{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102915", "quality_score": 0.9154, "per_segment_quality_scores": [ { "start": 33.28, "end": 33.92, "probability": 0.2831 }, { "start": 33.92, "end": 34.26, "probability": 0.0997 }, { "start": 34.76, "end": 40.5, "probability": 0.9111 }, { "start": 41.04, "end": 42.32, "probability": 0.7822 }, { "start": 42.58, "end": 43.62, "probability": 0.9183 }, { "start": 46.12, "end": 46.18, "probability": 0.1452 }, { "start": 46.18, "end": 49.22, "probability": 0.6788 }, { "start": 49.84, "end": 51.42, "probability": 0.9734 }, { "start": 51.66, "end": 52.38, "probability": 0.6719 }, { "start": 52.4, "end": 53.44, "probability": 0.866 }, { "start": 54.16, "end": 57.46, "probability": 0.9633 }, { "start": 58.1, "end": 59.16, "probability": 0.3771 }, { "start": 59.94, "end": 63.06, "probability": 0.7265 }, { "start": 64.12, "end": 66.44, "probability": 0.8866 }, { "start": 66.9, "end": 68.3, "probability": 0.8316 }, { "start": 68.98, "end": 70.02, "probability": 0.5375 }, { "start": 72.38, "end": 74.82, "probability": 0.599 }, { "start": 75.4, "end": 76.9, "probability": 0.9497 }, { "start": 77.7, "end": 80.74, "probability": 0.5038 }, { "start": 81.48, "end": 81.62, "probability": 0.9204 }, { "start": 82.3, "end": 86.38, "probability": 0.9487 }, { "start": 86.46, "end": 86.56, "probability": 0.6297 }, { "start": 88.1, "end": 89.08, "probability": 0.8649 }, { "start": 98.64, "end": 99.37, "probability": 0.4248 }, { "start": 100.66, "end": 103.5, "probability": 0.762 }, { "start": 104.77, "end": 107.88, "probability": 0.7331 }, { "start": 108.12, "end": 109.74, "probability": 0.7181 }, { "start": 109.74, "end": 111.18, "probability": 0.8687 }, { "start": 112.26, "end": 115.24, "probability": 0.9431 }, { "start": 115.24, "end": 117.62, "probability": 0.9963 }, { "start": 136.52, "end": 141.68, "probability": 0.1213 }, { "start": 149.26, "end": 151.94, "probability": 0.1481 }, { "start": 153.1, "end": 155.96, "probability": 0.0296 }, { "start": 156.93, "end": 160.01, "probability": 0.1224 }, { "start": 160.32, "end": 160.96, "probability": 0.1084 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.0, "end": 270.0, "probability": 0.0 }, { "start": 270.32, "end": 270.54, "probability": 0.0529 }, { "start": 270.54, "end": 270.54, "probability": 0.0759 }, { "start": 270.54, "end": 270.64, "probability": 0.0322 }, { "start": 273.04, "end": 273.92, "probability": 0.2355 }, { "start": 274.1, "end": 278.47, "probability": 0.8356 }, { "start": 279.16, "end": 280.38, "probability": 0.9187 }, { "start": 281.14, "end": 283.04, "probability": 0.9632 }, { "start": 283.28, "end": 284.24, "probability": 0.9459 }, { "start": 284.5, "end": 286.06, "probability": 0.9382 }, { "start": 286.88, "end": 288.42, "probability": 0.8897 }, { "start": 289.28, "end": 290.9, "probability": 0.8903 }, { "start": 291.62, "end": 293.97, "probability": 0.6674 }, { "start": 294.7, "end": 297.06, "probability": 0.9756 }, { "start": 298.6, "end": 302.58, "probability": 0.9855 }, { "start": 302.74, "end": 303.98, "probability": 0.7416 }, { "start": 304.6, "end": 309.42, "probability": 0.9879 }, { "start": 310.26, "end": 312.82, "probability": 0.8829 }, { "start": 313.56, "end": 314.26, "probability": 0.8423 }, { "start": 316.78, "end": 317.6, "probability": 0.2398 }, { "start": 317.68, "end": 319.36, "probability": 0.5842 }, { "start": 319.36, "end": 319.36, "probability": 0.6494 }, { "start": 319.36, "end": 323.76, "probability": 0.9778 }, { "start": 324.3, "end": 326.66, "probability": 0.9705 }, { "start": 326.88, "end": 328.6, "probability": 0.999 }, { "start": 329.28, "end": 330.34, "probability": 0.9978 }, { "start": 330.9, "end": 331.6, "probability": 0.9696 }, { "start": 332.78, "end": 338.5, "probability": 0.9704 }, { "start": 339.42, "end": 344.06, "probability": 0.7542 }, { "start": 344.58, "end": 347.74, "probability": 0.9081 }, { "start": 348.44, "end": 349.44, "probability": 0.7668 }, { "start": 350.06, "end": 351.6, "probability": 0.8111 }, { "start": 351.6, "end": 351.6, "probability": 0.7968 }, { "start": 351.6, "end": 352.22, "probability": 0.4961 }, { "start": 352.92, "end": 355.08, "probability": 0.6795 }, { "start": 357.69, "end": 361.08, "probability": 0.9966 }, { "start": 361.83, "end": 365.62, "probability": 0.9828 }, { "start": 365.86, "end": 370.06, "probability": 0.7225 }, { "start": 370.26, "end": 371.2, "probability": 0.7967 }, { "start": 372.08, "end": 374.9, "probability": 0.9831 }, { "start": 375.58, "end": 377.26, "probability": 0.9656 }, { "start": 377.7, "end": 381.45, "probability": 0.9926 }, { "start": 382.46, "end": 383.46, "probability": 0.9564 }, { "start": 384.0, "end": 387.12, "probability": 0.862 }, { "start": 387.84, "end": 390.04, "probability": 0.9971 }, { "start": 390.46, "end": 393.58, "probability": 0.9962 }, { "start": 394.34, "end": 395.3, "probability": 0.502 }, { "start": 396.0, "end": 396.76, "probability": 0.6126 }, { "start": 397.46, "end": 399.66, "probability": 0.9572 }, { "start": 399.9, "end": 401.58, "probability": 0.6938 }, { "start": 402.1, "end": 404.54, "probability": 0.9982 }, { "start": 405.32, "end": 408.72, "probability": 0.9967 }, { "start": 409.34, "end": 411.1, "probability": 0.9941 }, { "start": 411.5, "end": 413.46, "probability": 0.7228 }, { "start": 414.16, "end": 414.34, "probability": 0.4532 }, { "start": 414.58, "end": 415.06, "probability": 0.8018 }, { "start": 415.2, "end": 416.52, "probability": 0.5599 }, { "start": 417.02, "end": 417.74, "probability": 0.8449 }, { "start": 418.16, "end": 419.26, "probability": 0.7905 }, { "start": 419.42, "end": 420.5, "probability": 0.9893 }, { "start": 421.98, "end": 426.66, "probability": 0.9659 }, { "start": 427.2, "end": 427.52, "probability": 0.4776 }, { "start": 428.98, "end": 430.18, "probability": 0.7451 }, { "start": 430.88, "end": 432.61, "probability": 0.9741 }, { "start": 434.08, "end": 437.06, "probability": 0.7504 }, { "start": 437.86, "end": 439.18, "probability": 0.6654 }, { "start": 439.76, "end": 443.54, "probability": 0.8947 }, { "start": 443.7, "end": 444.82, "probability": 0.9361 }, { "start": 445.22, "end": 447.02, "probability": 0.9648 }, { "start": 447.66, "end": 449.8, "probability": 0.96 }, { "start": 450.5, "end": 451.18, "probability": 0.8794 }, { "start": 451.98, "end": 452.44, "probability": 0.9173 }, { "start": 452.64, "end": 455.5, "probability": 0.9479 }, { "start": 455.82, "end": 457.86, "probability": 0.861 }, { "start": 458.22, "end": 460.88, "probability": 0.9487 }, { "start": 461.22, "end": 462.16, "probability": 0.8124 }, { "start": 462.4, "end": 462.8, "probability": 0.9309 }, { "start": 463.1, "end": 464.84, "probability": 0.9968 }, { "start": 465.02, "end": 465.54, "probability": 0.4475 }, { "start": 465.7, "end": 466.56, "probability": 0.9253 }, { "start": 467.32, "end": 469.06, "probability": 0.9954 }, { "start": 469.16, "end": 470.52, "probability": 0.9274 }, { "start": 471.08, "end": 472.66, "probability": 0.7996 }, { "start": 473.32, "end": 475.6, "probability": 0.9106 }, { "start": 475.7, "end": 476.0, "probability": 0.7218 }, { "start": 476.06, "end": 477.54, "probability": 0.829 }, { "start": 478.2, "end": 480.98, "probability": 0.9172 }, { "start": 481.2, "end": 483.42, "probability": 0.8848 }, { "start": 483.82, "end": 490.2, "probability": 0.9682 }, { "start": 493.02, "end": 495.56, "probability": 0.9897 }, { "start": 495.56, "end": 498.54, "probability": 0.9657 }, { "start": 498.74, "end": 499.48, "probability": 0.4149 }, { "start": 499.76, "end": 501.36, "probability": 0.9408 }, { "start": 502.4, "end": 502.98, "probability": 0.9277 }, { "start": 503.6, "end": 506.56, "probability": 0.9762 }, { "start": 507.76, "end": 511.24, "probability": 0.7036 }, { "start": 512.74, "end": 514.86, "probability": 0.9028 }, { "start": 515.98, "end": 516.5, "probability": 0.5168 }, { "start": 517.28, "end": 522.3, "probability": 0.9845 }, { "start": 523.08, "end": 523.7, "probability": 0.8916 }, { "start": 524.26, "end": 524.7, "probability": 0.4929 }, { "start": 524.86, "end": 528.26, "probability": 0.9956 }, { "start": 529.54, "end": 533.99, "probability": 0.9963 }, { "start": 534.88, "end": 537.16, "probability": 0.9543 }, { "start": 537.24, "end": 538.42, "probability": 0.8085 }, { "start": 538.54, "end": 538.82, "probability": 0.8211 }, { "start": 540.26, "end": 545.04, "probability": 0.9946 }, { "start": 545.84, "end": 547.52, "probability": 0.9733 }, { "start": 547.74, "end": 552.62, "probability": 0.9962 }, { "start": 553.54, "end": 558.78, "probability": 0.9887 }, { "start": 559.52, "end": 562.1, "probability": 0.7782 }, { "start": 562.84, "end": 565.0, "probability": 0.989 }, { "start": 567.0, "end": 571.04, "probability": 0.8577 }, { "start": 571.12, "end": 571.5, "probability": 0.7458 }, { "start": 572.14, "end": 573.24, "probability": 0.9766 }, { "start": 574.36, "end": 576.38, "probability": 0.9827 }, { "start": 577.74, "end": 578.84, "probability": 0.9976 }, { "start": 579.54, "end": 582.94, "probability": 0.9955 }, { "start": 583.2, "end": 584.76, "probability": 0.9613 }, { "start": 585.28, "end": 588.58, "probability": 0.9634 }, { "start": 588.76, "end": 591.04, "probability": 0.9571 }, { "start": 591.78, "end": 592.16, "probability": 0.5834 }, { "start": 592.18, "end": 592.72, "probability": 0.896 }, { "start": 592.8, "end": 598.32, "probability": 0.97 }, { "start": 599.14, "end": 602.52, "probability": 0.9575 }, { "start": 603.16, "end": 607.64, "probability": 0.8973 }, { "start": 608.18, "end": 609.46, "probability": 0.9134 }, { "start": 610.3, "end": 612.03, "probability": 0.7506 }, { "start": 613.02, "end": 616.36, "probability": 0.9953 }, { "start": 616.96, "end": 620.68, "probability": 0.9902 }, { "start": 621.22, "end": 625.52, "probability": 0.9834 }, { "start": 626.48, "end": 628.58, "probability": 0.9976 }, { "start": 628.66, "end": 629.08, "probability": 0.8878 }, { "start": 629.5, "end": 630.16, "probability": 0.7547 }, { "start": 630.3, "end": 632.25, "probability": 0.9888 }, { "start": 632.76, "end": 634.48, "probability": 0.9919 }, { "start": 634.84, "end": 636.66, "probability": 0.9902 }, { "start": 637.68, "end": 638.02, "probability": 0.6523 }, { "start": 638.08, "end": 639.16, "probability": 0.9303 }, { "start": 639.28, "end": 641.06, "probability": 0.7373 }, { "start": 641.52, "end": 643.25, "probability": 0.6531 }, { "start": 643.9, "end": 644.26, "probability": 0.8003 }, { "start": 644.32, "end": 650.72, "probability": 0.957 }, { "start": 650.76, "end": 651.32, "probability": 0.9582 }, { "start": 651.42, "end": 651.95, "probability": 0.9146 }, { "start": 652.36, "end": 653.54, "probability": 0.9495 }, { "start": 653.66, "end": 654.9, "probability": 0.5643 }, { "start": 655.92, "end": 657.82, "probability": 0.5721 }, { "start": 658.86, "end": 663.02, "probability": 0.9854 }, { "start": 663.6, "end": 666.12, "probability": 0.9751 }, { "start": 666.46, "end": 667.16, "probability": 0.7757 }, { "start": 667.76, "end": 669.64, "probability": 0.9747 }, { "start": 669.8, "end": 672.42, "probability": 0.9323 }, { "start": 672.8, "end": 673.44, "probability": 0.7842 }, { "start": 673.86, "end": 675.46, "probability": 0.9969 }, { "start": 675.6, "end": 679.74, "probability": 0.9614 }, { "start": 680.46, "end": 683.43, "probability": 0.9506 }, { "start": 684.58, "end": 692.2, "probability": 0.9629 }, { "start": 693.22, "end": 696.48, "probability": 0.9846 }, { "start": 696.48, "end": 701.11, "probability": 0.999 }, { "start": 701.62, "end": 703.6, "probability": 0.9934 }, { "start": 707.76, "end": 708.96, "probability": 0.4008 }, { "start": 709.1, "end": 710.43, "probability": 0.9897 }, { "start": 710.82, "end": 713.88, "probability": 0.8161 }, { "start": 714.44, "end": 715.26, "probability": 0.6152 }, { "start": 715.26, "end": 717.84, "probability": 0.9613 }, { "start": 718.3, "end": 719.44, "probability": 0.8521 }, { "start": 719.84, "end": 722.34, "probability": 0.8765 }, { "start": 722.84, "end": 723.7, "probability": 0.7765 }, { "start": 724.32, "end": 725.88, "probability": 0.9202 }, { "start": 726.38, "end": 729.36, "probability": 0.9438 }, { "start": 730.04, "end": 731.07, "probability": 0.9943 }, { "start": 731.88, "end": 735.72, "probability": 0.9235 }, { "start": 736.32, "end": 737.28, "probability": 0.9014 }, { "start": 738.06, "end": 739.68, "probability": 0.8605 }, { "start": 740.26, "end": 742.42, "probability": 0.7485 }, { "start": 742.44, "end": 743.58, "probability": 0.8438 }, { "start": 744.0, "end": 748.7, "probability": 0.9798 }, { "start": 748.92, "end": 753.62, "probability": 0.4987 }, { "start": 754.3, "end": 758.72, "probability": 0.9966 }, { "start": 758.84, "end": 764.22, "probability": 0.8032 }, { "start": 764.28, "end": 766.74, "probability": 0.9908 }, { "start": 767.18, "end": 768.34, "probability": 0.98 }, { "start": 768.44, "end": 769.82, "probability": 0.9529 }, { "start": 769.96, "end": 772.5, "probability": 0.9885 }, { "start": 772.68, "end": 774.94, "probability": 0.9985 }, { "start": 775.56, "end": 778.5, "probability": 0.9821 }, { "start": 780.2, "end": 783.36, "probability": 0.9907 }, { "start": 783.88, "end": 785.98, "probability": 0.7375 }, { "start": 786.14, "end": 786.88, "probability": 0.644 }, { "start": 787.24, "end": 788.15, "probability": 0.9868 }, { "start": 788.6, "end": 790.0, "probability": 0.803 }, { "start": 790.36, "end": 791.42, "probability": 0.4833 }, { "start": 791.54, "end": 793.88, "probability": 0.9167 }, { "start": 793.88, "end": 794.9, "probability": 0.6536 }, { "start": 795.48, "end": 796.68, "probability": 0.8817 }, { "start": 797.08, "end": 797.08, "probability": 0.0056 }, { "start": 797.08, "end": 797.44, "probability": 0.5108 }, { "start": 797.46, "end": 797.46, "probability": 0.362 }, { "start": 797.46, "end": 797.46, "probability": 0.3349 }, { "start": 797.46, "end": 797.46, "probability": 0.2259 }, { "start": 797.46, "end": 800.08, "probability": 0.688 }, { "start": 800.56, "end": 801.94, "probability": 0.6738 }, { "start": 802.0, "end": 802.76, "probability": 0.9022 }, { "start": 803.08, "end": 806.48, "probability": 0.9917 }, { "start": 807.7, "end": 808.94, "probability": 0.7976 }, { "start": 809.42, "end": 811.18, "probability": 0.8918 }, { "start": 811.62, "end": 814.78, "probability": 0.9814 }, { "start": 815.14, "end": 817.04, "probability": 0.8503 }, { "start": 817.04, "end": 817.04, "probability": 0.502 }, { "start": 817.06, "end": 819.1, "probability": 0.9097 }, { "start": 819.74, "end": 823.58, "probability": 0.9921 }, { "start": 823.58, "end": 827.68, "probability": 0.9225 }, { "start": 828.54, "end": 831.14, "probability": 0.9944 }, { "start": 831.14, "end": 834.86, "probability": 0.8446 }, { "start": 835.32, "end": 838.26, "probability": 0.91 }, { "start": 838.58, "end": 841.08, "probability": 0.6684 }, { "start": 841.58, "end": 842.42, "probability": 0.7904 }, { "start": 842.46, "end": 846.12, "probability": 0.9713 }, { "start": 846.56, "end": 846.76, "probability": 0.4164 }, { "start": 846.96, "end": 849.74, "probability": 0.6767 }, { "start": 850.08, "end": 851.28, "probability": 0.8074 }, { "start": 851.44, "end": 852.54, "probability": 0.6523 }, { "start": 853.04, "end": 857.8, "probability": 0.9865 }, { "start": 858.34, "end": 858.92, "probability": 0.7627 }, { "start": 859.4, "end": 862.08, "probability": 0.9491 }, { "start": 862.24, "end": 863.9, "probability": 0.9956 }, { "start": 864.98, "end": 866.5, "probability": 0.6993 }, { "start": 867.0, "end": 870.1, "probability": 0.9509 }, { "start": 870.72, "end": 873.44, "probability": 0.7676 }, { "start": 873.68, "end": 875.48, "probability": 0.6929 }, { "start": 875.96, "end": 878.06, "probability": 0.6044 }, { "start": 878.12, "end": 881.76, "probability": 0.9143 }, { "start": 882.26, "end": 883.64, "probability": 0.9391 }, { "start": 884.38, "end": 886.56, "probability": 0.7675 }, { "start": 886.58, "end": 889.14, "probability": 0.9844 }, { "start": 889.28, "end": 894.69, "probability": 0.8396 }, { "start": 895.28, "end": 899.06, "probability": 0.7072 }, { "start": 899.08, "end": 899.54, "probability": 0.8277 }, { "start": 900.1, "end": 900.3, "probability": 0.7406 }, { "start": 900.44, "end": 900.56, "probability": 0.7512 }, { "start": 901.08, "end": 902.9, "probability": 0.9963 }, { "start": 903.62, "end": 904.62, "probability": 0.7416 }, { "start": 904.78, "end": 905.52, "probability": 0.4868 }, { "start": 905.9, "end": 907.74, "probability": 0.969 }, { "start": 908.04, "end": 909.46, "probability": 0.4109 }, { "start": 909.9, "end": 911.68, "probability": 0.8408 }, { "start": 912.22, "end": 912.6, "probability": 0.38 }, { "start": 912.64, "end": 914.06, "probability": 0.9894 }, { "start": 914.2, "end": 916.2, "probability": 0.9453 }, { "start": 917.38, "end": 917.38, "probability": 0.0326 }, { "start": 917.38, "end": 918.4, "probability": 0.8431 }, { "start": 918.9, "end": 922.72, "probability": 0.9854 }, { "start": 922.94, "end": 923.42, "probability": 0.7474 }, { "start": 923.5, "end": 926.8, "probability": 0.8927 }, { "start": 927.42, "end": 930.22, "probability": 0.9048 }, { "start": 930.28, "end": 930.7, "probability": 0.7471 }, { "start": 930.82, "end": 931.66, "probability": 0.3572 }, { "start": 932.16, "end": 932.68, "probability": 0.6846 }, { "start": 933.22, "end": 934.28, "probability": 0.9467 }, { "start": 934.48, "end": 936.54, "probability": 0.512 }, { "start": 937.22, "end": 937.62, "probability": 0.0938 }, { "start": 937.62, "end": 937.62, "probability": 0.0449 }, { "start": 937.62, "end": 937.86, "probability": 0.6326 }, { "start": 937.88, "end": 938.96, "probability": 0.8762 }, { "start": 939.2, "end": 940.16, "probability": 0.7903 }, { "start": 940.3, "end": 941.24, "probability": 0.9127 }, { "start": 941.6, "end": 943.92, "probability": 0.868 }, { "start": 944.94, "end": 946.56, "probability": 0.9298 }, { "start": 946.6, "end": 948.91, "probability": 0.9946 }, { "start": 949.22, "end": 950.42, "probability": 0.9882 }, { "start": 950.82, "end": 952.78, "probability": 0.994 }, { "start": 956.22, "end": 957.08, "probability": 0.103 }, { "start": 957.2, "end": 957.2, "probability": 0.2069 }, { "start": 957.2, "end": 957.2, "probability": 0.0641 }, { "start": 957.2, "end": 957.2, "probability": 0.1534 }, { "start": 957.2, "end": 957.2, "probability": 0.0996 }, { "start": 957.2, "end": 957.2, "probability": 0.2485 }, { "start": 957.52, "end": 957.9, "probability": 0.4409 }, { "start": 958.02, "end": 960.02, "probability": 0.4186 }, { "start": 960.2, "end": 961.03, "probability": 0.0415 }, { "start": 961.92, "end": 962.84, "probability": 0.7623 }, { "start": 963.5, "end": 963.9, "probability": 0.3663 }, { "start": 963.9, "end": 964.63, "probability": 0.4915 }, { "start": 965.08, "end": 967.08, "probability": 0.1214 }, { "start": 967.26, "end": 968.47, "probability": 0.212 }, { "start": 968.66, "end": 971.08, "probability": 0.5942 }, { "start": 972.96, "end": 974.98, "probability": 0.1296 }, { "start": 975.14, "end": 976.19, "probability": 0.5653 }, { "start": 977.04, "end": 981.52, "probability": 0.8859 }, { "start": 981.52, "end": 984.3, "probability": 0.4587 }, { "start": 984.6, "end": 986.2, "probability": 0.9485 }, { "start": 986.52, "end": 987.13, "probability": 0.9819 }, { "start": 987.54, "end": 989.7, "probability": 0.7679 }, { "start": 990.18, "end": 990.96, "probability": 0.9633 }, { "start": 991.42, "end": 996.1, "probability": 0.9459 }, { "start": 996.4, "end": 997.42, "probability": 0.9253 }, { "start": 997.58, "end": 1001.46, "probability": 0.79 }, { "start": 1002.06, "end": 1005.96, "probability": 0.7056 }, { "start": 1006.52, "end": 1008.48, "probability": 0.8165 }, { "start": 1008.84, "end": 1011.08, "probability": 0.8593 }, { "start": 1011.38, "end": 1015.18, "probability": 0.9526 }, { "start": 1015.58, "end": 1017.54, "probability": 0.998 }, { "start": 1018.12, "end": 1021.54, "probability": 0.976 }, { "start": 1022.0, "end": 1023.78, "probability": 0.965 }, { "start": 1024.6, "end": 1025.8, "probability": 0.8851 }, { "start": 1026.36, "end": 1027.62, "probability": 0.7483 }, { "start": 1027.7, "end": 1030.62, "probability": 0.9796 }, { "start": 1031.18, "end": 1032.08, "probability": 0.7403 }, { "start": 1035.22, "end": 1036.56, "probability": 0.7989 }, { "start": 1036.84, "end": 1039.24, "probability": 0.663 }, { "start": 1039.24, "end": 1039.24, "probability": 0.7021 }, { "start": 1039.3, "end": 1041.32, "probability": 0.991 }, { "start": 1041.92, "end": 1044.74, "probability": 0.6944 }, { "start": 1045.36, "end": 1046.62, "probability": 0.9587 }, { "start": 1046.66, "end": 1049.28, "probability": 0.995 }, { "start": 1050.52, "end": 1054.68, "probability": 0.9931 }, { "start": 1055.12, "end": 1055.78, "probability": 0.8716 }, { "start": 1055.94, "end": 1056.7, "probability": 0.6058 }, { "start": 1057.72, "end": 1061.7, "probability": 0.9681 }, { "start": 1062.28, "end": 1064.0, "probability": 0.8014 }, { "start": 1064.12, "end": 1067.48, "probability": 0.8994 }, { "start": 1067.52, "end": 1070.14, "probability": 0.8359 }, { "start": 1072.27, "end": 1074.9, "probability": 0.6289 }, { "start": 1074.9, "end": 1076.96, "probability": 0.9524 }, { "start": 1077.14, "end": 1078.62, "probability": 0.8215 }, { "start": 1079.44, "end": 1081.88, "probability": 0.1472 }, { "start": 1082.22, "end": 1084.52, "probability": 0.4586 }, { "start": 1085.04, "end": 1087.04, "probability": 0.4591 }, { "start": 1087.14, "end": 1089.28, "probability": 0.6821 }, { "start": 1089.3, "end": 1091.84, "probability": 0.9819 }, { "start": 1092.06, "end": 1094.16, "probability": 0.5775 }, { "start": 1094.52, "end": 1097.68, "probability": 0.8109 }, { "start": 1097.78, "end": 1101.72, "probability": 0.7955 }, { "start": 1101.86, "end": 1102.5, "probability": 0.9696 }, { "start": 1102.56, "end": 1102.92, "probability": 0.8623 }, { "start": 1104.82, "end": 1105.9, "probability": 0.759 }, { "start": 1106.98, "end": 1109.86, "probability": 0.894 }, { "start": 1110.08, "end": 1112.24, "probability": 0.3477 }, { "start": 1112.44, "end": 1114.48, "probability": 0.8888 }, { "start": 1115.18, "end": 1117.2, "probability": 0.7959 }, { "start": 1139.12, "end": 1139.22, "probability": 0.7526 }, { "start": 1139.22, "end": 1139.71, "probability": 0.5649 }, { "start": 1140.5, "end": 1141.46, "probability": 0.8277 }, { "start": 1142.18, "end": 1143.94, "probability": 0.879 }, { "start": 1144.7, "end": 1148.78, "probability": 0.9924 }, { "start": 1149.58, "end": 1153.88, "probability": 0.9774 }, { "start": 1154.88, "end": 1156.16, "probability": 0.574 }, { "start": 1156.38, "end": 1158.5, "probability": 0.9943 }, { "start": 1158.58, "end": 1159.42, "probability": 0.8144 }, { "start": 1160.22, "end": 1160.78, "probability": 0.7736 }, { "start": 1161.14, "end": 1165.34, "probability": 0.9597 }, { "start": 1166.3, "end": 1167.72, "probability": 0.7079 }, { "start": 1167.72, "end": 1169.84, "probability": 0.9898 }, { "start": 1170.0, "end": 1173.1, "probability": 0.9963 }, { "start": 1173.38, "end": 1174.48, "probability": 0.9136 }, { "start": 1174.82, "end": 1175.0, "probability": 0.8298 }, { "start": 1177.62, "end": 1178.94, "probability": 0.745 }, { "start": 1179.48, "end": 1181.62, "probability": 0.9361 }, { "start": 1182.12, "end": 1182.84, "probability": 0.6653 }, { "start": 1182.94, "end": 1184.94, "probability": 0.9406 }, { "start": 1185.58, "end": 1187.66, "probability": 0.9641 }, { "start": 1187.74, "end": 1190.48, "probability": 0.7307 }, { "start": 1190.56, "end": 1191.42, "probability": 0.6976 }, { "start": 1191.88, "end": 1193.72, "probability": 0.6508 }, { "start": 1194.16, "end": 1200.02, "probability": 0.7136 }, { "start": 1201.78, "end": 1206.28, "probability": 0.7998 }, { "start": 1206.5, "end": 1210.76, "probability": 0.9702 }, { "start": 1211.4, "end": 1211.8, "probability": 0.7187 }, { "start": 1212.24, "end": 1216.38, "probability": 0.9557 }, { "start": 1216.44, "end": 1218.7, "probability": 0.9769 }, { "start": 1218.86, "end": 1222.48, "probability": 0.9921 }, { "start": 1223.28, "end": 1223.48, "probability": 0.3549 }, { "start": 1224.3, "end": 1230.16, "probability": 0.981 }, { "start": 1230.38, "end": 1231.06, "probability": 0.978 }, { "start": 1231.94, "end": 1236.12, "probability": 0.9995 }, { "start": 1236.18, "end": 1236.8, "probability": 0.6415 }, { "start": 1237.36, "end": 1241.12, "probability": 0.8366 }, { "start": 1241.28, "end": 1243.41, "probability": 0.9901 }, { "start": 1244.14, "end": 1244.4, "probability": 0.9395 }, { "start": 1244.56, "end": 1246.44, "probability": 0.9131 }, { "start": 1246.56, "end": 1247.16, "probability": 0.9388 }, { "start": 1247.22, "end": 1248.14, "probability": 0.5609 }, { "start": 1248.38, "end": 1251.88, "probability": 0.7498 }, { "start": 1253.44, "end": 1256.76, "probability": 0.956 }, { "start": 1257.28, "end": 1259.04, "probability": 0.9177 }, { "start": 1259.26, "end": 1259.4, "probability": 0.5538 }, { "start": 1259.6, "end": 1260.86, "probability": 0.2176 }, { "start": 1260.98, "end": 1264.19, "probability": 0.0754 }, { "start": 1265.4, "end": 1269.3, "probability": 0.7476 }, { "start": 1269.36, "end": 1274.36, "probability": 0.9673 }, { "start": 1274.42, "end": 1276.58, "probability": 0.9688 }, { "start": 1277.46, "end": 1281.36, "probability": 0.7487 }, { "start": 1281.36, "end": 1286.88, "probability": 0.9898 }, { "start": 1286.88, "end": 1290.74, "probability": 0.9961 }, { "start": 1291.0, "end": 1295.24, "probability": 0.9911 }, { "start": 1296.14, "end": 1297.46, "probability": 0.937 }, { "start": 1297.6, "end": 1298.18, "probability": 0.8699 }, { "start": 1298.46, "end": 1300.92, "probability": 0.999 }, { "start": 1301.11, "end": 1303.98, "probability": 0.9978 }, { "start": 1304.5, "end": 1304.82, "probability": 0.4595 }, { "start": 1304.86, "end": 1305.28, "probability": 0.8967 }, { "start": 1305.6, "end": 1308.24, "probability": 0.9511 }, { "start": 1308.48, "end": 1309.14, "probability": 0.9825 }, { "start": 1309.59, "end": 1313.14, "probability": 0.9933 }, { "start": 1313.92, "end": 1317.0, "probability": 0.965 }, { "start": 1317.74, "end": 1319.76, "probability": 0.9286 }, { "start": 1320.1, "end": 1323.18, "probability": 0.9953 }, { "start": 1324.46, "end": 1328.54, "probability": 0.9474 }, { "start": 1328.94, "end": 1333.1, "probability": 0.9653 }, { "start": 1333.36, "end": 1335.88, "probability": 0.9742 }, { "start": 1336.78, "end": 1339.44, "probability": 0.9984 }, { "start": 1339.44, "end": 1342.84, "probability": 0.9873 }, { "start": 1343.42, "end": 1344.54, "probability": 0.9509 }, { "start": 1345.18, "end": 1348.24, "probability": 0.9551 }, { "start": 1348.64, "end": 1349.6, "probability": 0.9949 }, { "start": 1350.26, "end": 1352.56, "probability": 0.8903 }, { "start": 1354.7, "end": 1356.48, "probability": 0.0822 }, { "start": 1356.94, "end": 1358.3, "probability": 0.9265 }, { "start": 1358.46, "end": 1359.26, "probability": 0.6686 }, { "start": 1359.32, "end": 1361.66, "probability": 0.6434 }, { "start": 1361.9, "end": 1363.54, "probability": 0.7114 }, { "start": 1364.3, "end": 1364.78, "probability": 0.4036 }, { "start": 1364.94, "end": 1365.22, "probability": 0.7775 }, { "start": 1365.6, "end": 1367.56, "probability": 0.7486 }, { "start": 1367.62, "end": 1368.48, "probability": 0.8055 }, { "start": 1368.64, "end": 1370.16, "probability": 0.846 }, { "start": 1370.3, "end": 1370.74, "probability": 0.5025 }, { "start": 1371.0, "end": 1372.0, "probability": 0.2051 }, { "start": 1372.48, "end": 1374.06, "probability": 0.8235 }, { "start": 1374.18, "end": 1375.92, "probability": 0.7205 }, { "start": 1376.62, "end": 1378.66, "probability": 0.997 }, { "start": 1378.86, "end": 1381.22, "probability": 0.9851 }, { "start": 1382.06, "end": 1382.67, "probability": 0.512 }, { "start": 1382.78, "end": 1385.92, "probability": 0.8501 }, { "start": 1385.92, "end": 1388.7, "probability": 0.9829 }, { "start": 1389.26, "end": 1394.9, "probability": 0.8066 }, { "start": 1399.08, "end": 1401.12, "probability": 0.5336 }, { "start": 1401.34, "end": 1403.22, "probability": 0.7806 }, { "start": 1403.22, "end": 1403.8, "probability": 0.8695 }, { "start": 1405.14, "end": 1407.9, "probability": 0.3918 }, { "start": 1407.92, "end": 1408.7, "probability": 0.6241 }, { "start": 1409.06, "end": 1413.88, "probability": 0.9385 }, { "start": 1414.3, "end": 1416.0, "probability": 0.9029 }, { "start": 1417.12, "end": 1420.07, "probability": 0.7054 }, { "start": 1420.44, "end": 1422.4, "probability": 0.8805 }, { "start": 1422.88, "end": 1425.86, "probability": 0.9568 }, { "start": 1426.08, "end": 1430.86, "probability": 0.9922 }, { "start": 1431.08, "end": 1431.58, "probability": 0.7363 }, { "start": 1432.38, "end": 1434.34, "probability": 0.9354 }, { "start": 1434.58, "end": 1437.46, "probability": 0.6628 }, { "start": 1437.48, "end": 1439.74, "probability": 0.6457 }, { "start": 1440.48, "end": 1445.18, "probability": 0.9854 }, { "start": 1445.34, "end": 1447.64, "probability": 0.9961 }, { "start": 1447.86, "end": 1450.3, "probability": 0.9336 }, { "start": 1450.58, "end": 1451.14, "probability": 0.939 }, { "start": 1451.68, "end": 1453.32, "probability": 0.9961 }, { "start": 1453.58, "end": 1455.94, "probability": 0.9487 }, { "start": 1455.94, "end": 1458.5, "probability": 0.9929 }, { "start": 1459.78, "end": 1466.98, "probability": 0.9499 }, { "start": 1466.98, "end": 1472.02, "probability": 0.8134 }, { "start": 1472.36, "end": 1475.94, "probability": 0.9876 }, { "start": 1475.94, "end": 1478.12, "probability": 0.9778 }, { "start": 1478.66, "end": 1480.98, "probability": 0.992 }, { "start": 1480.98, "end": 1483.74, "probability": 0.7685 }, { "start": 1484.16, "end": 1485.99, "probability": 0.889 }, { "start": 1487.8, "end": 1490.0, "probability": 0.9233 }, { "start": 1490.1, "end": 1495.06, "probability": 0.9961 }, { "start": 1495.18, "end": 1496.44, "probability": 0.547 }, { "start": 1496.48, "end": 1499.28, "probability": 0.959 }, { "start": 1499.5, "end": 1501.22, "probability": 0.9577 }, { "start": 1501.74, "end": 1503.6, "probability": 0.9665 }, { "start": 1503.84, "end": 1503.98, "probability": 0.2156 }, { "start": 1504.12, "end": 1504.24, "probability": 0.8231 }, { "start": 1504.38, "end": 1504.7, "probability": 0.504 }, { "start": 1505.1, "end": 1506.76, "probability": 0.5499 }, { "start": 1506.92, "end": 1508.82, "probability": 0.9737 }, { "start": 1509.44, "end": 1512.7, "probability": 0.8734 }, { "start": 1512.7, "end": 1514.78, "probability": 0.9956 }, { "start": 1516.08, "end": 1518.64, "probability": 0.9676 }, { "start": 1518.64, "end": 1521.88, "probability": 0.9896 }, { "start": 1522.54, "end": 1524.26, "probability": 0.7761 }, { "start": 1524.86, "end": 1525.98, "probability": 0.7783 }, { "start": 1526.16, "end": 1528.98, "probability": 0.9881 }, { "start": 1529.58, "end": 1530.3, "probability": 0.9783 }, { "start": 1531.32, "end": 1534.76, "probability": 0.9682 }, { "start": 1534.84, "end": 1536.52, "probability": 0.8218 }, { "start": 1537.2, "end": 1540.82, "probability": 0.8403 }, { "start": 1540.96, "end": 1542.36, "probability": 0.877 }, { "start": 1542.8, "end": 1543.56, "probability": 0.8791 }, { "start": 1543.88, "end": 1544.04, "probability": 0.781 }, { "start": 1544.58, "end": 1547.04, "probability": 0.9564 }, { "start": 1548.26, "end": 1552.94, "probability": 0.8916 }, { "start": 1553.1, "end": 1554.52, "probability": 0.6196 }, { "start": 1554.86, "end": 1555.83, "probability": 0.7717 }, { "start": 1557.08, "end": 1559.8, "probability": 0.9754 }, { "start": 1560.04, "end": 1565.08, "probability": 0.9811 }, { "start": 1565.3, "end": 1567.24, "probability": 0.9743 }, { "start": 1567.54, "end": 1571.2, "probability": 0.8695 }, { "start": 1571.7, "end": 1573.04, "probability": 0.9751 }, { "start": 1573.12, "end": 1574.14, "probability": 0.8077 }, { "start": 1574.76, "end": 1576.34, "probability": 0.9525 }, { "start": 1576.78, "end": 1580.66, "probability": 0.9827 }, { "start": 1581.7, "end": 1586.24, "probability": 0.7759 }, { "start": 1586.26, "end": 1588.22, "probability": 0.5341 }, { "start": 1588.36, "end": 1593.36, "probability": 0.9907 }, { "start": 1594.24, "end": 1596.52, "probability": 0.7361 }, { "start": 1596.68, "end": 1597.28, "probability": 0.8388 }, { "start": 1598.02, "end": 1600.62, "probability": 0.95 }, { "start": 1600.62, "end": 1604.84, "probability": 0.975 }, { "start": 1605.44, "end": 1607.78, "probability": 0.9984 }, { "start": 1607.78, "end": 1612.38, "probability": 0.9623 }, { "start": 1612.42, "end": 1614.9, "probability": 0.9477 }, { "start": 1615.46, "end": 1620.58, "probability": 0.9838 }, { "start": 1620.98, "end": 1622.3, "probability": 0.7223 }, { "start": 1622.56, "end": 1625.92, "probability": 0.9317 }, { "start": 1626.34, "end": 1626.82, "probability": 0.5247 }, { "start": 1626.96, "end": 1628.5, "probability": 0.4723 }, { "start": 1629.72, "end": 1631.64, "probability": 0.8704 }, { "start": 1632.46, "end": 1632.82, "probability": 0.88 }, { "start": 1633.38, "end": 1636.1, "probability": 0.7219 }, { "start": 1636.28, "end": 1642.8, "probability": 0.8856 }, { "start": 1642.9, "end": 1645.18, "probability": 0.9865 }, { "start": 1645.38, "end": 1645.96, "probability": 0.8099 }, { "start": 1646.06, "end": 1651.01, "probability": 0.9407 }, { "start": 1651.26, "end": 1651.5, "probability": 0.4431 }, { "start": 1651.62, "end": 1651.94, "probability": 0.9446 }, { "start": 1652.2, "end": 1653.32, "probability": 0.8603 }, { "start": 1653.5, "end": 1656.5, "probability": 0.9698 }, { "start": 1656.5, "end": 1659.86, "probability": 0.9946 }, { "start": 1659.86, "end": 1663.68, "probability": 0.9994 }, { "start": 1664.2, "end": 1664.5, "probability": 0.353 }, { "start": 1664.58, "end": 1669.18, "probability": 0.9538 }, { "start": 1669.44, "end": 1669.84, "probability": 0.8043 }, { "start": 1671.0, "end": 1673.76, "probability": 0.9954 }, { "start": 1673.98, "end": 1674.55, "probability": 0.8768 }, { "start": 1675.62, "end": 1678.1, "probability": 0.8202 }, { "start": 1678.24, "end": 1678.54, "probability": 0.9697 }, { "start": 1678.64, "end": 1680.9, "probability": 0.9425 }, { "start": 1681.02, "end": 1683.96, "probability": 0.9734 }, { "start": 1684.4, "end": 1686.04, "probability": 0.9233 }, { "start": 1686.98, "end": 1690.48, "probability": 0.9796 }, { "start": 1690.48, "end": 1693.42, "probability": 0.9886 }, { "start": 1694.08, "end": 1699.44, "probability": 0.9425 }, { "start": 1699.44, "end": 1701.46, "probability": 0.7977 }, { "start": 1701.98, "end": 1705.88, "probability": 0.869 }, { "start": 1706.1, "end": 1708.0, "probability": 0.9985 }, { "start": 1708.26, "end": 1709.34, "probability": 0.7547 }, { "start": 1709.52, "end": 1709.92, "probability": 0.8927 }, { "start": 1710.52, "end": 1712.34, "probability": 0.8584 }, { "start": 1712.4, "end": 1715.16, "probability": 0.9871 }, { "start": 1715.76, "end": 1717.86, "probability": 0.9822 }, { "start": 1719.0, "end": 1721.58, "probability": 0.9321 }, { "start": 1721.76, "end": 1723.48, "probability": 0.9558 }, { "start": 1724.24, "end": 1725.54, "probability": 0.9482 }, { "start": 1725.64, "end": 1726.46, "probability": 0.8782 }, { "start": 1726.58, "end": 1729.5, "probability": 0.9869 }, { "start": 1729.66, "end": 1730.52, "probability": 0.5541 }, { "start": 1731.04, "end": 1732.36, "probability": 0.8903 }, { "start": 1732.48, "end": 1735.62, "probability": 0.9961 }, { "start": 1735.84, "end": 1737.3, "probability": 0.7597 }, { "start": 1737.98, "end": 1741.62, "probability": 0.9878 }, { "start": 1741.86, "end": 1743.58, "probability": 0.8319 }, { "start": 1743.62, "end": 1743.92, "probability": 0.6007 }, { "start": 1744.44, "end": 1745.6, "probability": 0.8735 }, { "start": 1745.72, "end": 1748.52, "probability": 0.9702 }, { "start": 1748.78, "end": 1749.76, "probability": 0.8679 }, { "start": 1750.24, "end": 1750.52, "probability": 0.0804 }, { "start": 1750.7, "end": 1753.66, "probability": 0.4308 }, { "start": 1753.78, "end": 1754.68, "probability": 0.9006 }, { "start": 1754.76, "end": 1756.24, "probability": 0.5253 }, { "start": 1756.52, "end": 1757.28, "probability": 0.9309 }, { "start": 1757.4, "end": 1759.12, "probability": 0.8931 }, { "start": 1759.62, "end": 1762.04, "probability": 0.9827 }, { "start": 1762.14, "end": 1762.98, "probability": 0.8936 }, { "start": 1763.54, "end": 1764.28, "probability": 0.959 }, { "start": 1765.48, "end": 1767.1, "probability": 0.5084 }, { "start": 1767.68, "end": 1768.76, "probability": 0.9053 }, { "start": 1769.48, "end": 1775.5, "probability": 0.9652 }, { "start": 1775.56, "end": 1777.26, "probability": 0.9668 }, { "start": 1778.48, "end": 1783.04, "probability": 0.9203 }, { "start": 1784.1, "end": 1784.92, "probability": 0.6637 }, { "start": 1785.1, "end": 1786.22, "probability": 0.9836 }, { "start": 1786.32, "end": 1789.42, "probability": 0.976 }, { "start": 1791.06, "end": 1791.64, "probability": 0.2143 }, { "start": 1792.5, "end": 1794.7, "probability": 0.7432 }, { "start": 1795.46, "end": 1795.76, "probability": 0.9582 }, { "start": 1797.64, "end": 1799.3, "probability": 0.9873 }, { "start": 1799.44, "end": 1800.28, "probability": 0.9723 }, { "start": 1800.44, "end": 1802.34, "probability": 0.8253 }, { "start": 1802.5, "end": 1803.58, "probability": 0.9154 }, { "start": 1803.64, "end": 1806.07, "probability": 0.9301 }, { "start": 1806.84, "end": 1807.0, "probability": 0.9618 }, { "start": 1807.12, "end": 1809.3, "probability": 0.9708 }, { "start": 1809.3, "end": 1811.68, "probability": 0.9951 }, { "start": 1811.9, "end": 1812.28, "probability": 0.7012 }, { "start": 1814.1, "end": 1816.82, "probability": 0.6971 }, { "start": 1817.04, "end": 1818.64, "probability": 0.8518 }, { "start": 1818.68, "end": 1820.52, "probability": 0.9928 }, { "start": 1821.56, "end": 1825.84, "probability": 0.9538 }, { "start": 1826.08, "end": 1827.86, "probability": 0.9943 }, { "start": 1828.86, "end": 1833.64, "probability": 0.9954 }, { "start": 1834.0, "end": 1835.52, "probability": 0.9272 }, { "start": 1835.58, "end": 1837.68, "probability": 0.9806 }, { "start": 1838.45, "end": 1842.74, "probability": 0.9836 }, { "start": 1842.98, "end": 1847.72, "probability": 0.6507 }, { "start": 1847.84, "end": 1849.42, "probability": 0.9946 }, { "start": 1849.98, "end": 1850.28, "probability": 0.6541 }, { "start": 1850.54, "end": 1851.16, "probability": 0.7578 }, { "start": 1851.36, "end": 1852.2, "probability": 0.5377 }, { "start": 1852.32, "end": 1853.29, "probability": 0.7915 }, { "start": 1854.02, "end": 1857.98, "probability": 0.9227 }, { "start": 1858.12, "end": 1859.39, "probability": 0.8577 }, { "start": 1859.94, "end": 1863.1, "probability": 0.9299 }, { "start": 1863.2, "end": 1868.4, "probability": 0.9615 }, { "start": 1868.4, "end": 1872.24, "probability": 0.9917 }, { "start": 1872.8, "end": 1875.16, "probability": 0.9943 }, { "start": 1875.26, "end": 1878.42, "probability": 0.9881 }, { "start": 1878.46, "end": 1882.84, "probability": 0.8626 }, { "start": 1882.84, "end": 1883.62, "probability": 0.8915 }, { "start": 1883.68, "end": 1885.74, "probability": 0.9497 }, { "start": 1885.82, "end": 1890.44, "probability": 0.9022 }, { "start": 1890.8, "end": 1892.26, "probability": 0.9946 }, { "start": 1892.74, "end": 1898.16, "probability": 0.9952 }, { "start": 1898.28, "end": 1899.82, "probability": 0.9814 }, { "start": 1900.48, "end": 1900.64, "probability": 0.6765 }, { "start": 1901.16, "end": 1902.02, "probability": 0.6216 }, { "start": 1902.26, "end": 1904.78, "probability": 0.9836 }, { "start": 1904.92, "end": 1907.88, "probability": 0.9829 }, { "start": 1908.64, "end": 1909.84, "probability": 0.4145 }, { "start": 1910.02, "end": 1910.32, "probability": 0.9742 }, { "start": 1910.52, "end": 1911.2, "probability": 0.7607 }, { "start": 1911.32, "end": 1913.43, "probability": 0.9942 }, { "start": 1913.72, "end": 1914.64, "probability": 0.8669 }, { "start": 1914.74, "end": 1915.54, "probability": 0.9795 }, { "start": 1915.76, "end": 1916.63, "probability": 0.9739 }, { "start": 1917.2, "end": 1919.44, "probability": 0.9554 }, { "start": 1919.5, "end": 1920.26, "probability": 0.6476 }, { "start": 1920.32, "end": 1923.56, "probability": 0.9895 }, { "start": 1924.06, "end": 1925.84, "probability": 0.9165 }, { "start": 1926.06, "end": 1926.92, "probability": 0.6641 }, { "start": 1927.46, "end": 1931.92, "probability": 0.9314 }, { "start": 1932.02, "end": 1932.86, "probability": 0.9155 }, { "start": 1933.46, "end": 1936.2, "probability": 0.9631 }, { "start": 1936.82, "end": 1940.14, "probability": 0.9945 }, { "start": 1940.2, "end": 1940.8, "probability": 0.7299 }, { "start": 1940.86, "end": 1941.34, "probability": 0.6589 }, { "start": 1941.46, "end": 1941.94, "probability": 0.9273 }, { "start": 1942.06, "end": 1942.98, "probability": 0.9756 }, { "start": 1943.78, "end": 1946.92, "probability": 0.9845 }, { "start": 1947.52, "end": 