast<T *>(my_smem); <ins> T zero = ScalarConvert<int, T>::to(0); T val; </ins> for (int64_t row = blockIdx.x; row < rows; row += gridDim.x) { T sum = ScalarConvert<int, T>::to(0); for (int64_t col = threadIdx.x; col < cols; col += blockDim.x) { <del> sum = THCNumerics<T>::add(sum, dist[row * cols + col]); </del> <ins> val = dist[row * cols + col]; assert(THCNumerics<T>::ge(val, zero)); sum = THCNumerics<T>::add(sum, val); </ins> } <del> sum = reduceBlock(smem, blockDim.x, sum, ReduceAdd<T, T>(), ScalarConvert<int, T>::to(0)); </del> <ins> sum = reduceBlock(smem, blockDim.x, sum, ReduceAdd<T, T>(), zero); </ins> if (threadIdx.x == 0) { <ins> assert(THCNumerics<T>::gt(sum, zero)); </ins> smem[0] = sum; } __syncthreads();"}
{"_id":"doc-en-pytorch-6ba24c171ed755dd1fed4f2364f954ead8b1b2fd15e6604fb1a3fc05e82b3856","title":"","text":"// Each block handles one distribution // First pass, find the total sum of the distribution AccT sum = accZero; <ins> T val; </ins> for (int cat = threadIdx.x; cat < categories; cat += blockDim.x) { <del> sum = THCNumerics<AccT>::add( sum, ScalarConvert<T, AccT>::to(dist[curDist * categories + cat])); </del> <ins> val = dist[curDist * categories + cat]; assert(THCNumerics<T>::ge(val, zero)); sum = THCNumerics<AccT>::add(sum, ScalarConvert<T, AccT>::to(val)); </ins> } // threadIdx.x == 0 has the sum value from this"}
{"_id":"doc-en-pytorch-0bddcecf8b0b6f915b14c981d43afbef7e8f1d7d873f11bcccfacdca8053e763","title":"","text":"if (threadIdx.x == 0) { // Make sure the sum of our distribution didn't overflow assert(!isinf(sum)); <ins> assert(THCNumerics<AccT>::gt(sum, accZero)); </ins> asmem[0] = sum; smem[0] = sampled[curDist];"}
{"_id":"doc-en-pytorch-6df228497008e8ec4cd2ec8393bca92b7924400e4a996e7624da61de75ba792f","title":"","text":"<ins> #define __STDC_FORMAT_MACROS </ins> #include <Python.h> #ifdef _MSC_VER #include <Windows.h>"}
{"_id":"doc-en-pytorch-88ca958657dda50101b09cbdd7703b45fbeec7c19f02de8e9ef082e239c181d4","title":"","text":"<ins> #define __STDC_FORMAT_MACROS </ins> #include <Python.h> #include <structmember.h>"}
{"_id":"doc-en-pytorch-01ae53c02fda7e865dd84e9c0536a7a714381f7a5e1d5b4afcf69b9acf441040","title":"","text":"begin{array}{ll} i_t = sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{(t-1)} + b_{hi}) f_t = sigma(W_{if} x_t + b_{if} + W_{hf} h_{(t-1)} + b_{hf}) <del> g_t = tanh(W_{ig} x_t + b_{ig} + W_{hc} h_{(t-1)} + b_{hg}) </del> <ins> g_t = tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{(t-1)} + b_{hg}) </ins> o_t = sigma(W_{io} x_t + b_{io} + W_{ho} h_{(t-1)} + b_{ho}) c_t = f_t c_{(t-1)} + i_t g_t h_t = o_t tanh(c_t)"}
{"_id":"doc-en-pytorch-509df4cbc50856c183362b8314756709c583bc16a35e915c2862b0c0d81e0c39","title":"","text":"<ins> From PyTorch: Copyright (c) 2016- Facebook, Inc (Adam Paszke) Copyright (c) 2014- Facebook, Inc (Soumith Chintala) Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) Copyright (c) 2011-2013 NYU (Clement Farabet) Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute (Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) From Caffe2: Copyright (c) 2016-present, Facebook Inc. All rights reserved. All contributions by Facebook: Copyright (c) 2016 Facebook Inc. All contributions by Google: Copyright (c) 2015 Google Inc. All rights reserved. All contributions by Yangqing Jia: Copyright (c) 2015 Yangqing Jia All rights reserved. All contributions from Caffe: Copyright(c) 2013, 2014, 2015, the respective contributors All rights reserved. All other contributions: Copyright(c) 2015, 2016 the respective contributors All rights reserved. Caffe2 uses a copyright model similar to Caffe: each contributor holds copyright over their contributions to Caffe2. The project versioning records all such contribution and copyright details. If a contributor wants to further mark their specific copyright on a particular contribution, they should indicate their copyright solely in the commit message of the change when it is committed. </ins> All rights reserved. Redistribution and use in source and binary forms, with or without"}
