File size: 6,779 Bytes
cb132d3 e19bbe0 cb132d3 e19bbe0 cb132d3 e19bbe0 cb132d3 9009fd4 cb132d3 7752c7f cb132d3 9009fd4 cb132d3 9009fd4 cb132d3 7752c7f cb132d3 e19bbe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file provides a HuggingFace dataset loader implementation for
the ParaDocs dataset
ParaDocs is a multilingual machine translation dataset that has
labelled document annotations for ParaCrawl, NewsCommentary, and
Europarl data which can be used to create parallel document
datasets for training of context-aware machine translation models.
"""
# https://huggingface.co/docs/datasets/dataset_script
import csv
import json
import os
import re
import pathlib
from pathlib import Path
import yaml
from ast import literal_eval
import datasets
import gzip
try:
import lzma as xz
except ImportError:
import pylzma as xz
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
ParaDocs is a multilingual machine translation dataset that has
labelled document annotations for ParaCrawl, NewsCommentary, and
Europarl data which can be used to create parallel document
datasets for training of context-aware machine translation models.
"""
_HOMEPAGE = "https://huggingface.co/datasets/jhu-clsp/paradocs"
_LICENSE = "cc-by-sa-4.0"
_URL = "https://huggingface.co/datasets/jhu-clsp/paradocs"
# Load the file paths for all the splits (per language currently)
file_list_url = "https://huggingface.co/datasets/jhu-clsp/paradocs/raw/main/files.yml"
import urllib.request
with urllib.request.urlopen(file_list_url) as f:
try:
fnames = yaml.safe_load(f)
except yaml.YAMLError as exc:
print("Error loading the file paths for the dataset splits. Aborting.")
exit(1)
_DATA_URL = fnames['fnames']
_VARIANTS = list(_DATA_URL.keys())
class ParaDocs(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"src": datasets.Value("string"),
"tgt": datasets.Value("string"),
"sim_score_one" : datasets.Value("float32"),
"sim_score_two": datasets.Value("float32"),
"collection": datasets.Value("string"),
"src_paragraph_id": datasets.Value("string"),
"tgt_paragraph_id": datasets.Value("string"),
"src_sentence_id": datasets.Value("string"),
"tgt_sentence_id": datasets.Value("string"),
"src_start_id": datasets.Value("string"),
"src_end_id": datasets.Value("string"),
"tgt_start_id": datasets.Value("string"),
"tgt_end_id": datasets.Value("string"),
"src_lid_prob": datasets.Value("float32"),
"tgt_lid_prob": datasets.Value("float32"),
"duplication_count": datasets.Value("int64"),
"src_docid": datasets.Value("string"),
"tgt_docid": datasets.Value("string")
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_sources = {self.config.name: _DATA_URL[self.config.name]}
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"filepaths": dl_manager.download(data_sources[lang])
}
)
for lang
in data_sources
]
def _get_qa_pair_list_features(self, qa_pair, feature_name):
res = []
if feature_name in qa_pair:
if qa_pair[feature_name]:
return qa_pair[feature_name]
else:
if feature_name.startswith('en'):
feature_name = '_'.join(feature_name.split('_')[1:])
return self._get_qa_pair_list_features(qa_pair, feature_name)
return res
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
# logger.info("Generating examples from = %s", filepath)
try:
with gzip.open(filepath, "rt", encoding="utf-8") as f:
rstream = csv.DictReader(f,
delimiter='\t',
fieldnames = [
"src",
"tgt",
"sim_score_one",
"sim_score_two",
"collection",
"src_paragraph_id",
"tgt_paragraph_id",
"src_sentence_id",
"tgt_sentence_id",
"src_start_id",
"src_end_id",
"tgt_start_id",
"tgt_end_id",
"src_lid_prob",
"tgt_lid_prob",
"duplication_count",
"src_docid",
"tgt_docid"
],
quoting=csv.QUOTE_NONE
)
for example in rstream:
yield id_, example
id_ += 1
except Exception as e:
print(e, filepath)
print("Error reading file:", filepath)
|