1948.37, "probability": 0.9976 }, { "start": 1948.82, "end": 1950.44, "probability": 0.9829 }, { "start": 1950.72, "end": 1951.26, "probability": 0.9341 }, { "start": 1951.56, "end": 1953.44, "probability": 0.9814 }, { "start": 1954.12, "end": 1955.02, "probability": 0.6842 }, { "start": 1955.36, "end": 1958.54, "probability": 0.9974 }, { "start": 1958.68, "end": 1961.58, "probability": 0.9913 }, { "start": 1961.58, "end": 1965.26, "probability": 0.9921 }, { "start": 1965.26, "end": 1966.1, "probability": 0.9779 }, { "start": 1966.14, "end": 1966.52, "probability": 0.7614 }, { "start": 1968.95, "end": 1971.08, "probability": 0.7558 }, { "start": 1971.42, "end": 1972.76, "probability": 0.9722 }, { "start": 1973.22, "end": 1976.84, "probability": 0.9897 }, { "start": 1977.28, "end": 1978.56, "probability": 0.9987 }, { "start": 1979.26, "end": 1984.0, "probability": 0.9743 }, { "start": 1984.78, "end": 1986.44, "probability": 0.9976 }, { "start": 1986.58, "end": 1990.04, "probability": 0.8532 }, { "start": 1990.2, "end": 1991.42, "probability": 0.7313 }, { "start": 1991.7, "end": 1992.64, "probability": 0.921 }, { "start": 1992.98, "end": 1996.34, "probability": 0.9864 }, { "start": 1996.84, "end": 1998.78, "probability": 0.9427 }, { "start": 1998.98, "end": 2000.1, "probability": 0.931 }, { "start": 2000.24, "end": 2001.36, "probability": 0.9673 }, { "start": 2001.92, "end": 2004.28, "probability": 0.9985 }, { "start": 2004.48, "end": 2008.12, "probability": 0.8827 }, { "start": 2008.76, "end": 2015.92, "probability": 0.8584 }, { "start": 2016.66, "end": 2017.0, "probability": 0.9633 }, { "start": 2017.16, "end": 2021.84, "probability": 0.9943 }, { "start": 2022.18, "end": 2027.94, "probability": 0.953 }, { "start": 2028.14, "end": 2031.1, "probability": 0.9781 }, { "start": 2031.24, "end": 2034.94, "probability": 0.9458 }, { "start": 2035.02, "end": 2036.2, "probability": 0.9443 }, { "start": 2036.28, "end": 2036.56, "probability": 0.5086 }, { "start": 2036.58, "end": 2038.58, "probability": 0.6104 }, { "start": 2040.59, "end": 2044.28, "probability": 0.5083 }, { "start": 2044.36, "end": 2046.32, "probability": 0.8757 }, { "start": 2046.38, "end": 2051.5, "probability": 0.9058 }, { "start": 2051.72, "end": 2053.04, "probability": 0.1458 }, { "start": 2054.62, "end": 2055.88, "probability": 0.0334 }, { "start": 2056.16, "end": 2057.36, "probability": 0.879 }, { "start": 2057.42, "end": 2058.94, "probability": 0.9407 }, { "start": 2059.04, "end": 2059.16, "probability": 0.1131 }, { "start": 2059.38, "end": 2059.54, "probability": 0.2677 }, { "start": 2060.2, "end": 2064.88, "probability": 0.8992 }, { "start": 2065.1, "end": 2068.48, "probability": 0.907 }, { "start": 2069.1, "end": 2069.72, "probability": 0.5992 }, { "start": 2070.1, "end": 2071.86, "probability": 0.123 }, { "start": 2071.86, "end": 2072.18, "probability": 0.0719 }, { "start": 2072.22, "end": 2072.9, "probability": 0.272 }, { "start": 2072.9, "end": 2074.36, "probability": 0.9044 }, { "start": 2074.44, "end": 2075.0, "probability": 0.9917 }, { "start": 2075.66, "end": 2076.84, "probability": 0.9716 }, { "start": 2077.18, "end": 2077.62, "probability": 0.5737 }, { "start": 2077.68, "end": 2078.4, "probability": 0.8809 }, { "start": 2078.6, "end": 2080.86, "probability": 0.9904 }, { "start": 2081.72, "end": 2083.96, "probability": 0.818 }, { "start": 2084.14, "end": 2089.42, "probability": 0.9919 }, { "start": 2090.99, "end": 2092.74, "probability": 0.971 }, { "start": 2092.9, "end": 2094.65, "probability": 0.9902 }, { "start": 2094.78, "end": 2096.96, "probability": 0.9934 }, { "start": 2097.42, "end": 2098.8, "probability": 0.9347 }, { "start": 2099.18, "end": 2102.12, "probability": 0.8498 }, { "start": 2102.12, "end": 2104.62, "probability": 0.8275 }, { "start": 2105.24, "end": 2106.7, "probability": 0.966 }, { "start": 2108.24, "end": 2108.66, "probability": 0.2144 }, { "start": 2108.76, "end": 2109.0, "probability": 0.6254 }, { "start": 2109.0, "end": 2110.58, "probability": 0.6889 }, { "start": 2110.8, "end": 2113.2, "probability": 0.9766 }, { "start": 2113.42, "end": 2117.82, "probability": 0.9968 }, { "start": 2124.52, "end": 2124.64, "probability": 0.0107 }, { "start": 2124.64, "end": 2124.64, "probability": 0.3286 }, { "start": 2124.64, "end": 2125.46, "probability": 0.6301 }, { "start": 2125.52, "end": 2129.1, "probability": 0.9374 }, { "start": 2129.22, "end": 2129.58, "probability": 0.7183 }, { "start": 2130.3, "end": 2131.5, "probability": 0.9724 }, { "start": 2132.46, "end": 2136.02, "probability": 0.7628 }, { "start": 2136.12, "end": 2136.32, "probability": 0.2116 }, { "start": 2136.32, "end": 2136.32, "probability": 0.3232 }, { "start": 2136.32, "end": 2136.34, "probability": 0.3732 }, { "start": 2136.48, "end": 2136.6, "probability": 0.222 }, { "start": 2137.72, "end": 2139.36, "probability": 0.9438 }, { "start": 2139.6, "end": 2141.54, "probability": 0.9966 }, { "start": 2141.58, "end": 2142.84, "probability": 0.871 }, { "start": 2143.7, "end": 2145.88, "probability": 0.9934 }, { "start": 2146.1, "end": 2150.68, "probability": 0.9878 }, { "start": 2151.06, "end": 2151.44, "probability": 0.2858 }, { "start": 2151.6, "end": 2152.62, "probability": 0.7346 }, { "start": 2153.28, "end": 2155.18, "probability": 0.7857 }, { "start": 2155.34, "end": 2156.2, "probability": 0.9133 }, { "start": 2156.48, "end": 2157.96, "probability": 0.9694 }, { "start": 2158.84, "end": 2160.02, "probability": 0.7316 }, { "start": 2160.14, "end": 2162.3, "probability": 0.8109 }, { "start": 2162.48, "end": 2165.28, "probability": 0.6707 }, { "start": 2165.38, "end": 2166.96, "probability": 0.8093 }, { "start": 2167.1, "end": 2167.94, "probability": 0.8206 }, { "start": 2168.51, "end": 2168.58, "probability": 0.387 }, { "start": 2168.58, "end": 2170.68, "probability": 0.9222 }, { "start": 2171.34, "end": 2173.7, "probability": 0.9065 }, { "start": 2173.82, "end": 2175.02, "probability": 0.834 }, { "start": 2175.08, "end": 2175.6, "probability": 0.5806 }, { "start": 2175.92, "end": 2179.86, "probability": 0.8732 }, { "start": 2180.48, "end": 2181.44, "probability": 0.9376 }, { "start": 2181.54, "end": 2181.82, "probability": 0.8958 }, { "start": 2181.9, "end": 2183.62, "probability": 0.9971 }, { "start": 2183.76, "end": 2186.58, "probability": 0.9902 }, { "start": 2187.1, "end": 2189.75, "probability": 0.9546 }, { "start": 2192.58, "end": 2197.1, "probability": 0.9312 }, { "start": 2197.16, "end": 2197.92, "probability": 0.8646 }, { "start": 2198.0, "end": 2202.78, "probability": 0.621 }, { "start": 2203.36, "end": 2205.02, "probability": 0.9883 }, { "start": 2206.18, "end": 2208.24, "probability": 0.9808 }, { "start": 2208.32, "end": 2210.76, "probability": 0.9834 }, { "start": 2210.82, "end": 2215.79, "probability": 0.9093 }, { "start": 2216.34, "end": 2219.24, "probability": 0.6612 }, { "start": 2219.36, "end": 2220.94, "probability": 0.6022 }, { "start": 2221.48, "end": 2226.24, "probability": 0.9458 }, { "start": 2226.36, "end": 2227.67, "probability": 0.8984 }, { "start": 2228.52, "end": 2231.86, "probability": 0.9213 }, { "start": 2232.38, "end": 2234.26, "probability": 0.9804 }, { "start": 2234.32, "end": 2236.09, "probability": 0.9694 }, { "start": 2236.24, "end": 2237.6, "probability": 0.958 }, { "start": 2237.6, "end": 2240.06, "probability": 0.6902 }, { "start": 2240.44, "end": 2243.66, "probability": 0.9026 }, { "start": 2243.74, "end": 2244.64, "probability": 0.8465 }, { "start": 2244.72, "end": 2246.85, "probability": 0.9521 }, { "start": 2247.38, "end": 2248.4, "probability": 0.9253 }, { "start": 2248.54, "end": 2250.92, "probability": 0.9959 }, { "start": 2251.96, "end": 2254.06, "probability": 0.9182 }, { "start": 2254.14, "end": 2255.52, "probability": 0.9942 }, { "start": 2255.6, "end": 2257.68, "probability": 0.9644 }, { "start": 2258.38, "end": 2259.64, "probability": 0.7415 }, { "start": 2262.99, "end": 2264.62, "probability": 0.8802 }, { "start": 2264.68, "end": 2266.4, "probability": 0.9976 }, { "start": 2267.32, "end": 2271.06, "probability": 0.9738 }, { "start": 2271.14, "end": 2271.62, "probability": 0.9484 }, { "start": 2271.76, "end": 2273.32, "probability": 0.8511 }, { "start": 2273.38, "end": 2276.36, "probability": 0.8792 }, { "start": 2276.58, "end": 2278.14, "probability": 0.9665 }, { "start": 2278.68, "end": 2280.18, "probability": 0.904 }, { "start": 2280.64, "end": 2283.04, "probability": 0.9902 }, { "start": 2283.32, "end": 2285.08, "probability": 0.9946 }, { "start": 2285.1, "end": 2286.82, "probability": 0.967 }, { "start": 2286.84, "end": 2287.78, "probability": 0.9563 }, { "start": 2288.06, "end": 2288.63, "probability": 0.9912 }, { "start": 2289.4, "end": 2292.78, "probability": 0.9929 }, { "start": 2293.36, "end": 2295.28, "probability": 0.8325 }, { "start": 2295.42, "end": 2298.12, "probability": 0.9951 }, { "start": 2298.44, "end": 2300.72, "probability": 0.9702 }, { "start": 2300.74, "end": 2300.8, "probability": 0.4627 }, { "start": 2300.88, "end": 2301.5, "probability": 0.8331 }, { "start": 2301.62, "end": 2302.28, "probability": 0.7591 }, { "start": 2302.66, "end": 2305.04, "probability": 0.9784 }, { "start": 2305.38, "end": 2307.78, "probability": 0.9771 }, { "start": 2308.28, "end": 2309.94, "probability": 0.9465 }, { "start": 2310.34, "end": 2314.7, "probability": 0.9474 }, { "start": 2314.86, "end": 2318.58, "probability": 0.979 }, { "start": 2318.58, "end": 2321.2, "probability": 0.98 }, { "start": 2321.32, "end": 2324.74, "probability": 0.9919 }, { "start": 2325.18, "end": 2326.14, "probability": 0.9838 }, { "start": 2326.22, "end": 2329.4, "probability": 0.9778 }, { "start": 2329.76, "end": 2333.02, "probability": 0.9972 }, { "start": 2333.34, "end": 2335.7, "probability": 0.678 }, { "start": 2336.42, "end": 2337.4, "probability": 0.7922 }, { "start": 2337.48, "end": 2340.8, "probability": 0.9885 }, { "start": 2341.62, "end": 2343.2, "probability": 0.7209 }, { "start": 2343.56, "end": 2345.01, "probability": 0.9557 }, { "start": 2346.9, "end": 2347.0, "probability": 0.1014 }, { "start": 2347.26, "end": 2348.22, "probability": 0.8555 }, { "start": 2348.54, "end": 2350.04, "probability": 0.5485 }, { "start": 2350.86, "end": 2351.3, "probability": 0.6383 }, { "start": 2351.38, "end": 2351.82, "probability": 0.8195 }, { "start": 2354.12, "end": 2355.66, "probability": 0.304 }, { "start": 2357.7, "end": 2358.22, "probability": 0.0351 }, { "start": 2358.28, "end": 2358.28, "probability": 0.1191 }, { "start": 2358.28, "end": 2359.26, "probability": 0.6706 }, { "start": 2359.38, "end": 2359.97, "probability": 0.7334 }, { "start": 2360.32, "end": 2364.58, "probability": 0.8645 }, { "start": 2364.64, "end": 2366.9, "probability": 0.9211 }, { "start": 2367.52, "end": 2371.54, "probability": 0.9939 }, { "start": 2371.54, "end": 2376.96, "probability": 0.9937 }, { "start": 2377.3, "end": 2379.64, "probability": 0.982 }, { "start": 2380.24, "end": 2380.82, "probability": 0.8882 }, { "start": 2381.98, "end": 2384.2, "probability": 0.669 }, { "start": 2384.42, "end": 2387.84, "probability": 0.8011 }, { "start": 2388.0, "end": 2391.32, "probability": 0.9088 }, { "start": 2392.82, "end": 2392.86, "probability": 0.1456 }, { "start": 2392.92, "end": 2395.8, "probability": 0.943 }, { "start": 2395.94, "end": 2398.2, "probability": 0.7485 }, { "start": 2398.34, "end": 2399.22, "probability": 0.8981 }, { "start": 2399.41, "end": 2405.28, "probability": 0.7168 }, { "start": 2405.5, "end": 2406.24, "probability": 0.6733 }, { "start": 2406.9, "end": 2408.86, "probability": 0.8894 }, { "start": 2409.46, "end": 2413.76, "probability": 0.8665 }, { "start": 2413.8, "end": 2414.74, "probability": 0.6301 }, { "start": 2415.14, "end": 2415.86, "probability": 0.7748 }, { "start": 2416.34, "end": 2419.92, "probability": 0.9693 }, { "start": 2419.92, "end": 2422.92, "probability": 0.9964 }, { "start": 2423.52, "end": 2423.7, "probability": 0.8085 }, { "start": 2424.36, "end": 2427.3, "probability": 0.7039 }, { "start": 2427.4, "end": 2430.26, "probability": 0.9825 }, { "start": 2430.46, "end": 2434.28, "probability": 0.966 }, { "start": 2434.5, "end": 2434.92, "probability": 0.0459 }, { "start": 2434.94, "end": 2435.6, "probability": 0.5285 }, { "start": 2436.36, "end": 2439.1, "probability": 0.9783 }, { "start": 2439.22, "end": 2440.96, "probability": 0.9101 }, { "start": 2441.2, "end": 2442.34, "probability": 0.9968 }, { "start": 2442.46, "end": 2445.56, "probability": 0.6886 }, { "start": 2446.42, "end": 2448.98, "probability": 0.8305 }, { "start": 2450.52, "end": 2453.32, "probability": 0.6847 }, { "start": 2453.6, "end": 2454.52, "probability": 0.654 }, { "start": 2454.78, "end": 2457.56, "probability": 0.7519 }, { "start": 2457.56, "end": 2461.6, "probability": 0.9504 }, { "start": 2462.0, "end": 2464.38, "probability": 0.9809 }, { "start": 2464.98, "end": 2467.82, "probability": 0.6801 }, { "start": 2467.82, "end": 2471.4, "probability": 0.9813 }, { "start": 2472.0, "end": 2473.48, "probability": 0.9727 }, { "start": 2473.66, "end": 2475.62, "probability": 0.8506 }, { "start": 2476.29, "end": 2478.02, "probability": 0.9485 }, { "start": 2478.36, "end": 2479.96, "probability": 0.9709 }, { "start": 2480.24, "end": 2482.5, "probability": 0.9746 }, { "start": 2484.82, "end": 2489.32, "probability": 0.9937 }, { "start": 2489.8, "end": 2491.06, "probability": 0.9312 }, { "start": 2491.36, "end": 2494.34, "probability": 0.9387 }, { "start": 2494.58, "end": 2495.62, "probability": 0.958 }, { "start": 2495.94, "end": 2497.42, "probability": 0.9927 }, { "start": 2497.6, "end": 2499.8, "probability": 0.9902 }, { "start": 2500.08, "end": 2506.1, "probability": 0.9759 }, { "start": 2506.86, "end": 2510.05, "probability": 0.8691 }, { "start": 2510.08, "end": 2512.22, "probability": 0.9963 }, { "start": 2513.11, "end": 2514.13, "probability": 0.9634 }, { "start": 2514.54, "end": 2517.94, "probability": 0.9902 }, { "start": 2518.28, "end": 2523.34, "probability": 0.987 }, { "start": 2523.44, "end": 2526.68, "probability": 0.6268 }, { "start": 2529.24, "end": 2530.52, "probability": 0.9795 }, { "start": 2530.84, "end": 2533.3, "probability": 0.9222 }, { "start": 2533.44, "end": 2534.1, "probability": 0.4948 }, { "start": 2534.2, "end": 2536.36, "probability": 0.9193 }, { "start": 2536.54, "end": 2541.98, "probability": 0.6582 }, { "start": 2542.28, "end": 2546.62, "probability": 0.9768 }, { "start": 2546.94, "end": 2548.48, "probability": 0.8879 }, { "start": 2548.64, "end": 2550.4, "probability": 0.9712 }, { "start": 2550.68, "end": 2550.92, "probability": 0.6709 }, { "start": 2551.44, "end": 2553.84, "probability": 0.8621 }, { "start": 2553.94, "end": 2555.92, "probability": 0.9968 }, { "start": 2556.6, "end": 2558.24, "probability": 0.9709 }, { "start": 2558.4, "end": 2559.46, "probability": 0.9209 }, { "start": 2559.94, "end": 2564.9, "probability": 0.9805 }, { "start": 2565.64, "end": 2570.53, "probability": 0.6657 }, { "start": 2571.54, "end": 2572.58, "probability": 0.8697 }, { "start": 2573.8, "end": 2577.56, "probability": 0.8385 }, { "start": 2577.72, "end": 2579.74, "probability": 0.9058 }, { "start": 2579.92, "end": 2580.85, "probability": 0.9121 }, { "start": 2581.8, "end": 2582.62, "probability": 0.9824 }, { "start": 2582.94, "end": 2585.92, "probability": 0.9962 }, { "start": 2587.04, "end": 2587.54, "probability": 0.4991 }, { "start": 2588.08, "end": 2589.5, "probability": 0.9637 }, { "start": 2589.64, "end": 2591.32, "probability": 0.9556 }, { "start": 2591.94, "end": 2592.48, "probability": 0.338 }, { "start": 2593.52, "end": 2595.22, "probability": 0.8765 }, { "start": 2596.3, "end": 2599.32, "probability": 0.8543 }, { "start": 2601.56, "end": 2603.24, "probability": 0.6558 }, { "start": 2603.3, "end": 2606.48, "probability": 0.9941 }, { "start": 2606.92, "end": 2609.6, "probability": 0.8696 }, { "start": 2609.74, "end": 2611.4, "probability": 0.9928 }, { "start": 2612.34, "end": 2616.04, "probability": 0.9919 }, { "start": 2616.16, "end": 2617.06, "probability": 0.9817 }, { "start": 2617.82, "end": 2619.26, "probability": 0.9922 }, { "start": 2619.74, "end": 2623.14, "probability": 0.7039 }, { "start": 2623.66, "end": 2628.86, "probability": 0.7711 }, { "start": 2629.06, "end": 2632.58, "probability": 0.9854 }, { "start": 2632.64, "end": 2635.18, "probability": 0.9624 }, { "start": 2635.62, "end": 2637.62, "probability": 0.9983 }, { "start": 2639.0, "end": 2642.88, "probability": 0.9604 }, { "start": 2643.52, "end": 2643.96, "probability": 0.9083 }, { "start": 2644.44, "end": 2647.68, "probability": 0.9679 }, { "start": 2648.8, "end": 2652.34, "probability": 0.9921 }, { "start": 2652.88, "end": 2655.6, "probability": 0.8739 }, { "start": 2655.66, "end": 2658.46, "probability": 0.8745 }, { "start": 2658.66, "end": 2664.9, "probability": 0.9681 }, { "start": 2665.44, "end": 2668.32, "probability": 0.9515 }, { "start": 2669.0, "end": 2672.28, "probability": 0.9766 }, { "start": 2672.28, "end": 2675.04, "probability": 0.9966 }, { "start": 2675.14, "end": 2676.66, "probability": 0.5395 }, { "start": 2676.74, "end": 2677.52, "probability": 0.8718 }, { "start": 2678.1, "end": 2681.44, "probability": 0.7993 }, { "start": 2681.52, "end": 2683.72, "probability": 0.9449 }, { "start": 2684.6, "end": 2688.22, "probability": 0.9783 }, { "start": 2688.42, "end": 2689.54, "probability": 0.9637 }, { "start": 2689.54, "end": 2692.42, "probability": 0.7097 }, { "start": 2693.14, "end": 2694.1, "probability": 0.9669 }, { "start": 2695.01, "end": 2697.22, "probability": 0.941 }, { "start": 2698.43, "end": 2701.02, "probability": 0.8438 }, { "start": 2701.12, "end": 2702.16, "probability": 0.9101 }, { "start": 2702.8, "end": 2709.62, "probability": 0.0447 }, { "start": 2711.12, "end": 2715.38, "probability": 0.8359 }, { "start": 2715.94, "end": 2717.36, "probability": 0.9067 }, { "start": 2717.58, "end": 2719.8, "probability": 0.9906 }, { "start": 2721.08, "end": 2722.92, "probability": 0.8336 }, { "start": 2723.1, "end": 2727.24, "probability": 0.9977 }, { "start": 2727.28, "end": 2730.56, "probability": 0.996 }, { "start": 2731.05, "end": 2736.13, "probability": 0.936 }, { "start": 2737.33, "end": 2739.84, "probability": 0.8657 }, { "start": 2739.96, "end": 2739.96, "probability": 0.3073 }, { "start": 2739.96, "end": 2740.58, "probability": 0.5338 }, { "start": 2741.1, "end": 2742.16, "probability": 0.9666 }, { "start": 2742.32, "end": 2742.96, "probability": 0.7791 }, { "start": 2743.06, "end": 2747.84, "probability": 0.991 }, { "start": 2747.98, "end": 2749.86, "probability": 0.8439 }, { "start": 2751.16, "end": 2753.78, "probability": 0.9365 }, { "start": 2754.36, "end": 2755.48, "probability": 0.6619 }, { "start": 2755.6, "end": 2757.96, "probability": 0.8361 }, { "start": 2758.48, "end": 2758.94, "probability": 0.6102 }, { "start": 2758.98, "end": 2759.68, "probability": 0.6555 }, { "start": 2760.16, "end": 2765.38, "probability": 0.9667 }, { "start": 2765.98, "end": 2767.16, "probability": 0.8923 }, { "start": 2768.2, "end": 2769.08, "probability": 0.6426 }, { "start": 2769.24, "end": 2770.18, "probability": 0.9971 }, { "start": 2771.76, "end": 2772.86, "probability": 0.0496 }, { "start": 2772.86, "end": 2774.84, "probability": 0.4578 }, { "start": 2775.18, "end": 2778.96, "probability": 0.7641 }, { "start": 2779.32, "end": 2781.78, "probability": 0.7755 }, { "start": 2782.82, "end": 2784.28, "probability": 0.9415 }, { "start": 2785.22, "end": 2788.06, "probability": 0.9304 }, { "start": 2790.86, "end": 2792.3, "probability": 0.6093 }, { "start": 2793.34, "end": 2795.98, "probability": 0.9221 }, { "start": 2796.24, "end": 2797.26, "probability": 0.8578 }, { "start": 2808.75, "end": 2811.72, "probability": 0.5652 }, { "start": 2811.72, "end": 2812.36, "probability": 0.7205 }, { "start": 2812.52, "end": 2813.34, "probability": 0.4895 }, { "start": 2813.44, "end": 2815.12, "probability": 0.9535 }, { "start": 2815.28, "end": 2817.44, "probability": 0.8611 }, { "start": 2817.56, "end": 2822.6, "probability": 0.9238 }, { "start": 2823.18, "end": 2824.42, "probability": 0.9143 }, { "start": 2824.68, "end": 2826.34, "probability": 0.9453 }, { "start": 2826.82, "end": 2829.86, "probability": 0.8926 }, { "start": 2830.14, "end": 2831.06, "probability": 0.9679 }, { "start": 2831.42, "end": 2832.14, "probability": 0.3823 }, { "start": 2832.7, "end": 2834.28, "probability": 0.7997 }, { "start": 2834.5, "end": 2835.74, "probability": 0.6991 }, { "start": 2835.76, "end": 2836.84, "probability": 0.3662 }, { "start": 2836.94, "end": 2838.68, "probability": 0.9937 }, { "start": 2838.76, "end": 2839.88, "probability": 0.9941 }, { "start": 2840.54, "end": 2844.16, "probability": 0.9514 }, { "start": 2844.16, "end": 2846.62, "probability": 0.9956 }, { "start": 2847.56, "end": 2848.32, "probability": 0.823 }, { "start": 2848.84, "end": 2850.6, "probability": 0.9442 }, { "start": 2851.18, "end": 2852.18, "probability": 0.9536 }, { "start": 2852.24, "end": 2853.18, "probability": 0.5746 }, { "start": 2853.72, "end": 2855.84, "probability": 0.9858 }, { "start": 2855.96, "end": 2857.76, "probability": 0.9154 }, { "start": 2858.16, "end": 2858.7, "probability": 0.9241 }, { "start": 2859.64, "end": 2865.68, "probability": 0.9427 }, { "start": 2865.8, "end": 2866.8, "probability": 0.6656 }, { "start": 2866.9, "end": 2867.68, "probability": 0.8162 }, { "start": 2867.82, "end": 2868.42, "probability": 0.426 }, { "start": 2869.38, "end": 2871.26, "probability": 0.9208 }, { "start": 2871.34, "end": 2874.66, "probability": 0.8484 }, { "start": 2875.04, "end": 2876.22, "probability": 0.7444 }, { "start": 2876.68, "end": 2878.18, "probability": 0.7509 }, { "start": 2878.66, "end": 2880.46, "probability": 0.9067 }, { "start": 2880.76, "end": 2882.12, "probability": 0.7842 }, { "start": 2882.36, "end": 2883.12, "probability": 0.683 }, { "start": 2883.82, "end": 2887.68, "probability": 0.9745 }, { "start": 2888.3, "end": 2890.94, "probability": 0.745 }, { "start": 2891.44, "end": 2893.38, "probability": 0.3334 }, { "start": 2893.7, "end": 2895.64, "probability": 0.7118 }, { "start": 2896.54, "end": 2897.7, "probability": 0.6944 }, { "start": 2897.8, "end": 2900.69, "probability": 0.7451 }, { "start": 2901.62, "end": 2903.02, "probability": 0.9937 }, { "start": 2903.12, "end": 2904.48, "probability": 0.7768 }, { "start": 2904.96, "end": 2905.6, "probability": 0.8018 }, { "start": 2905.64, "end": 2906.24, "probability": 0.8823 }, { "start": 2906.3, "end": 2907.32, "probability": 0.8 }, { "start": 2907.62, "end": 2908.9, "probability": 0.8424 }, { "start": 2908.94, "end": 2913.06, "probability": 0.9876 }, { "start": 2913.66, "end": 2914.48, "probability": 0.7884 }, { "start": 2915.02, "end": 2915.45, "probability": 0.9824 }, { "start": 2915.58, "end": 2917.78, "probability": 0.8027 }, { "start": 2918.18, "end": 2919.82, "probability": 0.9818 }, { "start": 2920.18, "end": 2921.06, "probability": 0.8862 }, { "start": 2921.64, "end": 2922.2, "probability": 0.5685 }, { "start": 2922.5, "end": 2925.76, "probability": 0.9592 }, { "start": 2925.94, "end": 2929.76, "probability": 0.9963 }, { "start": 2930.06, "end": 2930.36, "probability": 0.725 }, { "start": 2930.74, "end": 2932.96, "probability": 0.8967 }, { "start": 2933.5, "end": 2935.76, "probability": 0.877 }, { "start": 2935.9, "end": 2937.22, "probability": 0.5161 }, { "start": 2937.48, "end": 2937.72, "probability": 0.7639 }, { "start": 2938.06, "end": 2939.7, "probability": 0.9616 }, { "start": 2940.38, "end": 2940.76, "probability": 0.7481 }, { "start": 2940.92, "end": 2943.3, "probability": 0.9165 }, { "start": 2943.34, "end": 2949.26, "probability": 0.9177 }, { "start": 2950.64, "end": 2954.84, "probability": 0.6732 }, { "start": 2955.14, "end": 2956.74, "probability": 0.9741 }, { "start": 2956.8, "end": 2957.6, "probability": 0.8816 }, { "start": 2957.8, "end": 2959.32, "probability": 0.7244 }, { "start": 2959.76, "end": 2961.16, "probability": 0.9621 }, { "start": 2962.16, "end": 2965.76, "probability": 0.9762 }, { "start": 2966.02, "end": 2966.6, "probability": 0.8397 }, { "start": 2966.6, "end": 2967.88, "probability": 0.9279 }, { "start": 2968.08, "end": 2968.9, "probability": 0.8821 }, { "start": 2969.16, "end": 2970.3, "probability": 0.9925 }, { "start": 2970.44, "end": 2970.6, "probability": 0.8705 }, { "start": 2971.18, "end": 2973.22, "probability": 0.9907 }, { "start": 2973.68, "end": 2977.04, "probability": 0.9951 }, { "start": 2977.64, "end": 2977.64, "probability": 0.0205 }, { "start": 2977.64, "end": 2978.56, "probability": 0.738 }, { "start": 2979.14, "end": 2983.2, "probability": 0.9446 }, { "start": 2983.82, "end": 2985.6, "probability": 0.9062 }, { "start": 2985.96, "end": 2987.44, "probability": 0.9966 }, { "start": 2987.9, "end": 2989.59, "probability": 0.8405 }, { "start": 2989.74, "end": 2990.74, "probability": 0.9919 }, { "start": 2991.74, "end": 2994.54, "probability": 0.9894 }, { "start": 2995.1, "end": 2996.92, "probability": 0.9729 }, { "start": 2997.06, "end": 3000.56, "probability": 0.9937 }, { "start": 3000.94, "end": 3003.3, "probability": 0.7577 }, { "start": 3004.62, "end": 3006.88, "probability": 0.7944 }, { "start": 3007.04, "end": 3007.42, "probability": 0.0731 }, { "start": 3007.64, "end": 3007.64, "probability": 0.0907 }, { "start": 3007.64, "end": 3010.82, "probability": 0.805 }, { "start": 3011.04, "end": 3011.14, "probability": 0.9566 }, { "start": 3011.84, "end": 3014.2, "probability": 0.9748 }, { "start": 3014.76, "end": 3015.6, "probability": 0.8815 }, { "start": 3016.16, "end": 3020.76, "probability": 0.9984 }, { "start": 3021.18, "end": 3022.34, "probability": 0.888 }, { "start": 3023.1, "end": 3024.45, "probability": 0.8554 }, { "start": 3025.06, "end": 3027.52, "probability": 0.864 }, { "start": 3027.72, "end": 3029.54, "probability": 0.9932 }, { "start": 3030.48, "end": 3033.14, "probability": 0.9038 }, { "start": 3033.26, "end": 3035.5, "probability": 0.9587 }, { "start": 3035.6, "end": 3037.58, "probability": 0.969 }, { "start": 3037.64, "end": 3037.92, "probability": 0.592 }, { "start": 3038.2, "end": 3039.22, "probability": 0.1799 }, { "start": 3039.4, "end": 3040.4, "probability": 0.7241 }, { "start": 3040.44, "end": 3040.82, "probability": 0.7059 }, { "start": 3041.74, "end": 3044.76, "probability": 0.0827 }, { "start": 3047.02, "end": 3047.24, "probability": 0.0107 }, { "start": 3047.24, "end": 3048.02, "probability": 0.3164 }, { "start": 3048.12, "end": 3048.12, "probability": 0.2654 }, { "start": 3048.12, "end": 3048.94, "probability": 0.7155 }, { "start": 3048.94, "end": 3049.1, "probability": 0.1223 }, { "start": 3049.58, "end": 3050.17, "probability": 0.6586 }, { "start": 3050.74, "end": 3051.1, "probability": 0.6402 }, { "start": 3051.46, "end": 3054.2, "probability": 0.8234 }, { "start": 3055.52, "end": 3057.9, "probability": 0.9485 }, { "start": 3057.96, "end": 3059.91, "probability": 0.9797 }, { "start": 3060.62, "end": 3060.8, "probability": 0.2882 }, { "start": 3061.46, "end": 3065.38, "probability": 0.6045 }, { "start": 3066.58, "end": 3069.32, "probability": 0.6332 }, { "start": 3069.52, "end": 3070.18, "probability": 0.269 }, { "start": 3070.18, "end": 3070.46, "probability": 0.9503 }, { "start": 3071.58, "end": 3075.48, "probability": 0.9941 }, { "start": 3076.36, "end": 3078.64, "probability": 0.9948 }, { "start": 3078.86, "end": 3080.94, "probability": 0.7631 }, { "start": 3081.64, "end": 3083.92, "probability": 0.9447 }, { "start": 3084.1, "end": 3088.51, "probability": 0.9878 }, { "start": 3088.9, "end": 3091.84, "probability": 0.9688 }, { "start": 3092.04, "end": 3093.62, "probability": 0.8957 }, { "start": 3094.02, "end": 3095.0, "probability": 0.8972 }, { "start": 3095.58, "end": 3099.22, "probability": 0.9976 }, { "start": 3099.76, "end": 3100.64, "probability": 0.8036 }, { "start": 3101.26, "end": 3102.12, "probability": 0.807 }, { "start": 3102.68, "end": 3104.12, "probability": 0.8184 }, { "start": 3104.16, "end": 3106.28, "probability": 0.9842 }, { "start": 3106.8, "end": 3110.82, "probability": 0.8257 }, { "start": 3111.8, "end": 3113.36, "probability": 0.8194 }, { "start": 3113.96, "end": 3118.86, "probability": 0.9963 }, { "start": 3119.3, "end": 3120.48, "probability": 0.9407 }, { "start": 3120.9, "end": 3123.02, "probability": 0.9316 }, { "start": 3123.22, "end": 3124.2, "probability": 0.8174 }, { "start": 3124.28, "end": 3124.82, "probability": 0.9668 }, { "start": 3125.48, "end": 3127.84, "probability": 0.9917 }, { "start": 3128.56, "end": 3130.48, "probability": 0.9421 }, { "start": 3130.86, "end": 3133.94, "probability": 0.9599 }, { "start": 3133.94, "end": 3137.12, "probability": 0.981 }, { "start": 3137.62, "end": 3141.04, "probability": 0.9966 }, { "start": 3141.5, "end": 3145.88, "probability": 0.9961 }, { "start": 3146.42, "end": 3148.82, "probability": 0.8073 }, { "start": 3149.02, "end": 3150.06, "probability": 0.9061 }, { "start": 3150.24, "end": 3150.34, "probability": 0.2399 }, { "start": 3150.4, "end": 3151.14, "probability": 0.8989 }, { "start": 3151.48, "end": 3154.34, "probability": 0.9828 }, { "start": 3154.82, "end": 3156.8, "probability": 0.7725 }, { "start": 3157.1, "end": 3158.8, "probability": 0.9933 }, { "start": 3159.52, "end": 3162.12, "probability": 0.9632 }, { "start": 3162.8, "end": 3164.1, "probability": 0.9239 }, { "start": 3164.54, "end": 3168.64, "probability": 0.9943 }, { "start": 3169.18, "end": 3171.54, "probability": 0.9976 }, { "start": 3171.62, "end": 3173.62, "probability": 0.9985 }, { "start": 3174.1, "end": 3176.92, "probability": 0.827 }, { "start": 3177.16, "end": 3178.46, "probability": 0.6864 }, { "start": 3178.6, "end": 3183.32, "probability": 0.9993 }, { "start": 3183.48, "end": 3186.8, "probability": 0.9976 }, { "start": 3186.86, "end": 3191.51, "probability": 0.9972 }, { "start": 3192.88, "end": 3193.36, "probability": 0.4269 }, { "start": 3194.31, "end": 3198.2, "probability": 0.9775 }, { "start": 3198.2, "end": 3201.7, "probability": 0.9629 }, { "start": 3201.78, "end": 3203.28, "probability": 0.8771 }, { "start": 3203.28, "end": 3204.78, "probability": 0.7125 }, { "start": 3205.1, "end": 3207.4, "probability": 0.8296 }, { "start": 3211.12, "end": 3212.73, "probability": 0.7384 }, { "start": 3213.8, "end": 3217.32, "probability": 0.9923 }, { "start": 3218.16, "end": 3218.82, "probability": 0.6182 }, { "start": 3218.9, "end": 3219.1, "probability": 0.6856 }, { "start": 3219.18, "end": 3219.78, "probability": 0.9502 }, { "start": 3219.86, "end": 3223.32, "probability": 0.9364 }, { "start": 3224.62, "end": 3228.14, "probability": 0.8459 }, { "start": 3229.37, "end": 3232.2, "probability": 0.959 }, { "start": 3233.1, "end": 3234.04, "probability": 0.9465 }, { "start": 3234.24, "end": 3234.72, "probability": 0.7996 }, { "start": 3234.74, "end": 3236.74, "probability": 0.9728 }, { "start": 3237.46, "end": 3242.18, "probability": 0.9912 }, { "start": 3242.32, "end": 3245.2, "probability": 0.8078 }, { "start": 3245.78, "end": 3246.78, "probability": 0.4998 }, { "start": 3248.28, "end": 3248.64, "probability": 0.8535 }, { "start": 3249.4, "end": 3250.92, "probability": 0.8228 }, { "start": 3251.18, "end": 3252.18, "probability": 0.9649 }, { "start": 3252.34, "end": 3254.82, "probability": 0.9268 }, { "start": 3254.9, "end": 3257.46, "probability": 0.8655 }, { "start": 3257.78, "end": 3257.78, "probability": 0.5405 }, { "start": 3258.3, "end": 3259.52, "probability": 0.9982 }, { "start": 3260.28, "end": 3261.56, "probability": 0.9688 }, { "start": 3261.74, "end": 3265.98, "probability": 0.9604 }, { "start": 3266.64, "end": 3271.58, "probability": 0.8777 }, { "start": 3271.8, "end": 3272.32, "probability": 0.3811 }, { "start": 3272.36, "end": 3273.32, "probability": 0.5977 }, { "start": 3273.52, "end": 3275.8, "probability": 0.6487 }, { "start": 3275.88, "end": 3276.8, "probability": 0.8642 }, { "start": 3276.82, "end": 3277.58, "probability": 0.8157 }, { "start": 3278.1, "end": 3281.79, "probability": 0.9704 }, { "start": 3282.32, "end": 3283.88, "probability": 0.7999 }, { "start": 3284.0, "end": 3286.68, "probability": 0.9902 }, { "start": 3287.7, "end": 3289.38, "probability": 0.627 }, { "start": 3289.42, "end": 3289.82, "probability": 0.921 }, { "start": 3290.08, "end": 3291.6, "probability": 0.7964 }, { "start": 3291.72, "end": 3292.16, "probability": 0.9353 }, { "start": 3292.52, "end": 3293.56, "probability": 0.9988 }, { "start": 3296.94, "end": 3298.56, "probability": 0.7602 }, { "start": 3299.66, "end": 3301.88, "probability": 0.7026 }, { "start": 3303.04, "end": 3304.48, "probability": 0.9725 }, { "start": 3305.02, "end": 3305.98, "probability": 0.5671 }, { "start": 3306.36, "end": 3309.16, "probability": 0.6002 }, { "start": 3310.74, "end": 3312.16, "probability": 0.7516 }, { "start": 3313.5, "end": 3314.88, "probability": 0.1628 }, { "start": 3314.88, "end": 3314.88, "probability": 0.0299 }, { "start": 3314.88, "end": 3316.22, "probability": 0.5381 }, { "start": 3316.3, "end": 3316.96, "probability": 0.5993 }, { "start": 3317.78, "end": 3319.18, "probability": 0.7067 }, { "start": 3320.42, "end": 3320.42, "probability": 0.0195 }, { "start": 3320.42, "end": 3323.62, "probability": 0.8263 }, { "start": 3324.52, "end": 3326.38, "probability": 0.9253 }, { "start": 3326.62, "end": 3327.62, "probability": 0.7971 }, { "start": 3328.38, "end": 3329.68, "probability": 0.3886 }, { "start": 3329.78, "end": 3332.9, "probability": 0.8766 }, { "start": 3332.9, "end": 3335.54, "probability": 0.984 }, { "start": 3336.36, "end": 3339.3, "probability": 0.6423 }, { "start": 3340.22, "end": 3344.42, "probability": 0.9138 }, { "start": 3345.06, "end": 3349.84, "probability": 0.9867 }, { "start": 3350.5, "end": 3356.24, "probability": 0.997 }, { "start": 3357.14, "end": 3357.5, "probability": 0.7703 }, { "start": 3358.14, "end": 3359.54, "probability": 0.5936 }, { "start": 3359.72, "end": 3360.04, "probability": 0.5201 }, { "start": 3360.18, "end": 3360.88, "probability": 0.6686 }, { "start": 3361.08, "end": 3362.32, "probability": 0.929 }, { "start": 3362.74, "end": 3363.12, "probability": 0.8528 }, { "start": 3363.58, "end": 3365.44, "probability": 0.9533 }, { "start": 3366.82, "end": 3369.04, "probability": 0.8516 }, { "start": 3369.46, "end": 3369.78, "probability": 0.9391 }, { "start": 3369.84, "end": 3373.96, "probability": 0.955 }, { "start": 3375.02, "end": 3378.24, "probability": 0.7062 }, { "start": 3379.83, "end": 3382.82, "probability": 0.8987 }, { "start": 3383.32, "end": 3387.44, "probability": 0.9924 }, { "start": 3388.4, "end": 3389.26, "probability": 0.5308 }, { "start": 3389.32, "end": 3392.04, "probability": 0.9858 }, { "start": 3392.04, "end": 3395.82, "probability": 0.9841 }, { "start": 3397.5, "end": 3398.04, "probability": 0.7966 }, { "start": 3398.18, "end": 3400.7, "probability": 0.9963 }, { "start": 3400.78, "end": 3404.14, "probability": 0.9454 }, { "start": 3404.64, "end": 3408.12, "probability": 0.9954 }, { "start": 3408.22, "end": 3410.06, "probability": 0.8266 }, { "start": 3410.12, "end": 3410.88, "probability": 0.8432 }, { "start": 3410.92, "end": 3413.46, "probability": 0.9827 }, { "start": 3413.92, "end": 3415.02, "probability": 0.8563 }, { "start": 3417.78, "end": 3419.02, "probability": 0.8611 }, { "start": 3422.94, "end": 3424.78, "probability": 0.5688 }, { "start": 3426.92, "end": 3429.98, "probability": 0.9273 }, { "start": 3430.62, "end": 3434.1, "probability": 0.9908 }, { "start": 3434.24, "end": 3436.63, "probability": 0.9985 }, { "start": 3437.34, "end": 3439.66, "probability": 0.9901 }, { "start": 3440.3, "end": 3442.24, "probability": 0.9513 }, { "start": 3443.24, "end": 3445.32, "probability": 0.8254 }, { "start": 3446.5, "end": 3450.88, "probability": 0.9631 }, { "start": 3452.61, "end": 3454.42, "probability": 0.9349 }, { "start": 3454.52, "end": 3458.38, "probability": 0.9821 }, { "start": 3459.38, "end": 3462.02, "probability": 0.8764 }, { "start": 3462.64, "end": 3463.84, "probability": 0.861 }, { "start": 3463.96, "end": 3468.18, "probability": 0.9578 }, { "start": 3468.3, "end": 3472.6, "probability": 0.9972 }, { "start": 3472.74, "end": 3473.36, "probability": 0.6827 }, { "start": 3473.44, "end": 3473.86, "probability": 0.6411 }, { "start": 3474.6, "end": 3478.22, "probability": 0.9654 }, { "start": 3478.38, "end": 3479.8, "probability": 0.9912 }, { "start": 3480.82, "end": 3486.86, "probability": 0.9905 }, { "start": 3487.48, "end": 3488.68, "probability": 0.9724 }, { "start": 3488.76, "end": 3493.96, "probability": 0.9844 }, { "start": 3494.3, "end": 3495.34, "probability": 0.9199 }, { "start": 3495.46, "end": 3495.46, "probability": 0.5239 }, { "start": 3495.48, "end": 3498.7, "probability": 0.9738 }, { "start": 3499.12, "end": 3499.54, "probability": 0.9363 }, { "start": 3500.14, "end": 3501.4, "probability": 0.5821 }, { "start": 3501.54, "end": 3501.92, "probability": 0.6208 }, { "start": 3502.0, "end": 3502.14, "probability": 0.9429 }, { "start": 3502.66, "end": 3505.38, "probability": 0.9696 }, { "start": 3505.5, "end": 3508.08, "probability": 0.9237 }, { "start": 3508.78, "end": 3512.27, "probability": 0.9819 }, { "start": 3513.8, "end": 3518.32, "probability": 0.9749 }, { "start": 3518.42, "end": 3520.52, "probability": 0.856 }, { "start": 3521.04, "end": 3521.66, "probability": 0.8041 }, { "start": 3522.1, "end": 3525.02, "probability": 0.8992 }, { "start": 3525.42, "end": 3527.7, "probability": 0.9923 }, { "start": 3527.86, "end": 3531.78, "probability": 0.9928 }, { "start": 3532.26, "end": 3535.88, "probability": 0.988 }, { "start": 3535.98, "end": 3538.5, "probability": 0.817 }, { "start": 3539.04, "end": 3542.52, "probability": 0.9426 }, { "start": 3542.74, "end": 3544.88, "probability": 0.8972 }, { "start": 3545.3, "end": 3545.66, "probability": 0.8681 }, { "start": 3545.76, "end": 3546.55, "probability": 0.8444 }, { "start": 3546.92, "end": 3549.36, "probability": 0.9963 }, { "start": 3549.48, "end": 3551.78, "probability": 0.9176 }, { "start": 3552.08, "end": 3554.02, "probability": 0.9905 }, { "start": 3554.66, "end": 3557.24, "probability": 0.8761 }, { "start": 3557.64, "end": 3560.78, "probability": 0.7833 }, { "start": 3561.26, "end": 3561.94, "probability": 0.7143 }, { "start": 3562.46, "end": 3562.68, "probability": 0.7191 }, { "start": 3563.46, "end": 3565.98, "probability": 0.9231 }, { "start": 3566.54, "end": 3568.74, "probability": 0.8314 }, { "start": 3568.74, "end": 3571.76, "probability": 0.7883 }, { "start": 3572.0, "end": 3572.82, "probability": 0.6935 }, { "start": 3573.76, "end": 3574.38, "probability": 0.343 }, { "start": 3574.58, "end": 3575.06, "probability": 0.5605 }, { "start": 3575.34, "end": 3577.34, "probability": 0.686 }, { "start": 3577.38, "end": 3579.02, "probability": 0.7457 }, { "start": 3579.48, "end": 3580.8, "probability": 0.8984 }, { "start": 3580.9, "end": 3581.64, "probability": 0.9524 }, { "start": 3581.78, "end": 3584.02, "probability": 0.9598 }, { "start": 3585.06, "end": 3586.47, "probability": 0.9952 }, { "start": 3586.6, "end": 3590.58, "probability": 0.9734 }, { "start": 3590.72, "end": 3590.96, "probability": 0.4905 }, { "start": 3591.12, "end": 3594.68, "probability": 0.8942 }, { "start": 3595.1, "end": 3598.96, "probability": 0.9844 }, { "start": 3599.14, "end": 3599.16, "probability": 0.0543 }, { "start": 3599.16, "end": 3600.64, "probability": 0.7886 }, { "start": 3601.48, "end": 3602.28, "probability": 0.0359 }, { "start": 3602.38, "end": 3604.64, "probability": 0.9832 }, { "start": 3604.72, "end": 3605.1, "probability": 0.1949 }, { "start": 3605.1, "end": 3607.04, "probability": 0.272 }, { "start": 3608.7, "end": 3608.84, "probability": 0.0327 }, { "start": 3608.84, "end": 3609.52, "probability": 0.5756 }, { "start": 3609.56, "end": 3610.4, "probability": 0.8999 }, { "start": 3610.46, "end": 3611.04, "probability": 0.1257 }, { "start": 3611.08, "end": 3612.63, "probability": 0.9525 }, { "start": 3613.08, "end": 3615.4, "probability": 0.0127 }, { "start": 3615.4, "end": 3615.4, "probability": 0.0337 }, { "start": 3615.4, "end": 3615.4, "probability": 0.0656 }, { "start": 3615.4, "end": 3615.4, "probability": 0.1142 }, { "start": 3615.4, "end": 3615.58, "probability": 0.0594 }, { "start": 3615.62, "end": 3616.06, "probability": 0.6335 }, { "start": 3618.0, "end": 3619.22, "probability": 0.9468 }, { "start": 3619.72, "end": 3621.32, "probability": 0.8727 }, { "start": 3621.66, "end": 3623.06, "probability": 0.6082 }, { "start": 3623.86, "end": 3625.62, "probability": 0.7548 }, { "start": 3626.08, "end": 3629.2, "probability": 0.9912 }, { "start": 3629.32, "end": 3632.02, "probability": 0.8514 }, { "start": 3632.22, "end": 3632.8, "probability": 0.5689 }, { "start": 3632.9, "end": 3633.86, "probability": 0.562 }, { "start": 3633.9, "end": 3634.96, "probability": 0.9049 }, { "start": 