{"_id":"doc-en-pytorch-753c1b39b878f15783a80cc227fb295abc1bf3334786b6346278d7ffb7c5b9ae","title":"","text":"<del> From PyTorch: Copyright (c) 2016- Facebook, Inc (Adam Paszke) Copyright (c) 2014- Facebook, Inc (Soumith Chintala) Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) Copyright (c) 2011-2013 NYU (Clement Farabet) Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute (Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) From Caffe2: Copyright (c) 2016-present, Facebook Inc. All rights reserved. All contributions by Facebook: Copyright (c) 2016 Facebook Inc. All contributions by Google: Copyright (c) 2015 Google Inc. All rights reserved. All contributions by Yangqing Jia: Copyright (c) 2015 Yangqing Jia All rights reserved. All contributions from Caffe: Copyright(c) 2013, 2014, 2015, the respective contributors All rights reserved. All other contributions: Copyright(c) 2015, 2016 the respective contributors All rights reserved. Caffe2 uses a copyright model similar to Caffe: each contributor holds copyright over their contributions to Caffe2. The project versioning records all such contribution and copyright details. If a contributor wants to further mark their specific copyright on a particular contribution, they should indicate their copyright solely in the commit message of the change when it is committed. </del> ======================================================================= Software under third_party ======================================================================="}
{"_id":"doc-en-pytorch-58c32ee618cd2026945484922d87b50ea8b6848cbb19868ad539b2435cf6f934","title":"","text":"def grid_sampler(input, grid, padding_mode): <del> if cudnn.is_acceptable(input.data) and padding_mode == 'zeros' and input.dim() == 4: </del> <ins> if (cudnn.is_acceptable(input.data) and padding_mode == 'zeros' and input.dim() == 4 and input.size(1) <= 1024): # as of cudnn 7102, will not work for larger than 1024 </ins> return torch.cudnn_grid_sampler(input, grid) else: return GridSampler.apply(input, grid, padding_mode)"}
{"_id":"doc-en-pytorch-1a87b46a559e99d0adda9f0cd7d53c46acddc4e5afca33491e82f08de291dae5","title":"","text":"upstream=\"$1\" pr=\"$2\" git diff --name-only \"$upstream\" \"$pr\" <del> git diff --name-only \"$upstream\" \"$pr\" | grep -Eq '^(CMakeLists.txt|Makefile|.gitmodules|.jenkins/caffe2|binaries|caffe|caffe2|cmake|conda|docker|docs/caffe2|modules|scripts|third_party)' </del> <ins> # For safety, unconditionally trigger for any changes. #git diff --name-only \"$upstream\" \"$pr\" | grep -Eq '^(CMakeLists.txt|Makefile|.gitmodules|.jenkins/caffe2|binaries|caffe|caffe2|cmake|conda|docker|docs/caffe2|modules|scripts|third_party)' </ins>"}
{"_id":"doc-en-pytorch-2bb6c5e2d9ed1208cf491f2bcfc8d310d0469970a1b9b02f702bac3f95fbfdd3","title":"","text":"upstream=\"$1\" pr=\"$2\" git diff --name-only \"$upstream\" \"$pr\" <del> git diff --name-only \"$upstream\" \"$pr\" | grep -Eq '^(aten/|caffe2/|.jenkins/pytorch|docs/(make.bat|Makefile|requirements.txt|source)|mypy|requirements.txt|setup.py|test/|third_party/|tools/|.gitmodules|torch/)' </del> <ins> # Now that PyTorch build depends on Caffe2, unconditionally trigger # for any changes. # TODO: Replace this with a NEGATIVE regex that allows us to blacklist # files (letting us skip builds when they are unnecessary) #git diff --name-only \"$upstream\" \"$pr\" | grep -Eq '^(aten/|caffe2/|.jenkins/pytorch|docs/(make.bat|Makefile|requirements.txt|source)|mypy|requirements.txt|setup.py|test/|third_party/|tools/|.gitmodules|torch/)' </ins>"}
