Datasets:

ArXiv:
License:
orionweller commited on
Commit
2fa40b5
·
verified ·
1 Parent(s): 01a627a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - fill-mask
5
+ tags:
6
+ - pretraining
7
+ - encoder
8
+ - multilingual
9
+ ---
10
+
11
+ # mmBERT Mid-training Data
12
+
13
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
14
+ [![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2509.06888)
15
+ [![Models](https://img.shields.io/badge/🤗%20Hugging%20Face-2%20Models-blue)](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4)
16
+ [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/mmBERT)
17
+
18
+ > **Phase 2 of 3**: High-quality mid-training data mixture (600B tokens) with context extension to 8192 tokens.
19
+
20
+ This dataset contains the mid-training phase data used to train all [mmBERT encoder models](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4). This phase focuses on higher quality data sources and extends the context length from 1024 to 8192 tokens. The data is provided in **MDS format** ready for use with [Composer](https://github.com/mosaicml/composer) and the [ModernBERT training repository](https://github.com/answerdotai/ModernBERT).
21
+
22
+ ## 📊 Data Composition
23
+
24
+ | Data Source | Tokens (B) | Percentage | Description |
25
+ |:------------|:-----------|:-----------|:------------|
26
+ | FineWeb2 | 506.7 | 84.3% | High-quality multilingual web crawl data |
27
+ | DCLM (Dolmino) | 40.0 | 6.7% | Filtered high-quality English web data |
28
+ | Starcoder | 17.2 | 2.9% | Code repositories and files |
29
+ | Arxiv | 5.4 | 0.9% | Academic preprints |
30
+ | Dolmino Math | 4.3 | 0.7% | Mathematical content |
31
+ | Books | 3.9 | 0.7% | Literature and reference books |
32
+ | PeS2o | 3.2 | 0.5% | Scientific papers |
33
+ | Tulu Flan | 3.1 | 0.5% | Instruction-following data |
34
+ | StackExchange | 3.0 | 0.5% | Q&A forums |
35
+ | StackExchange (Dolmino) | 2.8 | 0.5% | Curated Q&A content |
36
+ | Wikipedia (MegaWika) | 1.2 | 0.2% | Encyclopedia articles |
37
+ | **Total** | **600.8** | **100.0%** | High-quality data for context extension |
38
+
39
+ ## 🌍 Language Coverage
40
+
41
+ This phase covers **110 languages** plus code, with inverse temperature sampling at τ=0.5. Expands from the initial 60 languages to include:
42
+ - **Additional mid-resource languages**: Uzbek, Bosnian, Catalan, Albanian, and 46 others
43
+ - **Enhanced quality**: Uses filtered FineWeb2-HQ and higher quality DCLM
44
+ - **Longer contexts**: Optimized for 8192 token sequences
45
+
46
+ ## ⚙️ Key Features
47
+
48
+ - **Context Extension**: RoPE base frequency adjusted to 160k for 8192 token support
49
+ - **Quality Upgrade**: Switches to filtered, higher-quality versions of datasets
50
+ - **Reduced Masking**: Mask rate lowered to 15% (from 30% in pre-training)
51
+ - **Language Expansion**: Adds 50 new languages while maintaining data quality
52
+
53
+ ## 🚀 Usage
54
+
55
+ For mid-training, see the ModernBERT repo: https://github.com/AnswerDotAI/ModernBERT
56
+
57
+ ### Direct Access
58
+
59
+ ```python
60
+ from streaming import StreamingDataset
61
+
62
+ # Load the streaming dataset
63
+ dataset = StreamingDataset(
64
+ remote='https://huggingface.co/datasets/jhu-clsp/mmbert-midtraining',
65
+ local='/tmp/mmbert-midtraining-data',
66
+ shuffle=True
67
+ )
68
+
69
+ # Access samples
70
+ for sample in dataset:
71
+ text = sample['text']
72
+ # Process your data...
73
+ ```
74
+
75
+ ## 🔗 Related Resources
76
+
77
+ - **Models**: [mmBERT Model Suite](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4)
78
+ - **Phase 1**: [Pre-training Data](https://huggingface.co/datasets/jhu-clsp/mmbert-pretrain-p1-fineweb2-langs) (2.3T tokens)
79
+ - **Phase 3**: [Decay Phase Data](https://huggingface.co/datasets/jhu-clsp/mmbert-decay) (100B tokens)
80
+ - **Checkpoints**: [Training Checkpoints](https://huggingface.co/datasets/jhu-clsp/mmbert-checkpoints)
81
+ - **Paper**: [Arxiv link](https://arxiv.org/abs/2509.06888)
82
+ - **Code**: [GitHub Repository](https://github.com/jhu-clsp/mmBERT)
83
+
84
+ ## Citation
85
+
86
+ ```bibtex
87
+ @misc{marone2025mmbertmodernmultilingualencoder,
88
+ title={mmBERT: A Modern Multilingual Encoder with Annealed Language Learning},
89
+ author={Marc Marone and Orion Weller and William Fleshman and Eugene Yang and Dawn Lawrie and Benjamin Van Durme},
90
+ year={2025},
91
+ eprint={2509.06888},
92
+ archivePrefix={arXiv},
93
+ primaryClass={cs.CL},
94
+ url={https://arxiv.org/abs/2509.06888},
95
+ }
96
+ ```