3634.98, "end": 3635.52, "probability": 0.5187 }, { "start": 3635.6, "end": 3636.04, "probability": 0.9525 }, { "start": 3636.8, "end": 3640.7, "probability": 0.9877 }, { "start": 3641.4, "end": 3641.82, "probability": 0.2316 }, { "start": 3641.82, "end": 3642.62, "probability": 0.232 }, { "start": 3643.5, "end": 3644.0, "probability": 0.1273 }, { "start": 3644.0, "end": 3644.0, "probability": 0.0208 }, { "start": 3644.0, "end": 3644.0, "probability": 0.0473 }, { "start": 3644.03, "end": 3645.1, "probability": 0.7012 }, { "start": 3645.22, "end": 3645.7, "probability": 0.6225 }, { "start": 3645.9, "end": 3646.1, "probability": 0.6739 }, { "start": 3649.04, "end": 3651.76, "probability": 0.8671 }, { "start": 3652.08, "end": 3652.26, "probability": 0.2733 }, { "start": 3652.34, "end": 3653.93, "probability": 0.7532 }, { "start": 3654.26, "end": 3654.44, "probability": 0.2406 }, { "start": 3654.44, "end": 3656.45, "probability": 0.1181 }, { "start": 3658.42, "end": 3659.56, "probability": 0.8078 }, { "start": 3676.24, "end": 3677.6, "probability": 0.9581 }, { "start": 3677.8, "end": 3681.34, "probability": 0.8324 }, { "start": 3682.06, "end": 3684.8, "probability": 0.7992 }, { "start": 3684.94, "end": 3686.78, "probability": 0.8248 }, { "start": 3687.36, "end": 3689.5, "probability": 0.9029 }, { "start": 3689.88, "end": 3691.34, "probability": 0.993 }, { "start": 3692.0, "end": 3693.7, "probability": 0.6303 }, { "start": 3694.04, "end": 3699.92, "probability": 0.8562 }, { "start": 3700.86, "end": 3701.22, "probability": 0.4133 }, { "start": 3701.22, "end": 3703.9, "probability": 0.8075 }, { "start": 3704.2, "end": 3708.88, "probability": 0.855 }, { "start": 3709.46, "end": 3709.64, "probability": 0.8277 }, { "start": 3727.68, "end": 3730.0, "probability": 0.2423 }, { "start": 3731.92, "end": 3733.92, "probability": 0.0143 }, { "start": 3734.54, "end": 3735.52, "probability": 0.9513 }, { "start": 3735.86, "end": 3735.98, "probability": 0.2634 }, { "start": 3737.64, "end": 3739.4, "probability": 0.8273 }, { "start": 3741.06, "end": 3742.24, "probability": 0.8413 }, { "start": 3742.96, "end": 3746.24, "probability": 0.7107 }, { "start": 3746.32, "end": 3753.56, "probability": 0.9823 }, { "start": 3756.1, "end": 3759.72, "probability": 0.999 }, { "start": 3760.46, "end": 3761.66, "probability": 0.0511 }, { "start": 3763.72, "end": 3766.18, "probability": 0.0757 }, { "start": 3767.84, "end": 3769.06, "probability": 0.7408 }, { "start": 3770.22, "end": 3776.96, "probability": 0.9504 }, { "start": 3778.32, "end": 3781.54, "probability": 0.9979 }, { "start": 3782.74, "end": 3783.36, "probability": 0.9602 }, { "start": 3784.56, "end": 3787.1, "probability": 0.9116 }, { "start": 3787.84, "end": 3790.5, "probability": 0.7894 }, { "start": 3792.12, "end": 3794.54, "probability": 0.9917 }, { "start": 3796.36, "end": 3799.86, "probability": 0.8293 }, { "start": 3804.68, "end": 3808.14, "probability": 0.9929 }, { "start": 3809.32, "end": 3810.32, "probability": 0.6819 }, { "start": 3811.4, "end": 3812.4, "probability": 0.7476 }, { "start": 3813.46, "end": 3816.06, "probability": 0.7304 }, { "start": 3817.14, "end": 3824.06, "probability": 0.967 }, { "start": 3826.5, "end": 3827.04, "probability": 0.7608 }, { "start": 3827.98, "end": 3829.26, "probability": 0.7195 }, { "start": 3830.32, "end": 3830.76, "probability": 0.7401 }, { "start": 3831.64, "end": 3831.8, "probability": 0.9858 }, { "start": 3832.94, "end": 3833.76, "probability": 0.9921 }, { "start": 3834.3, "end": 3834.82, "probability": 0.9968 }, { "start": 3835.52, "end": 3837.46, "probability": 0.9466 }, { "start": 3839.7, "end": 3842.18, "probability": 0.9536 }, { "start": 3843.04, "end": 3843.7, "probability": 0.9429 }, { "start": 3846.5, "end": 3852.7, "probability": 0.8867 }, { "start": 3853.58, "end": 3855.32, "probability": 0.8456 }, { "start": 3856.0, "end": 3857.2, "probability": 0.9911 }, { "start": 3858.04, "end": 3861.2, "probability": 0.8716 }, { "start": 3862.48, "end": 3863.06, "probability": 0.666 }, { "start": 3863.96, "end": 3865.56, "probability": 0.9997 }, { "start": 3866.12, "end": 3867.76, "probability": 0.9977 }, { "start": 3868.84, "end": 3873.64, "probability": 0.9938 }, { "start": 3875.28, "end": 3877.42, "probability": 0.8099 }, { "start": 3878.6, "end": 3883.12, "probability": 0.9977 }, { "start": 3884.0, "end": 3886.36, "probability": 0.5248 }, { "start": 3886.42, "end": 3888.86, "probability": 0.9841 }, { "start": 3889.84, "end": 3894.18, "probability": 0.5667 }, { "start": 3894.88, "end": 3896.5, "probability": 0.9852 }, { "start": 3896.66, "end": 3901.16, "probability": 0.9766 }, { "start": 3901.68, "end": 3902.34, "probability": 0.727 }, { "start": 3903.72, "end": 3904.36, "probability": 0.5462 }, { "start": 3905.18, "end": 3909.0, "probability": 0.9089 }, { "start": 3909.88, "end": 3917.08, "probability": 0.9521 }, { "start": 3917.7, "end": 3921.62, "probability": 0.9318 }, { "start": 3922.82, "end": 3923.6, "probability": 0.5078 }, { "start": 3924.58, "end": 3926.38, "probability": 0.6953 }, { "start": 3926.56, "end": 3930.34, "probability": 0.9704 }, { "start": 3931.14, "end": 3933.68, "probability": 0.814 }, { "start": 3934.24, "end": 3935.54, "probability": 0.8182 }, { "start": 3935.92, "end": 3940.78, "probability": 0.9875 }, { "start": 3941.58, "end": 3942.2, "probability": 0.9404 }, { "start": 3943.28, "end": 3945.86, "probability": 0.4876 }, { "start": 3946.42, "end": 3947.32, "probability": 0.8263 }, { "start": 3947.96, "end": 3951.74, "probability": 0.9903 }, { "start": 3952.88, "end": 3954.46, "probability": 0.7774 }, { "start": 3954.86, "end": 3957.08, "probability": 0.9838 }, { "start": 3957.58, "end": 3959.92, "probability": 0.9878 }, { "start": 3960.5, "end": 3963.28, "probability": 0.9683 }, { "start": 3963.48, "end": 3964.0, "probability": 0.3158 }, { "start": 3964.02, "end": 3965.2, "probability": 0.8529 }, { "start": 3966.04, "end": 3969.36, "probability": 0.9797 }, { "start": 3970.02, "end": 3971.64, "probability": 0.9731 }, { "start": 3972.1, "end": 3977.62, "probability": 0.8413 }, { "start": 3978.04, "end": 3982.0, "probability": 0.9954 }, { "start": 3982.7, "end": 3986.7, "probability": 0.9836 }, { "start": 3987.4, "end": 3990.06, "probability": 0.8873 }, { "start": 3990.4, "end": 3993.0, "probability": 0.9595 }, { "start": 3993.36, "end": 3994.82, "probability": 0.9803 }, { "start": 3995.26, "end": 3996.44, "probability": 0.9464 }, { "start": 3997.64, "end": 4002.27, "probability": 0.9894 }, { "start": 4002.58, "end": 4005.56, "probability": 0.9788 }, { "start": 4006.06, "end": 4010.1, "probability": 0.9923 }, { "start": 4010.56, "end": 4015.2, "probability": 0.9818 }, { "start": 4015.72, "end": 4019.76, "probability": 0.9962 }, { "start": 4020.24, "end": 4020.78, "probability": 0.7704 }, { "start": 4022.0, "end": 4022.8, "probability": 0.6182 }, { "start": 4022.98, "end": 4023.4, "probability": 0.8519 }, { "start": 4024.82, "end": 4029.74, "probability": 0.8228 }, { "start": 4035.56, "end": 4035.56, "probability": 0.1875 }, { "start": 4051.8, "end": 4052.28, "probability": 0.1424 }, { "start": 4055.74, "end": 4057.76, "probability": 0.886 }, { "start": 4058.74, "end": 4059.06, "probability": 0.5681 }, { "start": 4059.06, "end": 4061.24, "probability": 0.8494 }, { "start": 4078.92, "end": 4079.86, "probability": 0.8587 }, { "start": 4080.08, "end": 4082.76, "probability": 0.9809 }, { "start": 4083.37, "end": 4087.04, "probability": 0.7512 }, { "start": 4087.04, "end": 4089.96, "probability": 0.9887 }, { "start": 4090.94, "end": 4092.24, "probability": 0.9814 }, { "start": 4092.62, "end": 4094.8, "probability": 0.8621 }, { "start": 4096.4, "end": 4099.4, "probability": 0.7249 }, { "start": 4106.34, "end": 4107.4, "probability": 0.6756 }, { "start": 4107.56, "end": 4108.7, "probability": 0.6962 }, { "start": 4109.14, "end": 4110.26, "probability": 0.9002 }, { "start": 4110.94, "end": 4113.02, "probability": 0.726 }, { "start": 4114.06, "end": 4118.78, "probability": 0.9795 }, { "start": 4119.76, "end": 4123.68, "probability": 0.9689 }, { "start": 4124.52, "end": 4128.48, "probability": 0.9253 }, { "start": 4131.84, "end": 4133.06, "probability": 0.9058 }, { "start": 4133.24, "end": 4134.38, "probability": 0.6641 }, { "start": 4134.48, "end": 4135.92, "probability": 0.9602 }, { "start": 4136.94, "end": 4139.12, "probability": 0.9727 }, { "start": 4139.8, "end": 4143.12, "probability": 0.9239 }, { "start": 4151.24, "end": 4151.62, "probability": 0.5657 }, { "start": 4156.42, "end": 4157.1, "probability": 0.641 }, { "start": 4157.22, "end": 4160.1, "probability": 0.7621 }, { "start": 4161.02, "end": 4162.6, "probability": 0.9932 }, { "start": 4162.92, "end": 4166.6, "probability": 0.9116 }, { "start": 4168.66, "end": 4170.36, "probability": 0.9484 }, { "start": 4172.0, "end": 4173.42, "probability": 0.507 }, { "start": 4173.7, "end": 4178.28, "probability": 0.9822 }, { "start": 4180.8, "end": 4185.37, "probability": 0.7953 }, { "start": 4185.96, "end": 4189.52, "probability": 0.9861 }, { "start": 4190.24, "end": 4194.26, "probability": 0.9912 }, { "start": 4194.3, "end": 4200.5, "probability": 0.9957 }, { "start": 4200.5, "end": 4205.68, "probability": 0.9988 }, { "start": 4207.76, "end": 4208.96, "probability": 0.8519 }, { "start": 4209.54, "end": 4210.28, "probability": 0.8221 }, { "start": 4210.88, "end": 4213.86, "probability": 0.7337 }, { "start": 4216.42, "end": 4220.14, "probability": 0.9291 }, { "start": 4220.38, "end": 4222.44, "probability": 0.804 }, { "start": 4222.98, "end": 4225.02, "probability": 0.8809 }, { "start": 4225.64, "end": 4231.54, "probability": 0.9699 }, { "start": 4232.08, "end": 4232.72, "probability": 0.603 }, { "start": 4233.94, "end": 4235.1, "probability": 0.7488 }, { "start": 4236.24, "end": 4236.6, "probability": 0.7052 }, { "start": 4236.78, "end": 4240.88, "probability": 0.983 }, { "start": 4241.22, "end": 4243.88, "probability": 0.9889 }, { "start": 4244.7, "end": 4251.54, "probability": 0.9637 }, { "start": 4252.36, "end": 4254.16, "probability": 0.7543 }, { "start": 4254.56, "end": 4259.7, "probability": 0.9717 }, { "start": 4265.38, "end": 4269.26, "probability": 0.7328 }, { "start": 4269.84, "end": 4270.68, "probability": 0.8312 }, { "start": 4270.8, "end": 4275.66, "probability": 0.985 }, { "start": 4276.32, "end": 4276.62, "probability": 0.7852 }, { "start": 4279.72, "end": 4280.42, "probability": 0.6056 }, { "start": 4280.48, "end": 4281.26, "probability": 0.6544 }, { "start": 4282.26, "end": 4283.59, "probability": 0.657 }, { "start": 4283.86, "end": 4285.6, "probability": 0.7661 }, { "start": 4286.68, "end": 4289.62, "probability": 0.147 }, { "start": 4291.82, "end": 4293.4, "probability": 0.3522 }, { "start": 4294.02, "end": 4294.3, "probability": 0.0107 }, { "start": 4299.54, "end": 4299.94, "probability": 0.0234 }, { "start": 4299.94, "end": 4299.94, "probability": 0.0939 }, { "start": 4299.94, "end": 4301.82, "probability": 0.8959 }, { "start": 4302.28, "end": 4304.46, "probability": 0.3112 }, { "start": 4305.22, "end": 4306.32, "probability": 0.5606 }, { "start": 4307.14, "end": 4311.96, "probability": 0.9952 }, { "start": 4312.68, "end": 4313.84, "probability": 0.1362 }, { "start": 4317.52, "end": 4321.92, "probability": 0.9241 }, { "start": 4322.6, "end": 4324.16, "probability": 0.8896 }, { "start": 4324.66, "end": 4327.38, "probability": 0.7967 }, { "start": 4329.22, "end": 4330.4, "probability": 0.9539 }, { "start": 4330.46, "end": 4331.6, "probability": 0.9105 }, { "start": 4331.86, "end": 4333.7, "probability": 0.7948 }, { "start": 4333.88, "end": 4336.88, "probability": 0.7994 }, { "start": 4337.22, "end": 4339.5, "probability": 0.4067 }, { "start": 4340.28, "end": 4343.7, "probability": 0.982 }, { "start": 4344.44, "end": 4345.6, "probability": 0.8079 }, { "start": 4345.78, "end": 4348.21, "probability": 0.9176 }, { "start": 4359.28, "end": 4361.72, "probability": 0.7392 }, { "start": 4362.34, "end": 4363.82, "probability": 0.8711 }, { "start": 4364.94, "end": 4365.46, "probability": 0.5537 }, { "start": 4366.44, "end": 4367.34, "probability": 0.875 }, { "start": 4368.16, "end": 4369.56, "probability": 0.9468 }, { "start": 4369.76, "end": 4373.52, "probability": 0.7333 }, { "start": 4374.6, "end": 4375.68, "probability": 0.9666 }, { "start": 4376.52, "end": 4378.1, "probability": 0.9922 }, { "start": 4378.66, "end": 4380.71, "probability": 0.9966 }, { "start": 4381.18, "end": 4385.18, "probability": 0.9119 }, { "start": 4385.98, "end": 4387.7, "probability": 0.8788 }, { "start": 4388.18, "end": 4392.98, "probability": 0.9592 }, { "start": 4395.08, "end": 4398.54, "probability": 0.8814 }, { "start": 4398.76, "end": 4399.08, "probability": 0.7231 }, { "start": 4400.66, "end": 4401.4, "probability": 0.8931 }, { "start": 4406.92, "end": 4407.16, "probability": 0.2535 }, { "start": 4410.44, "end": 4411.56, "probability": 0.7233 }, { "start": 4411.98, "end": 4415.42, "probability": 0.9893 }, { "start": 4415.52, "end": 4416.08, "probability": 0.9539 }, { "start": 4418.04, "end": 4421.78, "probability": 0.8412 }, { "start": 4422.42, "end": 4424.32, "probability": 0.9575 }, { "start": 4438.22, "end": 4439.68, "probability": 0.957 }, { "start": 4440.56, "end": 4441.8, "probability": 0.9136 }, { "start": 4442.8, "end": 4443.42, "probability": 0.6684 }, { "start": 4443.44, "end": 4444.12, "probability": 0.7874 }, { "start": 4444.14, "end": 4444.54, "probability": 0.389 }, { "start": 4453.84, "end": 4455.84, "probability": 0.7104 }, { "start": 4455.9, "end": 4457.0, "probability": 0.6956 }, { "start": 4457.56, "end": 4458.86, "probability": 0.9561 }, { "start": 4460.0, "end": 4463.58, "probability": 0.8985 }, { "start": 4464.82, "end": 4465.84, "probability": 0.8839 }, { "start": 4466.8, "end": 4467.58, "probability": 0.7756 }, { "start": 4470.14, "end": 4470.96, "probability": 0.8262 }, { "start": 4473.34, "end": 4478.62, "probability": 0.9199 }, { "start": 4479.36, "end": 4481.06, "probability": 0.7618 }, { "start": 4483.28, "end": 4485.16, "probability": 0.8214 }, { "start": 4489.36, "end": 4490.5, "probability": 0.9984 }, { "start": 4491.3, "end": 4492.18, "probability": 0.8727 }, { "start": 4493.44, "end": 4496.02, "probability": 0.9912 }, { "start": 4497.46, "end": 4498.12, "probability": 0.9963 }, { "start": 4498.86, "end": 4500.52, "probability": 0.8848 }, { "start": 4502.78, "end": 4505.16, "probability": 0.5889 }, { "start": 4506.82, "end": 4509.22, "probability": 0.9824 }, { "start": 4510.44, "end": 4512.6, "probability": 0.9557 }, { "start": 4514.28, "end": 4515.16, "probability": 0.6995 }, { "start": 4516.4, "end": 4517.56, "probability": 0.8745 }, { "start": 4518.86, "end": 4520.8, "probability": 0.9657 }, { "start": 4520.92, "end": 4522.03, "probability": 0.9268 }, { "start": 4524.78, "end": 4526.4, "probability": 0.998 }, { "start": 4526.5, "end": 4529.48, "probability": 0.9836 }, { "start": 4531.44, "end": 4535.92, "probability": 0.9976 }, { "start": 4536.08, "end": 4537.02, "probability": 0.9968 }, { "start": 4538.52, "end": 4541.6, "probability": 0.9944 }, { "start": 4542.62, "end": 4544.1, "probability": 0.8334 }, { "start": 4544.76, "end": 4545.48, "probability": 0.7503 }, { "start": 4546.16, "end": 4547.88, "probability": 0.9995 }, { "start": 4548.52, "end": 4549.76, "probability": 0.9727 }, { "start": 4551.46, "end": 4558.38, "probability": 0.9974 }, { "start": 4559.08, "end": 4561.48, "probability": 0.9221 }, { "start": 4562.44, "end": 4563.62, "probability": 0.9289 }, { "start": 4564.82, "end": 4565.88, "probability": 0.937 }, { "start": 4566.62, "end": 4568.52, "probability": 0.9971 }, { "start": 4570.5, "end": 4573.56, "probability": 0.9896 }, { "start": 4574.4, "end": 4574.68, "probability": 0.6407 }, { "start": 4574.74, "end": 4576.31, "probability": 0.9927 }, { "start": 4576.5, "end": 4577.26, "probability": 0.8035 }, { "start": 4577.88, "end": 4579.96, "probability": 0.9971 }, { "start": 4579.96, "end": 4584.18, "probability": 0.9797 }, { "start": 4584.98, "end": 4589.7, "probability": 0.9985 }, { "start": 4592.14, "end": 4593.34, "probability": 0.9645 }, { "start": 4593.54, "end": 4594.82, "probability": 0.7765 }, { "start": 4594.86, "end": 4595.32, "probability": 0.9677 }, { "start": 4595.38, "end": 4596.29, "probability": 0.9531 }, { "start": 4596.62, "end": 4600.1, "probability": 0.9966 }, { "start": 4601.52, "end": 4602.9, "probability": 0.9349 }, { "start": 4605.92, "end": 4607.08, "probability": 0.4549 }, { "start": 4607.84, "end": 4609.78, "probability": 0.6625 }, { "start": 4610.0, "end": 4612.18, "probability": 0.9234 }, { "start": 4615.72, "end": 4618.76, "probability": 0.8202 }, { "start": 4619.94, "end": 4621.0, "probability": 0.7494 }, { "start": 4621.64, "end": 4622.64, "probability": 0.6171 }, { "start": 4624.92, "end": 4625.88, "probability": 0.7712 }, { "start": 4626.8, "end": 4628.22, "probability": 0.6747 }, { "start": 4629.74, "end": 4630.66, "probability": 0.837 }, { "start": 4630.82, "end": 4634.6, "probability": 0.8976 }, { "start": 4636.25, "end": 4637.96, "probability": 0.9844 }, { "start": 4641.26, "end": 4644.78, "probability": 0.9598 }, { "start": 4645.84, "end": 4646.88, "probability": 0.6743 }, { "start": 4648.02, "end": 4651.12, "probability": 0.9771 }, { "start": 4651.22, "end": 4655.08, "probability": 0.99 }, { "start": 4655.22, "end": 4655.7, "probability": 0.9373 }, { "start": 4658.66, "end": 4660.9, "probability": 0.6896 }, { "start": 4661.84, "end": 4665.78, "probability": 0.994 }, { "start": 4667.34, "end": 4667.46, "probability": 0.3829 }, { "start": 4667.96, "end": 4669.66, "probability": 0.8818 }, { "start": 4670.64, "end": 4671.58, "probability": 0.9758 }, { "start": 4673.18, "end": 4676.86, "probability": 0.9568 }, { "start": 4678.08, "end": 4678.82, "probability": 0.9765 }, { "start": 4679.86, "end": 4680.46, "probability": 0.9139 }, { "start": 4680.62, "end": 4681.48, "probability": 0.76 }, { "start": 4681.92, "end": 4682.04, "probability": 0.793 }, { "start": 4682.38, "end": 4682.82, "probability": 0.9629 }, { "start": 4683.32, "end": 4685.42, "probability": 0.9677 }, { "start": 4686.22, "end": 4689.74, "probability": 0.8593 }, { "start": 4690.32, "end": 4695.07, "probability": 0.9098 }, { "start": 4695.66, "end": 4698.88, "probability": 0.9681 }, { "start": 4700.4, "end": 4703.86, "probability": 0.9583 }, { "start": 4704.04, "end": 4705.48, "probability": 0.9698 }, { "start": 4706.3, "end": 4710.86, "probability": 0.6998 }, { "start": 4714.55, "end": 4717.64, "probability": 0.9581 }, { "start": 4717.76, "end": 4718.98, "probability": 0.8208 }, { "start": 4719.72, "end": 4722.48, "probability": 0.9748 }, { "start": 4722.48, "end": 4725.38, "probability": 0.8796 }, { "start": 4726.12, "end": 4728.42, "probability": 0.9912 }, { "start": 4729.78, "end": 4730.16, "probability": 0.7305 }, { "start": 4730.98, "end": 4737.16, "probability": 0.9665 }, { "start": 4737.46, "end": 4737.7, "probability": 0.9214 }, { "start": 4737.96, "end": 4738.96, "probability": 0.9343 }, { "start": 4739.04, "end": 4739.46, "probability": 0.9398 }, { "start": 4739.52, "end": 4740.96, "probability": 0.9909 }, { "start": 4741.84, "end": 4742.42, "probability": 0.6185 }, { "start": 4742.98, "end": 4744.44, "probability": 0.3999 }, { "start": 4745.46, "end": 4745.46, "probability": 0.3935 }, { "start": 4745.46, "end": 4746.5, "probability": 0.4543 }, { "start": 4746.54, "end": 4747.35, "probability": 0.8747 }, { "start": 4748.04, "end": 4750.32, "probability": 0.955 }, { "start": 4750.42, "end": 4752.22, "probability": 0.9983 }, { "start": 4755.14, "end": 4757.4, "probability": 0.8156 }, { "start": 4759.24, "end": 4761.12, "probability": 0.9807 }, { "start": 4762.48, "end": 4764.98, "probability": 0.9634 }, { "start": 4765.72, "end": 4768.24, "probability": 0.9832 }, { "start": 4769.36, "end": 4771.28, "probability": 0.7775 }, { "start": 4772.16, "end": 4774.12, "probability": 0.9984 }, { "start": 4774.76, "end": 4776.24, "probability": 0.9832 }, { "start": 4777.48, "end": 4780.94, "probability": 0.8658 }, { "start": 4780.94, "end": 4783.72, "probability": 0.995 }, { "start": 4784.24, "end": 4785.54, "probability": 0.8657 }, { "start": 4786.16, "end": 4791.2, "probability": 0.9733 }, { "start": 4792.62, "end": 4794.66, "probability": 0.9651 }, { "start": 4795.66, "end": 4802.26, "probability": 0.6648 }, { "start": 4803.38, "end": 4805.86, "probability": 0.8397 }, { "start": 4806.52, "end": 4808.18, "probability": 0.9902 }, { "start": 4808.28, "end": 4809.02, "probability": 0.9127 }, { "start": 4809.46, "end": 4810.72, "probability": 0.948 }, { "start": 4811.46, "end": 4811.6, "probability": 0.7161 }, { "start": 4815.73, "end": 4818.1, "probability": 0.714 }, { "start": 4818.22, "end": 4819.15, "probability": 0.7582 }, { "start": 4819.41, "end": 4819.76, "probability": 0.7104 }, { "start": 4819.86, "end": 4823.0, "probability": 0.8001 }, { "start": 4823.16, "end": 4825.56, "probability": 0.9609 }, { "start": 4826.08, "end": 4829.72, "probability": 0.9945 }, { "start": 4831.68, "end": 4836.02, "probability": 0.7204 }, { "start": 4837.96, "end": 4838.18, "probability": 0.3782 }, { "start": 4838.36, "end": 4841.54, "probability": 0.9245 }, { "start": 4841.94, "end": 4846.18, "probability": 0.9657 }, { "start": 4846.86, "end": 4850.38, "probability": 0.4413 }, { "start": 4850.96, "end": 4853.22, "probability": 0.593 }, { "start": 4853.96, "end": 4855.5, "probability": 0.8707 }, { "start": 4855.88, "end": 4859.61, "probability": 0.9554 }, { "start": 4860.06, "end": 4860.4, "probability": 0.7993 }, { "start": 4860.5, "end": 4860.96, "probability": 0.687 }, { "start": 4861.4, "end": 4862.14, "probability": 0.9019 }, { "start": 4862.28, "end": 4862.82, "probability": 0.9121 }, { "start": 4865.44, "end": 4867.46, "probability": 0.0695 }, { "start": 4867.46, "end": 4868.82, "probability": 0.5185 }, { "start": 4869.32, "end": 4870.26, "probability": 0.7655 }, { "start": 4870.54, "end": 4871.9, "probability": 0.9231 }, { "start": 4871.92, "end": 4872.82, "probability": 0.9584 }, { "start": 4873.14, "end": 4874.98, "probability": 0.9736 }, { "start": 4876.6, "end": 4878.7, "probability": 0.7392 }, { "start": 4884.6, "end": 4885.22, "probability": 0.9199 }, { "start": 4885.4, "end": 4886.22, "probability": 0.8693 }, { "start": 4886.3, "end": 4887.64, "probability": 0.6158 }, { "start": 4887.66, "end": 4889.11, "probability": 0.8168 }, { "start": 4889.96, "end": 4892.12, "probability": 0.9917 }, { "start": 4892.28, "end": 4893.26, "probability": 0.8479 }, { "start": 4893.7, "end": 4895.08, "probability": 0.9692 }, { "start": 4895.16, "end": 4895.66, "probability": 0.853 }, { "start": 4895.66, "end": 4896.1, "probability": 0.8059 }, { "start": 4896.1, "end": 4898.0, "probability": 0.9346 }, { "start": 4898.74, "end": 4899.12, "probability": 0.9081 }, { "start": 4899.32, "end": 4901.1, "probability": 0.8457 }, { "start": 4901.4, "end": 4901.8, "probability": 0.4629 }, { "start": 4902.12, "end": 4904.14, "probability": 0.9224 }, { "start": 4904.62, "end": 4907.06, "probability": 0.9976 }, { "start": 4907.5, "end": 4910.88, "probability": 0.997 }, { "start": 4911.44, "end": 4912.56, "probability": 0.998 }, { "start": 4913.34, "end": 4914.0, "probability": 0.6538 }, { "start": 4914.1, "end": 4915.5, "probability": 0.8331 }, { "start": 4915.5, "end": 4916.16, "probability": 0.7236 }, { "start": 4916.28, "end": 4917.72, "probability": 0.9858 }, { "start": 4918.22, "end": 4920.78, "probability": 0.8744 }, { "start": 4921.7, "end": 4921.98, "probability": 0.7911 }, { "start": 4922.86, "end": 4926.16, "probability": 0.7523 }, { "start": 4926.26, "end": 4927.4, "probability": 0.941 }, { "start": 4928.66, "end": 4931.74, "probability": 0.7601 }, { "start": 4932.78, "end": 4935.2, "probability": 0.9657 }, { "start": 4936.2, "end": 4937.92, "probability": 0.505 }, { "start": 4938.44, "end": 4940.12, "probability": 0.8326 }, { "start": 4940.84, "end": 4943.44, "probability": 0.946 }, { "start": 4944.12, "end": 4945.92, "probability": 0.9351 }, { "start": 4946.08, "end": 4947.56, "probability": 0.9671 }, { "start": 4948.04, "end": 4949.12, "probability": 0.7599 }, { "start": 4949.9, "end": 4951.62, "probability": 0.9759 }, { "start": 4952.64, "end": 4954.4, "probability": 0.7887 }, { "start": 4955.32, "end": 4956.76, "probability": 0.9235 }, { "start": 4957.88, "end": 4960.14, "probability": 0.9254 }, { "start": 4960.9, "end": 4962.96, "probability": 0.9878 }, { "start": 4963.82, "end": 4965.18, "probability": 0.6821 }, { "start": 4967.4, "end": 4968.88, "probability": 0.8903 }, { "start": 4970.0, "end": 4970.86, "probability": 0.6298 }, { "start": 4971.56, "end": 4972.76, "probability": 0.777 }, { "start": 4973.12, "end": 4975.32, "probability": 0.9189 }, { "start": 4976.16, "end": 4978.12, "probability": 0.9945 }, { "start": 4978.16, "end": 4981.02, "probability": 0.9222 }, { "start": 4981.36, "end": 4983.5, "probability": 0.96 }, { "start": 4984.3, "end": 4987.64, "probability": 0.7705 }, { "start": 4987.78, "end": 4991.56, "probability": 0.9762 }, { "start": 4992.48, "end": 4994.26, "probability": 0.9656 }, { "start": 4995.02, "end": 4995.4, "probability": 0.8612 }, { "start": 4998.27, "end": 5002.59, "probability": 0.991 }, { "start": 5003.7, "end": 5008.66, "probability": 0.7607 }, { "start": 5009.32, "end": 5010.16, "probability": 0.7926 }, { "start": 5010.92, "end": 5012.84, "probability": 0.9814 }, { "start": 5013.26, "end": 5014.04, "probability": 0.8162 }, { "start": 5014.06, "end": 5014.84, "probability": 0.9688 }, { "start": 5015.78, "end": 5020.44, "probability": 0.9536 }, { "start": 5022.18, "end": 5024.5, "probability": 0.9579 }, { "start": 5024.8, "end": 5026.34, "probability": 0.9747 }, { "start": 5027.48, "end": 5029.58, "probability": 0.9956 }, { "start": 5029.74, "end": 5031.72, "probability": 0.5914 }, { "start": 5031.74, "end": 5032.12, "probability": 0.181 }, { "start": 5032.94, "end": 5034.36, "probability": 0.96 }, { "start": 5035.0, "end": 5038.7, "probability": 0.9981 }, { "start": 5039.28, "end": 5041.22, "probability": 0.9093 }, { "start": 5042.38, "end": 5044.2, "probability": 0.8418 }, { "start": 5045.36, "end": 5047.88, "probability": 0.9646 }, { "start": 5048.66, "end": 5050.72, "probability": 0.9824 }, { "start": 5051.32, "end": 5053.14, "probability": 0.8911 }, { "start": 5053.74, "end": 5056.25, "probability": 0.7827 }, { "start": 5057.2, "end": 5058.64, "probability": 0.9731 }, { "start": 5062.34, "end": 5062.58, "probability": 0.2013 }, { "start": 5062.8, "end": 5064.58, "probability": 0.9964 }, { "start": 5065.1, "end": 5065.86, "probability": 0.9471 }, { "start": 5065.88, "end": 5066.26, "probability": 0.8282 }, { "start": 5066.3, "end": 5069.08, "probability": 0.9282 }, { "start": 5070.6, "end": 5073.1, "probability": 0.9873 }, { "start": 5073.92, "end": 5076.39, "probability": 0.9558 }, { "start": 5076.6, "end": 5079.3, "probability": 0.9868 }, { "start": 5079.64, "end": 5081.66, "probability": 0.9954 }, { "start": 5082.32, "end": 5085.1, "probability": 0.9639 }, { "start": 5087.66, "end": 5088.98, "probability": 0.9936 }, { "start": 5097.64, "end": 5098.22, "probability": 0.4755 }, { "start": 5098.36, "end": 5099.16, "probability": 0.7724 }, { "start": 5100.39, "end": 5104.64, "probability": 0.9868 }, { "start": 5105.42, "end": 5109.26, "probability": 0.9961 }, { "start": 5109.26, "end": 5111.94, "probability": 0.9927 }, { "start": 5112.84, "end": 5115.7, "probability": 0.9655 }, { "start": 5115.7, "end": 5119.04, "probability": 0.9978 }, { "start": 5119.12, "end": 5120.0, "probability": 0.9967 }, { "start": 5120.8, "end": 5124.22, "probability": 0.9961 }, { "start": 5124.22, "end": 5126.57, "probability": 0.9988 }, { "start": 5127.16, "end": 5128.44, "probability": 0.9304 }, { "start": 5128.98, "end": 5130.24, "probability": 0.9945 }, { "start": 5131.44, "end": 5134.94, "probability": 0.9925 }, { "start": 5135.22, "end": 5139.36, "probability": 0.9989 }, { "start": 5139.68, "end": 5140.8, "probability": 0.7012 }, { "start": 5141.6, "end": 5142.38, "probability": 0.6735 }, { "start": 5142.68, "end": 5147.14, "probability": 0.6356 }, { "start": 5147.24, "end": 5147.34, "probability": 0.6136 }, { "start": 5153.45, "end": 5157.84, "probability": 0.8624 }, { "start": 5159.36, "end": 5160.32, "probability": 0.8134 }, { "start": 5161.78, "end": 5162.7, "probability": 0.7263 }, { "start": 5162.84, "end": 5163.52, "probability": 0.9559 }, { "start": 5165.04, "end": 5165.5, "probability": 0.3562 }, { "start": 5183.5, "end": 5185.42, "probability": 0.316 }, { "start": 5194.6, "end": 5198.04, "probability": 0.6343 }, { "start": 5202.28, "end": 5203.04, "probability": 0.3997 }, { "start": 5213.12, "end": 5213.94, "probability": 0.7047 }, { "start": 5215.16, "end": 5216.22, "probability": 0.968 }, { "start": 5216.44, "end": 5216.8, "probability": 0.9812 }, { "start": 5217.0, "end": 5218.48, "probability": 0.9067 }, { "start": 5220.22, "end": 5220.84, "probability": 0.5818 }, { "start": 5222.1, "end": 5224.14, "probability": 0.9747 }, { "start": 5225.44, "end": 5226.78, "probability": 0.9893 }, { "start": 5228.82, "end": 5230.46, "probability": 0.8686 }, { "start": 5247.24, "end": 5251.38, "probability": 0.9907 }, { "start": 5259.9, "end": 5260.26, "probability": 0.5114 }, { "start": 5261.54, "end": 5261.74, "probability": 0.6569 }, { "start": 5267.44, "end": 5269.1, "probability": 0.7603 }, { "start": 5269.3, "end": 5270.66, "probability": 0.9732 }, { "start": 5270.9, "end": 5272.68, "probability": 0.9971 }, { "start": 5279.12, "end": 5282.34, "probability": 0.9914 }, { "start": 5283.9, "end": 5288.82, "probability": 0.9989 }, { "start": 5289.68, "end": 5291.88, "probability": 0.9061 }, { "start": 5292.8, "end": 5295.18, "probability": 0.9611 }, { "start": 5295.96, "end": 5297.28, "probability": 0.6845 }, { "start": 5298.22, "end": 5303.78, "probability": 0.9856 }, { "start": 5304.36, "end": 5305.74, "probability": 0.9789 }, { "start": 5305.8, "end": 5306.38, "probability": 0.3558 }, { "start": 5310.06, "end": 5314.88, "probability": 0.9801 }, { "start": 5314.94, "end": 5318.32, "probability": 0.5286 }, { "start": 5318.52, "end": 5319.46, "probability": 0.9035 }, { "start": 5320.2, "end": 5321.5, "probability": 0.9018 }, { "start": 5328.62, "end": 5328.94, "probability": 0.3776 }, { "start": 5334.64, "end": 5335.74, "probability": 0.1638 }, { "start": 5336.04, "end": 5336.96, "probability": 0.645 }, { "start": 5337.0, "end": 5341.1, "probability": 0.9325 }, { "start": 5342.3, "end": 5345.04, "probability": 0.9559 }, { "start": 5346.04, "end": 5347.66, "probability": 0.9771 }, { "start": 5347.74, "end": 5348.92, "probability": 0.7607 }, { "start": 5349.2, "end": 5350.08, "probability": 0.9115 }, { "start": 5350.3, "end": 5350.96, "probability": 0.8618 }, { "start": 5351.72, "end": 5353.68, "probability": 0.9592 }, { "start": 5354.52, "end": 5360.78, "probability": 0.9929 }, { "start": 5365.24, "end": 5367.1, "probability": 0.7043 }, { "start": 5368.04, "end": 5369.56, "probability": 0.8566 }, { "start": 5370.16, "end": 5372.64, "probability": 0.9905 }, { "start": 5372.7, "end": 5373.08, "probability": 0.6722 }, { "start": 5374.36, "end": 5374.8, "probability": 0.6522 }, { "start": 5374.98, "end": 5376.32, "probability": 0.9214 }, { "start": 5376.32, "end": 5377.16, "probability": 0.4888 }, { "start": 5377.8, "end": 5380.84, "probability": 0.9606 }, { "start": 5381.74, "end": 5383.16, "probability": 0.8533 }, { "start": 5392.0, "end": 5392.0, "probability": 0.3814 }, { "start": 5409.76, "end": 5412.46, "probability": 0.6667 }, { "start": 5412.62, "end": 5416.86, "probability": 0.9922 }, { "start": 5416.94, "end": 5417.72, "probability": 0.7966 }, { "start": 5417.84, "end": 5419.2, "probability": 0.9557 }, { "start": 5419.26, "end": 5420.1, "probability": 0.7552 }, { "start": 5420.28, "end": 5420.68, "probability": 0.5706 }, { "start": 5421.3, "end": 5422.01, "probability": 0.8552 }, { "start": 5423.67, "end": 5425.94, "probability": 0.6699 }, { "start": 5427.04, "end": 5428.98, "probability": 0.9901 }, { "start": 5429.1, "end": 5430.41, "probability": 0.7177 }, { "start": 5430.46, "end": 5431.16, "probability": 0.9773 }, { "start": 5431.26, "end": 5432.28, "probability": 0.9486 }, { "start": 5432.8, "end": 5436.76, "probability": 0.9858 }, { "start": 5437.58, "end": 5439.14, "probability": 0.9812 }, { "start": 5440.84, "end": 5442.16, "probability": 0.8588 }, { "start": 5443.2, "end": 5446.5, "probability": 0.9728 }, { "start": 5446.54, "end": 5447.48, "probability": 0.9607 }, { "start": 5448.4, "end": 5448.7, "probability": 0.9166 }, { "start": 5449.42, "end": 5451.18, "probability": 0.9722 }, { "start": 5451.26, "end": 5452.44, "probability": 0.5687 }, { "start": 5452.92, "end": 5456.2, "probability": 0.8523 }, { "start": 5456.86, "end": 5457.88, "probability": 0.8333 }, { "start": 5459.04, "end": 5459.6, "probability": 0.5355 }, { "start": 5460.4, "end": 5460.7, "probability": 0.411 }, { "start": 5461.38, "end": 5461.64, "probability": 0.3378 }, { "start": 5463.46, "end": 5465.08, "probability": 0.9774 }, { "start": 5466.66, "end": 5468.04, "probability": 0.9563 }, { "start": 5469.52, "end": 5469.62, "probability": 0.677 }, { "start": 5470.36, "end": 5473.0, "probability": 0.859 }, { "start": 5475.66, "end": 5477.52, "probability": 0.9751 }, { "start": 5478.38, "end": 5481.06, "probability": 0.9336 }, { "start": 5482.4, "end": 5486.04, "probability": 0.977 }, { "start": 5486.22, "end": 5489.6, "probability": 0.998 }, { "start": 5489.6, "end": 5492.86, "probability": 0.995 }, { "start": 5493.66, "end": 5495.06, "probability": 0.8325 }, { "start": 5495.68, "end": 5496.24, "probability": 0.6436 }, { "start": 5496.3, "end": 5499.68, "probability": 0.9893 }, { "start": 5499.74, "end": 5501.48, "probability": 0.9633 }, { "start": 5503.14, "end": 5506.36, "probability": 0.9941 }, { "start": 5507.02, "end": 5509.64, "probability": 0.7882 }, { "start": 5511.26, "end": 5516.54, "probability": 0.8314 }, { "start": 5517.76, "end": 5519.38, "probability": 0.9775 }, { "start": 5519.84, "end": 5522.02, "probability": 0.843 }, { "start": 5523.18, "end": 5525.13, "probability": 0.9675 }, { "start": 5525.36, "end": 5525.68, "probability": 0.5161 }, { "start": 5526.18, "end": 5527.78, "probability": 0.9897 }, { "start": 5528.26, "end": 5529.6, "probability": 0.7613 }, { "start": 5530.9, "end": 5531.5, "probability": 0.6818 }, { "start": 5531.58, "end": 5533.86, "probability": 0.9063 }, { "start": 5534.8, "end": 5538.5, "probability": 0.9873 }, { "start": 5539.38, "end": 5540.2, "probability": 0.954 }, { "start": 5542.28, "end": 5543.5, "probability": 0.4936 }, { "start": 5546.5, "end": 5547.98, "probability": 0.8093 }, { "start": 5551.94, "end": 5555.18, "probability": 0.745 }, { "start": 5555.58, "end": 5557.66, "probability": 0.5576 }, { "start": 5560.82, "end": 5561.48, "probability": 0.8239 }, { "start": 5562.3, "end": 5562.64, "probability": 0.9343 }, { "start": 5566.48, "end": 5567.68, "probability": 0.6661 }, { "start": 5568.76, "end": 5569.22, "probability": 0.9531 }, { "start": 5570.58, "end": 5571.8, "probability": 0.6495 }, { "start": 5572.44, "end": 5574.9, "probability": 0.9863 }, { "start": 5575.7, "end": 5577.8, "probability": 0.9873 }, { "start": 5578.62, "end": 5579.12, "probability": 0.9038 }, { "start": 5580.12, "end": 5580.92, "probability": 0.702 }, { "start": 5581.86, "end": 5582.28, "probability": 0.9937 }, { "start": 5583.52, "end": 5584.32, "probability": 0.8654 }, { "start": 5587.9, "end": 5588.58, "probability": 0.8548 }, { "start": 5589.72, "end": 5590.7, "probability": 0.879 }, { "start": 5591.34, "end": 5592.78, "probability": 0.9966 }, { "start": 5595.62, "end": 5596.96, "probability": 0.6484 }, { "start": 5598.12, "end": 5598.9, "probability": 0.8776 }, { "start": 5600.24, "end": 5601.24, "probability": 0.7413 }, { "start": 5602.46, "end": 5602.9, "probability": 0.6597 }, { "start": 5604.34, "end": 5605.28, "probability": 0.9656 }, { "start": 5606.3, "end": 5609.06, "probability": 0.945 }, { "start": 5611.94, "end": 5614.96, "probability": 0.9119 }, { "start": 5616.82, "end": 5618.1, "probability": 0.8614 }, { "start": 5619.26, "end": 5621.98, "probability": 0.7858 }, { "start": 5623.18, "end": 5623.64, "probability": 0.8407 }, { "start": 5625.08, "end": 5626.46, "probability": 0.9825 }, { "start": 5627.26, "end": 5628.3, "probability": 0.9255 }, { "start": 5629.16, "end": 5630.4, "probability": 0.8879 }, { "start": 5631.18, "end": 5631.68, "probability": 0.9144 }, { "start": 5632.82, "end": 5634.2, "probability": 0.8837 }, { "start": 5637.12, "end": 5637.84, "probability": 0.7475 }, { "start": 5639.08, "end": 5640.18, "probability": 0.7879 }, { "start": 5641.24, "end": 5641.6, "probability": 0.7642 }, { "start": 5644.4, "end": 5645.12, "probability": 0.6444 }, { "start": 5646.16, "end": 5646.7, "probability": 0.9613 }, { "start": 5647.66, "end": 5648.26, "probability": 0.9741 }, { "start": 5649.45, "end": 5652.56, "probability": 0.9888 }, { "start": 5654.7, "end": 5655.4, "probability": 0.9592 }, { "start": 5656.5, "end": 5657.6, "probability": 0.9756 }, { "start": 5658.72, "end": 5659.12, "probability": 0.9192 }, { "start": 5660.54, "end": 5661.52, "probability": 0.9753 }, { "start": 5663.48, "end": 5664.32, "probability": 0.9865 }, { "start": 5665.64, "end": 5667.08, "probability": 0.8136 }, { "start": 5668.18, "end": 5668.66, "probability": 0.9976 }, { "start": 5670.88, "end": 5671.36, "probability": 0.7441 }, { "start": 5675.5, "end": 5675.78, "probability": 0.5845 }, { "start": 5677.24, "end": 5678.32, "probability": 0.6743 }, { "start": 5681.66, "end": 5682.42, "probability": 0.816 }, { "start": 5683.76, "end": 5684.12, "probability": 0.8632 }, { "start": 5685.68, "end": 5686.16, "probability": 0.8402 }, { "start": 5687.32, "end": 5688.08, "probability": 0.8777 }, { "start": 5688.96, "end": 5689.4, "probability": 0.9722 }, { "start": 5690.98, "end": 5692.1, "probability": 0.9459 }, { "start": 5693.22, "end": 5693.66, "probability": 0.9406 }, { "start": 5695.04, "end": 5695.82, "probability": 0.9721 }, { "start": 5698.9, "end": 5699.6, "probability": 0.9561 }, { "start": 5700.9, "end": 5701.66, "probability": 0.7473 }, { "start": 5703.08, "end": 5704.68, "probability": 0.8071 }, { "start": 5705.74, "end": 5707.08, "probability": 0.548 }, { "start": 5710.88, "end": 5711.42, "probability": 0.8292 }, { "start": 5713.4, "end": 5714.4, "probability": 0.8531 }, { "start": 5716.24, "end": 5717.04, "probability": 0.9685 }, { "start": 5719.18, "end": 5720.24, "probability": 0.9211 }, { "start": 5721.48, "end": 5721.92, "probability": 0.9626 }, { "start": 5724.58, "end": 5725.6, "probability": 0.9582 }, { "start": 5726.44, "end": 5726.78, "probability": 0.8685 }, { "start": 5727.88, "end": 5728.78, "probability": 0.9879 }, { "start": 5729.56, "end": 5732.28, "probability": 0.1138 }, { "start": 5734.1, "end": 5734.54, "probability": 0.551 }, { "start": 5735.78, "end": 5737.16, "probability": 0.8887 }, { "start": 5738.09, "end": 5740.78, "probability": 0.9486 }, { "start": 5743.08, "end": 5743.66, "probability": 0.9183 }, { "start": 5745.28, "end": 5746.2, "probability": 0.7796 }, { "start": 5747.67, "end": 5749.58, "probability": 0.6887 }, { "start": 5750.72, "end": 5751.18, "probability": 0.9494 }, { "start": 5753.02, "end": 5754.52, "probability": 0.9593 }, { "start": 5755.86, "end": 5758.84, "probability": 0.9221 }, { "start": 5759.88, "end": 5760.4, "probability": 0.9832 }, { "start": 5761.38, "end": 5762.88, "probability": 0.8966 }, { "start": 5769.62, "end": 5769.98, "probability": 0.485 }, { "start": 5771.56, "end": 5773.02, "probability": 0.5731 }, { "start": 5775.0, "end": 5777.92, "probability": 0.9119 }, { "start": 5780.28, "end": 5780.72, "probability": 0.3762 }, { "start": 5785.34, "end": 5788.8, "probability": 0.771 }, { "start": 5790.16, "end": 5790.5, "probability": 0.95 }, { "start": 5791.52, "end": 5792.52, "probability": 0.6937 }, { "start": 5794.68, "end": 5795.46, "probability": 0.9124 }, { "start": 5796.52, "end": 5797.62, "probability": 0.9067 }, { "start": 5798.44, "end": 5798.9, "probability": 0.9763 }, { "start": 5800.2, "end": 5801.04, "probability": 0.7996 }, { "start": 5803.08, "end": 5806.02, "probability": 0.8291 }, { "start": 5809.71, "end": 5810.92, "probability": 0.2257 }, { "start": 5815.46, "end": 5816.28, "probability": 0.489 }, { "start": 5817.98, "end": 5819.02, "probability": 0.7854 }, { "start": 5820.02, "end": 5820.86, "probability": 0.7403 }, { "start": 5821.52, "end": 5821.84, "probability": 0.7063 }, { "start": 5822.92, "end": 5824.64, "probability": 0.9613 }, { "start": 5825.9, "end": 5826.32, "probability": 0.8916 }, { "start": 5827.76, "end": 5828.64, "probability": 0.8996 }, { "start": 5831.23, "end": 5833.3, "probability": 0.9539 }, { "start": 5834.86, "end": 