{"_id":"doc-en-pytorch-298eee62557fb9197824322f107803eb18b39542355131523daefa15d436b22d","title":"","text":"unset(CUDA_ARCH_PTX CACHE) endif() <del> if(DEFINED ENV{TORCH_CUDA_ARCH_LIST}) </del> <ins> if($ENV{TORCH_CUDA_ARCH_LIST}) </ins> # Pass CUDA architecture directly set(__cuda_arch_bin $ENV{TORCH_CUDA_ARCH_LIST}) message(STATUS \"Set CUDA arch from TORCH_CUDA_ARCH_LIST: ${__cuda_arch_bin}\")"}
{"_id":"doc-en-pytorch-56f27ed053f767d884128d55d64bcd07034c9cc0e16c8f806aece875ffd41077","title":"","text":"BASE_DIR=$(pwd) cd torch/lib INSTALL_DIR=\"$(pwd)/tmp_install\" <del> BASIC_C_FLAGS=\" -DTH_INDEX_BASE=0 -I$INSTALL_DIR/include -I$INSTALL_DIR/include/TH -I$INSTALL_DIR/include/THC \" </del> <ins> BASIC_C_FLAGS=\" -DTH_INDEX_BASE=0 -DTH_GENERIC_USE_HALF=1 -DCUDA_HAS_FP16=1 -I$INSTALL_DIR/include -I$INSTALL_DIR/include/TH -I$INSTALL_DIR/include/THC \" </ins> LDFLAGS=\"-L$INSTALL_DIR/lib \" if [[ $(uname) == 'Darwin' ]]; then LDFLAGS=\"$LDFLAGS -Wl,-rpath,@loader_path\""}
{"_id":"doc-en-pytorch-5527c49435634724c39aa78664696d2e3b09f4d9ce230b657c6313f53b779db9","title":"","text":"- [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) 7.5 or above - [NVIDIA CuDNN](https://developer.nvidia.com/cudnn) v5.x <ins> If you want to disable CUDA support, export environment variable `NO_CUDA=1`. </ins> #### Install optional dependencies On Linux"}
{"_id":"doc-en-pytorch-9b245cbb4cdf0e52d936ec300bd71a1d3bfaada73bbc3e344e9f7734199c4b32","title":"","text":"} std::string FunctionSignature::toString() const { <ins> // TODO: consider printing more proper schema strings with defaults, optionals, etc. </ins> std::ostringstream ss; <ins> bool keyword_already = false; </ins> ss << \"(\"; int i = 0; for (auto& param : params) { if (i != 0) { ss << \", \"; } <ins> if (param.keyword_only && !keyword_already) { ss << \"*, \"; keyword_already = true; } </ins> ss << param.type_name() << \" \" << param.name; i++; }"}
{"_id":"doc-en-pytorch-ad3603528f82c43ee91890682fa72cad7a5396b60f29cde4768f24d248474a19","title":"","text":"return ret; } <del> Variable VariableType::as_variable(Tensor tensor) const { </del> <ins> static Variable as_variable(Tensor tensor) { </ins> return make_variable(std::move(tensor)); } <del> std::tuple<Variable, Variable> VariableType::as_variable(std::tuple<Tensor, Tensor> tensors) const { </del> <ins> static std::tuple<Variable, Variable> as_variable(std::tuple<Tensor, Tensor> tensors) { </ins> return std::make_tuple<>( make_variable(std::move(std::get<0>(tensors))), make_variable(std::move(std::get<1>(tensors)))); } <del> std::tuple<Variable, Variable, Variable> VariableType::as_variable(std::tuple<Tensor, Tensor, Tensor> tensors) const { </del> <ins> static std::tuple<Variable, Variable, Variable> as_variable(std::tuple<Tensor, Tensor, Tensor> tensors) { </ins> return std::make_tuple<>( make_variable(std::move(std::get<0>(tensors))), make_variable(std::move(std::get<1>(tensors))), make_variable(std::move(std::get<2>(tensors)))); } <del> std::tuple<Variable, Variable, Variable, Variable> VariableType::as_variable(std::tuple<Tensor, Tensor, Tensor, Tensor> tensors) const { </del> <ins> static std::tuple<Variable, Variable, Variable, Variable> as_variable(std::tuple<Tensor, Tensor, Tensor, Tensor> tensors) { </ins> return std::make_tuple<>( make_variable(std::move(std::get<0>(tensors))), make_variable(std::move(std::get<1>(tensors))),"}