5836.66, "probability": 0.9705 }, { "start": 5838.09, "end": 5840.38, "probability": 0.9758 }, { "start": 5840.96, "end": 5840.96, "probability": 0.9155 }, { "start": 5845.28, "end": 5846.04, "probability": 0.7294 }, { "start": 5847.08, "end": 5847.46, "probability": 0.8973 }, { "start": 5848.9, "end": 5850.4, "probability": 0.445 }, { "start": 5855.14, "end": 5855.14, "probability": 0.6779 }, { "start": 5856.28, "end": 5857.14, "probability": 0.573 }, { "start": 5858.24, "end": 5858.62, "probability": 0.9346 }, { "start": 5859.72, "end": 5861.1, "probability": 0.7961 }, { "start": 5865.26, "end": 5866.18, "probability": 0.8257 }, { "start": 5867.06, "end": 5868.02, "probability": 0.9226 }, { "start": 5870.64, "end": 5871.12, "probability": 0.6217 }, { "start": 5872.66, "end": 5873.78, "probability": 0.8947 }, { "start": 5874.86, "end": 5875.38, "probability": 0.9717 }, { "start": 5876.24, "end": 5877.44, "probability": 0.9782 }, { "start": 5878.14, "end": 5878.64, "probability": 0.9473 }, { "start": 5879.58, "end": 5880.56, "probability": 0.9831 }, { "start": 5882.9, "end": 5883.84, "probability": 0.6625 }, { "start": 5884.78, "end": 5885.72, "probability": 0.965 }, { "start": 5887.42, "end": 5889.28, "probability": 0.9568 }, { "start": 5890.16, "end": 5891.2, "probability": 0.992 }, { "start": 5892.02, "end": 5893.08, "probability": 0.8447 }, { "start": 5894.42, "end": 5896.98, "probability": 0.8381 }, { "start": 5897.74, "end": 5898.2, "probability": 0.9607 }, { "start": 5899.8, "end": 5901.16, "probability": 0.9168 }, { "start": 5901.78, "end": 5902.3, "probability": 0.9953 }, { "start": 5903.4, "end": 5904.76, "probability": 0.7396 }, { "start": 5906.42, "end": 5906.9, "probability": 0.984 }, { "start": 5908.26, "end": 5909.7, "probability": 0.9834 }, { "start": 5910.34, "end": 5910.76, "probability": 0.998 }, { "start": 5911.84, "end": 5913.48, "probability": 0.7456 }, { "start": 5915.34, "end": 5915.76, "probability": 0.5762 }, { "start": 5917.14, "end": 5917.9, "probability": 0.8227 }, { "start": 5919.65, "end": 5921.84, "probability": 0.9746 }, { "start": 5923.2, "end": 5925.86, "probability": 0.8531 }, { "start": 5927.2, "end": 5927.68, "probability": 0.972 }, { "start": 5928.98, "end": 5930.1, "probability": 0.9756 }, { "start": 5931.02, "end": 5933.7, "probability": 0.9736 }, { "start": 5934.7, "end": 5935.16, "probability": 0.7743 }, { "start": 5937.04, "end": 5938.54, "probability": 0.9957 }, { "start": 5940.2, "end": 5940.62, "probability": 0.9961 }, { "start": 5942.2, "end": 5943.38, "probability": 0.7885 }, { "start": 5944.34, "end": 5944.7, "probability": 0.7808 }, { "start": 5945.82, "end": 5946.98, "probability": 0.6027 }, { "start": 5949.28, "end": 5949.72, "probability": 0.9878 }, { "start": 5951.36, "end": 5952.46, "probability": 0.8944 }, { "start": 5954.24, "end": 5954.72, "probability": 0.8962 }, { "start": 5956.1, "end": 5957.08, "probability": 0.8378 }, { "start": 5958.26, "end": 5961.14, "probability": 0.9832 }, { "start": 5962.74, "end": 5963.3, "probability": 0.9819 }, { "start": 5965.0, "end": 5966.32, "probability": 0.815 }, { "start": 5967.42, "end": 5967.92, "probability": 0.8896 }, { "start": 5968.94, "end": 5970.38, "probability": 0.8935 }, { "start": 5971.38, "end": 5971.72, "probability": 0.9299 }, { "start": 5972.84, "end": 5974.14, "probability": 0.5852 }, { "start": 5975.64, "end": 5976.12, "probability": 0.9604 }, { "start": 5977.32, "end": 5978.48, "probability": 0.8592 }, { "start": 5980.82, "end": 5981.38, "probability": 0.9671 }, { "start": 5982.74, "end": 5983.76, "probability": 0.9161 }, { "start": 5984.7, "end": 5985.84, "probability": 0.9851 }, { "start": 5987.1, "end": 5987.76, "probability": 0.4939 }, { "start": 5990.48, "end": 5990.96, "probability": 0.9883 }, { "start": 5994.78, "end": 5995.18, "probability": 0.7515 }, { "start": 5997.72, "end": 5998.74, "probability": 0.3251 }, { "start": 6002.06, "end": 6002.46, "probability": 0.6033 }, { "start": 6004.3, "end": 6005.92, "probability": 0.8936 }, { "start": 6007.26, "end": 6008.06, "probability": 0.8243 }, { "start": 6008.66, "end": 6009.44, "probability": 0.6715 }, { "start": 6010.48, "end": 6010.9, "probability": 0.9653 }, { "start": 6011.98, "end": 6013.0, "probability": 0.9307 }, { "start": 6014.14, "end": 6014.58, "probability": 0.9619 }, { "start": 6015.96, "end": 6016.88, "probability": 0.877 }, { "start": 6017.94, "end": 6018.46, "probability": 0.9912 }, { "start": 6019.68, "end": 6020.8, "probability": 0.8817 }, { "start": 6023.44, "end": 6025.34, "probability": 0.2481 }, { "start": 6032.54, "end": 6033.6, "probability": 0.6147 }, { "start": 6041.36, "end": 6042.48, "probability": 0.4614 }, { "start": 6044.24, "end": 6045.28, "probability": 0.6093 }, { "start": 6046.2, "end": 6047.38, "probability": 0.7985 }, { "start": 6048.68, "end": 6051.0, "probability": 0.9081 }, { "start": 6053.14, "end": 6053.62, "probability": 0.9588 }, { "start": 6054.88, "end": 6055.88, "probability": 0.9389 }, { "start": 6056.74, "end": 6057.12, "probability": 0.9675 }, { "start": 6058.02, "end": 6059.46, "probability": 0.9738 }, { "start": 6060.08, "end": 6060.44, "probability": 0.8978 }, { "start": 6061.46, "end": 6062.38, "probability": 0.9419 }, { "start": 6063.72, "end": 6064.0, "probability": 0.7402 }, { "start": 6065.06, "end": 6065.82, "probability": 0.8262 }, { "start": 6067.32, "end": 6067.82, "probability": 0.9857 }, { "start": 6069.28, "end": 6070.38, "probability": 0.9446 }, { "start": 6071.58, "end": 6072.08, "probability": 0.985 }, { "start": 6073.24, "end": 6074.64, "probability": 0.8645 }, { "start": 6075.5, "end": 6075.96, "probability": 0.9857 }, { "start": 6076.84, "end": 6078.2, "probability": 0.8965 }, { "start": 6079.64, "end": 6080.06, "probability": 0.9933 }, { "start": 6081.5, "end": 6082.82, "probability": 0.9532 }, { "start": 6084.18, "end": 6084.62, "probability": 0.9915 }, { "start": 6085.72, "end": 6086.62, "probability": 0.9445 }, { "start": 6087.62, "end": 6089.94, "probability": 0.5216 }, { "start": 6091.48, "end": 6092.6, "probability": 0.412 }, { "start": 6094.32, "end": 6095.28, "probability": 0.8629 }, { "start": 6096.28, "end": 6097.26, "probability": 0.826 }, { "start": 6098.62, "end": 6099.08, "probability": 0.9202 }, { "start": 6099.96, "end": 6100.88, "probability": 0.7522 }, { "start": 6101.68, "end": 6104.74, "probability": 0.9648 }, { "start": 6107.58, "end": 6108.32, "probability": 0.898 }, { "start": 6109.4, "end": 6110.76, "probability": 0.9243 }, { "start": 6111.74, "end": 6112.26, "probability": 0.7351 }, { "start": 6113.6, "end": 6114.44, "probability": 0.87 }, { "start": 6116.96, "end": 6119.36, "probability": 0.9261 }, { "start": 6120.42, "end": 6120.84, "probability": 0.6762 }, { "start": 6122.44, "end": 6122.9, "probability": 0.7615 }, { "start": 6123.86, "end": 6125.1, "probability": 0.657 }, { "start": 6126.62, "end": 6127.04, "probability": 0.8911 }, { "start": 6129.76, "end": 6131.04, "probability": 0.8648 }, { "start": 6132.22, "end": 6132.74, "probability": 0.014 }, { "start": 6133.42, "end": 6134.42, "probability": 0.6157 }, { "start": 6135.66, "end": 6137.02, "probability": 0.6011 }, { "start": 6138.24, "end": 6139.1, "probability": 0.5918 }, { "start": 6141.98, "end": 6142.74, "probability": 0.9508 }, { "start": 6143.98, "end": 6145.1, "probability": 0.8528 }, { "start": 6146.78, "end": 6147.62, "probability": 0.9934 }, { "start": 6148.54, "end": 6149.9, "probability": 0.9778 }, { "start": 6151.12, "end": 6154.02, "probability": 0.76 }, { "start": 6155.78, "end": 6158.19, "probability": 0.775 }, { "start": 6160.26, "end": 6162.38, "probability": 0.8599 }, { "start": 6164.68, "end": 6165.56, "probability": 0.7421 }, { "start": 6167.16, "end": 6169.2, "probability": 0.8726 }, { "start": 6170.76, "end": 6171.74, "probability": 0.7538 }, { "start": 6172.38, "end": 6173.38, "probability": 0.6567 }, { "start": 6174.8, "end": 6175.52, "probability": 0.9764 }, { "start": 6176.94, "end": 6178.26, "probability": 0.7434 }, { "start": 6179.42, "end": 6181.76, "probability": 0.8213 }, { "start": 6183.62, "end": 6184.46, "probability": 0.9859 }, { "start": 6187.16, "end": 6188.44, "probability": 0.9199 }, { "start": 6190.08, "end": 6191.16, "probability": 0.9947 }, { "start": 6193.44, "end": 6194.48, "probability": 0.966 }, { "start": 6195.12, "end": 6196.06, "probability": 0.9926 }, { "start": 6196.78, "end": 6197.86, "probability": 0.9657 }, { "start": 6199.86, "end": 6200.72, "probability": 0.991 }, { "start": 6201.56, "end": 6202.22, "probability": 0.9589 }, { "start": 6204.08, "end": 6204.86, "probability": 0.7248 }, { "start": 6209.3, "end": 6210.46, "probability": 0.3064 }, { "start": 6211.34, "end": 6212.38, "probability": 0.6238 }, { "start": 6213.9, "end": 6215.08, "probability": 0.7984 }, { "start": 6217.68, "end": 6218.5, "probability": 0.841 }, { "start": 6219.2, "end": 6220.24, "probability": 0.6736 }, { "start": 6221.38, "end": 6222.16, "probability": 0.9851 }, { "start": 6224.52, "end": 6228.74, "probability": 0.8087 }, { "start": 6229.9, "end": 6230.58, "probability": 0.5097 }, { "start": 6231.48, "end": 6232.92, "probability": 0.639 }, { "start": 6232.94, "end": 6234.82, "probability": 0.9315 }, { "start": 6236.88, "end": 6237.86, "probability": 0.1132 }, { "start": 6239.2, "end": 6241.4, "probability": 0.1269 }, { "start": 6242.0, "end": 6242.16, "probability": 0.0297 }, { "start": 6251.88, "end": 6251.94, "probability": 0.0927 }, { "start": 6252.76, "end": 6252.76, "probability": 0.1514 }, { "start": 6254.0, "end": 6254.42, "probability": 0.0077 }, { "start": 6265.98, "end": 6268.78, "probability": 0.0288 }, { "start": 6272.56, "end": 6272.56, "probability": 0.0003 }, { "start": 6276.34, "end": 6277.5, "probability": 0.0398 }, { "start": 6288.22, "end": 6289.84, "probability": 0.069 }, { "start": 6290.78, "end": 6292.34, "probability": 0.0509 }, { "start": 6294.06, "end": 6299.26, "probability": 0.0773 }, { "start": 6299.26, "end": 6300.52, "probability": 0.0565 }, { "start": 6302.14, "end": 6303.5, "probability": 0.0133 }, { "start": 6305.86, "end": 6307.66, "probability": 0.0684 }, { "start": 6307.68, "end": 6308.44, "probability": 0.0932 }, { "start": 6371.38, "end": 6376.54, "probability": 0.6773 }, { "start": 6376.86, "end": 6378.74, "probability": 0.9406 }, { "start": 6381.98, "end": 6381.98, "probability": 0.3609 }, { "start": 6402.66, "end": 6405.96, "probability": 0.6769 }, { "start": 6407.12, "end": 6410.08, "probability": 0.8089 }, { "start": 6412.08, "end": 6421.08, "probability": 0.9836 }, { "start": 6421.76, "end": 6423.0, "probability": 0.7889 }, { "start": 6423.38, "end": 6426.92, "probability": 0.9536 }, { "start": 6427.1, "end": 6428.02, "probability": 0.4907 }, { "start": 6429.04, "end": 6434.4, "probability": 0.9893 }, { "start": 6435.68, "end": 6439.36, "probability": 0.9631 }, { "start": 6440.7, "end": 6443.32, "probability": 0.9906 }, { "start": 6444.16, "end": 6445.44, "probability": 0.9648 }, { "start": 6446.64, "end": 6451.1, "probability": 0.9935 }, { "start": 6451.66, "end": 6452.76, "probability": 0.6116 }, { "start": 6453.3, "end": 6456.5, "probability": 0.8071 }, { "start": 6457.09, "end": 6463.14, "probability": 0.9965 }, { "start": 6464.5, "end": 6469.2, "probability": 0.9788 }, { "start": 6469.9, "end": 6470.44, "probability": 0.6718 }, { "start": 6470.92, "end": 6471.42, "probability": 0.775 }, { "start": 6472.6, "end": 6474.96, "probability": 0.7038 }, { "start": 6475.78, "end": 6482.18, "probability": 0.9871 }, { "start": 6482.44, "end": 6484.12, "probability": 0.6854 }, { "start": 6485.34, "end": 6489.28, "probability": 0.9589 }, { "start": 6490.04, "end": 6491.09, "probability": 0.6292 }, { "start": 6491.34, "end": 6492.04, "probability": 0.9451 }, { "start": 6492.18, "end": 6492.86, "probability": 0.854 }, { "start": 6493.36, "end": 6494.44, "probability": 0.9075 }, { "start": 6494.6, "end": 6495.62, "probability": 0.8644 }, { "start": 6495.72, "end": 6496.3, "probability": 0.69 }, { "start": 6496.36, "end": 6499.54, "probability": 0.9648 }, { "start": 6500.82, "end": 6507.78, "probability": 0.9699 }, { "start": 6509.32, "end": 6512.38, "probability": 0.8498 }, { "start": 6513.04, "end": 6514.78, "probability": 0.8059 }, { "start": 6515.94, "end": 6516.87, "probability": 0.9819 }, { "start": 6518.3, "end": 6519.2, "probability": 0.9027 }, { "start": 6519.82, "end": 6521.12, "probability": 0.9932 }, { "start": 6522.02, "end": 6526.36, "probability": 0.9955 }, { "start": 6526.36, "end": 6530.58, "probability": 0.7094 }, { "start": 6531.76, "end": 6533.66, "probability": 0.8397 }, { "start": 6535.16, "end": 6536.7, "probability": 0.7775 }, { "start": 6537.58, "end": 6539.06, "probability": 0.894 }, { "start": 6540.0, "end": 6541.44, "probability": 0.6989 }, { "start": 6541.96, "end": 6544.9, "probability": 0.7589 }, { "start": 6545.54, "end": 6547.74, "probability": 0.879 }, { "start": 6549.3, "end": 6550.76, "probability": 0.2354 }, { "start": 6550.92, "end": 6553.4, "probability": 0.9725 }, { "start": 6553.6, "end": 6559.52, "probability": 0.7356 }, { "start": 6560.52, "end": 6563.54, "probability": 0.7973 }, { "start": 6564.42, "end": 6566.22, "probability": 0.9872 }, { "start": 6567.1, "end": 6568.52, "probability": 0.9761 }, { "start": 6569.14, "end": 6571.2, "probability": 0.8522 }, { "start": 6571.54, "end": 6573.92, "probability": 0.5492 }, { "start": 6574.02, "end": 6576.88, "probability": 0.86 }, { "start": 6578.34, "end": 6582.61, "probability": 0.9785 }, { "start": 6584.94, "end": 6591.08, "probability": 0.9619 }, { "start": 6592.2, "end": 6595.86, "probability": 0.9897 }, { "start": 6596.3, "end": 6599.08, "probability": 0.9832 }, { "start": 6600.38, "end": 6602.7, "probability": 0.9895 }, { "start": 6602.72, "end": 6604.46, "probability": 0.9498 }, { "start": 6604.88, "end": 6606.78, "probability": 0.9808 }, { "start": 6607.96, "end": 6611.66, "probability": 0.9527 }, { "start": 6611.78, "end": 6612.68, "probability": 0.6681 }, { "start": 6613.34, "end": 6615.3, "probability": 0.8994 }, { "start": 6616.22, "end": 6617.24, "probability": 0.9494 }, { "start": 6618.9, "end": 6621.3, "probability": 0.9598 }, { "start": 6621.94, "end": 6623.42, "probability": 0.8124 }, { "start": 6624.08, "end": 6629.92, "probability": 0.9841 }, { "start": 6630.74, "end": 6630.84, "probability": 0.1808 }, { "start": 6630.9, "end": 6631.92, "probability": 0.6597 }, { "start": 6632.32, "end": 6635.72, "probability": 0.8459 }, { "start": 6635.72, "end": 6639.62, "probability": 0.9416 }, { "start": 6641.08, "end": 6641.16, "probability": 0.2983 }, { "start": 6641.96, "end": 6649.6, "probability": 0.991 }, { "start": 6650.76, "end": 6650.92, "probability": 0.2989 }, { "start": 6651.94, "end": 6656.42, "probability": 0.9929 }, { "start": 6656.8, "end": 6659.92, "probability": 0.915 }, { "start": 6660.68, "end": 6664.46, "probability": 0.9663 }, { "start": 6664.56, "end": 6667.64, "probability": 0.991 }, { "start": 6668.86, "end": 6670.78, "probability": 0.9939 }, { "start": 6670.96, "end": 6671.22, "probability": 0.499 }, { "start": 6671.3, "end": 6674.48, "probability": 0.7568 }, { "start": 6674.82, "end": 6678.28, "probability": 0.7978 }, { "start": 6678.46, "end": 6682.62, "probability": 0.9801 }, { "start": 6683.46, "end": 6684.96, "probability": 0.9966 }, { "start": 6686.48, "end": 6689.2, "probability": 0.9035 }, { "start": 6690.0, "end": 6691.38, "probability": 0.9059 }, { "start": 6691.94, "end": 6693.68, "probability": 0.4741 }, { "start": 6694.34, "end": 6698.62, "probability": 0.9303 }, { "start": 6698.62, "end": 6703.64, "probability": 0.9962 }, { "start": 6704.44, "end": 6708.34, "probability": 0.9964 }, { "start": 6708.34, "end": 6712.76, "probability": 0.9919 }, { "start": 6713.52, "end": 6717.32, "probability": 0.9915 }, { "start": 6717.98, "end": 6723.6, "probability": 0.8831 }, { "start": 6724.2, "end": 6729.84, "probability": 0.9852 }, { "start": 6730.46, "end": 6735.76, "probability": 0.9982 }, { "start": 6735.78, "end": 6741.88, "probability": 0.9948 }, { "start": 6742.68, "end": 6749.46, "probability": 0.9983 }, { "start": 6750.12, "end": 6752.8, "probability": 0.9954 }, { "start": 6753.06, "end": 6757.66, "probability": 0.9799 }, { "start": 6758.46, "end": 6762.2, "probability": 0.9106 }, { "start": 6762.2, "end": 6767.16, "probability": 0.9938 }, { "start": 6767.92, "end": 6774.02, "probability": 0.9663 }, { "start": 6774.74, "end": 6779.94, "probability": 0.9865 }, { "start": 6779.94, "end": 6784.66, "probability": 0.9807 }, { "start": 6785.2, "end": 6789.62, "probability": 0.9679 }, { "start": 6789.62, "end": 6795.54, "probability": 0.9677 }, { "start": 6795.54, "end": 6800.42, "probability": 0.9971 }, { "start": 6800.8, "end": 6803.22, "probability": 0.9754 }, { "start": 6803.56, "end": 6807.45, "probability": 0.6467 }, { "start": 6808.42, "end": 6810.6, "probability": 0.8782 }, { "start": 6810.6, "end": 6814.1, "probability": 0.9895 }, { "start": 6814.82, "end": 6815.66, "probability": 0.6513 }, { "start": 6815.86, "end": 6821.86, "probability": 0.9514 }, { "start": 6822.36, "end": 6822.9, "probability": 0.6254 }, { "start": 6822.98, "end": 6830.08, "probability": 0.9951 }, { "start": 6830.3, "end": 6832.72, "probability": 0.8666 }, { "start": 6833.52, "end": 6836.34, "probability": 0.7389 }, { "start": 6836.76, "end": 6841.62, "probability": 0.9902 }, { "start": 6842.12, "end": 6846.38, "probability": 0.9971 }, { "start": 6846.38, "end": 6849.78, "probability": 0.9924 }, { "start": 6850.4, "end": 6855.44, "probability": 0.9882 }, { "start": 6855.44, "end": 6860.74, "probability": 0.9933 }, { "start": 6861.4, "end": 6863.96, "probability": 0.8906 }, { "start": 6863.98, "end": 6864.48, "probability": 0.4739 }, { "start": 6865.02, "end": 6867.12, "probability": 0.9604 }, { "start": 6867.6, "end": 6873.76, "probability": 0.9767 }, { "start": 6874.22, "end": 6879.56, "probability": 0.9968 }, { "start": 6879.64, "end": 6881.82, "probability": 0.9064 }, { "start": 6882.4, "end": 6884.24, "probability": 0.8981 }, { "start": 6884.86, "end": 6885.56, "probability": 0.7616 }, { "start": 6885.6, "end": 6885.82, "probability": 0.9429 }, { "start": 6885.96, "end": 6889.48, "probability": 0.992 }, { "start": 6889.7, "end": 6894.0, "probability": 0.9801 }, { "start": 6894.08, "end": 6897.26, "probability": 0.9917 }, { "start": 6898.0, "end": 6903.58, "probability": 0.948 }, { "start": 6903.58, "end": 6908.72, "probability": 0.9879 }, { "start": 6909.22, "end": 6909.66, "probability": 0.5165 }, { "start": 6909.78, "end": 6913.32, "probability": 0.9705 }, { "start": 6913.54, "end": 6917.2, "probability": 0.9869 }, { "start": 6918.16, "end": 6921.0, "probability": 0.923 }, { "start": 6921.13, "end": 6925.66, "probability": 0.8149 }, { "start": 6925.72, "end": 6926.58, "probability": 0.5313 }, { "start": 6927.14, "end": 6930.6, "probability": 0.9958 }, { "start": 6930.6, "end": 6934.16, "probability": 0.9132 }, { "start": 6935.2, "end": 6936.86, "probability": 0.8705 }, { "start": 6936.96, "end": 6938.66, "probability": 0.9165 }, { "start": 6939.48, "end": 6941.94, "probability": 0.8075 }, { "start": 6942.68, "end": 6946.76, "probability": 0.9793 }, { "start": 6948.28, "end": 6949.82, "probability": 0.6771 }, { "start": 6950.14, "end": 6950.92, "probability": 0.9542 }, { "start": 6951.48, "end": 6954.28, "probability": 0.9199 }, { "start": 6954.96, "end": 6956.54, "probability": 0.8905 }, { "start": 6957.16, "end": 6958.86, "probability": 0.9951 }, { "start": 6959.36, "end": 6961.49, "probability": 0.7454 }, { "start": 6962.06, "end": 6963.52, "probability": 0.4442 }, { "start": 6964.08, "end": 6965.34, "probability": 0.9949 }, { "start": 6965.38, "end": 6965.92, "probability": 0.8235 }, { "start": 6966.5, "end": 6966.64, "probability": 0.7676 }, { "start": 6966.76, "end": 6971.5, "probability": 0.9837 }, { "start": 6971.96, "end": 6973.24, "probability": 0.9723 }, { "start": 6973.36, "end": 6981.3, "probability": 0.9686 }, { "start": 6981.46, "end": 6983.14, "probability": 0.5484 }, { "start": 6983.7, "end": 6986.18, "probability": 0.6659 }, { "start": 6986.9, "end": 6987.58, "probability": 0.9743 }, { "start": 6988.76, "end": 6990.6, "probability": 0.8924 }, { "start": 6991.08, "end": 6993.26, "probability": 0.8271 }, { "start": 6993.86, "end": 6996.6, "probability": 0.556 }, { "start": 6997.02, "end": 6997.82, "probability": 0.6826 }, { "start": 6997.9, "end": 6999.58, "probability": 0.921 }, { "start": 7000.2, "end": 7000.85, "probability": 0.9011 }, { "start": 7001.68, "end": 7002.96, "probability": 0.8328 }, { "start": 7003.98, "end": 7008.12, "probability": 0.8182 }, { "start": 7008.68, "end": 7009.08, "probability": 0.6476 }, { "start": 7009.1, "end": 7009.68, "probability": 0.5712 }, { "start": 7010.12, "end": 7012.66, "probability": 0.8179 }, { "start": 7013.3, "end": 7014.86, "probability": 0.5525 }, { "start": 7015.82, "end": 7020.48, "probability": 0.8429 }, { "start": 7020.9, "end": 7022.4, "probability": 0.9866 }, { "start": 7022.76, "end": 7024.22, "probability": 0.7898 }, { "start": 7024.22, "end": 7025.54, "probability": 0.6127 }, { "start": 7025.84, "end": 7026.8, "probability": 0.741 }, { "start": 7027.42, "end": 7031.46, "probability": 0.9439 }, { "start": 7031.46, "end": 7035.16, "probability": 0.9399 }, { "start": 7035.5, "end": 7036.59, "probability": 0.8082 }, { "start": 7036.92, "end": 7037.84, "probability": 0.7795 }, { "start": 7038.4, "end": 7039.52, "probability": 0.905 }, { "start": 7050.6, "end": 7051.0, "probability": 0.4222 }, { "start": 7051.3, "end": 7052.04, "probability": 0.0034 }, { "start": 7055.12, "end": 7056.24, "probability": 0.3585 }, { "start": 7056.58, "end": 7056.86, "probability": 0.2984 }, { "start": 7056.92, "end": 7057.04, "probability": 0.0453 }, { "start": 7059.38, "end": 7061.64, "probability": 0.2086 }, { "start": 7061.66, "end": 7061.68, "probability": 0.1914 }, { "start": 7075.22, "end": 7075.5, "probability": 0.1428 }, { "start": 7084.68, "end": 7085.48, "probability": 0.1807 }, { "start": 7085.64, "end": 7086.06, "probability": 0.1595 }, { "start": 7086.88, "end": 7087.56, "probability": 0.1161 }, { "start": 7091.4, "end": 7091.86, "probability": 0.2148 }, { "start": 7093.04, "end": 7095.48, "probability": 0.2294 }, { "start": 7102.7, "end": 7102.7, "probability": 0.061 }, { "start": 7102.7, "end": 7103.34, "probability": 0.1351 }, { "start": 7103.34, "end": 7106.12, "probability": 0.0503 }, { "start": 7106.12, "end": 7106.26, "probability": 0.152 }, { "start": 7106.26, "end": 7107.42, "probability": 0.1635 }, { "start": 7107.96, "end": 7108.02, "probability": 0.1297 }, { "start": 7114.08, "end": 7114.1, "probability": 0.1134 }, { "start": 7114.1, "end": 7114.12, "probability": 0.164 }, { "start": 7114.12, "end": 7114.12, "probability": 0.026 }, { "start": 7121.42, "end": 7121.98, "probability": 0.1097 }, { "start": 7122.7, "end": 7124.56, "probability": 0.1146 }, { "start": 7126.92, "end": 7128.94, "probability": 0.0278 }, { "start": 7129.6, "end": 7129.82, "probability": 0.0779 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.0, "end": 7132.0, "probability": 0.0 }, { "start": 7132.1, "end": 7132.1, "probability": 0.0172 }, { "start": 7132.1, "end": 7132.9, "probability": 0.583 }, { "start": 7133.16, "end": 7134.18, "probability": 0.1608 }, { "start": 7134.24, "end": 7134.68, "probability": 0.0143 }, { "start": 7136.4, "end": 7136.66, "probability": 0.1279 }, { "start": 7136.96, "end": 7138.64, "probability": 0.1926 }, { "start": 7140.18, "end": 7141.16, "probability": 0.5456 }, { "start": 7142.61, "end": 7143.2, "probability": 0.0981 }, { "start": 7143.9, "end": 7146.2, "probability": 0.1077 }, { "start": 7146.58, "end": 7147.98, "probability": 0.3509 }, { "start": 7151.7, "end": 7153.14, "probability": 0.5924 }, { "start": 7153.58, "end": 7158.48, "probability": 0.8297 }, { "start": 7160.04, "end": 7160.06, "probability": 0.1963 }, { "start": 7160.86, "end": 7162.56, "probability": 0.4854 }, { "start": 7162.66, "end": 7162.86, "probability": 0.9365 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.0, "end": 7264.0, "probability": 0.0 }, { "start": 7264.12, "end": 7265.48, "probability": 0.6856 }, { "start": 7266.26, "end": 7269.16, "probability": 0.8328 }, { "start": 7269.2, "end": 7271.44, "probability": 0.9137 }, { "start": 7272.6, "end": 7273.38, "probability": 0.9243 }, { "start": 7275.1, "end": 7280.58, "probability": 0.7481 }, { "start": 7281.24, "end": 7285.22, "probability": 0.9731 }, { "start": 7285.3, "end": 7287.72, "probability": 0.7565 }, { "start": 7287.92, "end": 7290.68, "probability": 0.8359 }, { "start": 7290.78, "end": 7292.12, "probability": 0.9929 }, { "start": 7292.66, "end": 7294.34, "probability": 0.9167 }, { "start": 7295.38, "end": 7297.24, "probability": 0.9196 }, { "start": 7298.22, "end": 7299.46, "probability": 0.9797 }, { "start": 7299.68, "end": 7302.5, "probability": 0.9636 }, { "start": 7303.58, "end": 7304.58, "probability": 0.5533 }, { "start": 7304.72, "end": 7305.7, "probability": 0.8244 }, { "start": 7305.74, "end": 7308.26, "probability": 0.9674 }, { "start": 7309.24, "end": 7313.24, "probability": 0.9919 }, { "start": 7315.0, "end": 7317.54, "probability": 0.9058 }, { "start": 7317.58, "end": 7320.34, "probability": 0.7731 }, { "start": 7320.38, "end": 7321.88, "probability": 0.8584 }, { "start": 7322.32, "end": 7323.96, "probability": 0.9102 }, { "start": 7324.06, "end": 7326.3, "probability": 0.7766 }, { "start": 7327.78, "end": 7330.78, "probability": 0.6811 }, { "start": 7331.34, "end": 7333.14, "probability": 0.7532 }, { "start": 7333.92, "end": 7339.36, "probability": 0.9355 }, { "start": 7339.64, "end": 7341.46, "probability": 0.9938 }, { "start": 7342.8, "end": 7342.8, "probability": 0.5303 }, { "start": 7343.42, "end": 7344.94, "probability": 0.9949 }, { "start": 7346.84, "end": 7351.74, "probability": 0.9454 }, { "start": 7351.74, "end": 7352.66, "probability": 0.5335 }, { "start": 7353.32, "end": 7353.91, "probability": 0.4972 }, { "start": 7354.12, "end": 7357.68, "probability": 0.9688 }, { "start": 7358.6, "end": 7360.26, "probability": 0.7756 }, { "start": 7361.1, "end": 7362.56, "probability": 0.7892 }, { "start": 7363.46, "end": 7363.46, "probability": 0.2593 }, { "start": 7363.66, "end": 7366.5, "probability": 0.9861 }, { "start": 7366.5, "end": 7369.2, "probability": 0.8728 }, { "start": 7369.7, "end": 7371.94, "probability": 0.5061 }, { "start": 7372.7, "end": 7375.98, "probability": 0.9946 }, { "start": 7376.16, "end": 7377.73, "probability": 0.8481 }, { "start": 7378.28, "end": 7380.4, "probability": 0.8352 }, { "start": 7380.44, "end": 7382.58, "probability": 0.9806 }, { "start": 7383.46, "end": 7384.16, "probability": 0.4997 }, { "start": 7387.74, "end": 7388.64, "probability": 0.2397 }, { "start": 7390.26, "end": 7390.9, "probability": 0.6208 }, { "start": 7392.58, "end": 7394.92, "probability": 0.9679 }, { "start": 7394.92, "end": 7396.66, "probability": 0.9514 }, { "start": 7397.8, "end": 7401.02, "probability": 0.9966 }, { "start": 7401.9, "end": 7404.08, "probability": 0.9961 }, { "start": 7404.18, "end": 7404.7, "probability": 0.7965 }, { "start": 7405.4, "end": 7407.82, "probability": 0.8786 }, { "start": 7409.0, "end": 7415.64, "probability": 0.8229 }, { "start": 7417.12, "end": 7418.56, "probability": 0.9817 }, { "start": 7418.74, "end": 7421.72, "probability": 0.8514 }, { "start": 7421.88, "end": 7422.5, "probability": 0.6668 }, { "start": 7422.56, "end": 7423.92, "probability": 0.6297 }, { "start": 7429.2, "end": 7431.34, "probability": 0.7518 }, { "start": 7435.82, "end": 7437.32, "probability": 0.822 }, { "start": 7437.95, "end": 7439.18, "probability": 0.9155 }, { "start": 7450.44, "end": 7454.28, "probability": 0.7904 }, { "start": 7454.4, "end": 7455.64, "probability": 0.4846 }, { "start": 7455.7, "end": 7457.34, "probability": 0.9148 }, { "start": 7458.04, "end": 7458.44, "probability": 0.8154 }, { "start": 7459.6, "end": 7461.94, "probability": 0.9512 }, { "start": 7463.0, "end": 7465.38, "probability": 0.8579 }, { "start": 7465.9, "end": 7469.22, "probability": 0.8662 }, { "start": 7470.0, "end": 7470.48, "probability": 0.5276 }, { "start": 7470.6, "end": 7471.7, "probability": 0.9948 }, { "start": 7472.16, "end": 7474.84, "probability": 0.9878 }, { "start": 7474.84, "end": 7477.86, "probability": 0.9919 }, { "start": 7478.58, "end": 7483.12, "probability": 0.9966 }, { "start": 7483.12, "end": 7483.94, "probability": 0.9529 }, { "start": 7485.12, "end": 7486.96, "probability": 0.9386 }, { "start": 7487.88, "end": 7489.6, "probability": 0.669 }, { "start": 7489.7, "end": 7493.68, "probability": 0.956 }, { "start": 7494.4, "end": 7497.38, "probability": 0.9799 }, { "start": 7497.78, "end": 7499.0, "probability": 0.8982 }, { "start": 7500.0, "end": 7501.24, "probability": 0.7949 }, { "start": 7502.54, "end": 7503.7, "probability": 0.996 }, { "start": 7504.34, "end": 7507.23, "probability": 0.9724 }, { "start": 7509.18, "end": 7509.5, "probability": 0.9491 }, { "start": 7510.24, "end": 7513.26, "probability": 0.8932 }, { "start": 7513.76, "end": 7515.14, "probability": 0.9985 }, { "start": 7515.24, "end": 7516.96, "probability": 0.9073 }, { "start": 7521.0, "end": 7523.88, "probability": 0.9816 }, { "start": 7525.2, "end": 7528.84, "probability": 0.9961 }, { "start": 7528.84, "end": 7533.5, "probability": 0.9921 }, { "start": 7534.4, "end": 7538.02, "probability": 0.9514 }, { "start": 7538.72, "end": 7540.84, "probability": 0.8918 }, { "start": 7542.22, "end": 7544.0, "probability": 0.9896 }, { "start": 7544.0, "end": 7546.3, "probability": 0.9992 }, { "start": 7547.34, "end": 7549.24, "probability": 0.9983 }, { "start": 7549.36, "end": 7551.74, "probability": 0.9761 }, { "start": 7552.72, "end": 7555.8, "probability": 0.9917 }, { "start": 7556.18, "end": 7558.42, "probability": 0.9806 }, { "start": 7558.42, "end": 7562.54, "probability": 0.9907 }, { "start": 7563.5, "end": 7569.28, "probability": 0.974 }, { "start": 7570.46, "end": 7572.5, "probability": 0.9889 }, { "start": 7572.6, "end": 7575.62, "probability": 0.9255 }, { "start": 7576.84, "end": 7579.64, "probability": 0.9844 }, { "start": 7580.2, "end": 7582.38, "probability": 0.7194 }, { "start": 7582.54, "end": 7584.4, "probability": 0.9923 }, { "start": 7585.78, "end": 7588.66, "probability": 0.9342 }, { "start": 7589.18, "end": 7591.58, "probability": 0.8639 }, { "start": 7592.32, "end": 7595.22, "probability": 0.8687 }, { "start": 7595.9, "end": 7600.64, "probability": 0.7088 }, { "start": 7605.88, "end": 7606.54, "probability": 0.6628 }, { "start": 7607.9, "end": 7610.0, "probability": 0.8306 }, { "start": 7610.2, "end": 7612.82, "probability": 0.8566 }, { "start": 7615.58, "end": 7617.14, "probability": 0.7406 }, { "start": 7617.86, "end": 7620.14, "probability": 0.7817 }, { "start": 7620.86, "end": 7621.52, "probability": 0.8296 }, { "start": 7622.02, "end": 7624.36, "probability": 0.9846 }, { "start": 7624.42, "end": 7625.72, "probability": 0.9951 }, { "start": 7626.54, "end": 7627.56, "probability": 0.9785 }, { "start": 7627.76, "end": 7630.1, "probability": 0.9897 }, { "start": 7631.0, "end": 7633.0, "probability": 0.9575 }, { "start": 7633.72, "end": 7637.42, "probability": 0.9976 }, { "start": 7638.08, "end": 7639.82, "probability": 0.9976 }, { "start": 7640.64, "end": 7643.72, "probability": 0.9777 }, { "start": 7644.72, "end": 7645.18, "probability": 0.4019 }, { "start": 7645.38, "end": 7648.36, "probability": 0.9478 }, { "start": 7648.5, "end": 7650.04, "probability": 0.8613 }, { "start": 7650.96, "end": 7652.34, "probability": 0.7615 }, { "start": 7652.68, "end": 7655.04, "probability": 0.898 }, { "start": 7655.04, "end": 7658.8, "probability": 0.9879 }, { "start": 7658.88, "end": 7660.74, "probability": 0.998 }, { "start": 7661.62, "end": 7662.72, "probability": 0.9731 }, { "start": 7663.36, "end": 7668.08, "probability": 0.8624 }, { "start": 7668.52, "end": 7670.24, "probability": 0.9932 }, { "start": 7670.27, "end": 7672.7, "probability": 0.9916 }, { "start": 7673.78, "end": 7674.74, "probability": 0.8658 }, { "start": 7675.34, "end": 7677.82, "probability": 0.9167 }, { "start": 7679.0, "end": 7680.94, "probability": 0.9623 }, { "start": 7680.94, "end": 7683.28, "probability": 0.9749 }, { "start": 7683.76, "end": 7686.44, "probability": 0.951 }, { "start": 7687.08, "end": 7688.8, "probability": 0.6879 }, { "start": 7689.38, "end": 7692.08, "probability": 0.804 }, { "start": 7692.8, "end": 7696.64, "probability": 0.9163 }, { "start": 7697.18, "end": 7699.04, "probability": 0.9746 }, { "start": 7699.5, "end": 7703.5, "probability": 0.9901 }, { "start": 7704.16, "end": 7704.94, "probability": 0.9138 }, { "start": 7705.96, "end": 7707.42, "probability": 0.7807 }, { "start": 7708.04, "end": 7710.5, "probability": 0.6377 }, { "start": 7711.7, "end": 7712.18, "probability": 0.9703 }, { "start": 7712.88, "end": 7714.48, "probability": 0.8822 }, { "start": 7724.58, "end": 7728.04, "probability": 0.9968 }, { "start": 7728.78, "end": 7731.64, "probability": 0.9834 }, { "start": 7731.7, "end": 7733.44, "probability": 0.7169 }, { "start": 7734.66, "end": 7735.18, "probability": 0.798 }, { "start": 7735.82, "end": 7740.46, "probability": 0.9882 }, { "start": 7741.56, "end": 7745.38, "probability": 0.7299 }, { "start": 7745.9, "end": 7747.2, "probability": 0.9533 }, { "start": 7747.34, "end": 7749.64, "probability": 0.9703 }, { "start": 7750.1, "end": 7750.88, "probability": 0.4945 }, { "start": 7753.28, "end": 7754.94, "probability": 0.8472 }, { "start": 7774.08, "end": 7778.16, "probability": 0.99 }, { "start": 7779.14, "end": 7780.38, "probability": 0.9561 }, { "start": 7780.6, "end": 7785.72, "probability": 0.9901 }, { "start": 7785.9, "end": 7788.88, "probability": 0.7193 }, { "start": 7789.62, "end": 7791.54, "probability": 0.892 }, { "start": 7792.18, "end": 7795.1, "probability": 0.9917 }, { "start": 7795.1, "end": 7798.52, "probability": 0.9883 }, { "start": 7799.0, "end": 7800.78, "probability": 0.9656 }, { "start": 7801.02, "end": 7801.36, "probability": 0.8981 }, { "start": 7806.04, "end": 7806.66, "probability": 0.7354 }, { "start": 7806.72, "end": 7808.96, "probability": 0.8683 }, { "start": 7810.0, "end": 7811.0, "probability": 0.8945 }, { "start": 7811.74, "end": 7814.44, "probability": 0.9854 }, { "start": 7814.68, "end": 7815.78, "probability": 0.9181 }, { "start": 7826.94, "end": 7829.0, "probability": 0.5659 }, { "start": 7829.22, "end": 7831.4, "probability": 0.8542 }, { "start": 7831.44, "end": 7832.12, "probability": 0.724 }, { "start": 7832.32, "end": 7832.86, "probability": 0.8586 }, { "start": 7833.32, "end": 7833.74, "probability": 0.9159 }, { "start": 7834.97, "end": 7838.04, "probability": 0.912 }, { "start": 7839.16, "end": 7842.46, "probability": 0.8833 }, { "start": 7843.78, "end": 7844.3, "probability": 0.5281 }, { "start": 7844.56, "end": 7844.92, "probability": 0.909 }, { "start": 7846.92, "end": 7847.84, "probability": 0.9198 }, { "start": 7848.92, "end": 7850.8, "probability": 0.9395 }, { "start": 7851.72, "end": 7855.24, "probability": 0.95 }, { "start": 7855.92, "end": 7858.82, "probability": 0.9636 }, { "start": 7860.26, "end": 7862.76, "probability": 0.9778 }, { "start": 7863.28, "end": 7864.42, "probability": 0.7365 }, { "start": 7865.04, "end": 7865.82, "probability": 0.8931 }, { "start": 7866.42, "end": 7869.06, "probability": 0.9854 }, { "start": 7869.62, "end": 7873.7, "probability": 0.9762 }, { "start": 7874.26, "end": 7876.19, "probability": 0.9888 }, { "start": 7877.54, "end": 7878.96, "probability": 0.9004 }, { "start": 7879.34, "end": 7880.56, "probability": 0.9951 }, { "start": 7880.64, "end": 7883.0, "probability": 0.9926 }, { "start": 7883.58, "end": 7884.93, "probability": 0.7906 }, { "start": 7886.06, "end": 7889.12, "probability": 0.6742 }, { "start": 7889.28, "end": 7889.68, "probability": 0.5963 }, { "start": 7890.84, "end": 7893.94, "probability": 0.6107 }, { "start": 7894.58, "end": 7895.88, "probability": 0.578 }, { "start": 7896.06, "end": 7900.82, "probability": 0.9494 }, { "start": 7901.26, "end": 7902.64, "probability": 0.9937 }, { "start": 7903.26, "end": 7905.22, "probability": 0.8525 }, { "start": 7906.24, "end": 7909.14, "probability": 0.8987 }, { "start": 7909.88, "end": 7910.78, "probability": 0.3336 }, { "start": 7911.84, "end": 7912.36, "probability": 0.3303 }, { "start": 7912.46, "end": 7918.54, "probability": 0.9904 }, { "start": 7918.62, "end": 7922.04, "probability": 0.7991 }, { "start": 7922.04, "end": 7926.08, "probability": 0.7991 }, { "start": 7926.54, "end": 7930.76, "probability": 0.8735 }, { "start": 7930.76, "end": 7935.56, "probability": 0.9741 }, { "start": 7936.1, "end": 7940.34, "probability": 0.768 }, { "start": 7941.0, "end": 7942.53, "probability": 0.8314 }, { "start": 7943.26, "end": 7944.14, "probability": 0.9587 }, { "start": 7945.88, "end": 7947.82, "probability": 0.7917 }, { "start": 7949.44, "end": 7951.08, "probability": 0.9445 }, { "start": 7951.16, "end": 7952.45, "probability": 0.626 }, { "start": 7955.1, "end": 7955.2, "probability": 0.3727 }, { "start": 7955.26, "end": 7957.78, "probability": 0.9465 }, { "start": 7958.42, "end": 7959.38, "probability": 0.4488 }, { "start": 7959.68, "end": 7960.38, "probability": 0.4824 }, { "start": 7960.56, "end": 7962.78, "probability": 0.8311 }, { "start": 7963.32, "end": 7963.98, "probability": 0.9472 }, { "start": 7964.04, "end": 7965.18, "probability": 0.6865 }, { "start": 7965.78, "end": 7966.94, "probability": 0.9917 }, { "start": 7967.5, "end": 7969.78, "probability": 0.9979 }, { "start": 7970.52, "end": 7974.56, "probability": 0.9882 }, { "start": 7975.22, "end": 7975.66, "probability": 0.2541 }, { "start": 7977.18, "end": 7982.4, "probability": 0.8013 }, { "start": 7982.86, "end": 7986.82, "probability": 0.9342 }, { "start": 7987.3, "end": 7989.72, "probability": 0.9176 }, { "start": 7990.36, "end": 7993.48, "probability": 0.901 }, { "start": 7993.88, "end": 7995.76, "probability": 0.9961 }, { "start": 7996.3, "end": 7999.86, "probability": 0.9097 }, { "start": 8000.34, "end": 8001.37, "probability": 0.9849 }, { "start": 8001.88, "end": 8002.44, "probability": 0.9845 }, { "start": 8002.54, "end": 8003.4, "probability": 0.9858 }, { "start": 8003.94, "end": 8007.12, "probability": 0.671 }, { "start": 8007.56, "end": 8007.68, "probability": 0.7996 }, { "start": 8007.76, "end": 8010.76, "probability": 0.8871 }, { "start": 8011.22, "end": 8012.28, "probability": 0.8846 }, { "start": 8012.3, "end": 8015.08, "probability": 0.9626 }, { "start": 8015.56, "end": 8016.64, "probability": 0.8429 }, { "start": 8017.0, "end": 8018.9, "probability": 0.944 }, { "start": 8018.96, "end": 8021.04, "probability": 0.9774 }, { "start": 8021.22, "end": 8021.5, "probability": 0.6134 }, { "start": 8021.62, "end": 8022.48, "probability": 0.6356 }, { "start": 8022.52, "end": 8024.96, "probability": 0.7975 }, { "start": 8025.38, "end": 8028.56, "probability": 0.9731 }, { "start": 8028.84, "end": 8029.5, "probability": 0.5917 }, { "start": 8029.5, "end": 8030.64, "probability": 0.2804 }, { "start": 8030.64, "end": 8030.88, "probability": 0.0938 }, { "start": 8031.28, "end": 8031.52, "probability": 0.6636 }, { "start": 8031.54, "end": 8034.1, "probability": 0.852 }, { "start": 8035.88, "end": 8039.26, "probability": 0.9856 }, { "start": 8039.78, "end": 8041.78, "probability": 0.9579 }, { "start": 8044.3, "end": 8045.15, "probability": 0.2428 }, { "start": 8046.44, "end": 8046.88, "probability": 0.9561 }, { "start": 8047.84, "end": 8048.78, "probability": 0.6279 }, { "start": 8050.02, "end": 8050.5, "probability": 0.688 }, { "start": 8051.14, "end": 8054.88, "probability": 0.9183 }, { "start": 8055.62, "end": 8057.28, "probability": 0.9201 }, { "start": 8061.56, "end": 8062.08, "probability": 0.95 }, { "start": 8063.18, "end": 8064.12, "probability": 0.6539 }, { "start": 8065.14, "end": 8065.46, "probability": 0.9861 }, { "start": 8066.16, "end": 8067.18, "probability": 0.9405 }, { "start": 8067.96, "end": 8069.98, "probability": 0.9704 }, { "start": 8070.74, "end": 8072.54, "probability": 0.9839 }, { "start": 8076.8, "end": 8077.06, "probability": 0.5133 }, { "start": 8077.86, "end": 8078.72, "probability": 0.5545 }, { "start": 8079.92, "end": 8080.26, "probability": 0.9668 }, { "start": 8080.96, "end": 8081.96, "probability": 0.959 }, { "start": 8083.28, "end": 8085.68, "probability": 0.9313 }, { "start": 8086.76, "end": 8087.24, "probability": 0.9409 }, { "start": 8087.88, "end": 8089.16, "probability": 0.976 }, { "start": 8090.45, "end": 8092.86, "probability": 0.9843 }, { "start": 8093.86, "end": 8094.34, "probability": 0.9308 }, { "start": 8095.04, "end": 8095.8, "probability": 0.9908 }, { "start": 8096.44, "end": 8096.88, "probability": 0.9954 }, { "start": 8097.54, "end": 8098.5, "probability": 