{"_id":"doc-en-pytorch-7d0c77fd4c8089d46335d6de8e596e3d54016e125c67efd3a3172007d59d80b7","title":"","text":"make_variable(std::move(std::get<3>(tensors)))); } <del> std::vector<Variable> VariableType::as_variable(TensorList tl) const { </del> <ins> static std::vector<Variable> as_variable(TensorList tl) { </ins> std::vector<Variable> variables; for (auto& t : tl) { variables.emplace_back(make_variable(std::move(t)));"}
{"_id":"doc-en-pytorch-51b2149dc54231e077acd735c5a589581935e5f104a0e4f54368387fdd9b3558","title":"","text":"} } <del> variable_list flatten(const TensorList& tensors) { </del> <ins> static variable_list flatten(const TensorList& tensors) { </ins> return cast_tensor_list(tensors); } <del> variable_list flatten(const Tensor& x, const TensorList& y) { </del> <ins> static variable_list flatten(const Tensor& x, const TensorList& y) { </ins> std::vector<Variable> r; r.reserve(1 + y.size()); r.emplace_back(x);"}
{"_id":"doc-en-pytorch-b014bf93d687c3ccf5f199ad845b288b12dfdbaebbd939c86af9d171ac3b3b2d","title":"","text":"return r; } <del> variable_list flatten(const Tensor& x, const TensorList& y, const Tensor& z) { </del> <ins> static variable_list flatten(const Tensor& x, const TensorList& y, const Tensor& z) { </ins> std::vector<Variable> r; r.reserve(2 + y.size()); r.emplace_back(x);"}
{"_id":"doc-en-pytorch-2eb8e144c61d9fc354240acf4150cfcbb2f2030be31cd71d45e142b4006e1181","title":"","text":"return r; } <del> std::vector<Tensor> as_tensor_list(std::vector<Variable> &vars) { </del> <ins> static std::vector<Tensor> as_tensor_list(std::vector<Variable> &vars) { </ins> std::vector<Tensor> tensors; for (auto& v : vars) { tensors.emplace_back(std::move(v));"}
{"_id":"doc-en-pytorch-45ab2894423a4c059b0693d4024d38ac2f47fc04cbe18c56c1f2b68c277708c0","title":"","text":"return self.clone(); } <del> std::vector<int64_t> to_arg_sizes(TensorList tensors, int64_t dim) { </del> <ins> static std::vector<int64_t> to_arg_sizes(TensorList tensors, int64_t dim) { </ins> std::vector<int64_t> arg_sizes(tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) { arg_sizes[i] = tensors[i].size(dim);"}
{"_id":"doc-en-pytorch-bd6eb8f661d6c0e6d0c08a4b156cbb4fbcefc38db1a4c87ae1eb9142ac37a1db","title":"","text":"std::vector<at::Tensor> unpack(at::TensorList tl, const char *name, int pos) const; std::vector<at::Tensor> unpack_idxs(at::TensorList tl, const char *name, int pos) const; <del> Variable as_variable(Tensor tensor) const; std::tuple<Variable, Variable> as_variable(std::tuple<Tensor, Tensor> tensor) const; std::tuple<Variable, Variable, Variable> as_variable(std::tuple<Tensor, Tensor, Tensor> tensor) const; std::tuple<Variable, Variable, Variable, Variable> as_variable(std::tuple<Tensor, Tensor, Tensor, Tensor> tensor) const; std::vector<Variable> as_variable(TensorList tensor) const; Variable maybe_wrap(Tensor data, const Variable & self, bool inplace) const; </del> private: at::Type* baseType; std::string str;"}
{"_id":"doc-en-pytorch-af6382f3e1651d38af354b5d3b54703e77febcdc137b83436bd2a4decd13e125","title":"","text":":members: <ins> Padding Layers -------------- :hidden:`ReflectionPad2d` ~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ReflectionPad2d :members: :hidden:`ReplicationPad2d` ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ReplicationPad2d :members: :hidden:`ReplicationPad3d` ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ReplicationPad3d :members: :hidden:`ZeroPad2d` ~~~~~~~~~~~~~~~~~~~ .. autoclass:: ZeroPad2d :members: :hidden:`ConstantPad2d` ~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ConstantPad2d :members: </ins> Non-linear Activations ----------------------------------"}
{"_id":"doc-en-pytorch-2522f531f7405c6f46bf5539d95bb508a5dae6085838eb03c5d1bf94c9abc900","title":"","text":"from .module import Module from .utils import _quadruple, _ntuple <del> from .._functions.padding import ConstantPad2d as F_ConstantPad2d </del> <ins> from .. import functional as F </ins> # TODO: grad_output size asserts in THNN class ReflectionPad2d(Module): <ins> r\"\"\"Pads the input tensor using the reflection of the input boundary. Args: padding (int, tuple): the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (paddingLeft, paddingRight, paddingTop, paddingBottom) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + paddingTop + paddingBottom` :math:`W_{out} = W_{in} + paddingLeft + paddingRight` Examples:: >>> m = nn.ReflectionPad2d(3) >>> input = autograd.Variable(torch.randn(16, 3, 320, 480)) >>> output = m(input) >>> # using different paddings >>> m = nn.ReflectionPad2d((3, 3, 6, 6)) >>> output = m(input) \"\"\" </ins> def __init__(self, padding): super(ReflectionPad2d, self).__init__() self.padding = _quadruple(padding) def forward(self, input): <del> return self._backend.ReflectionPad2d(*self.padding)(input) </del> <ins> return F.pad(input, self.padding, 'reflect') </ins> def __repr__(self): return self.__class__.__name__ + ' ' + str(self.padding) class ReplicationPad2d(Module): <ins> r\"\"\"Pads the input tensor using replication of the input boundary. Args: padding (int, tuple): the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (paddingLeft, paddingRight, paddingTop, paddingBottom) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + paddingTop + paddingBottom` :math:`W_{out} = W_{in} + paddingLeft + paddingRight` Examples:: >>> m = nn.ReplicationPad2d(3) >>> input = autograd.Variable(torch.randn(16, 3, 320, 480)) >>> output = m(input) >>> # using different paddings >>> m = nn.ReplicationPad2d((3, 3, 6, 6)) >>> output = m(input) \"\"\" </ins> def __init__(self, padding): super(ReplicationPad2d, self).__init__() self.padding = _quadruple(padding) def forward(self, input): <del> return self._backend.ReplicationPad2d(*self.padding)(input) </del> <ins> return F.pad(input, self.padding, 'replicate') </ins> def __repr__(self): return self.__class__.__name__ + ' ' + str(self.padding) class ReplicationPad3d(Module): <ins> r\"\"\"Pads the input tensor using replication of the input boundary. Args: padding (int, tuple): the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (paddingLeft, paddingRight, paddingTop, paddingBottom, paddingFront, paddingBack) Shape: - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where :math:`D_{out} = D_{in} + paddingFront + paddingBack` :math:`H_{out} = H_{in} + paddingTop + paddingBottom` :math:`W_{out} = W_{in} + paddingLeft + paddingRight` Examples:: >>> m = nn.ReplicationPad3d(3) >>> input = autograd.Variable(torch.randn(16, 3, 8, 320, 480)) >>> output = m(input) >>> # using different paddings >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1)) >>> output = m(input) \"\"\" </ins> def __init__(self, padding): super(ReplicationPad3d, self).__init__() self.padding = _ntuple(6)(padding) def forward(self, input): <del> return self._backend.ReplicationPad3d(*self.padding)(input) </del> <ins> return F.pad(input, self.padding, 'replicate') </ins> def __repr__(self): return self.__class__.__name__ + ' ' + str(self.padding) class ZeroPad2d(Module): <ins> r\"\"\"Pads the input tensor boundaries with zero. Args: padding (int, tuple): the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (paddingLeft, paddingRight, paddingTop, paddingBottom) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + paddingTop + paddingBottom` :math:`W_{out} = W_{in} + paddingLeft + paddingRight` Examples:: >>> m = nn.ZeroPad2d(3) >>> input = autograd.Variable(torch.randn(16, 3, 320, 480)) >>> output = m(input) >>> # using different paddings >>> m = nn.ZeroPad2d((3, 3, 6, 6)) >>> output = m(input) \"\"\" </ins> def __init__(self, padding): super(ZeroPad2d, self).