0.9131 }, { "start": 8099.26, "end": 8099.7, "probability": 0.8949 }, { "start": 8100.3, "end": 8101.36, "probability": 0.9691 }, { "start": 8103.1, "end": 8105.96, "probability": 0.6707 }, { "start": 8108.66, "end": 8109.68, "probability": 0.584 }, { "start": 8110.88, "end": 8111.38, "probability": 0.7883 }, { "start": 8112.02, "end": 8112.94, "probability": 0.96 }, { "start": 8113.7, "end": 8115.1, "probability": 0.9695 }, { "start": 8115.94, "end": 8118.44, "probability": 0.9827 }, { "start": 8119.28, "end": 8119.74, "probability": 0.7678 }, { "start": 8120.48, "end": 8121.48, "probability": 0.9932 }, { "start": 8122.4, "end": 8122.84, "probability": 0.9878 }, { "start": 8123.78, "end": 8124.28, "probability": 0.9855 }, { "start": 8125.32, "end": 8125.72, "probability": 0.9596 }, { "start": 8126.44, "end": 8127.7, "probability": 0.7993 }, { "start": 8128.84, "end": 8129.3, "probability": 0.903 }, { "start": 8130.24, "end": 8130.96, "probability": 0.9918 }, { "start": 8132.34, "end": 8132.78, "probability": 0.9905 }, { "start": 8133.44, "end": 8134.18, "probability": 0.8157 }, { "start": 8135.28, "end": 8135.68, "probability": 0.6101 }, { "start": 8136.6, "end": 8137.02, "probability": 0.7773 }, { "start": 8139.52, "end": 8140.72, "probability": 0.9403 }, { "start": 8141.68, "end": 8142.44, "probability": 0.6905 }, { "start": 8146.52, "end": 8147.66, "probability": 0.5028 }, { "start": 8152.22, "end": 8153.12, "probability": 0.5658 }, { "start": 8154.1, "end": 8154.4, "probability": 0.8087 }, { "start": 8155.2, "end": 8155.58, "probability": 0.8096 }, { "start": 8157.6, "end": 8158.24, "probability": 0.9583 }, { "start": 8158.9, "end": 8159.6, "probability": 0.7762 }, { "start": 8160.98, "end": 8161.82, "probability": 0.946 }, { "start": 8162.42, "end": 8163.12, "probability": 0.7872 }, { "start": 8164.48, "end": 8165.0, "probability": 0.9653 }, { "start": 8165.74, "end": 8166.58, "probability": 0.9815 }, { "start": 8168.08, "end": 8168.8, "probability": 0.9696 }, { "start": 8170.36, "end": 8171.24, "probability": 0.9503 }, { "start": 8172.78, "end": 8173.7, "probability": 0.5112 }, { "start": 8174.9, "end": 8175.8, "probability": 0.8158 }, { "start": 8176.62, "end": 8177.08, "probability": 0.9814 }, { "start": 8177.68, "end": 8178.48, "probability": 0.845 }, { "start": 8179.44, "end": 8179.72, "probability": 0.5305 }, { "start": 8180.74, "end": 8182.02, "probability": 0.7797 }, { "start": 8183.08, "end": 8183.42, "probability": 0.9902 }, { "start": 8184.12, "end": 8185.26, "probability": 0.9583 }, { "start": 8186.46, "end": 8188.66, "probability": 0.9726 }, { "start": 8189.7, "end": 8190.24, "probability": 0.9793 }, { "start": 8190.92, "end": 8191.88, "probability": 0.8161 }, { "start": 8192.83, "end": 8194.56, "probability": 0.7503 }, { "start": 8195.62, "end": 8196.1, "probability": 0.9551 }, { "start": 8196.7, "end": 8197.9, "probability": 0.9363 }, { "start": 8198.84, "end": 8201.32, "probability": 0.9445 }, { "start": 8202.84, "end": 8203.36, "probability": 0.6838 }, { "start": 8203.88, "end": 8205.22, "probability": 0.6835 }, { "start": 8207.2, "end": 8207.6, "probability": 0.9153 }, { "start": 8208.62, "end": 8210.06, "probability": 0.7624 }, { "start": 8211.08, "end": 8212.02, "probability": 0.9525 }, { "start": 8212.94, "end": 8214.04, "probability": 0.5608 }, { "start": 8214.92, "end": 8215.34, "probability": 0.8939 }, { "start": 8216.22, "end": 8217.34, "probability": 0.8728 }, { "start": 8218.12, "end": 8218.62, "probability": 0.993 }, { "start": 8219.32, "end": 8219.98, "probability": 0.8257 }, { "start": 8221.96, "end": 8224.02, "probability": 0.9373 }, { "start": 8224.96, "end": 8225.92, "probability": 0.9547 }, { "start": 8226.9, "end": 8227.3, "probability": 0.9783 }, { "start": 8228.28, "end": 8229.06, "probability": 0.9717 }, { "start": 8231.4, "end": 8232.6, "probability": 0.5522 }, { "start": 8233.54, "end": 8233.8, "probability": 0.6517 }, { "start": 8234.58, "end": 8235.82, "probability": 0.9411 }, { "start": 8236.54, "end": 8237.0, "probability": 0.9733 }, { "start": 8237.62, "end": 8238.08, "probability": 0.9141 }, { "start": 8239.64, "end": 8240.06, "probability": 0.9917 }, { "start": 8240.94, "end": 8241.78, "probability": 0.9919 }, { "start": 8244.22, "end": 8245.24, "probability": 0.9967 }, { "start": 8246.36, "end": 8247.64, "probability": 0.9071 }, { "start": 8248.44, "end": 8248.94, "probability": 0.9933 }, { "start": 8249.74, "end": 8250.54, "probability": 0.8994 }, { "start": 8252.12, "end": 8255.34, "probability": 0.8264 }, { "start": 8255.96, "end": 8256.68, "probability": 0.9573 }, { "start": 8258.76, "end": 8259.42, "probability": 0.4994 }, { "start": 8260.08, "end": 8261.58, "probability": 0.1857 }, { "start": 8262.56, "end": 8262.92, "probability": 0.5418 }, { "start": 8264.0, "end": 8264.64, "probability": 0.739 }, { "start": 8265.67, "end": 8267.36, "probability": 0.9155 }, { "start": 8272.86, "end": 8273.2, "probability": 0.7041 }, { "start": 8274.68, "end": 8276.04, "probability": 0.4559 }, { "start": 8276.84, "end": 8277.34, "probability": 0.9543 }, { "start": 8278.02, "end": 8278.74, "probability": 0.8562 }, { "start": 8279.44, "end": 8281.82, "probability": 0.9322 }, { "start": 8283.0, "end": 8283.44, "probability": 0.6562 }, { "start": 8284.26, "end": 8285.02, "probability": 0.942 }, { "start": 8285.98, "end": 8288.2, "probability": 0.7618 }, { "start": 8292.26, "end": 8292.62, "probability": 0.7961 }, { "start": 8293.76, "end": 8294.84, "probability": 0.8479 }, { "start": 8295.76, "end": 8296.16, "probability": 0.8479 }, { "start": 8297.08, "end": 8297.96, "probability": 0.9524 }, { "start": 8298.98, "end": 8299.5, "probability": 0.9862 }, { "start": 8300.06, "end": 8300.88, "probability": 0.9838 }, { "start": 8301.74, "end": 8304.14, "probability": 0.9626 }, { "start": 8305.72, "end": 8306.18, "probability": 0.9839 }, { "start": 8306.74, "end": 8307.66, "probability": 0.6419 }, { "start": 8311.04, "end": 8312.2, "probability": 0.9767 }, { "start": 8312.76, "end": 8313.52, "probability": 0.72 }, { "start": 8315.04, "end": 8315.9, "probability": 0.9683 }, { "start": 8316.56, "end": 8318.18, "probability": 0.8464 }, { "start": 8319.72, "end": 8320.78, "probability": 0.5434 }, { "start": 8322.48, "end": 8322.9, "probability": 0.9508 }, { "start": 8324.24, "end": 8325.38, "probability": 0.7054 }, { "start": 8326.74, "end": 8327.12, "probability": 0.9937 }, { "start": 8328.14, "end": 8329.56, "probability": 0.9516 }, { "start": 8330.62, "end": 8331.0, "probability": 0.741 }, { "start": 8332.0, "end": 8332.7, "probability": 0.9718 }, { "start": 8333.86, "end": 8334.26, "probability": 0.9878 }, { "start": 8334.92, "end": 8335.66, "probability": 0.8773 }, { "start": 8336.82, "end": 8337.24, "probability": 0.9924 }, { "start": 8338.36, "end": 8339.04, "probability": 0.5397 }, { "start": 8339.96, "end": 8340.42, "probability": 0.8949 }, { "start": 8341.24, "end": 8342.18, "probability": 0.9897 }, { "start": 8342.94, "end": 8343.34, "probability": 0.9136 }, { "start": 8344.24, "end": 8344.7, "probability": 0.7542 }, { "start": 8346.38, "end": 8346.8, "probability": 0.7243 }, { "start": 8347.68, "end": 8348.66, "probability": 0.8661 }, { "start": 8349.36, "end": 8349.76, "probability": 0.7144 }, { "start": 8350.6, "end": 8350.96, "probability": 0.6692 }, { "start": 8352.2, "end": 8352.66, "probability": 0.9746 }, { "start": 8353.4, "end": 8354.46, "probability": 0.9442 }, { "start": 8355.32, "end": 8355.82, "probability": 0.9865 }, { "start": 8356.5, "end": 8357.56, "probability": 0.9561 }, { "start": 8358.72, "end": 8360.46, "probability": 0.9057 }, { "start": 8361.76, "end": 8363.82, "probability": 0.9875 }, { "start": 8364.66, "end": 8365.18, "probability": 0.9839 }, { "start": 8366.0, "end": 8367.02, "probability": 0.5071 }, { "start": 8368.36, "end": 8368.8, "probability": 0.965 }, { "start": 8369.66, "end": 8370.5, "probability": 0.7335 }, { "start": 8371.52, "end": 8371.88, "probability": 0.5603 }, { "start": 8372.84, "end": 8373.62, "probability": 0.491 }, { "start": 8375.0, "end": 8375.34, "probability": 0.9822 }, { "start": 8376.06, "end": 8376.84, "probability": 0.8774 }, { "start": 8378.68, "end": 8379.02, "probability": 0.9526 }, { "start": 8379.84, "end": 8380.58, "probability": 0.8764 }, { "start": 8381.48, "end": 8381.8, "probability": 0.9792 }, { "start": 8382.86, "end": 8383.38, "probability": 0.4956 }, { "start": 8384.52, "end": 8384.9, "probability": 0.9905 }, { "start": 8388.28, "end": 8389.14, "probability": 0.7152 }, { "start": 8390.14, "end": 8390.54, "probability": 0.8513 }, { "start": 8391.48, "end": 8392.42, "probability": 0.9092 }, { "start": 8393.08, "end": 8393.86, "probability": 0.7918 }, { "start": 8394.52, "end": 8395.32, "probability": 0.7879 }, { "start": 8396.24, "end": 8396.62, "probability": 0.9631 }, { "start": 8397.86, "end": 8398.76, "probability": 0.9681 }, { "start": 8399.92, "end": 8400.34, "probability": 0.9894 }, { "start": 8401.52, "end": 8406.64, "probability": 0.9609 }, { "start": 8407.9, "end": 8408.78, "probability": 0.8199 }, { "start": 8409.86, "end": 8410.28, "probability": 0.9805 }, { "start": 8411.02, "end": 8411.78, "probability": 0.963 }, { "start": 8414.7, "end": 8415.44, "probability": 0.8569 }, { "start": 8416.24, "end": 8417.14, "probability": 0.8709 }, { "start": 8418.1, "end": 8418.42, "probability": 0.7778 }, { "start": 8419.1, "end": 8421.72, "probability": 0.6743 }, { "start": 8423.68, "end": 8425.26, "probability": 0.6296 }, { "start": 8426.1, "end": 8427.18, "probability": 0.6665 }, { "start": 8428.22, "end": 8428.62, "probability": 0.9072 }, { "start": 8429.82, "end": 8430.76, "probability": 0.8415 }, { "start": 8432.44, "end": 8432.94, "probability": 0.973 }, { "start": 8434.5, "end": 8435.48, "probability": 0.9627 }, { "start": 8436.82, "end": 8437.28, "probability": 0.9727 }, { "start": 8438.26, "end": 8439.6, "probability": 0.9775 }, { "start": 8440.46, "end": 8440.96, "probability": 0.9757 }, { "start": 8442.24, "end": 8443.4, "probability": 0.9706 }, { "start": 8444.36, "end": 8444.82, "probability": 0.9819 }, { "start": 8445.52, "end": 8446.18, "probability": 0.9398 }, { "start": 8447.36, "end": 8451.48, "probability": 0.8823 }, { "start": 8452.26, "end": 8452.58, "probability": 0.6979 }, { "start": 8453.64, "end": 8455.2, "probability": 0.5118 }, { "start": 8455.88, "end": 8456.3, "probability": 0.9658 }, { "start": 8457.32, "end": 8458.94, "probability": 0.7153 }, { "start": 8461.88, "end": 8465.66, "probability": 0.9661 }, { "start": 8466.32, "end": 8466.78, "probability": 0.8984 }, { "start": 8467.8, "end": 8469.2, "probability": 0.8487 }, { "start": 8471.74, "end": 8472.14, "probability": 0.5191 }, { "start": 8473.66, "end": 8476.58, "probability": 0.5121 }, { "start": 8479.52, "end": 8482.14, "probability": 0.7488 }, { "start": 8483.54, "end": 8483.82, "probability": 0.7556 }, { "start": 8484.82, "end": 8485.58, "probability": 0.614 }, { "start": 8486.42, "end": 8488.88, "probability": 0.9384 }, { "start": 8490.39, "end": 8493.76, "probability": 0.9257 }, { "start": 8494.74, "end": 8497.22, "probability": 0.8066 }, { "start": 8498.56, "end": 8501.1, "probability": 0.8958 }, { "start": 8503.59, "end": 8506.24, "probability": 0.7637 }, { "start": 8507.88, "end": 8508.28, "probability": 0.9656 }, { "start": 8509.94, "end": 8510.88, "probability": 0.2472 }, { "start": 8513.18, "end": 8514.1, "probability": 0.4225 }, { "start": 8514.94, "end": 8520.94, "probability": 0.2957 }, { "start": 8521.52, "end": 8526.2, "probability": 0.657 }, { "start": 8527.42, "end": 8529.5, "probability": 0.8189 }, { "start": 8530.32, "end": 8531.08, "probability": 0.7695 }, { "start": 8531.62, "end": 8532.4, "probability": 0.5759 }, { "start": 8533.74, "end": 8534.42, "probability": 0.9673 }, { "start": 8535.44, "end": 8536.78, "probability": 0.8027 }, { "start": 8537.56, "end": 8538.48, "probability": 0.9868 }, { "start": 8539.02, "end": 8539.66, "probability": 0.7656 }, { "start": 8540.92, "end": 8543.36, "probability": 0.9651 }, { "start": 8544.74, "end": 8545.6, "probability": 0.9954 }, { "start": 8551.08, "end": 8552.34, "probability": 0.648 }, { "start": 8553.32, "end": 8554.24, "probability": 0.7874 }, { "start": 8554.88, "end": 8555.66, "probability": 0.8169 }, { "start": 8556.58, "end": 8557.34, "probability": 0.967 }, { "start": 8558.7, "end": 8559.82, "probability": 0.9698 }, { "start": 8560.76, "end": 8561.58, "probability": 0.9786 }, { "start": 8562.16, "end": 8562.96, "probability": 0.9503 }, { "start": 8563.84, "end": 8564.64, "probability": 0.9946 }, { "start": 8565.68, "end": 8570.92, "probability": 0.9748 }, { "start": 8571.66, "end": 8572.54, "probability": 0.6085 }, { "start": 8572.66, "end": 8573.68, "probability": 0.7992 }, { "start": 8603.06, "end": 8606.2, "probability": 0.2926 }, { "start": 8611.36, "end": 8611.36, "probability": 0.025 }, { "start": 8612.62, "end": 8612.68, "probability": 0.0428 }, { "start": 8690.5, "end": 8693.38, "probability": 0.5818 }, { "start": 8693.92, "end": 8695.1, "probability": 0.8687 }, { "start": 8696.28, "end": 8698.76, "probability": 0.2387 }, { "start": 8699.6, "end": 8701.64, "probability": 0.7849 }, { "start": 8701.86, "end": 8703.64, "probability": 0.9902 }, { "start": 8704.14, "end": 8707.91, "probability": 0.9917 }, { "start": 8709.04, "end": 8713.18, "probability": 0.8305 }, { "start": 8714.38, "end": 8718.22, "probability": 0.7993 }, { "start": 8719.16, "end": 8719.86, "probability": 0.5005 }, { "start": 8720.24, "end": 8722.8, "probability": 0.8655 }, { "start": 8744.98, "end": 8746.54, "probability": 0.6554 }, { "start": 8747.1, "end": 8747.54, "probability": 0.8575 }, { "start": 8748.06, "end": 8749.0, "probability": 0.7113 }, { "start": 8750.12, "end": 8750.94, "probability": 0.8989 }, { "start": 8751.64, "end": 8752.5, "probability": 0.7149 }, { "start": 8754.4, "end": 8761.78, "probability": 0.9834 }, { "start": 8762.52, "end": 8766.3, "probability": 0.9816 }, { "start": 8767.34, "end": 8771.38, "probability": 0.9952 }, { "start": 8772.16, "end": 8775.4, "probability": 0.989 }, { "start": 8775.94, "end": 8777.84, "probability": 0.9484 }, { "start": 8778.08, "end": 8778.72, "probability": 0.5749 }, { "start": 8779.68, "end": 8784.62, "probability": 0.977 }, { "start": 8785.64, "end": 8788.2, "probability": 0.989 }, { "start": 8789.32, "end": 8793.84, "probability": 0.9917 }, { "start": 8794.44, "end": 8800.04, "probability": 0.9902 }, { "start": 8801.32, "end": 8804.06, "probability": 0.7658 }, { "start": 8804.78, "end": 8806.7, "probability": 0.8771 }, { "start": 8807.36, "end": 8808.86, "probability": 0.6905 }, { "start": 8809.9, "end": 8810.7, "probability": 0.0774 }, { "start": 8811.8, "end": 8816.84, "probability": 0.9708 }, { "start": 8817.84, "end": 8824.68, "probability": 0.9882 }, { "start": 8825.34, "end": 8827.74, "probability": 0.9691 }, { "start": 8827.74, "end": 8830.86, "probability": 0.9723 }, { "start": 8831.76, "end": 8835.16, "probability": 0.9011 }, { "start": 8835.7, "end": 8836.76, "probability": 0.8022 }, { "start": 8837.32, "end": 8838.54, "probability": 0.8053 }, { "start": 8839.1, "end": 8842.7, "probability": 0.9852 }, { "start": 8843.6, "end": 8845.68, "probability": 0.6856 }, { "start": 8846.28, "end": 8849.72, "probability": 0.9321 }, { "start": 8850.6, "end": 8854.86, "probability": 0.9016 }, { "start": 8856.08, "end": 8860.76, "probability": 0.9768 }, { "start": 8860.76, "end": 8865.32, "probability": 0.9954 }, { "start": 8866.16, "end": 8869.46, "probability": 0.9885 }, { "start": 8870.74, "end": 8873.54, "probability": 0.9783 }, { "start": 8874.22, "end": 8877.06, "probability": 0.8901 }, { "start": 8878.14, "end": 8882.02, "probability": 0.9624 }, { "start": 8882.66, "end": 8884.12, "probability": 0.9924 }, { "start": 8884.68, "end": 8890.0, "probability": 0.9795 }, { "start": 8892.3, "end": 8893.4, "probability": 0.9152 }, { "start": 8893.98, "end": 8897.34, "probability": 0.9778 }, { "start": 8898.36, "end": 8899.6, "probability": 0.889 }, { "start": 8900.14, "end": 8904.7, "probability": 0.988 }, { "start": 8904.7, "end": 8909.12, "probability": 0.9843 }, { "start": 8910.1, "end": 8913.96, "probability": 0.9744 }, { "start": 8914.78, "end": 8916.1, "probability": 0.9872 }, { "start": 8916.76, "end": 8920.22, "probability": 0.9915 }, { "start": 8921.36, "end": 8922.06, "probability": 0.7056 }, { "start": 8922.92, "end": 8924.22, "probability": 0.9663 }, { "start": 8924.72, "end": 8927.52, "probability": 0.7651 }, { "start": 8928.64, "end": 8932.22, "probability": 0.9679 }, { "start": 8933.2, "end": 8933.66, "probability": 0.7813 }, { "start": 8934.64, "end": 8941.38, "probability": 0.96 }, { "start": 8942.26, "end": 8946.1, "probability": 0.9915 }, { "start": 8946.72, "end": 8948.04, "probability": 0.9157 }, { "start": 8948.48, "end": 8950.42, "probability": 0.8799 }, { "start": 8951.08, "end": 8952.0, "probability": 0.944 }, { "start": 8953.14, "end": 8954.18, "probability": 0.9269 }, { "start": 8954.88, "end": 8956.9, "probability": 0.894 }, { "start": 8957.28, "end": 8957.68, "probability": 0.5913 }, { "start": 8957.72, "end": 8958.46, "probability": 0.9738 }, { "start": 8958.88, "end": 8959.84, "probability": 0.7968 }, { "start": 8961.1, "end": 8964.02, "probability": 0.783 }, { "start": 8964.02, "end": 8967.82, "probability": 0.9128 }, { "start": 8968.68, "end": 8971.9, "probability": 0.7673 }, { "start": 8972.84, "end": 8975.3, "probability": 0.9881 }, { "start": 8976.0, "end": 8976.78, "probability": 0.8286 }, { "start": 8977.36, "end": 8981.62, "probability": 0.9865 }, { "start": 8981.98, "end": 8983.24, "probability": 0.5729 }, { "start": 8984.26, "end": 8984.96, "probability": 0.4709 }, { "start": 8985.24, "end": 8987.58, "probability": 0.7489 }, { "start": 8989.1, "end": 8992.1, "probability": 0.5212 }, { "start": 8992.62, "end": 8997.6, "probability": 0.9844 }, { "start": 8998.3, "end": 9001.62, "probability": 0.9928 }, { "start": 9002.12, "end": 9002.84, "probability": 0.9922 }, { "start": 9003.68, "end": 9005.86, "probability": 0.9927 }, { "start": 9005.86, "end": 9008.0, "probability": 0.9939 }, { "start": 9008.72, "end": 9009.78, "probability": 0.8778 }, { "start": 9010.56, "end": 9011.62, "probability": 0.8292 }, { "start": 9012.26, "end": 9016.88, "probability": 0.9766 }, { "start": 9017.3, "end": 9017.7, "probability": 0.9713 }, { "start": 9018.74, "end": 9020.18, "probability": 0.9889 }, { "start": 9021.1, "end": 9024.3, "probability": 0.962 }, { "start": 9025.02, "end": 9028.64, "probability": 0.8473 }, { "start": 9029.02, "end": 9032.54, "probability": 0.9877 }, { "start": 9033.0, "end": 9036.02, "probability": 0.8893 }, { "start": 9036.88, "end": 9039.5, "probability": 0.909 }, { "start": 9040.04, "end": 9041.42, "probability": 0.8605 }, { "start": 9042.0, "end": 9045.24, "probability": 0.9808 }, { "start": 9045.92, "end": 9047.6, "probability": 0.936 }, { "start": 9048.44, "end": 9049.62, "probability": 0.7408 }, { "start": 9050.34, "end": 9053.62, "probability": 0.9965 }, { "start": 9054.44, "end": 9056.74, "probability": 0.9807 }, { "start": 9058.08, "end": 9060.0, "probability": 0.6288 }, { "start": 9060.68, "end": 9060.7, "probability": 0.5974 }, { "start": 9060.7, "end": 9060.7, "probability": 0.1113 }, { "start": 9060.7, "end": 9061.35, "probability": 0.5184 }, { "start": 9061.68, "end": 9062.18, "probability": 0.4984 }, { "start": 9062.68, "end": 9065.98, "probability": 0.9099 }, { "start": 9066.1, "end": 9068.46, "probability": 0.9092 }, { "start": 9069.34, "end": 9069.8, "probability": 0.8051 }, { "start": 9070.44, "end": 9073.6, "probability": 0.9586 }, { "start": 9074.5, "end": 9078.7, "probability": 0.8452 }, { "start": 9079.3, "end": 9080.88, "probability": 0.9841 }, { "start": 9081.62, "end": 9083.92, "probability": 0.8902 }, { "start": 9084.36, "end": 9084.82, "probability": 0.9695 }, { "start": 9085.46, "end": 9085.87, "probability": 0.9904 }, { "start": 9086.68, "end": 9088.24, "probability": 0.9856 }, { "start": 9088.78, "end": 9089.18, "probability": 0.9968 }, { "start": 9089.76, "end": 9090.44, "probability": 0.8229 }, { "start": 9091.22, "end": 9094.44, "probability": 0.9212 }, { "start": 9095.22, "end": 9096.98, "probability": 0.9941 }, { "start": 9097.54, "end": 9098.02, "probability": 0.7864 }, { "start": 9098.56, "end": 9099.22, "probability": 0.383 }, { "start": 9099.6, "end": 9100.62, "probability": 0.6978 }, { "start": 9100.86, "end": 9104.92, "probability": 0.9342 }, { "start": 9105.26, "end": 9105.94, "probability": 0.9208 }, { "start": 9107.64, "end": 9109.94, "probability": 0.9042 }, { "start": 9110.84, "end": 9112.96, "probability": 0.7522 }, { "start": 9113.44, "end": 9115.58, "probability": 0.678 }, { "start": 9115.86, "end": 9117.24, "probability": 0.8042 }, { "start": 9117.68, "end": 9121.2, "probability": 0.9741 }, { "start": 9121.58, "end": 9122.82, "probability": 0.8631 }, { "start": 9123.36, "end": 9124.2, "probability": 0.9363 }, { "start": 9124.54, "end": 9124.96, "probability": 0.891 }, { "start": 9125.34, "end": 9126.86, "probability": 0.9678 }, { "start": 9127.36, "end": 9129.18, "probability": 0.9618 }, { "start": 9129.22, "end": 9130.6, "probability": 0.8404 }, { "start": 9131.4, "end": 9134.24, "probability": 0.9218 }, { "start": 9135.26, "end": 9137.2, "probability": 0.7946 }, { "start": 9137.84, "end": 9143.02, "probability": 0.7468 }, { "start": 9143.46, "end": 9144.54, "probability": 0.9238 }, { "start": 9145.08, "end": 9145.96, "probability": 0.7846 }, { "start": 9146.68, "end": 9147.56, "probability": 0.8752 }, { "start": 9148.32, "end": 9152.44, "probability": 0.9961 }, { "start": 9152.68, "end": 9153.2, "probability": 0.7838 }, { "start": 9153.8, "end": 9158.94, "probability": 0.9541 }, { "start": 9159.69, "end": 9162.6, "probability": 0.8483 }, { "start": 9164.32, "end": 9166.78, "probability": 0.9115 }, { "start": 9167.72, "end": 9168.12, "probability": 0.9462 }, { "start": 9168.92, "end": 9170.04, "probability": 0.6642 }, { "start": 9171.84, "end": 9172.52, "probability": 0.9444 }, { "start": 9173.06, "end": 9174.64, "probability": 0.8479 }, { "start": 9175.26, "end": 9176.42, "probability": 0.9955 }, { "start": 9177.18, "end": 9179.56, "probability": 0.9982 }, { "start": 9180.18, "end": 9181.74, "probability": 0.9707 }, { "start": 9182.26, "end": 9185.26, "probability": 0.9879 }, { "start": 9186.24, "end": 9188.18, "probability": 0.627 }, { "start": 9189.26, "end": 9191.62, "probability": 0.8714 }, { "start": 9191.68, "end": 9193.36, "probability": 0.8281 }, { "start": 9196.75, "end": 9199.72, "probability": 0.9805 }, { "start": 9201.28, "end": 9203.2, "probability": 0.9288 }, { "start": 9203.56, "end": 9204.76, "probability": 0.9976 }, { "start": 9205.92, "end": 9207.66, "probability": 0.9965 }, { "start": 9208.8, "end": 9211.84, "probability": 0.9971 }, { "start": 9212.38, "end": 9212.44, "probability": 0.2004 }, { "start": 9212.54, "end": 9214.02, "probability": 0.548 }, { "start": 9214.46, "end": 9216.64, "probability": 0.8641 }, { "start": 9217.2, "end": 9220.2, "probability": 0.8766 }, { "start": 9220.5, "end": 9221.18, "probability": 0.8291 }, { "start": 9221.38, "end": 9222.32, "probability": 0.5249 }, { "start": 9224.64, "end": 9226.58, "probability": 0.9712 }, { "start": 9227.18, "end": 9228.52, "probability": 0.9934 }, { "start": 9229.3, "end": 9231.6, "probability": 0.9501 }, { "start": 9232.08, "end": 9233.78, "probability": 0.9424 }, { "start": 9234.64, "end": 9235.32, "probability": 0.9454 }, { "start": 9235.9, "end": 9238.92, "probability": 0.7206 }, { "start": 9239.64, "end": 9243.94, "probability": 0.9326 }, { "start": 9244.04, "end": 9247.24, "probability": 0.9456 }, { "start": 9248.4, "end": 9250.16, "probability": 0.9092 }, { "start": 9250.78, "end": 9253.36, "probability": 0.9512 }, { "start": 9253.88, "end": 9259.04, "probability": 0.9347 }, { "start": 9259.46, "end": 9260.2, "probability": 0.7693 }, { "start": 9260.74, "end": 9262.62, "probability": 0.8733 }, { "start": 9263.4, "end": 9263.96, "probability": 0.9365 }, { "start": 9264.56, "end": 9264.76, "probability": 0.7874 }, { "start": 9265.28, "end": 9267.32, "probability": 0.8699 }, { "start": 9267.96, "end": 9272.9, "probability": 0.9926 }, { "start": 9273.22, "end": 9273.86, "probability": 0.8557 }, { "start": 9275.16, "end": 9275.7, "probability": 0.5468 }, { "start": 9276.08, "end": 9277.02, "probability": 0.9793 }, { "start": 9277.08, "end": 9279.68, "probability": 0.9845 }, { "start": 9280.42, "end": 9281.36, "probability": 0.7302 }, { "start": 9282.04, "end": 9282.62, "probability": 0.9917 }, { "start": 9283.34, "end": 9285.34, "probability": 0.7636 }, { "start": 9285.56, "end": 9287.44, "probability": 0.9819 }, { "start": 9288.54, "end": 9290.41, "probability": 0.5295 }, { "start": 9292.0, "end": 9293.04, "probability": 0.9641 }, { "start": 9293.4, "end": 9298.14, "probability": 0.7427 }, { "start": 9298.86, "end": 9300.18, "probability": 0.98 }, { "start": 9300.9, "end": 9301.64, "probability": 0.9437 }, { "start": 9302.98, "end": 9304.54, "probability": 0.9897 }, { "start": 9304.74, "end": 9306.34, "probability": 0.9631 }, { "start": 9307.42, "end": 9310.24, "probability": 0.9939 }, { "start": 9310.76, "end": 9312.48, "probability": 0.7935 }, { "start": 9313.0, "end": 9313.8, "probability": 0.8081 }, { "start": 9314.16, "end": 9315.06, "probability": 0.9722 }, { "start": 9315.74, "end": 9316.66, "probability": 0.99 }, { "start": 9317.2, "end": 9319.04, "probability": 0.8929 }, { "start": 9319.7, "end": 9321.1, "probability": 0.936 }, { "start": 9321.92, "end": 9322.48, "probability": 0.8311 }, { "start": 9323.0, "end": 9324.42, "probability": 0.9893 }, { "start": 9325.1, "end": 9325.96, "probability": 0.9693 }, { "start": 9326.58, "end": 9328.4, "probability": 0.8799 }, { "start": 9328.8, "end": 9328.98, "probability": 0.8433 }, { "start": 9329.36, "end": 9332.46, "probability": 0.9973 }, { "start": 9332.78, "end": 9334.04, "probability": 0.9835 }, { "start": 9335.24, "end": 9335.62, "probability": 0.8963 }, { "start": 9336.92, "end": 9337.66, "probability": 0.9775 }, { "start": 9338.4, "end": 9341.7, "probability": 0.875 }, { "start": 9342.28, "end": 9343.72, "probability": 0.8916 }, { "start": 9344.46, "end": 9345.48, "probability": 0.986 }, { "start": 9346.04, "end": 9349.1, "probability": 0.9072 }, { "start": 9350.08, "end": 9350.72, "probability": 0.9196 }, { "start": 9351.24, "end": 9352.5, "probability": 0.992 }, { "start": 9352.82, "end": 9353.06, "probability": 0.5296 }, { "start": 9353.74, "end": 9355.62, "probability": 0.7176 }, { "start": 9355.76, "end": 9356.56, "probability": 0.6958 }, { "start": 9357.28, "end": 9360.98, "probability": 0.9043 }, { "start": 9378.56, "end": 9380.78, "probability": 0.6247 }, { "start": 9384.74, "end": 9387.12, "probability": 0.5208 }, { "start": 9388.14, "end": 9389.46, "probability": 0.8585 }, { "start": 9389.56, "end": 9391.9, "probability": 0.9108 }, { "start": 9391.94, "end": 9394.58, "probability": 0.9364 }, { "start": 9395.0, "end": 9396.38, "probability": 0.9935 }, { "start": 9396.42, "end": 9397.28, "probability": 0.9956 }, { "start": 9398.98, "end": 9403.84, "probability": 0.9898 }, { "start": 9404.86, "end": 9407.5, "probability": 0.9824 }, { "start": 9411.7, "end": 9412.46, "probability": 0.5029 }, { "start": 9412.56, "end": 9415.3, "probability": 0.9337 }, { "start": 9417.22, "end": 9420.0, "probability": 0.8195 }, { "start": 9420.08, "end": 9421.66, "probability": 0.9778 }, { "start": 9424.22, "end": 9425.66, "probability": 0.557 }, { "start": 9425.9, "end": 9426.72, "probability": 0.6508 }, { "start": 9427.56, "end": 9428.44, "probability": 0.6822 }, { "start": 9428.58, "end": 9429.46, "probability": 0.5586 }, { "start": 9429.98, "end": 9431.8, "probability": 0.916 }, { "start": 9431.86, "end": 9435.44, "probability": 0.9883 }, { "start": 9435.5, "end": 9439.78, "probability": 0.9402 }, { "start": 9439.88, "end": 9442.32, "probability": 0.2323 }, { "start": 9442.8, "end": 9445.32, "probability": 0.9888 }, { "start": 9445.58, "end": 9446.78, "probability": 0.6434 }, { "start": 9446.84, "end": 9448.4, "probability": 0.915 }, { "start": 9449.82, "end": 9450.56, "probability": 0.9041 }, { "start": 9450.8, "end": 9454.02, "probability": 0.9771 }, { "start": 9454.62, "end": 9456.08, "probability": 0.7918 }, { "start": 9456.96, "end": 9458.16, "probability": 0.9503 }, { "start": 9458.9, "end": 9463.64, "probability": 0.9529 }, { "start": 9464.58, "end": 9466.34, "probability": 0.4328 }, { "start": 9469.26, "end": 9469.98, "probability": 0.0447 }, { "start": 9469.98, "end": 9470.89, "probability": 0.4769 }, { "start": 9472.14, "end": 9472.52, "probability": 0.5133 }, { "start": 9473.48, "end": 9475.22, "probability": 0.9506 }, { "start": 9475.3, "end": 9476.89, "probability": 0.9121 }, { "start": 9477.08, "end": 9477.44, "probability": 0.7979 }, { "start": 9478.8, "end": 9482.1, "probability": 0.8182 }, { "start": 9482.26, "end": 9484.4, "probability": 0.6975 }, { "start": 9485.38, "end": 9486.5, "probability": 0.9727 }, { "start": 9486.58, "end": 9487.44, "probability": 0.9869 }, { "start": 9488.68, "end": 9489.48, "probability": 0.7161 }, { "start": 9489.58, "end": 9490.03, "probability": 0.8878 }, { "start": 9490.3, "end": 9491.63, "probability": 0.8011 }, { "start": 9492.48, "end": 9492.82, "probability": 0.4987 }, { "start": 9492.98, "end": 9495.92, "probability": 0.8489 }, { "start": 9496.02, "end": 9496.3, "probability": 0.5775 }, { "start": 9496.38, "end": 9496.84, "probability": 0.9625 }, { "start": 9497.06, "end": 9498.06, "probability": 0.7263 }, { "start": 9499.22, "end": 9500.28, "probability": 0.9528 }, { "start": 9501.9, "end": 9503.62, "probability": 0.6235 }, { "start": 9504.86, "end": 9506.82, "probability": 0.6231 }, { "start": 9507.62, "end": 9509.06, "probability": 0.7502 }, { "start": 9509.52, "end": 9510.04, "probability": 0.5196 }, { "start": 9510.66, "end": 9514.24, "probability": 0.7314 }, { "start": 9514.58, "end": 9518.44, "probability": 0.8242 }, { "start": 9519.24, "end": 9520.42, "probability": 0.6614 }, { "start": 9521.56, "end": 9522.98, "probability": 0.7386 }, { "start": 9523.98, "end": 9527.6, "probability": 0.8338 }, { "start": 9527.76, "end": 9531.82, "probability": 0.8141 }, { "start": 9532.06, "end": 9533.38, "probability": 0.958 }, { "start": 9534.94, "end": 9535.08, "probability": 0.4836 }, { "start": 9535.12, "end": 9536.38, "probability": 0.9392 }, { "start": 9537.52, "end": 9539.46, "probability": 0.9723 }, { "start": 9539.8, "end": 9541.6, "probability": 0.9824 }, { "start": 9542.52, "end": 9546.36, "probability": 0.894 }, { "start": 9546.92, "end": 9549.6, "probability": 0.8672 }, { "start": 9551.66, "end": 9552.36, "probability": 0.7743 }, { "start": 9553.02, "end": 9555.64, "probability": 0.6793 }, { "start": 9555.74, "end": 9556.98, "probability": 0.6195 }, { "start": 9557.12, "end": 9557.92, "probability": 0.8609 }, { "start": 9558.04, "end": 9560.81, "probability": 0.9944 }, { "start": 9560.98, "end": 9561.48, "probability": 0.6714 }, { "start": 9562.9, "end": 9564.06, "probability": 0.9814 }, { "start": 9564.08, "end": 9564.4, "probability": 0.8083 }, { "start": 9564.5, "end": 9565.2, "probability": 0.9546 }, { "start": 9566.78, "end": 9569.74, "probability": 0.897 }, { "start": 9569.82, "end": 9570.46, "probability": 0.8605 }, { "start": 9571.48, "end": 9573.96, "probability": 0.9937 }, { "start": 9574.78, "end": 9575.44, "probability": 0.9673 }, { "start": 9575.82, "end": 9577.66, "probability": 0.9944 }, { "start": 9577.98, "end": 9578.08, "probability": 0.5422 }, { "start": 9578.52, "end": 9580.28, "probability": 0.9982 }, { "start": 9580.64, "end": 9581.74, "probability": 0.7766 }, { "start": 9581.86, "end": 9584.02, "probability": 0.9865 }, { "start": 9584.38, "end": 9586.84, "probability": 0.7912 }, { "start": 9588.28, "end": 9588.28, "probability": 0.0849 }, { "start": 9588.28, "end": 9589.62, "probability": 0.8148 }, { "start": 9589.74, "end": 9590.44, "probability": 0.6861 }, { "start": 9590.9, "end": 9591.44, "probability": 0.8169 }, { "start": 9592.88, "end": 9598.33, "probability": 0.9863 }, { "start": 9599.16, "end": 9600.86, "probability": 0.9622 }, { "start": 9600.92, "end": 9602.03, "probability": 0.8902 }, { "start": 9602.2, "end": 9604.57, "probability": 0.8969 }, { "start": 9604.78, "end": 9610.14, "probability": 0.971 }, { "start": 9610.32, "end": 9612.04, "probability": 0.9967 }, { "start": 9614.24, "end": 9618.06, "probability": 0.9618 }, { "start": 9618.78, "end": 9619.12, "probability": 0.5576 }, { "start": 9621.47, "end": 9623.16, "probability": 0.935 }, { "start": 9623.22, "end": 9625.28, "probability": 0.6729 }, { "start": 9625.3, "end": 9630.32, "probability": 0.9701 }, { "start": 9630.54, "end": 9631.33, "probability": 0.9049 }, { "start": 9631.52, "end": 9633.48, "probability": 0.9699 }, { "start": 9633.86, "end": 9634.7, "probability": 0.883 }, { "start": 9639.5, "end": 9643.4, "probability": 0.313 }, { "start": 9643.4, "end": 9646.68, "probability": 0.9771 }, { "start": 9646.72, "end": 9646.98, "probability": 0.535 }, { "start": 9647.16, "end": 9651.36, "probability": 0.946 }, { "start": 9651.48, "end": 9652.7, "probability": 0.9613 }, { "start": 9653.14, "end": 9653.94, "probability": 0.8189 }, { "start": 9654.04, "end": 9654.52, "probability": 0.8428 }, { "start": 9654.6, "end": 9655.14, "probability": 0.7521 }, { "start": 9655.2, "end": 9657.78, "probability": 0.973 }, { "start": 9658.08, "end": 9660.62, "probability": 0.9258 }, { "start": 9660.66, "end": 9662.86, "probability": 0.8005 }, { "start": 9663.08, "end": 9665.2, "probability": 0.8294 }, { "start": 9665.64, "end": 9667.62, "probability": 0.937 }, { "start": 9667.76, "end": 9669.44, "probability": 0.8555 }, { "start": 9670.84, "end": 9673.44, "probability": 0.7708 }, { "start": 9674.68, "end": 9675.8, "probability": 0.8813 }, { "start": 9675.8, "end": 9680.26, "probability": 0.662 }, { "start": 9680.3, "end": 9681.0, "probability": 0.5849 }, { "start": 9681.94, "end": 9685.46, "probability": 0.8779 }, { "start": 9685.46, "end": 9687.92, "probability": 0.971 }, { "start": 9688.0, "end": 9689.61, "probability": 0.9683 }, { "start": 9690.04, "end": 9691.4, "probability": 0.7781 }, { "start": 9691.96, "end": 9697.3, "probability": 0.8733 }, { "start": 9697.38, "end": 9699.62, "probability": 0.8129 }, { "start": 9700.2, "end": 9702.46, "probability": 0.9946 }, { "start": 9702.46, "end": 9704.58, "probability": 0.9867 }, { "start": 9705.56, "end": 9709.88, "probability": 0.8306 }, { "start": 9710.34, "end": 9712.26, "probability": 0.8085 }, { "start": 9713.06, "end": 9713.78, "probability": 0.7389 }, { "start": 9714.76, "end": 9718.04, "probability": 0.937 }, { "start": 9718.14, "end": 9722.66, "probability": 0.981 }, { "start": 9722.66, "end": 9726.62, "probability": 0.9413 }, { "start": 9727.56, "end": 9728.99, "probability": 0.5018 }, { "start": 9730.98, "end": 9733.26, "probability": 0.9378 }, { "start": 9733.66, "end": 9735.62, "probability": 0.7932 }, { "start": 9735.82, "end": 9736.92, "probability": 0.7214 }, { "start": 9737.52, "end": 9740.34, "probability": 0.7883 }, { "start": 9740.56, "end": 9741.36, "probability": 0.9028 }, { "start": 9741.42, "end": 9742.56, "probability": 0.6089 }, { "start": 9742.88, "end": 9744.48, "probability": 0.9951 }, { "start": 9744.96, "end": 9745.34, "probability": 0.8818 }, { "start": 9746.0, "end": 9747.16, "probability": 0.9229 }, { "start": 9747.58, "end": 9748.14, "probability": 0.941 }, { "start": 9749.12, "end": 9752.48, "probability": 0.971 }, { "start": 9752.62, "end": 9756.94, "probability": 0.9946 }, { "start": 9757.24, "end": 9757.84, "probability": 0.7608 }, { "start": 9758.46, "end": 9759.62, "probability": 0.9379 }, { "start": 9759.96, "end": 9760.3, "probability": 0.7887 }, { "start": 9761.44, "end": 9763.68, "probability": 0.749 }, { "start": 9763.68, "end": 9766.72, "probability": 0.9186 }, { "start": 9767.24, "end": 9767.94, "probability": 0.7181 }, { "start": 9768.08, "end": 9774.16, "probability": 0.8742 }, { "start": 9774.88, "end": 9777.18, "probability": 0.596 }, { "start": 9778.38, "end": 9781.52, "probability": 0.9889 }, { "start": 9781.52, "end": 9785.84, "probability": 0.9837 }, { "start": 9785.84, "end": 9789.44, "probability": 0.9959 }, { "start": 9789.5, "end": 9790.0, "probability": 0.6341 }, { "start": 9790.04, "end": 9791.58, "probability": 0.8995 }, { "start": 9792.12, "end": 9794.46, "probability": 0.8634 }, { "start": 9795.72, "end": 9795.72, "probability": 0.1134 }, { "start": 9796.32, "end": 9798.94, "probability": 0.9216 }, { "start": 9799.8, "end": 9801.54, "probability": 0.3421 }, { "start": 9801.6, "end": 9802.72, "probability": 0.8976 }, { "start": 9802.94, "end": 9803.24, "probability": 0.4371 }, { "start": 9804.04, "end": 9807.44, "probability": 0.9092 }, { "start": 9808.58, "end": 9813.48, "probability": 0.6595 }, { "start": 9814.64, "end": 9816.46, "probability": 0.7004 }, { "start": 9817.08, "end": 9821.28, "probability": 0.9264 }, { "start": 9821.34, "end": 9822.26, "probability": 0.8153 }, { "start": 9822.74, "end": 9823.82, "probability": 0.9045 }, { "start": 9824.28, "end": 9825.06, "probability": 0.8047 }, { "start": 9825.16, "end": 9826.03, "probability": 0.9829 }, { "start": 9827.04, "end": 9832.98, "probability": 0.7599 }, { "start": 9833.38, "end": 9835.1, "probability": 0.8423 }, { "start": 9835.46, "end": 9837.52, "probability": 0.6413 }, { "start": 9837.66, "end": 9839.7, "probability": 0.5157 }, { "start": 9839.76, "end": 9841.12, "probability": 0.8633 }, { "start": 9841.56, "end": 9841.92, "probability": 0.5002 }, { "start": 9841.96, "end": 9843.03, "probability": 0.9766 }, { "start": 9845.1, "end": 9848.98, "probability": 0.4335 }, { "start": 9850.92, "end": 9851.26, "probability": 0.2742 }, { "start": 9852.04, "end": 9853.96, "probability": 0.6369 }, { "start": 9854.4, "end": 9857.4, "probability": 0.9609 }, { "start": 9857.58, "end": 9858.52, "probability": 0.1117 }, { "start": 9859.06, "end": 9860.24, "probability": 0.9951 }, { "start": 9864.48, "end": 9869.48, "probability": 0.6705 }, { "start": 9869.64, "end": 9870.13, "probability": 0.4761 }, { "start": 9870.82, "end": 9871.9, "probability": 0.8382 }, { "start": 9872.82, "end": 9876.92, "probability": 0.9683 }, { "start": 9877.46, "end": 9879.66, "probability": 0.8314 }, { "start": 9879.8, "end": 9882.76, "probability": 0.9696 }, { "start": 9883.32, "end": 9884.76, "probability": 0.9906 }, { "start": 9885.58, "end": 9886.88, "probability": 0.8676 }, { "start": 9888.96, "end": 9890.92, "probability": 0.6056 }, { "start": 9891.62, "end": 9892.86, "probability": 0.8758 }, { "start": 9893.36, "end": 9894.32, "probability": 0.8193 }, { "start": 9894.76, "end": 9897.14, "probability": 0.983 }, { "start": 9898.08, "end": 9899.46, "probability": 0.7535 }, { "start": 9900.02, "end": 9904.32, "probability": 0.9448 }, { "start": 9904.48, "end": 9906.48, "probability": 0.9669 }, { "start": 9906.66, "end": 9911.6, "probability": 0.9774 }, { "start": 9911.78, "end": 9912.16, "probability": 0.6438 }, { "start": 9912.22, "end": 9914.68, "probability": 0.6737 }, { "start": 9915.14, "end": 9920.22, "probability": 0.8201 }, { "start": 9920.7, "end": 9921.7, "probability": 0.8657 }, { "start": 9922.42, "end": 9924.48, "probability": 0.7605 }, { "start": 9925.14, "end": 9926.98, "probability": 0.6808 }, { "start": 9927.4, "end": 9930.76, "probability": 0.9985 }, { "start": 9931.68, "end": 9934.88, "probability": 0.6859 }, { "start": 9935.42, "end": 9938.0, "probability": 0.9924 }, { "start": 9938.18, "end": 9938.72, "probability": 0.6407 }, { "start": 9939.12, "end": 9943.28, "probability": 0.9387 }, { "start": 9944.04, "end": 9945.84, "probability": 0.6694 }, { "start": 9945.94, "end": 9946.42, "probability": 0.808 }, { "start": 9946.52, "end": 9949.12, "probability": 0.9175 }, { "start": 9949.52, "end": 9950.78, "probability": 0.5241 }, { "start": 9951.06, "end": 9951.06, "probability": 0.2527 }, { "start": 9951.06, "end": 9953.06, "probability": 0.9792 }, { "start": 9954.98, "end": 9957.76, "probability": 0.6624 }, { "start": 9959.02, "end": 9959.72, "probability": 0.9558 }, { "start": 9959.8, "end": 9961.3, "probability": 0.5348 }, { "start": 9961.42, "end": 9961.58, "probability": 0.5522 }, { "start": 9962.42, "end": 9966.3, "probability": 0.9934 }, { "start": 9967.76, "end": 9970.44, "probability": 0.9434 }, { "start": 9970.62, "end": 9971.46, "probability": 0.9764 }, { "start": 9971.58, "end": 9971.88, "probability": 0.7611 }, { "start": 9972.26, "end": 9973.3, "probability": 0.9139 }, { "start": 9973.36, "end": 9975.12, "probability": 0.793 }, { "start": 9975.24, "end": 9979.32, "probability": 0.1399 }, { "start": 9979.86, "end": 9980.54, "probability": 0.4524 }, { "start": 9981.9, "end": 9983.08, "probability": 0.7146 }, { "start": 9984.72, "end": 9986.34, "probability": 0.9365 }, { "start": 9987.54, "end": 9988.84, "probability": 0.9572 }, { "start": 9989.36, "end": 9991.68, "probability": 0.8813 }, { "start": 9992.08, "end": 9993.72, "probability": 0.9171 }, { "start": 9993.8, "end": 9994.74, "probability": 0.4441 }, { "start": 9995.44, "end": 9998.44, "probability": 0.9158 }, { "start": 9998.68, "end": 10001.98, "probability": 0.9614 }, { "start": 10002.06, "end": 10002.06, "probability": 0.0842 }, { "start": 10002.08, "end": 10004.16, "probability": 0.9436 }, { "start": 10004.26, "end": 10006.52, "probability": 0.9651 }, { "start": 10007.2, "end": 10007.2, "probability": 0.3837 }, { "start": 10007.22, "end": 10008.02, "probability": 0.6905 }, { "start": 10009.76, "end": 10012.0, "probability": 0.9762 }, { "start": 10012.7, "end": 10015.3, "probability": 0.9519 }, { "start": 10015.9, "end": 10018.54, "probability": 0.9882 }, { "start": 10030.54, "end": 10031.8, "probability": 0.8826 }, { "start": 10031.8, "end": 10032.28, "probability": 0.0577 }, { "start": 10033.26, "end": 10037.34, "probability": 0.0504 }, { "start": 10038.02, "end": 10041.7, "probability": 0.1064 }, { "start": 10042.46, "end": 10044.58, "probability": 0.035 }, { "start": 10045.5, "end": 10046.64, "probability": 0.0366 }, { "start": 10049.08, "end": 10050.04, "probability": 0.2125 }, { "start": 10055.8, "end": 10055.9, "probability": 0.0745 }, { "start": 10055.9, "end": 10057.76, "probability": 0.5525 }, { "start": 10057.76, "end": 10060.46, "probability": 0.6062 }, { "start": 10061.18, "end": 10061.84, "probability": 0.408 }, { "start": 10062.12, "end": 10063.52, "probability": 0.9328 }, { "start": 10063.62, "end": 10067.02, "probability": 0.8906 }, { "start": 10067.38, "end": 10069.02, "probability": 0.917 }, { "start": 10069.48, "end": 10070.42, "probability": 0.6806 }, { "start": 10071.38, "end": 10074.16, "probability": 0.8372 }, { "start": 10074.5, "end": 10075.72, "probability": 0.6342 }, { "start": 10075.88, "end": 10076.32, "probability": 0.8326 }, { "start": 10076.54, "end": 10078.28, "probability": 0.7051 }, { "start": 10078.72, "end": 10080.68, "probability": 0.8171 }, { "start": 10081.32, "end": 10082.78, "probability": 0.9643 }, { "start": 10082.86, "end": 10085.22, "probability": 0.6847 }, { "start": 10085.26, "end": 10086.08, "probability": 0.8747 }, { "start": 10086.42, "end": 10087.0, "probability": 0.7573 }, { "start": 10087.1, "end": 10088.32, "probability": 0.9232 }, { "start": 10088.72, "end": 10091.06, "probability": 0.8399 }, { "start": 10091.52, "end": 10093.14, "probability": 0.609 }, { "start": 10093.5, "end": 10096.62, "probability": 0.9956 }, { "start": 10097.1, "end": 10099.12, "probability": 0.9941 }, { "start": 10099.12, "end": 10100.61, "probability": 0.8057 }, { "start": 10101.42, "end": 10103.6, "probability": 0.7511 }, { "start": 10104.1, "end": 10107.58, "probability": 0.6793 }, { "start": 10108.04, "end": 10113.94, "probability": 0.9822 }, { "start": 10114.82, "end": 10115.98, "probability": 0.7663 }, { "start": 10116.42, "end": 10117.05, "probability": 0.9197 }, { "start": 10117.36, "end": 10118.12, "probability": 0.9238 }, { "start": 10118.52, "end": 10120.88, "probability": 0.9107 }, { "start": 10121.96, "end": 10127.5, "probability": 0.872 }, { "start": 10127.76, "end": 10128.4, "probability": 0.9863 }, { "start": 10129.32, "end": 10132.27, "probability": 0.8343 }, { "start": 10133.04, "end": 10134.82, "probability": 0.9192 }, { "start": 10134.96, "end": 10135.57, "probability": 0.0333 }, { "start": 10136.14, "end": 10137.42, "probability": 0.9248 }, { "start": 10138.1, "end": 10139.96, "probability": 0.9721 }, { "start": 10140.64, "end": 10142.12, "probability": 0.9316 }, { "start": 10142.28, "end": 10143.02, "probability": 0.4992 }, { "start": 10143.4, "end": 10143.9, "probability": 0.7388 }, { "start": 10144.9, "end": 10146.54, "probability": 0.8843 }, { "start": 10147.54, "end": 10152.16, "probability": 0.8879 }, { "start": 10152.88, "end": 10153.44, "probability": 0.7383 }, { "start": 10154.48, "end": 10156.22, "probability": 0.6606 }, { "start": 10156.76, "end": 10160.72, "probability": 0.9394 }, { "start": 10160.72, "end": 10161.99, "probability": 0.9469 }, { "start": 10162.58, "end": 10164.34, "probability": 0.8675 }, { "start": 10164.42, "end": 10164.44, "probability": 0.0333 }, { "start": 10164.44, "end": 10166.09, "probability": 0.8291 }, { "start": 10168.48, "end": 10169.32, "probability": 0.5087 }, { "start": 10169.66, "end": 10170.86, "probability": 0.5542 }, { "start": 10170.94, "end": 10172.66, "probability": 0.8004 }, { "start": 10172.72, "end": 10173.02, "probability": 0.7225 }, { "start": 10173.2, "end": 10174.58, "probability": 0.9242 }, { "start": 10174.75, "end": 10176.66, "probability": 0.959 }, { "start": 10177.29, "end": 10182.6, "probability": 0.9986 }, { "start": 10183.7, "end": 10185.1, "probability": 0.5007 }, { "start": 10185.76, "end": 10186.7, "probability": 0.6467 }, { "start": 10187.14, "end": 10188.14, "probability": 0.7928 }, { "start": 10188.74, "end": 10194.86, "probability": 0.9619 }, { "start": 10195.1, "end": 10195.68, "probability": 0.9604 }, { "start": 10196.34, "end": 10198.14, "probability": 0.7847 }, { "start": 10198.62, "end": 10199.36, "probability": 0.4494 }, { "start": 10199.4, "end": 10200.84, "probability": 0.6454 }, { "start": 10201.14, "end": 10204.16, "probability": 0.9233 }, { "start": 10204.64, "end": 10206.18, "probability": 0.8314 }, { "start": 10206.38, "end": 10206.62, "probability": 0.6906 }, { "start": 10207.06, "end": 10208.98, "probability": 0.7884 }, { "start": 10209.06, "end": 10210.69, "probability": 0.6992 }, { "start": 10211.58, "end": 10212.18, "probability": 0.9598 }, { "start": 10231.22, "end": 10231.32, "probability": 0.221 }, { "start": 10231.32, "end": 10234.8, "probability": 0.6601 }, { "start": 10234.84, "end": 10235.22, "probability": 0.846 }, { "start": 10236.1, "end": 10237.79, "probability": 0.7933 }, { "start": 10240.32, "end": 10240.87, "probability": 0.4328 }, { "start": 10242.36, "end": 10242.76, "probability": 0.8777 }, { "start": 10244.22, "end": 10246.14, "probability": 0.6635 }, { "start": 10247.32, "end": 10247.32, "probability": 0.058 }, { "start": 10247.32, "end": 10247.96, "probability": 0.4899 }, { "start": 10248.92, "end": 10251.0, "probability": 0.9888 }, { "start": 10251.02, "end": 10253.68, "probability": 0.9902 }, { "start": 10254.32, "end": 10255.82, "probability": 0.8158 }, { "start": 10257.22, "end": 10258.22, "probability": 0.0129 }, { "start": 10259.86, "end": 10260.02, "probability": 0.0158 }, { "start": 10261.08, "end": 10261.92, "probability": 0.3376 }, { "start": 10262.74, "end": 10264.62, "probability": 0.9574 }, { "start": 10265.18, "end": 10266.92, "probability": 0.9645 }, { "start": 10267.94, "end": 10268.36, "probability": 0.9227 }, { "start": 10269.64, "end": 10270.48, "probability": 0.5864 }, { "start": 10271.46, "end": 10273.9, "probability": 0.9783 }, { "start": 10274.72, "end": 10276.72, "probability": 0.9551 }, { "start": 10278.44, "end": 10278.7, "probability": 0.9946 }, { "start": 10280.36, "end": 10281.22, "probability": 0.9523 }, { "start": 10282.14, "end": 10282.38, "probability": 0.5535 }, { "start": 10283.5, "end": 10283.98, "probability": 0.5662 }, { "start": 10284.7, "end": 10286.82, "probability": 0.9468 }, { "start": 10288.04, "end": 10290.38, "probability": 0.8863 }, { "start": 10291.36, "end": 10291.8, "probability": 0.9507 }, { "start": 10292.56, "end": 10293.5, "probability": 0.9815 }, { "start": 10294.49, "end": 10296.38, "probability": 0.9925 }, { "start": 10297.46, "end": 10297.88, "probability": 0.9762 }, { "start": 10298.68, "end": 10299.32, "probability": 0.9889 }, { "start": 10300.92, "end": 10303.34, "probability": 0.9309 }, { "start": 10304.02, "end": 10305.0, "probability": 0.9421 }, { "start": 10309.74, "end": 10311.04, "probability": 0.5217 }, { "start": 10311.56, "end": 10313.44, "probability": 0.7301 }, { "start": 10321.06, "end": 10324.78, "probability": 0.774 }, { "start": 10326.34, "end": 10328.08, "probability": 0.9081 }, { "start": 10328.87, "end": 10330.9, "probability": 0.9196 }, { "start": 10331.8, "end": 10332.18, "probability": 0.9082 }, { "start": 10333.14, "end": 10333.96, "probability": 0.9806 }, { "start": 10334.8, "end": 10335.16, "probability": 0.9836 }, { "start": 10336.14, "end": 10336.84, "probability": 0.6857 }, { "start": 10338.58, "end": 10338.94, "probability": 0.9123 }, { "start": 10339.9, "end": 10340.98, "probability": 0.7822 }, { "start": 10341.92, "end": 10342.5, "probability": 0.9373 }, { "start": 10343.24, "end": 10343.94, "probability": 0.9653 }, { "start": 10345.2, "end": 10345.56, "probability": 0.8821 }, { "start": 10346.78, "end": 10347.42, "probability": 0.9732 }, { "start": 10348.16, "end": 10349.96, "probability": 0.9854 }, { "start": 10351.46, "end": 10351.96, "probability": 0.9312 }, { "start": 10352.82, "end": 10353.46, "probability": 0.9705 }, { "start": 10354.24, "end": 10356.24, "probability": 0.9924 }, { "start": 10357.9, "end": 10358.92, "probability": 0.9451 }, { "start": 10359.7, "end": 10360.0, "probability": 0.8576 }, { "start": 10360.72, "end": 10361.4, "probability": 0.9624 }, { "start": 10362.82, "end": 10363.18, "probability": 0.9932 }, { "start": 10364.58, "end": 10367.4, "probability": 0.5761 }, { "start": 10367.98, "end": 10368.76, "probability": 0.8248 }, { "start": 10369.38, "end": 10370.28, "probability": 0.6669 }, { "start": 10371.06, "end": 10371.46, "probability": 0.8973 }, { "start": 10372.4, "end": 10373.12, "probability": 0.9482 }, { "start": 10374.66, "end": 10375.3, "probability": 0.9455 }, { "start": 10376.12, "end": 10376.98, "probability": 0.9397 }, { "start": 10378.14, "end": 10378.54, "probability": 0.9895 }, { "start": 10380.04, "end": 10380.88, "probability": 0.8888 }, { "start": 10381.86, "end": 10382.26, "probability": 0.9715 }, { "start": 10382.92, "end": 10383.68, "probability": 0.9698 }, { "start": 10384.72, "end": 10385.08, "probability": 0.9646 }, { "start": 10386.22, "end": 10387.48, "probability": 0.8039 }, { "start": 10388.42, "end": 10388.68, "probability": 0.9958 }, { "start": 10389.62, "end": 10390.66, "probability": 0.6382 }, { "start": 10393.86, "end": 10394.2, "probability": 0.6785 }, { "start": 10395.86, "end": 10396.6, "probability": 0.7925 }, { "start": 10397.44, "end": 10397.8, "probability": 0.93 }, { "start": 10398.62, "end": 10399.5, "probability": 0.747 }, { "start": 10401.3, "end": 10402.72, "probability": 0.745 }, { "start": 10404.18, "end": 10404.68, "probability": 0.9608 }, { "start": 10406.02, "end": 10407.28, "probability": 0.8784 }, { "start": 10408.16, "end": 10410.56, "probability": 0.9111 }, { "start": 10419.64, "end": 10421.18, "probability": 0.353 }, { "start": 10422.08, "end": 10423.38, "probability": 0.6605 }, { "start": 10426.48, "end": 10426.98, "probability": 0.8635 }, { "start": 10428.48, "end": 10429.72, "probability": 0.6982 }, { "start": 10430.36, "end": 10431.18, "probability": 0.8652 }, { "start": 10431.96, "end": 10434.4, "probability": 0.5195 }, { "start": 10436.28, "end": 10436.8, "probability": 0.8932 }, { "start": 10438.34, "end": 10438.98, "probability": 0.8101 }, { "start": 10440.04, "end": 10440.38, "probability": 0.894 }, { "start": 10441.32, "end": 10441.78, "probability": 0.6782 }, { "start": 10443.62, "end": 10446.0, "probability": 0.9732 }, { "start": 10447.78, "end": 10448.04, "probability": 0.9922 }, { "start": 10449.32, "end": 10451.48, "probability": 0.5757 }, { "start": 10452.84, "end": 10453.32, "probability": 0.7435 }, { "start": 10454.3, "end": 10455.72, "probability": 0.8321 }, { "start": 10456.32, "end": 10456.7, "probability": 0.6536 }, { "start": 10457.56, "end": 10458.74, "probability": 0.9741 }, { "start": 10459.66, "end": 10460.0, "probability": 0.7005 }, { "start": 10461.0, "end": 10461.5, "probability": 0.9637 }, { "start": 10462.65, "end": 10464.5, "probability": 0.9963 }, { "start": 10465.3, "end": 10466.12, "probability": 0.9279 }, { "start": 10466.74, "end": 10467.88, "probability": 0.9379 }, { "start": 10468.68, "end": 10469.18, "probability": 0.9891 }, { "start": 10470.02, "end": 10470.88, "probability": 0.7799 }, { "start": 10474.2, "end": 10474.94, "probability": 0.8662 }, { "start": 10475.82, "end": 10476.54, "probability": 0.9729 }, { "start": 10478.06, "end": 10478.46, "probability": 0.9934 }, { "start": 10480.66, "end": 10481.22, "probability": 0.7971 }, { "start": 10482.22, "end": 10482.58, "probability": 0.4913 }, { "start": 10483.92, "end": 10484.5, "probability": 0.7471 }, { "start": 10485.43, "end": 10487.24, "probability": 0.8953 }, { "start": 10488.52, "end": 10488.9, "probability": 0.9144 }, { "start": 10490.8, "end": 10492.34, "probability": 0.7152 }, { "start": 10493.52, "end": 10493.88, "probability": 0.9587 }, { "start": 10495.02, "end": 10495.88, "probability": 0.8996 }, { "start": 10499.58, "end": 10500.1, "probability": 0.7877 }, { "start": 10501.5, "end": 10502.74, "probability": 0.7212 }, { "start": 10503.9, "end": 10504.28, "probability": 0.8564 }, { "start": 10505.2, "end": 10506.08, "probability": 0.9425 }, { "start": 10507.16, "end": 10509.42, "probability": 0.9636 }, { "start": 10511.26, "end": 10511.78, "probability": 0.9884 }, { "start": 10512.68, "end": 10513.7, "probability": 0.9901 }, { "start": 10514.35, "end": 10516.66, "probability": 0.9798 }, { "start": 10517.72, "end": 10518.16, "probability": 0.9875 }, { "start": 10519.54, "end": 10520.32, "probability": 0.9844 }, { "start": 10521.48, "end": 10521.88, "probability": 0.9897 }, { "start": 10522.8, "end": 10523.84, "probability": 0.9811 }, { "start": 10526.02, "end": 10526.86, "probability": 0.4701 }, { "start": 10528.1, "end": 10528.46, "probability": 0.9826 }, { "start": 10529.38, "end": 10529.9, "probability": 0.79 }, { "start": 10531.44, "end": 10531.84, "probability": 0.8181 }, { "start": 10533.02, "end": 10534.02, "probability": 0.9226 }, { "start": 10534.8, "end": 10535.3, "probability": 0.9836 }, { "start": 10536.72, "end": 10537.66, "probability": 0.7519 }, { "start": 10539.88, "end": 10540.38, "probability": 0.9761 }, { "start": 10541.22, "end": 10543.12, "probability": 0.9868 }, { "start": 10544.1, "end": 10545.24, "probability": 0.9593 }, { "start": 10546.46, "end": 10546.82, "probability": 0.9907 }, { "start": 10547.94, "end": 10548.68, "probability": 0.9779 }, { "start": 10549.82, "end": 10550.18, "probability": 0.9941 }, { "start": 10551.1, "end": 10551.8, "probability": 0.687 }, { "start": 10552.6, "end": 10552.92, "probability": 0.5221 }, { "start": 10554.0, "end": 10555.12, "probability": 0.5657 }, { "start": 10556.2, "end": 10556.5, "probability": 0.8849 }, { "start": 10557.58, "end": 10558.58, "probability": 0.947 }, { "start": 10559.12, "end": 10561.34, "probability": 0.9377 }, { "start": 10566.7, "end": 10567.08, "probability": 0.9587 }, { "start": 10568.74, "end": 10570.06, "probability": 0.9865 }, { "start": 10570.86, "end": 10571.24, "probability": 0.978 }, { "start": 10572.28, "end": 10573.2, "probability": 0.7508 }, { "start": 10574.0, "end": 10574.42, "probability": 0.9897 }, { "start": 10575.26, "end": 10575.96, "probability": 0.9245 }, { "start": 10576.78, "end": 10577.18, "probability": 0.9933 }, { "start": 10578.02, "end": 10579.0, "probability": 0.9807 }, { "start": 10580.08, "end": 10580.44, "probability": 0.9951 }, { "start": 10581.52, "end": 10582.2, "probability": 0.2789 }, { "start": 10583.72, "end": 10584.18, "probability": 0.9707 }, { "start": 10585.12, "end": 10585.6, "probability": 0.8157 }, { "start": 10587.3, "end": 10587.74, "probability": 0.8896 }, { "start": 10588.58, "end": 10589.58, "probability": 0.4548 }, { "start": 10590.7, "end": 10591.18, "probability": 0.9562 }, { "start": 10592.06, "end": 10593.04, "probability": 0.7729 }, { "start": 10594.18, "end": 10594.58, "probability": 0.9746 }, { "start": 10595.8, "end": 10598.7, "probability": 0.6283 }, { "start": 10599.7, "end": 10600.04, "probability": 0.6109 }, { "start": 10601.28, "end": 10602.02, "probability": 0.8301 }, { "start": 10603.66, "end": 10604.06, "probability": 0.9525 }, { "start": 10605.02, "end": 10605.78, "probability": 0.891 }, { "start": 10607.0, "end": 10607.58, "probability": 0.9561 }, { "start": 10608.6, "end": 10609.07, "probability": 0.4128 }, { "start": 10610.26, "end": 10610.68, "probability": 0.9766 }, { "start": 10612.1, "end": 10613.06, "probability": 0.9829 }, { "start": 10614.24, "end": 10614.6, "probability": 0.9771 }, { "start": 10615.72, "end": 10616.84, "probability": 0.7932 }, { "start": 10617.64, "end": 10618.5, "probability": 0.9229 }, { "start": 10619.26, "end": 10620.06, "probability": 0.8601 }, { "start": 10622.1, "end": 10622.5, "probability": 0.9482 }, { "start": 10626.52, "end": 10627.28, "probability": 0.7859 }, { "start": 10628.5, "end": 10628.96, "probability": 0.8633 }, { "start": 10630.26, "end": 10631.08, "probability": 0.765 }, { "start": 10632.04, "end": 10634.34, "probability": 0.9738 }, { "start": 10635.81, "end": 10637.06, "probability": 0.9469 }, { "start": 10639.24, "end": 10641.54, "probability": 0.884 }, { "start": 10643.32, "end": 10644.16, "probability": 0.9551 }, { "start": 10645.02, "end": 10650.12, "probability": 0.921 }, { "start": 10651.32, "end": 10651.7, "probability": 0.8538 }, { "start": 10652.88, "end": 10653.7, "probability": 0.8046 }, { "start": 10655.04, "end": 10656.92, "probability": 0.8647 }, { "start": 10660.12, "end": 10660.6, "probability": 0.8621 }, { "start": 10661.18, "end": 10662.1, "probability": 0.9405 }, { "start": 10664.1, "end": 10665.6, "probability": 0.9639 }, { "start": 10666.54, "end": 10667.0, "probability": 0.9331 }, { "start": 10667.86, "end": 10668.96, "probability": 0.9609 }, { "start": 10669.68, "end": 10670.06, "probability": 0.9723 }, { "start": 10670.88, "end": 10671.6, "probability": 0.9552 }, { "start": 10672.44, "end": 10672.84, "probability": 0.9917 }, { "start": 10673.54, "end": 10674.8, "probability": 0.9353 }, { "start": 10675.64, "end": 10675.92, "probability": 0.6056 }, { "start": 10676.9, "end": 10678.3, "probability": 0.6296 }, { "start": 10679.14, "end": 10679.48, "probability": 0.9572 }, { "start": 10680.46, "end": 10681.46, "probability": 0.8248 }, { "start": 10682.92, "end": 10683.36, "probability": 0.9893 }, { "start": 10684.5, "end": 10685.38, "probability": 0.9041 }, { "start": 10686.12, "end": 10686.58, "probability": 0.9897 }, { "start": 10687.52, "end": 10688.56, "probability": 0.9049 }, { "start": 10696.06, "end": 10698.0, "probability": 0.5037 }, { "start": 10700.12, "end": 10700.86, "probability": 0.5975 }, { "start": 10702.42, "end": 10704.32, "probability": 0.8093 }, { "start": 10705.7, "end": 10706.02, "probability": 0.9295 }, { "start": 10706.84, "end": 10707.38, "probability": 0.3559 }, { "start": 10708.36, "end": 10708.64, "probability": 0.9279 }, { "start": 10709.54, "end": 10710.46, "probability": 0.6508 }, { "start": 10711.74, "end": 10712.12, "probability": 0.9297 }, { "start": 10713.52, "end": 10714.62, "probability": 0.9268 }, { "start": 10715.8, "end": 10716.12, "probability": 0.875 }, { "start": 10717.1, "end": 10717.88, "probability": 0.8077 }, { "start": 10721.42, "end": 10721.86, "probability": 0.7678 }, { "start": 10723.38, "end": 10723.98, "probability": 0.6427 }, { "start": 10725.02, "end": 10727.18, "probability": 0.7603 }, { "start": 10728.22, "end": 10728.64, "probability": 0.9524 }, { "start": 10729.22, "end": 10731.2, "probability": 0.8896 }, { "start": 10735.68, "end": 10736.62, "probability": 0.1749 }, { "start": 10737.9, "end": 10738.64, "probability": 0.947 }, { "start": 10739.48, "end": 10740.14, "probability": 0.8253 }, { "start": 10741.42, "end": 10742.18, "probability": 0.8297 }, { "start": 10742.8, "end": 10744.22, "probability": 0.5956 }, { "start": 10745.02, "end": 10745.8, "probability": 0.9571 }, { "start": 10746.36, "end": 10747.24, "probability": 0.7822 }, { "start": 10748.2, "end": 10748.94, "probability": 0.9914 }, { "start": 10749.66, "end": 10750.5, "probability": 0.9306 }, { "start": 10751.9, "end": 10752.64, "probability": 0.9965 }, { "start": 10756.84, "end": 10757.6, "probability": 0.5356 }, { "start": 10758.7, "end": 10759.5, "probability": 0.7691 }, { "start": 10760.1, "end": 10760.7, "probability": 0.808 }, { "start": 10762.12, "end": 10762.86, "probability": 0.9592 }, { "start": 10764.44, "end": 10766.9, "probability": 0.7846 }, { "start": 10768.88, "end": 10769.38, "probability": 0.8236 }, { "start": 10770.32, "end": 10770.52, "probability": 0.8809 }, { "start": 10773.08, "end": 10774.49, "probability": 0.896 }, { "start": 10777.04, "end": 10778.02, "probability": 0.866 }, { "start": 10779.16, "end": 10780.4, "probability": 0.5714 }, { "start": 10780.78, "end": 10781.9, "probability": 0.9464 }, { "start": 10871.88, "end": 10871.98, "probability": 0.0264 }, { "start": 10872.42, "end": 10874.32, "probability": 0.5959 }, { "start": 10875.14, "end": 10878.88, "probability": 0.6904 }, { "start": 10879.22, "end": 10881.8, "probability": 0.9048 }, { "start": 10882.58, "end": 10884.12, "probability": 0.8612 }, { "start": 10884.64, "end": 10886.2, "probability": 0.9824 }, { "start": 10886.3, "end": 10888.68, "probability": 0.6027 }, { "start": 10889.16, "end": 10891.14, "probability": 0.1194 }, { "start": 10891.82, "end": 10893.66, "probability": 0.9453 }, { "start": 10893.74, "end": 10895.0, "probability": 0.5894 }, { "start": 10895.44, "end": 10899.48, "probability": 0.9434 }, { "start": 10899.76, "end": 10900.38, "probability": 0.0115 }, { "start": 10911.98, "end": 10912.34, "probability": 0.0571 }, { "start": 10913.74, "end": 10915.7, "probability": 0.562 }, { "start": 10916.26, "end": 10917.18, "probability": 0.9438 }, { "start": 10918.2, "end": 10918.94, "probability": 0.7018 }, { "start": 10919.12, "end": 10920.52, "probability": 0.9745 }, { "start": 10920.88, "end": 10922.76, "probability": 0.8439 }, { "start": 10922.9, "end": 10926.16, "probability": 0.9902 }, { "start": 10928.14, "end": 10930.62, "probability": 0.6708 }, { "start": 10930.7, "end": 10934.28, "probability": 0.3954 }, { "start": 10934.6, "end": 10938.24, "probability": 0.8817 }, { "start": 10938.3, "end": 10940.82, "probability": 0.9554 }, { "start": 10941.52, "end": 10944.66, "probability": 0.9919 }, { "start": 10944.66, "end": 10947.64, "probability": 0.9941 }, { "start": 10948.36, "end": 10950.14, "probability": 0.9958 }, { "start": 10950.82, "end": 10954.22, "probability": 0.9935 }, { "start": 10954.22, "end": 10959.04, "probability": 0.9857 }, { "start": 10959.7, "end": 10962.26, "probability": 0.9032 }, { "start": 10963.58, "end": 10964.9, "probability": 0.7778 }, { "start": 10965.0, "end": 10969.12, "probability": 0.8702 }, { "start": 10969.64, "end": 10972.14, "probability": 0.9973 }, { "start": 10972.88, "end": 10976.88, "probability": 0.9769 }, { "start": 10977.64, "end": 10981.68, "probability": 0.9791 }, { "start": 10982.34, "end": 10982.92, "probability": 0.744 }, { "start": 10983.62, "end": 10986.76, "probability": 0.9431 }, { "start": 10987.3, "end": 10989.12, "probability": 0.869 }, { "start": 10990.3, "end": 10995.88, "probability": 0.9822 }, { "start": 10995.88, "end": 11001.48, "probability": 0.9929 }, { "start": 11002.32, "end": 11006.7, "probability": 0.9694 }, { "start": 11007.3, "end": 11011.64, "probability": 0.9983 }, { "start": 11012.1, "end": 11016.06, "probability": 0.9993 }, { "start": 11016.06, "end": 11020.8, "probability": 0.998 }, { "start": 11021.1, "end": 11022.26, "probability": 0.6959 }, { "start": 11022.86, "end": 11026.92, "probability": 0.8945 }, { "start": 11027.8, "end": 11031.56, "probability": 0.9837 }, { "start": 11031.64, "end": 11036.86, "probability": 0.9674 }, { "start": 11037.9, "end": 11041.14, "probability": 0.9971 }, { "start": 11041.14, "end": 11045.48, "probability": 0.9991 }, { "start": 11046.16, "end": 11047.38, "probability": 0.9424 }, { "start": 11048.1, "end": 11050.76, "probability": 0.8214 }, { "start": 11053.12, "end": 11058.48, "probability": 0.9897 }, { "start": 11058.78, "end": 11062.88, "probability": 0.9967 }, { "start": 11063.56, "end": 11064.37, "probability": 0.9237 }, { "start": 11064.92, "end": 11067.44, "probability": 0.9952 }, { "start": 11067.52, "end": 11068.12, "probability": 0.6693 }, { "start": 11069.2, "end": 11071.72, "probability": 0.8701 }, { "start": 11072.24, "end": 11076.18, "probability": 0.9069 }, { "start": 11076.26, "end": 11080.46, "probability": 0.4438 }, { "start": 11080.52, "end": 11081.02, "probability": 0.6187 }, { "start": 11095.14, "end": 11095.14, "probability": 0.1548 }, { "start": 11095.14, "end": 11098.48, "probability": 0.7028 }, { "start": 11099.26, "end": 11101.1, "probability": 0.7124 }, { "start": 11101.76, "end": 11108.32, "probability": 0.9871 }, { "start": 11109.04, "end": 11114.58, "probability": 0.9928 }, { "start": 11115.52, "end": 11117.54, "probability": 0.9762 }, { "start": 11118.1, "end": 11119.44, "probability": 0.6658 }, { "start": 11119.92, "end": 11122.06, "probability": 0.9431 }, { "start": 11122.56, "end": 11130.24, "probability": 0.9615 }, { "start": 11130.92, "end": 11135.94, "probability": 0.926 }, { "start": 11137.0, "end": 11141.54, "probability": 0.9902 }, { "start": 11142.42, "end": 11146.76, "probability": 0.9835 }, { "start": 11147.32, "end": 11151.1, "probability": 0.974 }, { "start": 11151.78, "end": 11157.08, "probability": 0.9974 }, { "start": 11157.96, "end": 11164.16, "probability": 0.9951 }, { "start": 11164.22, "end": 11170.12, "probability": 0.9893 }, { "start": 11170.98, "end": 11173.8, "probability": 0.97 }, { "start": 11174.4, "end": 11180.24, "probability": 0.9918 }, { "start": 11181.24, "end": 11184.42, "probability": 0.7563 }, { "start": 11185.06, "end": 11190.18, "probability": 0.943 }, { "start": 11191.16, "end": 11194.4, "probability": 0.9689 }, { "start": 11194.4, "end": 11197.74, "probability": 0.9787 }, { "start": 11198.44, "end": 11203.42, "probability": 0.8893 }, { "start": 11204.2, "end": 11205.08, "probability": 0.9327 }, { "start": 11206.48, "end": 11209.36, "probability": 0.8826 }, { "start": 11209.84, "end": 11215.4, "probability": 0.9891 }, { "start": 11216.44, "end": 11221.32, "probability": 0.9866 }, { "start": 11222.04, "end": 11222.96, "probability": 0.7643 }, { "start": 11223.66, "end": 11227.56, "probability": 0.989 }, { "start": 11228.42, "end": 11231.66, "probability": 0.9911 }, { "start": 11232.3, "end": 11234.36, "probability": 0.7925 }, { "start": 11234.88, "end": 11236.82, "probability": 0.9973 }, { "start": 11237.66, "end": 11240.74, "probability": 0.9972 }, { "start": 11241.32, "end": 11242.9, "probability": 0.962 }, { "start": 11243.64, "end": 11247.76, "probability": 0.9563 }, { "start": 11249.5, "end": 11253.06, "probability": 0.9578 }, { "start": 11253.96, "end": 11259.42, "probability": 0.9865 }, { "start": 11259.56, "end": 11261.14, "probability": 0.7872 }, { "start": 11261.66, "end": 11262.02, "probability": 0.7544 }, { "start": 11264.16, "end": 11266.26, "probability": 0.6826 }, { "start": 11267.36, "end": 11270.54, "probability": 0.3981 }, { "start": 11270.76, "end": 11273.78, "probability": 0.2304 }, { "start": 11273.92, "end": 11277.1, "probability": 0.8975 }, { "start": 11278.04, "end": 11280.88, "probability": 0.3283 }, { "start": 11280.88, "end": 11281.52, "probability": 0.4229 }, { "start": 11283.54, "end": 11284.46, "probability": 0.8711 }, { "start": 11285.16, "end": 11286.42, "probability": 0.7919 }, { "start": 11286.8, "end": 11287.94, "probability": 0.7452 }, { "start": 11288.52, "end": 11290.7, "probability": 0.9323 }, { "start": 11290.7, "end": 11293.0, "probability": 0.6712 }, { "start": 11293.84, "end": 11297.96, "probability": 0.9911 }, { "start": 11297.96, "end": 11301.9, "probability": 0.9937 }, { "start": 11302.34, "end": 11305.54, "probability": 0.984 }, { "start": 11306.26, "end": 11309.68, "probability": 0.9072 }, { "start": 11310.1, "end": 11310.34, "probability": 0.6491 }, { "start": 11310.42, "end": 11314.62, "probability": 0.9693 }, { "start": 11315.3, "end": 11318.44, "probability": 0.9947 }, { "start": 11318.84, "end": 11324.0, "probability": 0.9826 }, { "start": 11324.14, "end": 11327.58, "probability": 0.9928 }, { "start": 11327.7, "end": 11328.4, "probability": 0.8145 }, { "start": 11328.8, "end": 11329.88, "probability": 0.8631 }, { "start": 11330.26, "end": 11332.22, "probability": 0.9963 }, { "start": 11332.44, "end": 11333.98, "probability": 0.9786 }, { "start": 11335.26, "end": 11338.18, "probability": 0.9937 }, { "start": 11338.7, "end": 11342.76, "probability": 0.9863 }, { "start": 11342.88, "end": 11346.92, "probability": 0.9933 }, { "start": 11347.32, "end": 11351.23, "probability": 0.9897 }, { "start": 11351.26, "end": 11355.32, "probability": 0.9567 }, { "start": 11355.32, "end": 11359.46, "probability": 0.7846 }, { "start": 11361.06, "end": 11364.02, "probability": 0.997 }, { "start": 11364.76, "end": 11367.0, "probability": 0.9976 }, { "start": 11367.64, "end": 11371.52, "probability": 0.9753 }, { "start": 11372.0, "end": 11375.94, "probability": 0.9531 }, { "start": 11375.94, "end": 11379.4, "probability": 0.9597 }, { "start": 11380.3, "end": 11382.18, "probability": 0.895 }, { "start": 11382.26, "end": 11385.8, "probability": 0.9467 }, { "start": 11385.8, "end": 11390.2, "probability": 0.9537 }, { "start": 11390.36, "end": 11391.08, "probability": 0.8246 }, { "start": 11391.54, "end": 11394.06, "probability": 0.8589 }, { "start": 11394.8, "end": 11398.56, "probability": 0.8618 }, { "start": 11399.42, "end": 11402.1, "probability": 0.8598 }, { "start": 11403.36, "end": 11408.2, "probability": 0.9192 }, { "start": 11408.2, "end": 11411.18, "probability": 0.9875 }, { "start": 11411.7, "end": 11414.12, "probability": 0.9055 }, { "start": 11414.52, "end": 11416.52, "probability": 0.9668 }, { "start": 11416.96, "end": 11417.26, "probability": 0.3484 }, { "start": 11417.72, "end": 11422.62, "probability": 0.9722 }, { "start": 11422.62, "end": 11426.82, "probability": 0.9671 }, { "start": 11426.88, "end": 11428.08, "probability": 0.9331 }, { "start": 11428.9, "end": 11429.94, "probability": 0.9937 }, { "start": 11430.64, "end": 11434.68, "probability": 0.9766 }, { "start": 11435.2, "end": 11439.04, "probability": 0.3581 }, { "start": 11439.04, "end": 11441.56, "probability": 0.9497 }, { "start": 11442.24, "end": 11448.28, "probability": 0.896 }, { "start": 11448.28, "end": 11451.06, "probability": 0.9266 }, { "start": 11451.5, "end": 11451.92, "probability": 0.3773 }, { "start": 11451.96, "end": 11452.34, "probability": 0.7504 }, { "start": 11452.44, "end": 11454.18, "probability": 0.616 }, { "start": 11454.66, "end": 11457.76, "probability": 0.9607 }, { "start": 11457.76, "end": 11461.88, "probability": 0.9673 }, { "start": 11461.92, "end": 11467.2, "probability": 0.996 }, { "start": 11467.22, "end": 11467.86, "probability": 0.8642 }, { "start": 11468.28, "end": 11471.56, "probability": 0.9924 }, { "start": 11472.3, "end": 11473.2, "probability": 0.6641 }, { "start": 11473.3, "end": 11474.04, "probability": 0.9566 }, { "start": 11474.5, "end": 11476.3, "probability": 0.7862 }, { "start": 11476.58, "end": 11478.88, "probability": 0.6139 }, { "start": 11483.12, "end": 11486.06, "probability": 0.9277 }, { "start": 11505.42, "end": 11506.14, "probability": 0.5761 }, { "start": 11506.32, "end": 11508.06, "probability": 0.8611 }, { "start": 11508.28, "end": 11511.44, "probability": 0.9139 }, { "start": 11512.42, "end": 11514.82, "probability": 0.9797 }, { "start": 11514.84, "end": 11517.72, "probability": 0.9385 }, { "start": 11518.88, "end": 11521.28, "probability": 0.992 }, { "start": 11522.04, "end": 11525.14, "probability": 0.972 }, { "start": 11525.14, "end": 11527.96, "probability": 0.9965 }, { "start": 11528.72, "end": 11532.0, "probability": 0.9505 }, { "start": 11532.46, "end": 11532.86, "probability": 0.6122 }, { "start": 11533.52, "end": 11536.36, "probability": 0.966 }, { "start": 11536.92, "end": 11544.44, "probability": 0.8713 }, { "start": 11545.0, "end": 11545.74, "probability": 0.9816 }, { "start": 11546.64, "end": 11548.7, "probability": 0.648 }, { "start": 11550.7, "end": 11554.72, "probability": 0.7509 }, { "start": 11556.4, "end": 11560.38, "probability": 0.8494 }, { "start": 11560.48, "end": 11564.16, "probability": 0.8291 }, { "start": 11564.92, "end": 11567.58, "probability": 0.5678 }, { "start": 11567.98, "end": 11569.16, "probability": 0.973 }, { "start": 11569.36, "end": 11573.06, "probability": 0.9807 }, { "start": 11573.76, "end": 11574.42, "probability": 0.691 }, { "start": 11574.5, "end": 11580.22, "probability": 0.9901 }, { "start": 11580.3, "end": 11583.98, "probability": 0.9831 }, { "start": 11584.52, "end": 11584.82, "probability": 0.4531 }, { "start": 11586.08, "end": 11588.0, "probability": 0.8937 }, { "start": 11588.14, "end": 11588.8, "probability": 0.3603 }, { "start": 11589.12, "end": 11592.52, "probability": 0.9559 }, { "start": 11592.92, "end": 11595.92, "probability": 0.9502 }, { "start": 11597.3, "end": 11602.66, "probability": 0.995 }, { "start": 11603.5, "end": 11608.34, "probability": 0.9434 }, { "start": 11608.34, "end": 11612.8, "probability": 0.9921 }, { "start": 11612.92, "end": 11616.3, "probability": 0.9973 }, { "start": 11618.0, "end": 11620.24, "probability": 0.9724 }, { "start": 11621.32, "end": 11622.54, "probability": 0.703 }, { "start": 11622.62, "end": 11623.8, "probability": 0.9694 }, { "start": 11624.06, "end": 11627.86, "probability": 0.9287 }, { "start": 11627.98, "end": 11630.28, "probability": 0.602 }, { "start": 11630.92, "end": 11633.8, "probability": 0.5725 }, { "start": 11634.88, "end": 11638.66, "probability": 0.7049 }, { "start": 11639.28, "end": 11640.66, "probability": 0.8711 }, { "start": 11641.06, "end": 11645.14, "probability": 0.978 }, { "start": 11645.48, "end": 11646.2, "probability": 0.8942 }, { "start": 11646.8, "end": 11648.04, "probability": 0.7239 }, { "start": 11648.4, "end": 11652.3, "probability": 0.9855 }, { "start": 11653.62, "end": 11657.42, "probability": 0.7753 }, { "start": 11657.82, "end": 11658.68, "probability": 0.9056 }, { "start": 11659.18, "end": 11659.92, "probability": 0.8682 }, { "start": 11664.14, "end": 11664.56, "probability": 0.7058 }, { "start": 11664.62, "end": 11665.86, "probability": 0.9058 }, { "start": 11665.96, "end": 11667.54, "probability": 0.9229 }, { "start": 11667.76, "end": 11667.86, "probability": 0.8447 }, { "start": 11668.8, "end": 11669.56, "probability": 0.903 }, { "start": 11674.16, "end": 11675.04, "probability": 0.7229 }, { "start": 11685.1, "end": 11687.46, "probability": 0.5884 }, { "start": 11687.5, "end": 11688.34, "probability": 0.8238 }, { "start": 11688.54, "end": 11691.24, "probability": 0.9198 }, { "start": 11691.68, "end": 11696.68, "probability": 0.987 }, { "start": 11696.76, "end": 11699.34, "probability": 0.9945 }, { "start": 11700.24, "end": 11702.58, "probability": 0.9572 }, { "start": 11704.16, "end": 11709.16, "probability": 0.8926 }, { "start": 11710.02, "end": 11712.1, "probability": 0.9465 }, { "start": 11713.14, "end": 11714.92, "probability": 0.9449 }, { "start": 11717.26, "end": 11719.0, "probability": 0.8409 }, { "start": 11719.1, "end": 11719.94, "probability": 0.5542 }, { "start": 11719.96, "end": 11721.24, "probability": 0.6604 }, { "start": 11721.68, "end": 11723.12, "probability": 0.7638 }, { "start": 11724.24, "end": 11729.94, "probability": 0.8307 }, { "start": 11730.62, "end": 11734.72, "probability": 0.985 }, { "start": 11735.96, "end": 11739.44, "probability": 0.9583 }, { "start": 11739.44, "end": 11742.1, "probability": 0.9924 }, { "start": 11742.92, "end": 11748.6, "probability": 0.9932 }, { "start": 11749.28, "end": 11750.52, "probability": 0.9508 }, { "start": 11751.36, "end": 11753.32, "probability": 0.9205 }, { "start": 11754.84, "end": 11758.96, "probability": 0.8272 }, { "start": 11760.1, "end": 11761.6, "probability": 0.5035 }, { "start": 11762.1, "end": 11765.02, "probability": 0.9038 }, { "start": 11765.58, "end": 11767.96, "probability": 0.9939 }, { "start": 11768.38, "end": 11769.16, "probability": 0.9342 }, { "start": 11769.34, "end": 11769.98, "probability": 0.9071 }, { "start": 11770.32, "end": 11771.52, "probability": 0.987 }, { "start": 11772.4, "end": 11773.06, "probability": 0.6524 }, { "start": 11774.14, "end": 11776.0, "probability": 0.9497 }, { "start": 11776.96, "end": 11777.92, "probability": 0.9213 }, { "start": 11779.62, "end": 11780.64, "probability": 0.6977 }, { "start": 11781.62, "end": 11784.06, "probability": 0.9219 }, { "start": 11784.12, "end": 11787.68, "probability": 0.7706 }, { "start": 11788.86, "end": 11791.88, "probability": 0.958 }, { "start": 11793.4, "end": 11796.88, "probability": 0.9917 }, { "start": 11796.94, "end": 11798.62, "probability": 0.5277 }, { "start": 11800.9, "end": 11803.18, "probability": 0.87 }, { "start": 11804.06, "end": 11807.12, "probability": 0.9899 }, { "start": 11807.54, "end": 11811.1, "probability": 0.9269 }, { "start": 11811.16, "end": 11812.76, "probability": 0.9865 }, { "start": 11813.28, "end": 11815.82, "probability": 0.9876 }, { "start": 11816.7, "end": 11819.82, "probability": 0.9957 }, { "start": 11820.34, "end": 11820.94, "probability": 0.8528 }, { "start": 11821.54, "end": 11822.48, "probability": 0.8979 }, { "start": 11823.24, "end": 11824.74, "probability": 0.8797 }, { "start": 11825.46, "end": 11826.22, "probability": 0.7702 }, { "start": 11826.84, "end": 11828.6, "probability": 0.7909 }, { "start": 11828.8, "end": 11830.62, "probability": 0.9604 }, { "start": 11831.44, "end": 11832.6, "probability": 0.7367 }, { "start": 11833.24, "end": 11837.0, "probability": 0.9164 }, { "start": 11837.46, "end": 11840.54, "probability": 0.9638 }, { "start": 11841.46, "end": 11847.2, "probability": 0.9316 }, { "start": 11847.76, "end": 11848.36, "probability": 0.9092 }, { "start": 11849.34, "end": 11853.88, "probability": 0.9653 }, { "start": 11854.5, "end": 11857.88, "probability": 0.9951 }, { "start": 11858.86, "end": 11861.54, "probability": 0.9875 }, { "start": 11861.68, "end": 11862.16, "probability": 0.8531 }, { "start": 11862.18, "end": 11866.52, "probability": 0.999 }, { "start": 11867.3, "end": 11870.26, "probability": 0.9888 }, { "start": 11870.7, "end": 11873.08, "probability": 0.9456 }, { "start": 11873.08, "end": 11876.94, "probability": 0.9689 }, { "start": 11877.54, "end": 11878.92, "probability": 0.9914 }, { "start": 11879.56, "end": 11881.38, "probability": 0.9124 }, { "start": 11882.24, "end": 11887.0, "probability": 0.9009 }, { "start": 11887.68, "end": 11889.78, "probability": 0.9915 }, { "start": 11890.0, "end": 11891.22, "probability": 0.5601 }, { "start": 11891.54, "end": 11893.24, "probability": 0.7192 }, { "start": 11894.38, "end": 11897.3, "probability": 0.8239 }, { "start": 11897.56, "end": 11898.72, "probability": 0.5517 }, { "start": 11899.54, "end": 11905.5, "probability": 0.9773 }, { "start": 11905.7, "end": 11907.2, "probability": 0.9707 }, { "start": 11908.54, "end": 11913.04, "probability": 0.8986 }, { "start": 11913.1, "end": 11913.64, "probability": 0.5879 }, { "start": 11913.74, "end": 11914.62, "probability": 0.6582 }, { "start": 11914.86, "end": 11917.62, "probability": 0.8842 }, { "start": 11918.18, "end": 11923.22, "probability": 0.9976 }, { "start": 11923.66, "end": 11924.54, "probability": 0.9951 }, { "start": 11925.28, "end": 11925.8, "probability": 0.4345 }, { "start": 11926.4, "end": 11927.94, "probability": 0.531 }, { "start": 11928.2, "end": 11929.74, "probability": 0.965 }, { "start": 11930.18, "end": 11933.46, "probability": 0.8624 }, { "start": 11933.88, "end": 11935.28, "probability": 0.8209 }, { "start": 11935.9, "end": 11936.62, "probability": 0.2109 }, { "start": 11936.72, "end": 11937.1, "probability": 0.7175 }, { "start": 11937.78, "end": 11938.36, "probability": 0.5865 }, { "start": 11939.12, "end": 11941.58, "probability": 0.9089 }, { "start": 11942.2, "end": 11944.9, "probability": 0.6945 }, { "start": 11945.3, "end": 11945.69, "probability": 0.2419 }, { "start": 11946.26, "end": 11947.18, "probability": 0.5635 }, { "start": 11947.82, "end": 11949.28, "probability": 0.2939 }, { "start": 11949.3, "end": 11951.62, "probability": 0.347 }, { "start": 11951.72, "end": 11952.14, "probability": 0.8247 }, { "start": 11952.14, "end": 11952.36, "probability": 0.5869 }, { "start": 11953.42, "end": 11953.42, "probability": 0.6203 }, { "start": 11953.42, "end": 11954.08, "probability": 0.5189 }, { "start": 11954.54, "end": 11954.88, "probability": 0.7242 }, { "start": 11955.4, "end": 11958.52, "probability": 0.9476 }, { "start": 11958.54, "end": 11961.7, "probability": 0.8971 }, { "start": 11962.7, "end": 11966.32, "probability": 0.8511 }, { "start": 11970.06, "end": 