__init__() self.padding = _quadruple(padding) def forward(self, input): <del> return F_ConstantPad2d(pad=self.padding, value=0)(input) </del> <ins> return F.pad(input, self.padding, 'constant', 0) </ins> def __repr__(self): return self.__class__.__name__ + ' ' + str(self.padding) class ConstantPad2d(Module): <ins> r\"\"\"Pads the input tensor boundaries with a constant value. Args: padding (int, tuple): the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (paddingLeft, paddingRight, paddingTop, paddingBottom) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + paddingTop + paddingBottom` :math:`W_{out} = W_{in} + paddingLeft + paddingRight` Examples:: >>> m = nn.ConstantPad2d(3, 3.5) >>> input = autograd.Variable(torch.randn(16, 3, 320, 480)) >>> output = m(input) >>> # using different paddings >>> m = nn.ConstantPad2d((3, 3, 6, 6), 3.5) >>> output = m(input) \"\"\" </ins> def __init__(self, padding, value): super(ConstantPad2d, self).__init__()"}
{"_id":"doc-en-pytorch-90fb48d90cd835d50d5300bc7c39898223e4cb9cb2d25621c59a1ef350be474e","title":"","text":"self.value = value def forward(self, input): <del> return F_ConstantPad2d(pad=self.padding, value=self.value)(input) </del> <ins> return F.pad(input, self.padding, 'constant', self.value) </ins> def __repr__(self): return self.__class__.__name__ + ' ' + str(self.padding)"}
{"_id":"doc-en-pytorch-a12353ff64e96f5a3b946258b0d15a90e1197c4d9549bf80e55efe9959db81ed","title":"","text":"(Cross, (), ((S, 3), (S, 3))), (Cross, (), ((S, 3, S), (S, 3, S), 1), 'dim'), (Inverse, (), ((S, S),), '', (), [skipIfNoLapack]), <ins> (Gesv, (), ((S, S), (S, S)), '', (), [skipIfNoLapack]), </ins> (Clone, (), ((S, M, S),)), (Squeeze, (), ((S, 1, M, 1),)), # TODO: enable neg dim checks"}
{"_id":"doc-en-pytorch-865c528397122b80d2fa3f7329a6cd9644460ce373c9f5220f3d7ab3c8894ffe","title":"","text":"('cross', (S, 3), ((S, 3),)), ('cross', (S, 3, S), ((S, 3, S), 1), 'dim'), ('inverse', (S, S), (), '', (), [skipIfNoLapack]), <ins> ('gesv', (S, S), ((S, S),), '', (), [skipIfNoLapack]), </ins> ('clone', (S, M, S), ()), ('eq', (S, S, S), ((S, S, S),)), ('ne', (S, S, S), ((S, S, S),)),"}
{"_id":"doc-en-pytorch-d02956b17130a7d99e7c22145b27f4c3851b955356ce3df7c7930eef9e41b25d","title":"","text":"def backward(ctx, grad_output): inverse, = ctx.saved_variables return -torch.mm(inverse.t(), torch.mm(grad_output, inverse.t())) <ins> class Gesv(Function): @staticmethod def forward(ctx, b, a): # TODO see if one can backprop through LU X, LU = torch.gesv(b, a) ctx.save_for_backward(X, a) ctx.mark_non_differentiable(LU) return X, LU @staticmethod def backward(ctx, grad_output, grad_LU=None): X, a = ctx.saved_variables grad_b, _ = torch.gesv(grad_output, a.t()) grad_a = -torch.mm(grad_b, X.t()) return grad_b, grad_a </ins>"}
{"_id":"doc-en-pytorch-3cacfff754899ea51c3a38ec7b5a2c596b7e9832c0a665740f5920de43cf301c","title":"","text":"def inverse(self): return Inverse.apply(self) <ins> def gesv(self, a): return Gesv.apply(self, a) </ins> def multinomial(self, num_samples=1, with_replacement=False): return Multinomial(num_samples, with_replacement)(self)"}
{"_id":"doc-en-pytorch-c0164bf057cb1858c7c153ede4ef6b2e0965cc23db23c15f3ebb2121bb0adf7f","title":"","text":">>> hx = Variable(torch.randn(3, 20)) >>> output = [] >>> for i in range(6): <del> ... hx = rnn(input, hx) ... output[i] = hx </del> <ins> ... hx = rnn(input[i], hx) ... output.append(hx) </ins> \"\"\" def __init__(self, input_size, hidden_size, bias=True, nonlinearity=\"tanh\"):"}