11970.88, "probability": 0.8884 }, { "start": 11982.38, "end": 11983.34, "probability": 0.6509 }, { "start": 11983.9, "end": 11985.64, "probability": 0.7122 }, { "start": 11986.36, "end": 11986.94, "probability": 0.9295 }, { "start": 11987.0, "end": 11990.34, "probability": 0.8322 }, { "start": 11990.42, "end": 11993.88, "probability": 0.9404 }, { "start": 11994.4, "end": 11996.72, "probability": 0.9955 }, { "start": 11997.28, "end": 11998.34, "probability": 0.5312 }, { "start": 11999.25, "end": 12000.87, "probability": 0.6554 }, { "start": 12002.64, "end": 12003.34, "probability": 0.8629 }, { "start": 12003.48, "end": 12004.26, "probability": 0.7101 }, { "start": 12004.4, "end": 12009.58, "probability": 0.8943 }, { "start": 12010.08, "end": 12011.57, "probability": 0.9461 }, { "start": 12013.1, "end": 12014.94, "probability": 0.9072 }, { "start": 12015.38, "end": 12016.48, "probability": 0.5642 }, { "start": 12016.7, "end": 12017.78, "probability": 0.2981 }, { "start": 12017.94, "end": 12019.72, "probability": 0.35 }, { "start": 12020.0, "end": 12020.46, "probability": 0.7295 }, { "start": 12021.66, "end": 12025.8, "probability": 0.9973 }, { "start": 12026.12, "end": 12031.2, "probability": 0.9952 }, { "start": 12031.44, "end": 12032.1, "probability": 0.7869 }, { "start": 12032.14, "end": 12032.68, "probability": 0.8631 }, { "start": 12033.12, "end": 12038.18, "probability": 0.9958 }, { "start": 12038.64, "end": 12041.96, "probability": 0.8882 }, { "start": 12042.06, "end": 12042.5, "probability": 0.4554 }, { "start": 12042.5, "end": 12043.06, "probability": 0.7914 }, { "start": 12043.48, "end": 12046.1, "probability": 0.988 }, { "start": 12046.22, "end": 12046.66, "probability": 0.0337 }, { "start": 12046.76, "end": 12047.25, "probability": 0.6142 }, { "start": 12048.32, "end": 12049.9, "probability": 0.9463 }, { "start": 12049.96, "end": 12052.16, "probability": 0.843 }, { "start": 12052.16, "end": 12055.02, "probability": 0.9899 }, { "start": 12055.36, "end": 12057.44, "probability": 0.8277 }, { "start": 12058.24, "end": 12058.76, "probability": 0.5269 }, { "start": 12059.26, "end": 12062.26, "probability": 0.9058 }, { "start": 12062.32, "end": 12065.87, "probability": 0.9519 }, { "start": 12066.34, "end": 12068.26, "probability": 0.6709 }, { "start": 12069.3, "end": 12069.7, "probability": 0.946 }, { "start": 12070.24, "end": 12071.32, "probability": 0.9943 }, { "start": 12071.7, "end": 12073.32, "probability": 0.8871 }, { "start": 12073.98, "end": 12078.78, "probability": 0.9905 }, { "start": 12079.22, "end": 12082.19, "probability": 0.8617 }, { "start": 12082.68, "end": 12085.0, "probability": 0.9942 }, { "start": 12085.14, "end": 12086.72, "probability": 0.9518 }, { "start": 12087.08, "end": 12088.2, "probability": 0.7933 }, { "start": 12088.74, "end": 12090.06, "probability": 0.7521 }, { "start": 12090.5, "end": 12092.24, "probability": 0.8041 }, { "start": 12092.48, "end": 12093.88, "probability": 0.9935 }, { "start": 12094.28, "end": 12096.23, "probability": 0.9577 }, { "start": 12097.04, "end": 12098.8, "probability": 0.9776 }, { "start": 12099.5, "end": 12102.64, "probability": 0.9521 }, { "start": 12103.12, "end": 12106.1, "probability": 0.978 }, { "start": 12106.1, "end": 12109.02, "probability": 0.7476 }, { "start": 12109.64, "end": 12111.9, "probability": 0.9445 }, { "start": 12112.38, "end": 12114.7, "probability": 0.646 }, { "start": 12115.14, "end": 12118.16, "probability": 0.8846 }, { "start": 12118.24, "end": 12123.02, "probability": 0.9826 }, { "start": 12123.58, "end": 12124.98, "probability": 0.9227 }, { "start": 12125.8, "end": 12126.72, "probability": 0.6574 }, { "start": 12127.06, "end": 12128.58, "probability": 0.8152 }, { "start": 12129.08, "end": 12130.48, "probability": 0.9965 }, { "start": 12130.8, "end": 12132.58, "probability": 0.9383 }, { "start": 12133.1, "end": 12136.3, "probability": 0.8926 }, { "start": 12136.76, "end": 12138.22, "probability": 0.9694 }, { "start": 12138.28, "end": 12139.54, "probability": 0.2798 }, { "start": 12139.54, "end": 12142.86, "probability": 0.981 }, { "start": 12143.38, "end": 12145.94, "probability": 0.9503 }, { "start": 12147.34, "end": 12148.18, "probability": 0.8782 }, { "start": 12148.64, "end": 12150.48, "probability": 0.8753 }, { "start": 12150.92, "end": 12152.8, "probability": 0.4127 }, { "start": 12153.28, "end": 12155.19, "probability": 0.8607 }, { "start": 12155.64, "end": 12156.76, "probability": 0.9512 }, { "start": 12157.32, "end": 12159.28, "probability": 0.9038 }, { "start": 12159.82, "end": 12160.62, "probability": 0.9575 }, { "start": 12160.88, "end": 12161.78, "probability": 0.9277 }, { "start": 12162.6, "end": 12165.34, "probability": 0.8955 }, { "start": 12166.1, "end": 12166.84, "probability": 0.9282 }, { "start": 12167.24, "end": 12167.94, "probability": 0.8589 }, { "start": 12168.0, "end": 12168.56, "probability": 0.704 }, { "start": 12168.62, "end": 12169.16, "probability": 0.8662 }, { "start": 12169.24, "end": 12169.86, "probability": 0.7949 }, { "start": 12170.6, "end": 12174.1, "probability": 0.8335 }, { "start": 12174.26, "end": 12175.34, "probability": 0.9502 }, { "start": 12175.98, "end": 12176.22, "probability": 0.9146 }, { "start": 12176.8, "end": 12178.76, "probability": 0.6893 }, { "start": 12179.3, "end": 12181.32, "probability": 0.9178 }, { "start": 12181.54, "end": 12185.58, "probability": 0.8103 }, { "start": 12185.92, "end": 12186.44, "probability": 0.9495 }, { "start": 12187.26, "end": 12190.84, "probability": 0.9673 }, { "start": 12191.38, "end": 12193.06, "probability": 0.9551 }, { "start": 12193.24, "end": 12193.66, "probability": 0.8856 }, { "start": 12194.26, "end": 12195.88, "probability": 0.7566 }, { "start": 12195.98, "end": 12199.76, "probability": 0.6764 }, { "start": 12199.86, "end": 12202.33, "probability": 0.9888 }, { "start": 12208.74, "end": 12211.7, "probability": 0.3055 }, { "start": 12211.8, "end": 12211.8, "probability": 0.31 }, { "start": 12211.8, "end": 12212.16, "probability": 0.0259 }, { "start": 12212.16, "end": 12212.48, "probability": 0.0235 }, { "start": 12231.14, "end": 12233.4, "probability": 0.9961 }, { "start": 12234.04, "end": 12238.72, "probability": 0.9989 }, { "start": 12238.84, "end": 12241.46, "probability": 0.9997 }, { "start": 12242.24, "end": 12243.34, "probability": 0.5743 }, { "start": 12244.0, "end": 12247.44, "probability": 0.998 }, { "start": 12248.02, "end": 12250.66, "probability": 0.998 }, { "start": 12252.04, "end": 12252.66, "probability": 0.7455 }, { "start": 12253.56, "end": 12254.38, "probability": 0.8603 }, { "start": 12255.08, "end": 12257.46, "probability": 0.888 }, { "start": 12257.96, "end": 12262.12, "probability": 0.9858 }, { "start": 12262.96, "end": 12265.96, "probability": 0.9819 }, { "start": 12266.6, "end": 12268.08, "probability": 0.9953 }, { "start": 12268.66, "end": 12271.07, "probability": 0.9988 }, { "start": 12271.68, "end": 12272.52, "probability": 0.9551 }, { "start": 12273.76, "end": 12278.7, "probability": 0.9794 }, { "start": 12278.7, "end": 12282.9, "probability": 0.9992 }, { "start": 12283.46, "end": 12283.88, "probability": 0.6684 }, { "start": 12284.94, "end": 12289.68, "probability": 0.9962 }, { "start": 12290.04, "end": 12292.04, "probability": 0.9359 }, { "start": 12292.42, "end": 12294.82, "probability": 0.9598 }, { "start": 12295.3, "end": 12296.5, "probability": 0.88 }, { "start": 12297.66, "end": 12300.48, "probability": 0.9375 }, { "start": 12301.1, "end": 12303.1, "probability": 0.9958 }, { "start": 12303.46, "end": 12305.3, "probability": 0.9548 }, { "start": 12305.98, "end": 12310.4, "probability": 0.999 }, { "start": 12310.82, "end": 12311.64, "probability": 0.8819 }, { "start": 12311.96, "end": 12312.94, "probability": 0.8209 }, { "start": 12313.58, "end": 12316.06, "probability": 0.9889 }, { "start": 12318.24, "end": 12319.82, "probability": 0.91 }, { "start": 12320.44, "end": 12321.32, "probability": 0.9694 }, { "start": 12321.86, "end": 12325.96, "probability": 0.8729 }, { "start": 12327.58, "end": 12331.04, "probability": 0.8474 }, { "start": 12331.58, "end": 12332.8, "probability": 0.6771 }, { "start": 12333.3, "end": 12335.3, "probability": 0.9902 }, { "start": 12335.86, "end": 12341.62, "probability": 0.8503 }, { "start": 12342.28, "end": 12343.37, "probability": 0.9707 }, { "start": 12343.78, "end": 12346.72, "probability": 0.9922 }, { "start": 12347.08, "end": 12349.74, "probability": 0.978 }, { "start": 12350.14, "end": 12352.46, "probability": 0.7627 }, { "start": 12352.8, "end": 12353.68, "probability": 0.8628 }, { "start": 12354.36, "end": 12356.48, "probability": 0.9972 }, { "start": 12357.14, "end": 12358.6, "probability": 0.9813 }, { "start": 12359.26, "end": 12359.92, "probability": 0.8486 }, { "start": 12360.18, "end": 12362.48, "probability": 0.9897 }, { "start": 12362.86, "end": 12366.16, "probability": 0.9112 }, { "start": 12367.3, "end": 12369.94, "probability": 0.9902 }, { "start": 12370.28, "end": 12373.82, "probability": 0.7369 }, { "start": 12374.3, "end": 12375.1, "probability": 0.7201 }, { "start": 12375.68, "end": 12377.18, "probability": 0.9977 }, { "start": 12377.92, "end": 12380.0, "probability": 0.9876 }, { "start": 12380.42, "end": 12384.42, "probability": 0.9923 }, { "start": 12384.8, "end": 12387.92, "probability": 0.9985 }, { "start": 12387.92, "end": 12391.32, "probability": 0.9946 }, { "start": 12391.38, "end": 12392.44, "probability": 0.8474 }, { "start": 12392.98, "end": 12393.84, "probability": 0.958 }, { "start": 12393.92, "end": 12394.56, "probability": 0.8224 }, { "start": 12395.28, "end": 12397.48, "probability": 0.978 }, { "start": 12397.48, "end": 12397.78, "probability": 0.4802 }, { "start": 12397.78, "end": 12398.86, "probability": 0.3013 }, { "start": 12398.94, "end": 12400.35, "probability": 0.9329 }, { "start": 12401.06, "end": 12404.6, "probability": 0.9946 }, { "start": 12405.54, "end": 12408.46, "probability": 0.9926 }, { "start": 12409.53, "end": 12412.96, "probability": 0.9414 }, { "start": 12413.59, "end": 12415.36, "probability": 0.9922 }, { "start": 12416.62, "end": 12418.58, "probability": 0.918 }, { "start": 12419.84, "end": 12421.34, "probability": 0.8304 }, { "start": 12422.54, "end": 12424.88, "probability": 0.7627 }, { "start": 12426.34, "end": 12429.14, "probability": 0.8149 }, { "start": 12434.2, "end": 12434.82, "probability": 0.3719 }, { "start": 12435.5, "end": 12436.16, "probability": 0.5837 }, { "start": 12436.28, "end": 12436.9, "probability": 0.716 }, { "start": 12437.8, "end": 12438.52, "probability": 0.5499 }, { "start": 12438.86, "end": 12440.08, "probability": 0.4451 }, { "start": 12440.08, "end": 12446.16, "probability": 0.8588 }, { "start": 12446.24, "end": 12447.54, "probability": 0.8177 }, { "start": 12448.06, "end": 12448.66, "probability": 0.93 }, { "start": 12448.78, "end": 12449.24, "probability": 0.2557 }, { "start": 12449.72, "end": 12450.06, "probability": 0.7121 }, { "start": 12450.84, "end": 12452.0, "probability": 0.2147 }, { "start": 12453.84, "end": 12453.84, "probability": 0.0738 }, { "start": 12467.54, "end": 12468.56, "probability": 0.2585 }, { "start": 12468.56, "end": 12468.94, "probability": 0.0954 }, { "start": 12468.94, "end": 12468.94, "probability": 0.5384 }, { "start": 12468.94, "end": 12469.94, "probability": 0.4069 }, { "start": 12470.42, "end": 12471.9, "probability": 0.6726 }, { "start": 12471.96, "end": 12475.28, "probability": 0.9612 }, { "start": 12475.76, "end": 12478.76, "probability": 0.9741 }, { "start": 12478.86, "end": 12480.28, "probability": 0.6386 }, { "start": 12480.38, "end": 12481.84, "probability": 0.3884 }, { "start": 12482.2, "end": 12482.92, "probability": 0.7007 }, { "start": 12483.04, "end": 12483.66, "probability": 0.7583 }, { "start": 12483.94, "end": 12484.54, "probability": 0.6045 }, { "start": 12504.69, "end": 12505.86, "probability": 0.2809 }, { "start": 12510.54, "end": 12512.26, "probability": 0.0591 }, { "start": 12512.32, "end": 12513.58, "probability": 0.4716 }, { "start": 12515.62, "end": 12515.94, "probability": 0.1654 }, { "start": 12515.94, "end": 12516.28, "probability": 0.3235 }, { "start": 12527.91, "end": 12528.66, "probability": 0.166 }, { "start": 12528.72, "end": 12528.96, "probability": 0.0088 }, { "start": 12528.96, "end": 12528.96, "probability": 0.0505 }, { "start": 12528.96, "end": 12528.96, "probability": 0.067 }, { "start": 12528.96, "end": 12530.09, "probability": 0.046 }, { "start": 12530.48, "end": 12533.86, "probability": 0.076 }, { "start": 12534.64, "end": 12534.96, "probability": 0.2364 }, { "start": 12535.22, "end": 12536.26, "probability": 0.2559 }, { "start": 12537.08, "end": 12537.16, "probability": 0.137 }, { "start": 12537.16, "end": 12538.92, "probability": 0.0576 }, { "start": 12539.0, "end": 12539.0, "probability": 0.0 }, { "start": 12539.0, "end": 12539.0, "probability": 0.0 }, { "start": 12539.0, "end": 12539.0, "probability": 0.0 }, { "start": 12539.0, "end": 12539.0, "probability": 0.0 }, { "start": 12539.0, "end": 12539.0, "probability": 0.0 }, { "start": 12539.02, "end": 12539.04, "probability": 0.0675 }, { "start": 12539.04, "end": 12539.14, "probability": 0.048 }, { "start": 12539.14, "end": 12539.94, "probability": 0.2759 }, { "start": 12541.68, "end": 12547.18, "probability": 0.7591 }, { "start": 12547.76, "end": 12548.3, "probability": 0.6862 }, { "start": 12548.5, "end": 12551.56, "probability": 0.7955 }, { "start": 12551.68, "end": 12554.3, "probability": 0.924 }, { "start": 12554.3, "end": 12554.7, "probability": 0.487 }, { "start": 12555.18, "end": 12557.62, "probability": 0.8594 }, { "start": 12557.64, "end": 12561.12, "probability": 0.9851 }, { "start": 12561.2, "end": 12562.22, "probability": 0.9246 }, { "start": 12563.38, "end": 12564.56, "probability": 0.1299 }, { "start": 12565.18, "end": 12567.9, "probability": 0.7985 }, { "start": 12571.34, "end": 12571.98, "probability": 0.7949 }, { "start": 12572.32, "end": 12573.0, "probability": 0.9481 }, { "start": 12573.06, "end": 12574.08, "probability": 0.7298 }, { "start": 12575.44, "end": 12576.28, "probability": 0.0016 }, { "start": 12577.0, "end": 12578.02, "probability": 0.0548 }, { "start": 12579.7, "end": 12579.91, "probability": 0.1159 }, { "start": 12581.4, "end": 12582.86, "probability": 0.8823 }, { "start": 12583.5, "end": 12584.34, "probability": 0.0301 }, { "start": 12585.66, "end": 12587.12, "probability": 0.0609 }, { "start": 12593.5, "end": 12595.62, "probability": 0.4223 }, { "start": 12597.2, "end": 12598.94, "probability": 0.7513 }, { "start": 12599.42, "end": 12600.82, "probability": 0.5974 }, { "start": 12601.3, "end": 12602.08, "probability": 0.8287 }, { "start": 12602.98, "end": 12603.62, "probability": 0.8656 }, { "start": 12604.66, "end": 12604.76, "probability": 0.0665 }, { "start": 12606.3, "end": 12607.98, "probability": 0.6316 }, { "start": 12608.84, "end": 12609.2, "probability": 0.8679 }, { "start": 12609.72, "end": 12611.54, "probability": 0.7386 }, { "start": 12612.5, "end": 12613.32, "probability": 0.8105 }, { "start": 12613.46, "end": 12613.74, "probability": 0.9524 }, { "start": 12613.74, "end": 12619.82, "probability": 0.9948 }, { "start": 12619.82, "end": 12624.54, "probability": 0.9785 }, { "start": 12624.96, "end": 12625.88, "probability": 0.8149 }, { "start": 12626.02, "end": 12631.58, "probability": 0.9902 }, { "start": 12632.4, "end": 12636.7, "probability": 0.9933 }, { "start": 12637.26, "end": 12638.4, "probability": 0.9518 }, { "start": 12638.58, "end": 12640.92, "probability": 0.9872 }, { "start": 12641.52, "end": 12643.82, "probability": 0.9875 }, { "start": 12643.94, "end": 12644.48, "probability": 0.731 }, { "start": 12644.7, "end": 12645.86, "probability": 0.8389 }, { "start": 12646.44, "end": 12647.48, "probability": 0.8972 }, { "start": 12648.0, "end": 12650.76, "probability": 0.9972 }, { "start": 12650.76, "end": 12656.24, "probability": 0.9903 }, { "start": 12656.46, "end": 12663.06, "probability": 0.9873 }, { "start": 12664.24, "end": 12667.96, "probability": 0.7746 }, { "start": 12668.54, "end": 12672.34, "probability": 0.9556 }, { "start": 12672.82, "end": 12675.38, "probability": 0.879 }, { "start": 12675.86, "end": 12679.62, "probability": 0.8933 }, { "start": 12680.14, "end": 12683.48, "probability": 0.8462 }, { "start": 12683.58, "end": 12685.64, "probability": 0.964 }, { "start": 12686.2, "end": 12688.58, "probability": 0.9722 }, { "start": 12688.8, "end": 12690.68, "probability": 0.8736 }, { "start": 12691.2, "end": 12695.04, "probability": 0.9808 }, { "start": 12695.1, "end": 12696.86, "probability": 0.9924 }, { "start": 12697.36, "end": 12700.16, "probability": 0.9934 }, { "start": 12701.78, "end": 12702.24, "probability": 0.8056 }, { "start": 12703.22, "end": 12706.62, "probability": 0.9406 }, { "start": 12707.38, "end": 12710.3, "probability": 0.8486 }, { "start": 12711.02, "end": 12714.36, "probability": 0.9987 }, { "start": 12715.46, "end": 12719.48, "probability": 0.9475 }, { "start": 12719.96, "end": 12721.96, "probability": 0.8229 }, { "start": 12722.72, "end": 12726.06, "probability": 0.9884 }, { "start": 12726.12, "end": 12727.08, "probability": 0.8812 }, { "start": 12727.24, "end": 12728.47, "probability": 0.9502 }, { "start": 12729.04, "end": 12731.02, "probability": 0.7202 }, { "start": 12731.26, "end": 12733.36, "probability": 0.9763 }, { "start": 12734.44, "end": 12738.54, "probability": 0.9862 }, { "start": 12739.08, "end": 12742.28, "probability": 0.9767 }, { "start": 12743.92, "end": 12748.0, "probability": 0.8778 }, { "start": 12748.18, "end": 12749.0, "probability": 0.7628 }, { "start": 12749.06, "end": 12749.7, "probability": 0.1585 }, { "start": 12750.3, "end": 12753.62, "probability": 0.9545 }, { "start": 12754.44, "end": 12757.84, "probability": 0.9929 }, { "start": 12758.44, "end": 12761.1, "probability": 0.8699 }, { "start": 12762.32, "end": 12765.26, "probability": 0.9922 }, { "start": 12765.96, "end": 12768.04, "probability": 0.9128 }, { "start": 12769.02, "end": 12773.06, "probability": 0.6353 }, { "start": 12773.2, "end": 12778.76, "probability": 0.9936 }, { "start": 12779.76, "end": 12783.3, "probability": 0.9838 }, { "start": 12785.1, "end": 12785.9, "probability": 0.5704 }, { "start": 12785.96, "end": 12786.56, "probability": 0.8133 }, { "start": 12786.68, "end": 12788.22, "probability": 0.99 }, { "start": 12788.3, "end": 12793.2, "probability": 0.8919 }, { "start": 12794.18, "end": 12794.96, "probability": 0.9196 }, { "start": 12795.12, "end": 12795.88, "probability": 0.6491 }, { "start": 12795.98, "end": 12796.57, "probability": 0.9264 }, { "start": 12796.88, "end": 12798.1, "probability": 0.504 }, { "start": 12798.2, "end": 12798.88, "probability": 0.9374 }, { "start": 12799.4, "end": 12801.4, "probability": 0.9834 }, { "start": 12801.86, "end": 12804.7, "probability": 0.9385 }, { "start": 12804.74, "end": 12806.4, "probability": 0.7871 }, { "start": 12806.7, "end": 12807.66, "probability": 0.8877 }, { "start": 12807.72, "end": 12808.1, "probability": 0.7932 }, { "start": 12809.08, "end": 12811.56, "probability": 0.9829 }, { "start": 12811.58, "end": 12814.24, "probability": 0.9932 }, { "start": 12814.96, "end": 12817.68, "probability": 0.8284 }, { "start": 12818.52, "end": 12820.04, "probability": 0.9722 }, { "start": 12820.54, "end": 12822.42, "probability": 0.9115 }, { "start": 12823.6, "end": 12825.62, "probability": 0.8709 }, { "start": 12825.88, "end": 12830.42, "probability": 0.9865 }, { "start": 12830.96, "end": 12833.98, "probability": 0.9189 }, { "start": 12834.94, "end": 12836.82, "probability": 0.9941 }, { "start": 12837.22, "end": 12841.96, "probability": 0.9783 }, { "start": 12842.24, "end": 12846.36, "probability": 0.9266 }, { "start": 12846.54, "end": 12848.52, "probability": 0.9394 }, { "start": 12848.76, "end": 12849.06, "probability": 0.715 }, { "start": 12849.34, "end": 12850.08, "probability": 0.5415 }, { "start": 12850.72, "end": 12854.4, "probability": 0.9493 }, { "start": 12855.48, "end": 12857.52, "probability": 0.9521 }, { "start": 12858.38, "end": 12860.38, "probability": 0.9712 }, { "start": 12861.6, "end": 12863.76, "probability": 0.945 }, { "start": 12865.48, "end": 12868.98, "probability": 0.7217 }, { "start": 12869.9, "end": 12870.44, "probability": 0.7623 }, { "start": 12870.56, "end": 12873.84, "probability": 0.9102 }, { "start": 12874.28, "end": 12875.14, "probability": 0.8507 }, { "start": 12875.72, "end": 12877.7, "probability": 0.744 }, { "start": 12877.76, "end": 12878.22, "probability": 0.7428 }, { "start": 12878.3, "end": 12881.58, "probability": 0.7093 }, { "start": 12881.86, "end": 12885.08, "probability": 0.9741 }, { "start": 12886.66, "end": 12888.48, "probability": 0.7401 }, { "start": 12888.68, "end": 12892.74, "probability": 0.9529 }, { "start": 12892.94, "end": 12894.06, "probability": 0.9172 }, { "start": 12895.0, "end": 12895.93, "probability": 0.9347 }, { "start": 12896.16, "end": 12899.26, "probability": 0.9878 }, { "start": 12899.26, "end": 12902.1, "probability": 0.988 }, { "start": 12903.96, "end": 12905.38, "probability": 0.836 }, { "start": 12905.44, "end": 12907.72, "probability": 0.993 }, { "start": 12907.88, "end": 12909.84, "probability": 0.8467 }, { "start": 12910.6, "end": 12912.64, "probability": 0.7178 }, { "start": 12913.48, "end": 12915.44, "probability": 0.9984 }, { "start": 12916.02, "end": 12920.68, "probability": 0.9975 }, { "start": 12920.68, "end": 12925.68, "probability": 0.9939 }, { "start": 12926.72, "end": 12930.8, "probability": 0.9839 }, { "start": 12931.68, "end": 12934.62, "probability": 0.9868 }, { "start": 12935.58, "end": 12940.12, "probability": 0.9934 }, { "start": 12941.56, "end": 12944.96, "probability": 0.8905 }, { "start": 12945.2, "end": 12947.78, "probability": 0.8854 }, { "start": 12947.78, "end": 12950.44, "probability": 0.9992 }, { "start": 12951.78, "end": 12955.64, "probability": 0.9966 }, { "start": 12955.9, "end": 12958.5, "probability": 0.9973 }, { "start": 12959.24, "end": 12963.62, "probability": 0.9599 }, { "start": 12963.74, "end": 12964.3, "probability": 0.842 }, { "start": 12964.86, "end": 12966.96, "probability": 0.9941 }, { "start": 12966.96, "end": 12971.78, "probability": 0.9902 }, { "start": 12972.7, "end": 12977.26, "probability": 0.986 }, { "start": 12977.38, "end": 12980.14, "probability": 0.9824 }, { "start": 12980.68, "end": 12982.3, "probability": 0.9346 }, { "start": 12982.44, "end": 12985.36, "probability": 0.9793 }, { "start": 12986.12, "end": 12990.82, "probability": 0.9872 }, { "start": 12991.38, "end": 12993.86, "probability": 0.8979 }, { "start": 12994.56, "end": 12995.56, "probability": 0.6119 }, { "start": 12995.66, "end": 12998.54, "probability": 0.9985 }, { "start": 12998.54, "end": 13002.22, "probability": 0.9982 }, { "start": 13002.82, "end": 13004.08, "probability": 0.6854 }, { "start": 13004.24, "end": 13004.98, "probability": 0.829 }, { "start": 13005.14, "end": 13006.5, "probability": 0.8904 }, { "start": 13008.34, "end": 13009.0, "probability": 0.7931 }, { "start": 13009.56, "end": 13011.08, "probability": 0.8146 }, { "start": 13011.6, "end": 13011.86, "probability": 0.3828 }, { "start": 13011.96, "end": 13013.64, "probability": 0.8705 }, { "start": 13014.1, "end": 13015.1, "probability": 0.7905 }, { "start": 13015.18, "end": 13016.14, "probability": 0.8909 }, { "start": 13017.24, "end": 13017.64, "probability": 0.197 }, { "start": 13031.94, "end": 13032.12, "probability": 0.0746 }, { "start": 13032.12, "end": 13033.3, "probability": 0.4948 }, { "start": 13034.78, "end": 13037.24, "probability": 0.725 }, { "start": 13037.78, "end": 13039.04, "probability": 0.701 }, { "start": 13040.12, "end": 13045.6, "probability": 0.9624 }, { "start": 13045.6, "end": 13051.8, "probability": 0.9906 }, { "start": 13052.94, "end": 13054.34, "probability": 0.9906 }, { "start": 13055.9, "end": 13057.46, "probability": 0.9946 }, { "start": 13058.1, "end": 13061.74, "probability": 0.9919 }, { "start": 13063.06, "end": 13065.52, "probability": 0.9941 }, { "start": 13066.36, "end": 13069.44, "probability": 0.9897 }, { "start": 13070.14, "end": 13071.08, "probability": 0.9983 }, { "start": 13071.76, "end": 13073.7, "probability": 0.9833 }, { "start": 13074.58, "end": 13075.67, "probability": 0.5738 }, { "start": 13076.56, "end": 13077.86, "probability": 0.9937 }, { "start": 13078.46, "end": 13079.8, "probability": 0.8205 }, { "start": 13080.54, "end": 13083.26, "probability": 0.9458 }, { "start": 13084.32, "end": 13087.02, "probability": 0.9826 }, { "start": 13087.98, "end": 13088.7, "probability": 0.9946 }, { "start": 13089.68, "end": 13094.82, "probability": 0.9927 }, { "start": 13095.44, "end": 13098.4, "probability": 0.9834 }, { "start": 13099.56, "end": 13101.8, "probability": 0.9816 }, { "start": 13102.46, "end": 13106.18, "probability": 0.9895 }, { "start": 13107.4, "end": 13108.38, "probability": 0.8173 }, { "start": 13109.74, "end": 13111.66, "probability": 0.989 }, { "start": 13112.3, "end": 13117.56, "probability": 0.8323 }, { "start": 13118.5, "end": 13122.18, "probability": 0.9779 }, { "start": 13122.8, "end": 13128.82, "probability": 0.9868 }, { "start": 13130.14, "end": 13134.5, "probability": 0.9902 }, { "start": 13135.28, "end": 13139.92, "probability": 0.9844 }, { "start": 13139.92, "end": 13143.38, "probability": 0.8433 }, { "start": 13144.1, "end": 13148.74, "probability": 0.997 }, { "start": 13149.92, "end": 13152.3, "probability": 0.7642 }, { "start": 13152.58, "end": 13154.88, "probability": 0.9705 }, { "start": 13155.52, "end": 13159.01, "probability": 0.9948 }, { "start": 13160.04, "end": 13163.28, "probability": 0.9966 }, { "start": 13164.16, "end": 13169.4, "probability": 0.9575 }, { "start": 13169.4, "end": 13173.18, "probability": 0.9705 }, { "start": 13173.88, "end": 13178.0, "probability": 0.9613 }, { "start": 13178.16, "end": 13179.6, "probability": 0.8864 }, { "start": 13180.54, "end": 13184.58, "probability": 0.9778 }, { "start": 13185.6, "end": 13186.16, "probability": 0.8559 }, { "start": 13186.9, "end": 13194.7, "probability": 0.9917 }, { "start": 13195.5, "end": 13197.18, "probability": 0.7691 }, { "start": 13197.66, "end": 13204.4, "probability": 0.9936 }, { "start": 13206.2, "end": 13210.38, "probability": 0.9971 }, { "start": 13211.22, "end": 13216.14, "probability": 0.9933 }, { "start": 13216.14, "end": 13220.06, "probability": 0.9539 }, { "start": 13221.06, "end": 13223.45, "probability": 0.9936 }, { "start": 13224.82, "end": 13226.12, "probability": 0.6445 }, { "start": 13227.16, "end": 13232.1, "probability": 0.9955 }, { "start": 13234.52, "end": 13240.06, "probability": 0.995 }, { "start": 13240.14, "end": 13241.65, "probability": 0.8708 }, { "start": 13242.44, "end": 13248.94, "probability": 0.9977 }, { "start": 13249.3, "end": 13253.38, "probability": 0.5995 }, { "start": 13253.84, "end": 13253.94, "probability": 0.6802 }, { "start": 13254.58, "end": 13254.84, "probability": 0.5103 }, { "start": 13254.98, "end": 13255.5, "probability": 0.5831 }, { "start": 13255.58, "end": 13255.9, "probability": 0.1665 }, { "start": 13256.08, "end": 13257.6, "probability": 0.4308 }, { "start": 13258.04, "end": 13260.4, "probability": 0.2387 }, { "start": 13261.0, "end": 13263.78, "probability": 0.1389 }, { "start": 13266.38, "end": 13269.4, "probability": 0.9591 }, { "start": 13270.26, "end": 13270.26, "probability": 0.0103 }, { "start": 13270.26, "end": 13270.56, "probability": 0.3894 }, { "start": 13270.92, "end": 13272.4, "probability": 0.9807 }, { "start": 13274.11, "end": 13274.22, "probability": 0.047 }, { "start": 13274.42, "end": 13276.36, "probability": 0.2879 }, { "start": 13276.44, "end": 13277.66, "probability": 0.8562 }, { "start": 13278.4, "end": 13280.44, "probability": 0.7504 }, { "start": 13282.26, "end": 13283.86, "probability": 0.7198 }, { "start": 13284.44, "end": 13284.82, "probability": 0.1051 }, { "start": 13286.18, "end": 13288.64, "probability": 0.0717 }, { "start": 13288.96, "end": 13290.91, "probability": 0.6598 }, { "start": 13292.0, "end": 13297.06, "probability": 0.9737 }, { "start": 13297.74, "end": 13299.58, "probability": 0.8353 }, { "start": 13299.82, "end": 13300.12, "probability": 0.8438 }, { "start": 13302.0, "end": 13304.38, "probability": 0.564 }, { "start": 13305.1, "end": 13309.5, "probability": 0.5272 }, { "start": 13309.98, "end": 13313.38, "probability": 0.9448 }, { "start": 13314.08, "end": 13315.54, "probability": 0.9894 }, { "start": 13317.14, "end": 13318.24, "probability": 0.008 }, { "start": 13322.96, "end": 13325.46, "probability": 0.1268 }, { "start": 13327.52, "end": 13330.42, "probability": 0.091 }, { "start": 13338.34, "end": 13340.2, "probability": 0.4825 }, { "start": 13341.32, "end": 13343.96, "probability": 0.7027 }, { "start": 13347.32, "end": 13351.16, "probability": 0.6412 }, { "start": 13362.72, "end": 13362.82, "probability": 0.3301 }, { "start": 13362.82, "end": 13365.18, "probability": 0.9229 }, { "start": 13367.16, "end": 13368.14, "probability": 0.8846 }, { "start": 13369.08, "end": 13372.62, "probability": 0.6943 }, { "start": 13373.32, "end": 13376.72, "probability": 0.8829 }, { "start": 13376.98, "end": 13379.94, "probability": 0.9763 }, { "start": 13380.32, "end": 13381.54, "probability": 0.6943 }, { "start": 13383.24, "end": 13385.44, "probability": 0.9579 }, { "start": 13386.42, "end": 13387.5, "probability": 0.7416 }, { "start": 13387.9, "end": 13390.18, "probability": 0.8842 }, { "start": 13391.24, "end": 13395.84, "probability": 0.9774 }, { "start": 13396.7, "end": 13403.64, "probability": 0.9644 }, { "start": 13403.86, "end": 13406.42, "probability": 0.9175 }, { "start": 13406.8, "end": 13411.68, "probability": 0.9901 }, { "start": 13412.12, "end": 13415.86, "probability": 0.9687 }, { "start": 13417.8, "end": 13418.76, "probability": 0.5615 }, { "start": 13420.2, "end": 13421.94, "probability": 0.939 }, { "start": 13422.66, "end": 13423.88, "probability": 0.9619 }, { "start": 13424.68, "end": 13425.94, "probability": 0.9019 }, { "start": 13427.96, "end": 13431.68, "probability": 0.984 }, { "start": 13432.16, "end": 13437.6, "probability": 0.9789 }, { "start": 13437.7, "end": 13441.02, "probability": 0.9825 }, { "start": 13441.92, "end": 13443.56, "probability": 0.8257 }, { "start": 13444.16, "end": 13446.5, "probability": 0.8334 }, { "start": 13447.04, "end": 13448.82, "probability": 0.5153 }, { "start": 13449.7, "end": 13451.68, "probability": 0.9574 }, { "start": 13452.3, "end": 13453.34, "probability": 0.9093 }, { "start": 13455.14, "end": 13459.92, "probability": 0.9852 }, { "start": 13460.0, "end": 13464.72, "probability": 0.9946 }, { "start": 13465.62, "end": 13469.12, "probability": 0.9905 }, { "start": 13469.2, "end": 13471.86, "probability": 0.9911 }, { "start": 13472.8, "end": 13475.22, "probability": 0.9958 }, { "start": 13476.5, "end": 13480.52, "probability": 0.8038 }, { "start": 13482.44, "end": 13483.3, "probability": 0.928 }, { "start": 13487.82, "end": 13488.86, "probability": 0.7178 }, { "start": 13490.18, "end": 13494.4, "probability": 0.8514 }, { "start": 13495.6, "end": 13499.18, "probability": 0.7834 }, { "start": 13499.92, "end": 13501.4, "probability": 0.9941 }, { "start": 13503.76, "end": 13506.24, "probability": 0.9167 }, { "start": 13506.96, "end": 13508.64, "probability": 0.9776 }, { "start": 13509.3, "end": 13511.06, "probability": 0.9956 }, { "start": 13512.2, "end": 13515.18, "probability": 0.884 }, { "start": 13515.96, "end": 13517.08, "probability": 0.9825 }, { "start": 13518.04, "end": 13519.96, "probability": 0.9897 }, { "start": 13520.52, "end": 13526.02, "probability": 0.9939 }, { "start": 13527.16, "end": 13532.56, "probability": 0.8188 }, { "start": 13534.58, "end": 13537.48, "probability": 0.828 }, { "start": 13538.5, "end": 13543.74, "probability": 0.9948 }, { "start": 13544.16, "end": 13545.48, "probability": 0.8317 }, { "start": 13547.06, "end": 13549.98, "probability": 0.9967 }, { "start": 13550.06, "end": 13553.9, "probability": 0.9977 }, { "start": 13554.46, "end": 13555.12, "probability": 0.7856 }, { "start": 13555.42, "end": 13558.82, "probability": 0.9454 }, { "start": 13558.82, "end": 13562.44, "probability": 0.9996 }, { "start": 13563.16, "end": 13564.42, "probability": 0.7144 }, { "start": 13565.42, "end": 13568.04, "probability": 0.8891 }, { "start": 13568.6, "end": 13570.02, "probability": 0.8598 }, { "start": 13570.58, "end": 13572.14, "probability": 0.7508 }, { "start": 13572.24, "end": 13573.46, "probability": 0.852 }, { "start": 13573.52, "end": 13574.5, "probability": 0.0033 }, { "start": 13576.62, "end": 13579.32, "probability": 0.0364 }, { "start": 13582.9, "end": 13583.02, "probability": 0.015 }, { "start": 13584.18, "end": 13586.28, "probability": 0.0455 }, { "start": 13586.44, "end": 13587.06, "probability": 0.1742 }, { "start": 13587.2, "end": 13588.7, "probability": 0.1263 }, { "start": 13591.02, "end": 13592.6, "probability": 0.5014 }, { "start": 13592.6, "end": 13592.6, "probability": 0.0787 }, { "start": 13592.6, "end": 13593.76, "probability": 0.0449 }, { "start": 13594.04, "end": 13595.04, "probability": 0.1456 }, { "start": 13595.36, "end": 13596.04, "probability": 0.0867 }, { "start": 13596.92, "end": 13598.12, "probability": 0.6148 }, { "start": 13598.24, "end": 13599.14, "probability": 0.8863 }, { "start": 13600.1, "end": 13601.5, "probability": 0.6425 }, { "start": 13601.82, "end": 13602.54, "probability": 0.9688 }, { "start": 13604.52, "end": 13607.4, "probability": 0.9836 }, { "start": 13607.6, "end": 13609.58, "probability": 0.9961 }, { "start": 13610.38, "end": 13611.82, "probability": 0.7706 }, { "start": 13612.72, "end": 13615.82, "probability": 0.9977 }, { "start": 13615.82, "end": 13617.66, "probability": 0.9998 }, { "start": 13618.6, "end": 13620.58, "probability": 0.746 }, { "start": 13620.72, "end": 13625.02, "probability": 0.8195 }, { "start": 13626.02, "end": 13626.02, "probability": 0.0576 }, { "start": 13626.18, "end": 13629.5, "probability": 0.7722 }, { "start": 13629.68, "end": 13630.54, "probability": 0.7233 }, { "start": 13630.7, "end": 13632.82, "probability": 0.8912 }, { "start": 13633.36, "end": 13635.12, "probability": 0.9384 }, { "start": 13636.02, "end": 13639.1, "probability": 0.9964 }, { "start": 13639.26, "end": 13641.16, "probability": 0.0505 }, { "start": 13642.18, "end": 13642.22, "probability": 0.0605 }, { "start": 13642.22, "end": 13642.22, "probability": 0.0595 }, { "start": 13642.22, "end": 13644.27, "probability": 0.7321 }, { "start": 13645.0, "end": 13647.27, "probability": 0.9053 }, { "start": 13648.18, "end": 13650.56, "probability": 0.1868 }, { "start": 13651.7, "end": 13652.0, "probability": 0.306 }, { "start": 13652.0, "end": 13652.32, "probability": 0.1346 }, { "start": 13652.38, "end": 13652.38, "probability": 0.1287 }, { "start": 13653.24, "end": 13653.66, "probability": 0.0929 }, { "start": 13654.3, "end": 13654.32, "probability": 0.0818 }, { "start": 13654.32, "end": 13654.4, "probability": 0.0664 }, { "start": 13654.58, "end": 13656.78, "probability": 0.9578 }, { "start": 13657.84, "end": 13659.18, "probability": 0.0419 }, { "start": 13660.0, "end": 13662.58, "probability": 0.882 }, { "start": 13663.04, "end": 13667.28, "probability": 0.9951 }, { "start": 13667.9, "end": 13671.2, "probability": 0.8566 }, { "start": 13671.56, "end": 13671.62, "probability": 0.0048 }, { "start": 13671.62, "end": 13677.5, "probability": 0.9866 }, { "start": 13677.56, "end": 13680.32, "probability": 0.9926 }, { "start": 13680.82, "end": 13682.04, "probability": 0.7741 }, { "start": 13682.14, "end": 13683.35, "probability": 0.9946 }, { "start": 13684.02, "end": 13686.32, "probability": 0.9651 }, { "start": 13686.78, "end": 13688.56, "probability": 0.9741 }, { "start": 13689.08, "end": 13694.72, "probability": 0.9818 }, { "start": 13695.58, "end": 13697.78, "probability": 0.7939 }, { "start": 13698.2, "end": 13702.6, "probability": 0.9982 }, { "start": 13702.64, "end": 13704.56, "probability": 0.9842 }, { "start": 13705.0, "end": 13709.26, "probability": 0.9642 }, { "start": 13709.62, "end": 13710.86, "probability": 0.9863 }, { "start": 13711.26, "end": 13712.06, "probability": 0.5104 }, { "start": 13712.38, "end": 13714.2, "probability": 0.8278 }, { "start": 13714.32, "end": 13717.48, "probability": 0.9697 }, { "start": 13718.1, "end": 13718.7, "probability": 0.3423 }, { "start": 13718.7, "end": 13718.76, "probability": 0.2054 }, { "start": 13718.76, "end": 13721.03, "probability": 0.7066 }, { "start": 13721.54, "end": 13723.72, "probability": 0.6367 }, { "start": 13723.84, "end": 13724.68, "probability": 0.8545 }, { "start": 13724.76, "end": 13726.26, "probability": 0.9424 }, { "start": 13726.7, "end": 13728.24, "probability": 0.9878 }, { "start": 13728.82, "end": 13730.64, "probability": 0.9968 }, { "start": 13731.12, "end": 13735.8, "probability": 0.9607 }, { "start": 13736.38, "end": 13738.84, "probability": 0.9317 }, { "start": 13739.48, "end": 13743.8, "probability": 0.9629 }, { "start": 13744.34, "end": 13746.96, "probability": 0.9707 }, { "start": 13747.9, "end": 13751.14, "probability": 0.9834 }, { "start": 13751.76, "end": 13753.72, "probability": 0.8545 }, { "start": 13754.26, "end": 13757.24, "probability": 0.979 }, { "start": 13757.56, "end": 13758.28, "probability": 0.4423 }, { "start": 13758.38, "end": 13760.5, "probability": 0.6573 }, { "start": 13760.88, "end": 13763.66, "probability": 0.9856 }, { "start": 13764.36, "end": 13765.14, "probability": 0.4063 }, { "start": 13765.36, "end": 13768.68, "probability": 0.1868 }, { "start": 13768.68, "end": 13768.68, "probability": 0.1652 }, { "start": 13768.68, "end": 13768.68, "probability": 0.5596 }, { "start": 13768.68, "end": 13769.96, "probability": 0.4115 }, { "start": 13770.24, "end": 13771.42, "probability": 0.7948 }, { "start": 13772.06, "end": 13773.38, "probability": 0.6844 }, { "start": 13773.74, "end": 13775.66, "probability": 0.9824 }, { "start": 13775.82, "end": 13778.12, "probability": 0.986 }, { "start": 13779.08, "end": 13780.84, "probability": 0.8647 }, { "start": 13780.86, "end": 13781.34, "probability": 0.8602 }, { "start": 13781.92, "end": 13787.22, "probability": 0.9557 }, { "start": 13788.22, "end": 13791.24, "probability": 0.6758 }, { "start": 13791.32, "end": 13792.82, "probability": 0.9786 }, { "start": 13793.08, "end": 13794.33, "probability": 0.9775 }, { "start": 13794.96, "end": 13796.24, "probability": 0.9302 }, { "start": 13796.88, "end": 13798.04, "probability": 0.9868 }, { "start": 13798.98, "end": 13800.72, "probability": 0.9907 }, { "start": 13801.02, "end": 13801.16, "probability": 0.0187 }, { "start": 13801.82, "end": 13803.92, "probability": 0.149 }, { "start": 13804.38, "end": 13807.48, "probability": 0.0793 }, { "start": 13807.82, "end": 13811.54, "probability": 0.7974 }, { "start": 13811.68, "end": 13811.86, "probability": 0.5036 }, { "start": 13812.18, "end": 13814.21, "probability": 0.9939 }, { "start": 13814.34, "end": 13817.86, "probability": 0.9836 }, { "start": 13818.42, "end": 13820.06, "probability": 0.7707 }, { "start": 13820.24, "end": 13821.92, "probability": 0.9093 }, { "start": 13822.48, "end": 13825.0, "probability": 0.7314 }, { "start": 13825.52, "end": 13827.02, "probability": 0.9707 }, { "start": 13827.16, "end": 13830.28, "probability": 0.7914 }, { "start": 13830.36, "end": 13830.88, "probability": 0.9319 }, { "start": 13835.38, "end": 13836.76, "probability": 0.6098 }, { "start": 13836.92, "end": 13838.48, "probability": 0.9739 }, { "start": 13839.02, "end": 13839.92, "probability": 0.6331 }, { "start": 13841.21, "end": 13848.79, "probability": 0.3554 }, { "start": 13850.52, "end": 13851.1, "probability": 0.3222 }, { "start": 13857.7, "end": 13858.26, "probability": 0.3418 }, { "start": 13859.89, "end": 13863.16, "probability": 0.6483 }, { "start": 13863.66, "end": 13864.44, "probability": 0.8008 }, { "start": 13864.44, "end": 13866.76, "probability": 0.6679 }, { "start": 13867.26, "end": 13867.94, "probability": 0.6553 }, { "start": 13867.94, "end": 13868.14, "probability": 0.1301 }, { "start": 13868.14, "end": 13868.5, "probability": 0.5821 }, { "start": 13869.26, "end": 13871.0, "probability": 0.6774 }, { "start": 13871.38, "end": 13873.14, "probability": 0.7079 }, { "start": 13873.92, "end": 13875.36, "probability": 0.9341 }, { "start": 13875.52, "end": 13878.44, "probability": 0.8297 }, { "start": 13878.56, "end": 13879.61, "probability": 0.2828 }, { "start": 13880.52, "end": 13882.9, "probability": 0.5147 }, { "start": 13884.16, "end": 13886.72, "probability": 0.7153 }, { "start": 13888.78, "end": 13892.08, "probability": 0.8501 }, { "start": 13892.84, "end": 13893.36, "probability": 0.9937 }, { "start": 13894.38, "end": 13895.08, "probability": 0.6293 }, { "start": 13896.16, "end": 13896.42, "probability": 0.5552 }, { "start": 13897.62, "end": 13898.58, "probability": 0.5464 }, { "start": 13899.7, "end": 13900.12, "probability": 0.9754 }, { "start": 13901.3, "end": 13902.28, "probability": 0.6908 }, { "start": 13911.22, "end": 13912.22, "probability": 0.7019 }, { "start": 13914.14, "end": 13915.24, "probability": 0.465 }, { "start": 13934.16, "end": 13934.8, "probability": 0.6607 }, { "start": 13936.14, "end": 13936.26, "probability": 0.6061 }, { "start": 13938.54, "end": 13939.68, "probability": 0.3174 }, { "start": 13941.1, "end": 13941.94, "probability": 0.843 }, { "start": 13942.86, "end": 13943.7, "probability": 0.6155 }, { "start": 13946.58, "end": 13949.84, "probability": 0.8371 }, { "start": 13952.4, "end": 13953.0, "probability": 0.9678 }, { "start": 13954.04, "end": 13955.22, "probability": 0.951 }, { "start": 13956.12, "end": 13956.42, "probability": 0.7964 }, { "start": 13957.52, "end": 13958.84, "probability": 0.9365 }, { "start": 13960.92, "end": 13964.92, "probability": 0.6536 }, { "start": 13966.02, "end": 13966.3, "probability": 0.6571 }, { "start": 13967.62, "end": 13968.46, "probability": 0.6986 }, { "start": 13975.48, "end": 13975.86, "probability": 0.7175 }, { "start": 13979.22, "end": 13979.86, "probability": 0.3914 }, { "start": 13980.66, "end": 13980.94, "probability": 0.592 }, { "start": 13982.0, "end": 13982.66, "probability": 0.7777 }, { "start": 13984.16, "end": 13984.64, "probability": 0.9842 }, { "start": 13985.68, "end": 13986.62, "probability": 0.8966 }, { "start": 13989.0, "end": 13989.38, "probability": 0.9324 }, { "start": 13991.38, "end": 13992.1, "probability": 0.9707 }, { "start": 13993.78, "end": 13994.18, "probability": 0.9827 }, { "start": 13995.16, "end": 13995.88, "probability": 0.9789 }, { "start": 13996.91, "end": 13999.1, "probability": 0.9383 }, { "start": 14000.8, "end": 14002.72, "probability": 0.7381 }, { "start": 14003.88, "end": 14004.7, "probability": 0.9814 }, { "start": 14006.44, "end": 14006.7, "probability": 0.9837 }, { "start": 14008.32, "end": 14009.04, "probability": 0.7842 }, { "start": 14009.92, "end": 14010.32, "probability": 0.5796 }, { "start": 14011.68, "end": 14012.7, "probability": 0.6681 }, { "start": 14013.82, "end": 14014.26, "probability": 0.8816 }, { "start": 14015.06, "end": 14015.74, "probability": 0.9103 }, { "start": 14017.18, "end": 14017.62, "probability": 0.9925 }, { "start": 14018.56, "end": 14019.34, "probability": 0.9045 }, { "start": 14021.38, "end": 14023.34, "probability": 0.9891 }, { "start": 14024.34, "end": 14026.36, "probability": 0.8857 }, { "start": 14028.16, "end": 14035.16, "probability": 0.223 }, { "start": 14045.9, "end": 14047.04, "probability": 0.4099 }, { "start": 14047.98, "end": 14048.84, "probability": 0.6675 }, { "start": 14049.36, "end": 14050.32, "probability": 0.5831 }, { "start": 14052.6, "end": 14054.92, "probability": 0.8225 }, { "start": 14056.1, "end": 14056.86, "probability": 0.8779 }, { "start": 14057.84, "end": 14060.98, "probability": 0.8197 }, { "start": 14062.68, "end": 14063.12, "probability": 0.9414 }, { "start": 14064.52, "end": 14065.5, "probability": 0.6374 }, { "start": 14066.6, "end": 14067.04, "probability": 0.5851 }, { "start": 14067.9, "end": 14068.84, "probability": 0.8067 }, { "start": 14069.86, "end": 14070.34, "probability": 0.9759 }, { "start": 14071.08, "end": 14072.66, "probability": 0.8359 }, { "start": 14073.74, "end": 14076.34, "probability": 0.9573 }, { "start": 14083.4, "end": 14084.16, "probability": 0.7601 }, { "start": 14085.4, "end": 14086.28, "probability": 0.6575 }, { "start": 14087.08, "end": 14087.48, "probability": 0.8218 }, { "start": 14088.48, "end": 14089.42, "probability": 0.754 }, { "start": 14090.5, "end": 14091.06, "probability": 0.9536 }, { "start": 14091.76, "end": 14092.66, "probability": 0.5158 }, { "start": 14093.24, "end": 14095.84, "probability": 0.9111 }, { "start": 14097.7, "end": 14098.28, "probability": 0.9844 }, { "start": 14099.06, "end": 14100.42, "probability": 0.9297 }, { "start": 14101.7, "end": 14102.18, "probability": 0.9836 }, { "start": 14103.2, "end": 14104.42, "probability": 0.9731 }, { "start": 14106.34, "end": 14106.82, "probability": 0.9772 }, { "start": 14108.0, "end": 14109.32, "probability": 0.7508 }, { "start": 14109.86, "end": 14110.72, "probability": 0.8014 }, { "start": 14111.76, "end": 14112.72, "probability": 0.3446 }, { "start": 14113.7, "end": 14114.04, "probability": 0.8845 }, { "start": 14115.18, "end": 14116.26, "probability": 0.7043 }, { "start": 14116.82, "end": 14117.28, "probability": 0.929 }, { "start": 14118.32, "end": 14119.24, "probability": 0.8164 }, { "start": 14120.36, "end": 14121.12, "probability": 0.9327 }, { "start": 14122.24, "end": 14123.2, "probability": 0.8126 }, { "start": 14126.86, "end": 14128.56, "probability": 0.4989 }, { "start": 14130.32, "end": 14133.12, "probability": 0.4873 }, { "start": 14134.34, "end": 14135.36, "probability": 0.5284 }, { "start": 14136.5, "end": 14137.96, "probability": 0.6441 }, { "start": 14138.9, "end": 14139.3, "probability": 0.8354 }, { "start": 14140.72, "end": 14141.96, "probability": 0.9219 }, { "start": 14142.64, "end": 14144.52, "probability": 0.8989 }, { "start": 14147.12, "end": 14147.7, "probability": 0.9147 }, { "start": 14149.56, "end": 14150.42, "probability": 0.2771 }, { "start": 14157.81, "end": 14159.79, "probability": 0.7008 }, { "start": 14161.62, "end": 14162.5, "probability": 0.811 }, { "start": 14163.4, "end": 14164.26, "probability": 0.7587 }, { "start": 14167.28, "end": 14168.0, "probability": 0.9055 }, { "start": 14168.9, "end": 14169.46, "probability": 0.8605 }, { "start": 14170.92, "end": 14171.26, "probability": 0.8965 }, { "start": 14173.98, "end": 14174.56, "probability": 0.9295 }, { "start": 14175.54, "end": 14178.9, "probability": 0.9332 }, { "start": 14179.74, "end": 14181.52, "probability": 0.9033 }, { "start": 14183.38, "end": 14183.78, "probability": 0.5801 }, { "start": 14185.38, "end": 14186.66, "probability": 0.5358 }, { "start": 14187.64, "end": 14188.02, "probability": 0.8911 }, { "start": 14188.7, "end": 14189.62, "probability": 0.7621 }, { "start": 14192.6, "end": 14196.54, "probability": 0.8783 }, { "start": 14198.94, "end": 14199.44, "probability": 0.946 }, { "start": 14200.44, "end": 14201.32, "probability": 0.8648 }, { "start": 14202.22, "end": 14202.64, "probability": 0.9904 }, { "start": 14203.62, "end": 14204.56, "probability": 0.7197 }, { "start": 14206.39, "end": 14209.52, "probability": 0.1843 }, { "start": 14219.94, "end": 14220.68, "probability": 0.436 }, { "start": 14221.5, "end": 14222.32, "probability": 0.5346 }, { "start": 14223.2, "end": 14224.28, "probability": 0.9686 }, { "start": 14225.42, "end": 14227.88, "probability": 0.9047 }, { "start": 14229.16, "end": 14231.42, "probability": 0.8197 }, { "start": 14235.86, "end": 14236.68, "probability": 0.7015 }, { "start": 14238.74, "end": 14240.2, "probability": 0.671 }, { "start": 14241.06, "end": 14241.48, "probability": 0.7498 }, { "start": 14243.0, "end": 14244.1, "probability": 0.5226 }, { "start": 14247.22, "end": 14250.32, "probability": 0.5831 }, { "start": 14251.08, "end": 14253.44, "probability": 0.9469 }, { "start": 14254.46, "end": 14254.88, "probability": 0.8799 }, { "start": 14255.78, "end": 14256.48, "probability": 0.9495 }, { "start": 14258.28, "end": 14258.76, "probability": 0.9868 }, { "start": 14259.52, "end": 14260.28, "probability": 0.9158 }, { "start": 14261.82, "end": 14262.3, "probability": 0.9507 }, { "start": 14263.68, "end": 14264.44, "probability": 0.4788 }, { "start": 14265.68, "end": 14268.1, "probability": 0.984 }, { "start": 14269.74, "end": 14270.14, "probability": 0.9915 }, { "start": 14271.14, "end": 14271.4, "probability": 0.9451 }, { "start": 14272.66, "end": 14273.04, "probability": 0.9895 }, { "start": 14273.98, "end": 14274.96, "probability": 0.637 }, { "start": 14276.6, "end": 14277.04, "probability": 0.9059 }, { "start": 14278.18, "end": 14279.02, "probability": 0.5988 }, { "start": 14280.18, "end": 14280.58, "probability": 0.9788 }, { "start": 14281.58, "end": 14282.58, "probability": 0.6068 }, { "start": 14285.46, "end": 14286.52, "probability": 0.8516 }, { "start": 14287.84, "end": 14288.72, "probability": 0.7698 }, { "start": 14293.4, "end": 14294.18, "probability": 0.7381 }, { "start": 14295.32, "end": 14296.08, "probability": 0.489 }, { "start": 14299.35, "end": 14302.24, "probability": 0.1478 }, { "start": 14313.46, "end": 14314.86, "probability": 0.1885 }, { "start": 14320.96, "end": 14322.04, "probability": 0.5245 }, { "start": 14323.62, "end": 14324.58, "probability": 0.7226 }, { "start": 14325.78, "end": 14326.18, "probability": 0.881 }, { "start": 14327.18, "end": 14327.98, "probability": 0.4748 }, { "start": 14330.2, "end": 14332.16, "probability": 0.6262 }, { "start": 14333.02, "end": 14333.82, "probability": 0.7128 }, { "start": 14338.78, "end": 14339.34, "probability": 0.9783 }, { "start": 14342.08, "end": 14342.92, "probability": 0.4829 }, { "start": 14344.93, "end": 14349.18, "probability": 0.4974 }, { "start": 14352.36, "end": 14352.84, "probability": 0.9442 }, { "start": 14355.42, "end": 14356.36, "probability": 0.904 }, { "start": 14357.98, "end": 14358.88, "probability": 0.9681 }, { "start": 14359.76, "end": 14362.26, "probability": 0.9771 }, { "start": 14363.14, "end": 14363.96, "probability": 0.7978 }, { "start": 14365.2, "end": 14365.7, "probability": 0.985 }, { "start": 14366.6, "end": 14367.64, "probability": 0.936 }, { "start": 14368.66, "end": 14369.08, "probability": 0.9321 }, { "start": 14370.2, "end": 14370.96, "probability": 0.4814 }, { "start": 14374.28, "end": 14374.68, "probability": 0.9214 }, { "start": 14375.74, "end": 14376.76, "probability": 0.801 }, { "start": 14378.18, "end": 14378.6, "probability": 0.9062 }, { "start": 14379.56, "end": 14379.98, "probability": 0.8703 }, { "start": 14381.82, "end": 14383.86, "probability": 0.7676 }, { "start": 14384.58, "end": 14385.08, "probability": 0.8716 }, { "start": 14386.34, "end": 14386.66, "probability": 0.9907 }, { "start": 14387.36, "end": 14390.14, "probability": 0.698 }, { "start": 14391.68, "end": 14392.1, "probability": 0.9844 }, { "start": 14393.04, "end": 14393.84, "probability": 0.9225 }, { "start": 14395.22, "end": 14395.74, "probability": 0.9899 }, { "start": 14397.08, "end": 14397.96, "probability": 0.9185 }, { "start": 14398.94, "end": 14399.06, "probability": 0.9924 }, { "start": 14400.48, "end": 14401.46, "probability": 0.7411 }, { "start": 14402.46, "end": 14402.88, "probability": 0.854 }, { "start": 14403.66, "end": 14404.94, "probability": 0.9721 }, { "start": 14405.78, "end": 14406.2, "probability": 0.9878 }, { "start": 14407.16, "end": 14408.4, "probability": 0.9782 }, { "start": 14409.6, "end": 14410.0, "probability": 0.9771 }, { "start": 14410.98, "end": 14411.7, "probability": 0.9444 }, { "start": 14412.72, "end": 14415.16, "probability": 0.9702 }, { "start": 14415.94, "end": 14416.36, "probability": 0.9961 }, { "start": 14417.4, "end": 14418.7, "probability": 0.7967 }, { "start": 14419.38, "end": 14423.46, "probability": 0.9428 }, { "start": 14424.72, "end": 14424.98, "probability": 0.9941 }, { "start": 14426.14, "end": 14427.1, "probability": 0.8091 }, { "start": 14428.54, "end": 14431.02, "probability": 0.6625 }, { "start": 14432.48, "end": 14432.96, "probability": 0.9045 }, { "start": 14433.82, "end": 14434.64, "probability": 0.6624 }, { "start": 14435.82, "end": 14438.06, "probability": 0.9249 }, { "start": 14439.26, "end": 14441.38, "probability": 0.9213 }, { "start": 14442.6, "end": 14445.06, "probability": 0.957 }, { "start": 14446.92, "end": 14447.3, "probability": 0.9744 }, { "start": 14447.9, "end": 14450.6, "probability": 0.7054 }, { "start": 14451.6, "end": 14451.94, "probability": 0.9856 }, { "start": 14452.9, "end": 14453.7, "probability": 0.8853 }, { "start": 14455.42, "end": 14455.84, "probability": 0.9922 }, { "start": 14457.0, "end": 14457.66, "probability": 0.5226 }, { "start": 14458.34, "end": 14458.68, "probability": 0.5258 }, { "start": 14459.66, "end": 14460.81, "probability": 0.5455 }, { "start": 14462.76, "end": 14465.86, "probability": 0.9068 }, { "start": 14466.66, "end": 14468.78, "probability": 0.9461 }, { "start": 14470.42, "end": 14471.21, "probability": 0.7074 }, { "start": 14472.38, "end": 14473.06, "probability": 0.918 }, { "start": 14473.62, "end": 14474.46, "probability": 0.6905 }, { "start": 14476.34, "end": 14477.52, "probability": 0.6873 }, { "start": 14481.52, "end": 14482.42, "probability": 0.7331 }, { "start": 14484.3, "end": 14485.2, "probability": 0.8549 }, { "start": 14486.44, "end": 14487.0, "probability": 0.8641 }, { "start": 14488.08, "end": 14488.76, "probability": 0.8942 }, { "start": 14489.84, "end": 14493.52, "probability": 0.7533 }, { "start": 14494.88, "end": 14495.6, "probability": 0.9852 }, { "start": 14496.58, "end": 14497.42, "probability": 0.6812 }, { "start": 14498.94, "end": 14499.74, "probability": 0.8524 }, { "start": 14505.0, "end": 14505.8, "probability": 0.7119 }, { "start": 14508.0, "end": 14509.42, "probability": 0.7983 }, { "start": 14512.56, "end": 14513.36, "probability": 0.653 }, { "start": 14514.86, "end": 14518.32, "probability": 0.7667 }, { "start": 14521.76, "end": 14522.4, "probability": 0.7721 }, { "start": 14524.42, "end": 14526.9, "probability": 0.9529 }, { "start": 14527.62, "end": 14527.98, "probability": 0.8462 }, { "start": 14529.24, "end": 14529.98, "probability": 0.8549 }, { "start": 14530.86, "end": 14531.96, "probability": 0.6542 }, { "start": 14532.84, "end": 14533.68, "probability": 0.9636 }, { "start": 14534.4, "end": 14536.52, "probability": 0.7804 }, { "start": 14538.22, "end": 14538.32, "probability": 0.2854 }, { "start": 14538.44, "end": 14539.56, "probability": 0.4652 }, { "start": 14539.98, "end": 14541.12, "probability": 0.8999 }, { "start": 14550.8, "end": 14551.82, "probability": 0.006 }, { "start": 14725.1, "end": 14725.5, "probability": 0.3104 }, { "start": 14726.06, "end": 14728.48, "probability": 0.4743 }, { "start": 14729.14, "end": 14729.6, "probability": 0.6461 }, { "start": 14729.74, "end": 14735.42, "probability": 0.971 }, { "start": 14735.52, "end": 14736.5, "probability": 0.9882 }, { "start": 14737.62, "end": 14739.1, "probability": 0.8633 }, { "start": 14739.7, "end": 14742.04, "probability": 0.7064 }, { "start": 14742.96, "end": 14745.16, "probability": 0.9043 }, { "start": 14747.48, "end": 14751.7, "probability": 0.8995 }, { "start": 14751.74, "end": 14752.02, "probability": 0.8566 }, { "start": 14778.32, "end": 14780.34, "probability": 0.7898 }, { "start": 14781.14, "end": 14782.06, "probability": 0.8269 }, { "start": 14783.16, "end": 14783.7, "probability": 0.8118 }, { "start": 14785.26, "end": 14786.88, "probability": 0.9264 }, { "start": 14787.06, "end": 14789.0, "probability": 0.9528 }, { "start": 14791.84, "end": 14792.38, "probability": 0.9783 }, { "start": 14793.0, "end": 14797.16, "probability": 0.9801 }, { "start": 14798.2, "end": 14798.88, "probability": 0.5376 }, { "start": 14799.86, "end": 14801.43, "probability": 0.9805 }, { "start": 14802.24, "end": 14803.34, "probability": 0.9804 }, { "start": 14804.62, "end": 14806.18, "probability": 0.9928 }, { "start": 14807.36, "end": 14808.12, "probability": 0.8533 }, { "start": 14809.46, "end": 14811.22, "probability": 0.7992 }, { "start": 14811.36, "end": 14813.04, "probability": 0.9805 }, { "start": 14813.12, "end": 14818.18, "probability": 0.9487 }, { "start": 14819.64, "end": 14822.28, "probability": 0.9979 }, { "start": 14822.94, "end": 14825.66, "probability": 0.9957 }, { "start": 14825.66, "end": 14828.96, "probability": 0.9967 }, { "start": 14829.08, "end": 14829.78, "probability": 0.6166 }, { "start": 14831.36, "end": 14835.34, "probability": 0.9978 }, { "start": 14836.52, "end": 14841.38, "probability": 0.9462 }, { "start": 14842.2, "end": 14849.06, "probability": 0.9887 }, { "start": 14849.2, "end": 14853.08, "probability": 0.9812 }, { "start": 14854.16, "end": 14858.28, "probability": 0.9978 }, { "start": 14859.2, "end": 14860.16, "probability": 0.9575 }, { "start": 14860.98, "end": 14862.82, "probability": 0.9557 }, { "start": 14863.5, "end": 14868.56, "probability": 0.9962 }, { "start": 14869.34, "end": 14871.7, "probability": 0.9932 }, { "start": 14872.34, "end": 14880.98, "probability": 0.9897 }, { "start": 14882.15, "end": 14887.52, "probability": 0.9956 }, { "start": 14889.9, "end": 14894.34, "probability": 0.9953 }, { "start": 14895.58, "end": 14901.8, "probability": 0.9667 }, { "start": 14901.98, "end": 14903.48, "probability": 0.7595 }, { "start": 14903.94, "end": 14905.46, "probability": 0.9626 }, { "start": 14906.76, "end": 14908.32, "probability": 0.8271 }, { "start": 14909.36, "end": 14913.44, "probability": 0.8458 }, { "start": 14913.96, "end": 14919.1, "probability": 0.9835 }, { "start": 14919.1, "end": 14924.12, "probability": 0.9975 }, { "start": 14924.68, "end": 14927.0, "probability": 0.9993 }, { "start": 14927.7, "end": 14929.7, "probability": 0.6739 }, { "start": 14929.8, "end": 14933.5, "probability": 0.961 }, { "start": 14934.12, "end": 14936.52, "probability": 0.9957 }, { "start": 14937.3, "end": 14939.9, "probability": 0.8913 }, { "start": 14940.44, "end": 14946.96, "probability": 0.9963 }, { "start": 14947.66, "end": 14950.16, "probability": 0.8834 }, { "start": 14951.06, "end": 14952.54, "probability": 0.7504 }, { "start": 14952.54, "end": 14954.64, "probability": 0.8672 }, { "start": 14955.04, "end": 14955.4, "probability": 0.7919 }, { "start": 14955.76, "end": 14956.6, "probability": 0.7596 }, { "start": 14957.48, "end": 14960.58, "probability": 0.9917 }, { "start": 14960.76, "end": 14961.44, "probability": 0.9403 }, { "start": 14961.6, "end": 14963.66, "probability": 0.859 }, { "start": 14963.84, "end": 14964.32, "probability": 0.8562 }, { "start": 14964.94, "end": 14965.68, "probability": 0.8267 }, { "start": 14966.58, "end": 14967.3, "probability": 0.836 }, { "start": 14967.66, "end": 14972.46, "probability": 0.9438 }, { "start": 14972.64, "end": 14973.36, "probability": 0.8264 }, { "start": 14973.44, "end": 14974.18, "probability": 0.9155 }, { "start": 14974.74, "end": 14975.54, "probability": 0.9521 }, { "start": 14975.6, "end": 14978.28, "probability": 0.9913 }, { "start": 14978.48, "end": 14979.28, "probability": 0.8437 }, { "start": 14979.72, "end": 14980.98, "probability": 0.7763 }, { "start": 14981.56, "end": 14982.44, "probability": 0.9125 }, { "start": 14984.22, "end": 14989.45, "probability": 0.9731 }, { "start": 14989.88, "end": 14994.29, "probability": 0.8525 }, { "start": 14994.62, "end": 14998.54, "probability": 0.9961 }, { "start": 14999.18, "end": 15004.32, "probability": 0.9872 }, { "start": 15004.74, "end": 15006.8, "probability": 0.6237 }, { "start": 15007.28, "end": 15012.32, "probability": 0.978 }, { "start": 15013.38, "end": 15014.76, "probability": 0.9237 }, { "start": 15014.96, "end": 15015.9, "probability": 0.8628 }, { "start": 15017.08, "end": 15019.42, "probability": 0.3645 }, { "start": 15019.54, "end": 15020.92, "probability": 0.8335 }, { "start": 15021.32, "end": 15026.45, "probability": 0.9774 }, { "start": 15029.14, "end": 15033.04, "probability": 0.9955 }, { "start": 15033.3, "end": 15037.38, "probability": 0.9802 }, { "start": 15037.52, "end": 15037.82, "probability": 0.8709 }, { "start": 15038.78, "end": 15044.52, "probability": 0.9819 }, { "start": 15045.32, "end": 15047.66, "probability": 0.7681 }, { "start": 15048.08, "end": 15051.94, "probability": 0.9902 }, { "start": 15051.94, "end": 15054.46, "probability": 0.8825 }, { "start": 15055.2, "end": 15058.5, "probability": 0.872 }, { "start": 15058.9, "end": 15059.4, "probability": 0.8509 }, { "start": 15059.56, "end": 15060.42, "probability": 0.9637 }, { "start": 15060.9, "end": 15063.72, "probability": 0.98 }, { "start": 15064.02, "end": 15067.36, "probability": 0.7856 }, { "start": 15068.02, "end": 15072.42, "probability": 0.9979 }, { "start": 15072.42, "end": 15076.2, "probability": 0.998 }, { "start": 15076.76, "end": 15077.22, "probability": 0.662 }, { "start": 15077.66, "end": 15078.07, "probability": 0.9272 }, { "start": 15078.94, "end": 15083.46, "probability": 0.9922 }, { "start": 15084.12, "end": 15088.68, "probability": 0.9971 }, { "start": 15089.1, "end": 15095.24, "probability": 0.9771 }, { "start": 15096.18, "end": 15096.56, "probability": 0.891 }, { "start": 15096.62, "end": 15100.26, "probability": 0.9944 }, { "start": 15100.7, "end": 15103.04, "probability": 0.9888 }, { "start": 15103.7, "end": 15106.54, "probability": 0.894 }, { "start": 15106.54, "end": 15109.1, "probability": 0.9855 }, { "start": 15110.72, "end": 15112.32, "probability": 0.9043 }, { "start": 15112.92, "end": 15114.4, "probability": 0.9943 }, { "start": 15115.26, "end": 15117.36, "probability": 0.9731 }, { "start": 15117.92, "end": 15119.22, "probability": 0.9912 }, { "start": 15119.96, "end": 15121.96, "probability": 0.4376 }, { "start": 15122.4, "end": 15125.32, "probability": 0.7023 }, { "start": 15125.42, "end": 15126.8, "probability": 0.9743 }, { "start": 15127.84, "end": 15130.3, "probability": 0.9932 }, { "start": 15131.32, "end": 15133.36, "probability": 0.6775 }, { "start": 15134.22, "end": 15137.72, "probability": 0.9861 }, { "start": 15139.48, "end": 15142.5, "probability": 0.6969 }, { "start": 15142.76, "end": 15143.92, "probability": 0.945 }, { "start": 15144.8, "end": 15147.28, "probability": 0.9531 }, { "start": 15147.92, "end": 15148.94, "probability": 0.8989 }, { "start": 15149.92, "end": 15154.84, "probability": 0.9927 }, { "start": 15155.34, "end": 15157.28, "probability": 0.8953 }, { "start": 15157.66, "end": 15159.43, "probability": 0.9985 }, { "start": 15160.48, "end": 15163.14, "probability": 0.9719 }, { "start": 15163.54, "end": 15167.54, "probability": 0.9912 }, { "start": 15167.68, "end": 15172.94, "probability": 0.9974 }, { "start": 15172.94, "end": 15179.7, "probability": 0.978 }, { "start": 15180.86, "end": 15182.02, "probability": 0.8205 }, { "start": 15182.82, "end": 15187.58, "probability": 0.9946 }, { "start": 15188.26, "end": 15189.46, "probability": 0.8015 }, { "start": 15190.4, "end": 15194.14, "probability": 0.9809 }, { "start": 15194.66, "end": 15196.06, "probability": 0.9937 }, { "start": 15196.84, "end": 15199.32, "probability": 0.9979 }, { "start": 15200.44, "end": 15202.52, "probability": 0.998 }, { "start": 15202.58, "end": 15202.86, "probability": 0.3054 }, { "start": 15202.94, "end": 15204.28, "probability": 0.7866 }, { "start": 15205.56, "end": 15207.08, "probability": 0.9282 }, { "start": 15207.4, "end": 15213.1, "probability": 0.9209 }, { "start": 15214.02, "end": 15218.64, "probability": 0.9292 }, { "start": 15219.38, "end": 15224.96, "probability": 0.9875 }, { "start": 15225.36, "end": 15226.42, "probability": 0.6163 }, { "start": 15226.5, "end": 15227.64, "probability": 0.945 }, { "start": 15229.36, "end": 15232.44, "probability": 0.8901 }, { "start": 15232.94, "end": 15235.42, "probability": 0.9685 }, { "start": 15236.12, "end": 15240.44, "probability": 0.8888 }, { "start": 15241.08, "end": 15241.4, "probability": 0.3274 }, { "start": 15241.56, "end": 15243.06, "probability": 0.9973 }, { "start": 15243.26, "end": 15244.62, "probability": 0.8407 }, { "start": 15245.02, "end": 15248.76, "probability": 0.9275 }, { "start": 15249.26, "end": 15253.74, "probability": 0.9819 }, { "start": 15254.66, "end": 15257.32, "probability": 0.907 }, { "start": 15257.36, "end": 15258.9, "probability": 0.6829 }, { "start": 15259.52, "end": 15261.07, "probability": 0.9125 }, { "start": 15262.1, "end": 15263.1, "probability": 0.9053 }, { "start": 15264.18, "end": 15266.6, "probability": 0.9756 }, { "start": 15268.18, "end": 15269.9, "probability": 0.5275 }, { "start": 15270.48, "end": 15274.2, "probability": 0.7607 }, { "start": 15274.34, "end": 15275.46, "probability": 0.8459 }, { "start": 15276.56, "end": 15278.82, "probability": 0.9222 }, { "start": 15279.36, "end": 15281.12, "probability": 0.7555 }, { "start": 15282.42, "end": 15286.8, "probability": 0.8818 }, { "start": 15287.6, "end": 15293.6, "probability": 0.9878 }, { "start": 15294.04, "end": 15299.18, "probability": 0.794 }, { "start": 15300.04, "end": 15302.54, "probability": 0.9573 }, { "start": 15303.24, "end": 15304.82, "probability": 0.9939 }, { "start": 15304.98, "end": 15305.84, "probability": 0.8134 }, { "start": 15306.04, "end": 15306.96, "probability": 0.8049 }, { "start": 15307.06, "end": 15309.66, "probability": 0.9846 }, { "start": 15309.96, "end": 15313.02, "probability": 0.8092 }, { "start": 15313.54, "end": 15316.5, "probability": 0.9854 }, { "start": 15317.08, "end": 15320.16, "probability": 0.9951 }, { "start": 15321.0, "end": 15326.8, "probability": 0.9738 }, { "start": 15326.8, "end": 15331.14, "probability": 0.805 }, { "start": 15331.64, "end": 15333.12, "probability": 0.9885 }, { "start": 15333.34, "end": 15338.34, "probability": 0.9734 }, { "start": 15338.88, "end": 15341.04, "probability": 0.994 }, { "start": 15341.76, "end": 15345.54, "probability": 0.9821 }, { "start": 15345.86, "end": 15348.98, "probability": 0.9554 }, { "start": 15349.82, "end": 15354.24, "probability": 0.9347 }, { "start": 15354.48, "end": 15356.04, "probability": 0.8036 }, { "start": 15356.62, "end": 15358.74, "probability": 0.9854 }, { "start": 15358.86, "end": 15360.32, "probability": 0.7699 }, { "start": 15361.06, "end": 15366.56, "probability": 0.8094 }, { "start": 15367.54, "end": 15368.56, "probability": 0.7874 }, { "start": 15369.3, "end": 15374.72, "probability": 0.9963 }, { "start": 15374.72, "end": 15378.96, "probability": 0.9983 }, { "start": 15379.7, "end": 15383.86, "probability": 0.9644 }, { "start": 15384.4, "end": 15385.68, "probability": 0.8659 }, { "start": 15386.0, "end": 15390.84, "probability": 0.9836 }, { "start": 15390.92, "end": 15391.52, "probability": 0.8337 }, { "start": 15391.62, "end": 15392.52, "probability": 0.9271 }, { "start": 15392.64, "end": 15394.16, "probability": 0.9482 }, { "start": 15394.68, "end": 15396.84, "probability": 0.9408 }, { "start": 15396.84, "end": 15400.06, "probability": 0.8555 }, { "start": 15400.18, "end": 15400.66, "probability": 0.3506 }, { "start": 15401.5, "end": 15403.14, "probability": 0.5365 }, { "start": 15403.32, "end": 15403.58, "probability": 0.665 }, { "start": 15404.16, "end": 15406.02, "probability": 0.8772 }, { "start": 15415.16, "end": 15417.2, "probability": 0.2236 }, { "start": 15418.84, "end": 15418.98, "probability": 0.0675 }, { "start": 15418.98, "end": 15418.98, "probability": 0.1103 }, { "start": 15418.98, "end": 15419.12, "probability": 0.0888 }, { "start": 15419.12, "end": 15419.16, "probability": 0.3234 }, { "start": 15419.16, "end": 15419.16, "probability": 0.1172 }, { "start": 15419.16, "end": 15419.16, "probability": 0.4829 }, { "start": 15419.16, "end": 15420.0, "probability": 0.0135 }, { "start": 15431.86, "end": 15433.94, "probability": 0.3704 }, { "start": 15434.46, "end": 15439.27, "probability": 0.0649 }, { "start": 15441.32, "end": 15441.32, "probability": 0.022 }, { "start": 15442.96, "end": 15446.84, "probability": 0.2712 }, { "start": 15448.65, "end": 15451.9, "probability": 0.1084 }, { "start": 15453.2, "end": 15453.72, "probability": 0.2376 }, { "start": 15481.54, "end": 15482.91, "probability": 0.7756 }, { "start": 15483.62, "end": 15487.76, "probability": 0.8398 }, { "start": 15489.68, "end": 15496.32, "probability": 0.9915 }, { "start": 15497.44, "end": 15500.44, "probability": 0.9268 }, { "start": 15500.54, "end": 15501.32, "probability": 0.8928 }, { "start": 15501.58, "end": 15503.28, "probability": 0.8402 }, { "start": 15503.7, "end": 15504.58, "probability": 0.5035 }, { "start": 15504.86, "end": 15505.5, "probability": 0.7538 }, { "start": 15505.5, "end": 15509.0, "probability": 0.9983 }, { "start": 15509.0, "end": 15512.7, "probability": 0.9023 }, { "start": 15513.04, "end": 15516.94, "probability": 0.806 }, { "start": 15517.04, "end": 15518.58, "probability": 0.7129 }, { "start": 15519.58, "end": 15520.4, "probability": 0.9106 }, { "start": 15520.52, "end": 15520.74, "probability": 0.8121 }, { "start": 15521.16, "end": 15523.94, "probability": 0.9527 }, { "start": 15523.98, "end": 15524.44, "probability": 0.8475 }, { "start": 15524.86, "end": 15527.5, "probability": 0.9492 }, { "start": 15527.94, "end": 15529.16, "probability": 0.93 }, { "start": 15529.46, "end": 15530.54, "probability": 0.9595 }, { "start": 15531.18, "end": 15531.62, "probability": 0.5883 }, { "start": 15531.68, "end": 15532.62, "probability": 0.9879 }, { "start": 15532.8, "end": 15534.48, "probability": 0.9821 }, { "start": 15534.76, "end": 15536.4, "probability": 0.9361 }, { "start": 15537.34, "end": 15540.32, "probability": 0.8916 }, { "start": 15540.32, "end": 15544.86, "probability": 0.9419 }, { "start": 15545.0, "end": 15546.46, "probability": 0.9941 }, { "start": 15546.46, "end": 15548.68, "probability": 0.9163 }, { "start": 15549.42, "end": 15551.46, "probability": 0.6585 }, { "start": 15552.26, "end": 15556.08, "probability": 0.6733 }, { "start": 15556.78, "end": 15556.98, "probability": 0.2932 }, { "start": 15557.1, "end": 15560.0, "probability": 0.8233 }, { "start": 15560.4, "end": 15562.22, "probability": 0.9816 }, { "start": 15562.58, "end": 15567.16, "probability": 0.9958 }, { "start": 15567.6, "end": 15570.7, "probability": 0.7996 }, { "start": 15571.4, "end": 15573.48, "probability": 0.9985 }, { "start": 15573.78, "end": 15574.64, "probability": 0.9952 }, { "start": 15574.72, "end": 15575.66, "probability": 0.9844 }, { "start": 15576.58, "end": 15580.94, "probability": 0.965 }, { "start": 15581.2, "end": 15581.7, "probability": 0.8662 }, { "start": 15583.34, "end": 15586.48, "probability": 0.8007 }, { "start": 15587.26, "end": 15592.38, "probability": 0.4831 }, { "start": 15593.4, "end": 15593.92, "probability": 0.6635 }, { "start": 15595.38, "end": 15595.48, "probability": 0.7263 }, { "start": 15596.04, "end": 15597.8, "probability": 0.8779 }, { "start": 15597.96, "end": 15598.92, "probability": 0.7057 }, { "start": 15599.04, "end": 15600.24, "probability": 0.3121 }, { "start": 15600.78, "end": 15603.02, "probability": 0.7028 }, { "start": 15603.1, "end": 15604.32, "probability": 0.4802 }, { "start": 15604.38, "end": 15604.82, "probability": 0.4694 }, { "start": 15605.52, "end": 15605.82, "probability": 0.3949 }, { "start": 15619.82, "end": 15622.8, "probability": 0.1239 }, { "start": 15622.8, "end": 15622.8, "probability": 0.0229 }, { "start": 15623.08, "end": 15623.08, "probability": 0.0335 }, { "start": 15623.08, "end": 15623.08, "probability": 0.2834 }, { "start": 15623.08, "end": 15625.88, "probability": 0.5328 }, { "start": 15626.02, "end": 15628.19, "probability": 0.9956 }, { "start": 15630.46, "end": 15630.46, "probability": 0.3928 }, { "start": 15630.46, "end": 15632.24, "probability": 0.7895 }, { "start": 15632.64, "end": 15633.3, "probability": 0.8953 }, { "start": 15634.48, "end": 15635.34, "probability": 0.7162 }, { "start": 15635.8, "end": 15636.88, "probability": 0.8087 }, { "start": 15636.92, "end": 15637.38, "probability": 0.9702 }, { "start": 15638.16, "end": 15638.72, "probability": 0.5884 }, { "start": 15638.76, "end": 15642.32, "probability": 0.9336 }, { "start": 15643.6, "end": 15645.86, "probability": 0.9645 }, { "start": 15645.98, "end": 15646.02, "probability": 0.1466 }, { "start": 15646.04, "end": 15647.31, "probability": 0.5811 }, { "start": 15648.22, "end": 15653.88, "probability": 0.9189 }, { "start": 15654.38, "end": 15656.0, "probability": 0.9561 }, { "start": 15656.88, "end": 15658.16, "probability": 0.7237 }, { "start": 15658.56, "end": 15658.92, "probability": 0.8678 }, { "start": 15676.2, "end": 15677.08, "probability": 0.6234 }, { "start": 15678.98, "end": 15680.16, "probability": 0.8467 }, { "start": 15683.56, "end": 15687.04, "probability": 0.9646 }, { "start": 15687.22, "end": 15691.06, "probability": 0.9792 }, { "start": 15691.98, "end": 15692.8, "probability": 0.5448 }, { "start": 15692.84, "end": 15693.28, "probability": 0.5866 }, { "start": 15693.28, "end": 15693.66, "probability": 0.5277 }, { "start": 15693.82, "end": 15694.3, "probability": 0.8173 }, { "start": 15695.36, "end": 15699.34, "probability": 0.9746 }, { "start": 15701.22, "end": 15704.06, "probability": 0.7757 }, { "start": 15704.96, "end": 15707.34, "probability": 0.6586 }, { "start": 15709.56, "end": 15714.52, "probability": 0.6645 }, { "start": 15715.04, "end": 15720.42, "probability": 0.9691 }, { "start": 15721.56, "end": 15724.62, "probability": 0.9668 }, { "start": 15725.2, "end": 15726.84, "probability": 0.9491 }, { "start": 15727.28, "end": 15729.04, "probability": 0.6518 }, { "start": 15729.12, "end": 15730.21, "probability": 0.9126 }, { "start": 15731.14, "end": 15732.1, "probability": 0.8862 }, { "start": 15732.6, "end": 15736.24, "probability": 0.6839 }, { "start": 15736.94, "end": 15739.2, "probability": 0.801 }, { "start": 15739.54, "end": 15743.52, "probability": 0.8361 }, { "start": 15745.2, "end": 15748.36, "probability": 0.787 }, { "start": 15749.08, "end": 15752.38, "probability": 0.8534 }, { "start": 15753.08, "end": 15755.84, "probability": 0.9577 }, { "start": 15756.62, "end": 15760.26, "probability": 0.9736 }, { "start": 15760.26, "end": 15764.3, "probability": 0.9012 }, { "start": 15764.84, "end": 15769.17, "probability": 0.8934 }, { "start": 15769.36, "end": 15772.1, "probability": 0.9735 }, { "start": 15772.68, "end": 15780.84, "probability": 0.6787 }, { "start": 15780.84, "end": 15785.02, "probability": 0.866 }, { "start": 15786.82, "end": 15789.52, "probability": 0.8794 }, { "start": 15790.0, "end": 15793.62, "probability": 0.946 }, { "start": 15794.46, "end": 15798.42, "probability": 0.999 }, { "start": 15798.42, "end": 15803.01, "probability": 0.9234 }, { "start": 15804.32, "end": 15808.86, "probability": 0.9912 }, { "start": 15809.42, "end": 15812.22, "probability": 0.9817 }, { "start": 15813.64, "end": 15816.9, "probability": 0.9033 }, { "start": 15818.02, "end": 15820.52, "probability": 0.9521 }, { "start": 15821.24, "end": 15822.5, "probability": 0.8792 }, { "start": 15822.66, "end": 15823.12, "probability": 0.836 }, { "start": 15824.04, "end": 15824.54, "probability": 0.7935 }, { "start": 15826.34, "end": 15827.9, "probability": 0.8155 }, { "start": 15828.36, "end": 15830.62, "probability": 0.8536 }, { "start": 15834.94, "end": 15836.44, "probability": 0.7666 }, { "start": 15837.1, "end": 15837.76, "probability": 0.6514 }, { "start": 15837.76, "end": 15837.9, "probability": 0.8513 }, { "start": 15862.3, "end": 15863.84, "probability": 0.7485 }, { "start": 15864.18, "end": 15866.28, "probability": 0.7908 }, { "start": 15868.2, "end": 15871.26, "probability": 0.9906 }, { "start": 15871.8, "end": 15873.98, "probability": 0.7897 }, { "start": 15874.74, "end": 15876.54, "probability": 0.7297 }, { "start": 15878.2, "end": 15882.52, "probability": 0.7622 }, { "start": 15882.74, "end": 15886.4, "probability": 0.9993 }, { "start": 15887.78, "end": 15890.84, "probability": 0.9871 }, { "start": 15892.54, "end": 15894.42, "probability": 0.6578 }, { "start": 15897.08, "end": 15899.56, "probability": 0.9609 }, { "start": 15900.34, "end": 15902.96, "probability": 0.978 }, { "start": 15904.06, "end": 15906.98, "probability": 0.9595 }, { "start": 15908.08, "end": 15909.54, "probability": 0.5751 }, { "start": 15915.18, "end": 15919.04, "probability": 0.7386 }, { "start": 15919.58, "end": 15920.18, "probability": 0.8623 }, { "start": 15920.9, "end": 15922.88, "probability": 0.9975 }, { "start": 15923.42, "end": 15924.1, "probability": 0.9917 }, { "start": 15924.64, "end": 15925.9, "probability": 0.9927 }, { "start": 15926.46, "end": 15927.3, "probability": 0.8188 }, { "start": 15928.02, "end": 15931.78, "probability": 0.8804 }, { "start": 15932.7, "end": 15934.0, "probability": 0.9575 }, { "start": 15935.56, "end": 15936.74, "probability": 0.1142 }, { "start": 15938.42, "end": 15945.74, "probability": 0.9435 }, { "start": 15946.86, "end": 15950.04, "probability": 0.8882 }, { "start": 15950.16, "end": 15953.28, "probability": 0.99 }, { "start": 15953.88, "end": 15955.66, "probability": 0.7109 }, { "start": 15956.94, "end": 15957.96, "probability": 0.4687 }, { "start": 15958.72, "end": 15962.74, "probability": 0.9741 }, { "start": 15963.43, "end": 15965.48, "probability": 0.7386 }, { "start": 15966.62, "end": 15969.18, "probability": 0.6311 }, { "start": 15969.52, "end": 15971.48, "probability": 0.9928 }, { "start": 15972.28, "end": 15973.8, "probability": 0.9712 }, { "start": 15977.76, "end": 15979.92, "probability": 0.9089 }, { "start": 15982.6, "end": 15984.04, "probability": 0.8201 }, { "start": 15986.18, "end": 15988.42, "probability": 0.8936 }, { "start": 15988.48, "end": 15990.48, "probability": 0.9961 }, { "start": 15991.06, "end": 15992.9, "probability": 0.9948 }, { "start": 15994.16, "end": 15997.56, "probability": 0.4844 }, { "start": 15997.96, "end": 15998.78, "probability": 0.6195 }, { "start": 15998.96, "end": 16002.66, "probability": 0.894 }, { "start": 16004.24, "end": 16004.48, "probability": 0.0344 }, { "start": 16005.26, "end": 16007.52, "probability": 0.0418 }, { "start": 16009.06, "end": 16012.74, "probability": 0.7341 }, { "start": 16013.56, "end": 16014.66, "probability": 0.9136 }, { "start": 16015.4, "end": 16017.02, "probability": 0.8843 }, { "start": 16018.02, "end": 16018.54, "probability": 0.9023 }, { "start": 16018.64, "end": 16019.34, "probability": 0.7949 }, { "start": 16020.16, "end": 16020.86, "probability": 0.8684 }, { "start": 16021.06, "end": 16021.6, "probability": 0.836 }, { "start": 16021.94, "end": 16023.12, "probability": 0.9277 }, { "start": 16023.28, "end": 16023.54, "probability": 0.6199 }, { "start": 16024.22, "end": 16024.78, "probability": 0.9243 }, { "start": 16025.76, "end": 16027.82, "probability": 0.6105 }, { "start": 16028.22, "end": 16030.28, "probability": 0.4099 }, { "start": 16031.0, "end": 16032.92, "probability": 0.7255 }, { "start": 16032.98, "end": 16033.44, "probability": 0.0127 }, { "start": 16033.64, "end": 16035.9, "probability": 0.4487 }, { "start": 16036.02, "end": 16036.18, "probability": 0.087 }, { "start": 16036.18, "end": 16037.02, "probability": 0.2598 }, { "start": 16037.3, "end": 16037.4, "probability": 0.501 }, { "start": 16039.32, "end": 16042.36, "probability": 0.5425 }, { "start": 16043.36, "end": 16043.44, "probability": 0.0677 }, { "start": 16043.44, "end": 16045.74, "probability": 0.6887 }, { "start": 16046.4, "end": 16047.62, "probability": 0.6697 }, { "start": 16048.18, "end": 16052.64, "probability": 0.8384 }, { "start": 16053.44, "end": 16056.34, "probability": 0.963 }, { "start": 16057.44, "end": 16058.98, "probability": 0.4844 }, { "start": 16060.16, "end": 16061.78, "probability": 0.9641 }, { "start": 16065.98, "end": 16067.7, "probability": 0.6591 }, { "start": 16068.48, "end": 16070.04, "probability": 0.0793 }, { "start": 16070.26, "end": 16072.26, "probability": 0.3112 }, { "start": 16072.38, "end": 16075.22, "probability": 0.2952 }, { "start": 16076.72, "end": 16077.62, "probability": 0.6287 }, { "start": 16077.9, "end": 16079.25, "probability": 0.6479 }, { "start": 16080.32, "end": 16081.32, "probability": 0.3269 }, { "start": 16081.5, "end": 16082.88, "probability": 0.3702 }, { "start": 16083.36, "end": 16084.98, "probability": 0.6592 }, { "start": 16087.18, "end": 16089.64, "probability": 0.9531 }, { "start": 16090.5, "end": 16094.96, "probability": 0.8841 }, { "start": 16096.12, "end": 16097.46, "probability": 0.7094 }, { "start": 16098.7, "end": 16101.06, "probability": 0.8831 }, { "start": 16101.2, "end": 16103.83, "probability": 0.973 }, { "start": 16104.46, "end": 16106.24, "probability": 0.7285 }, { "start": 16107.26, "end": 16108.48, "probability": 0.992 }, { "start": 16110.64, "end": 16111.56, "probability": 0.9934 }, { "start": 16112.66, "end": 16115.2, "probability": 0.9628 }, { "start": 16116.02, "end": 16118.0, "probability": 0.8713 }, { "start": 16118.64, "end": 16122.28, "probability": 0.9863 }, { "start": 16122.7, "end": 16125.88, "probability": 0.9969 }, { "start": 16127.36, "end": 16130.5, "probability": 0.0533 }, { "start": 16131.22, "end": 16131.74, "probability": 0.4792 }, { "start": 16133.52, "end": 16136.84, "probability": 0.6259 }, { "start": 16136.94, "end": 16137.82, "probability": 0.6262 }, { "start": 16137.92, "end": 16139.92, "probability": 0.5437 }, { "start": 16140.37, "end": 16143.38, "probability": 0.9453 }, { "start": 16145.14, "end": 16148.38, "probability": 0.9648 }, { "start": 16149.26, "end": 16150.02, "probability": 0.9827 }, { "start": 16151.46, "end": 16151.62, "probability": 0.0031 }, { "start": 16153.62, "end": 16153.86, "probability": 0.1067 }, { "start": 16153.86, "end": 16153.86, "probability": 0.3053 }, { "start": 16153.86, "end": 16153.86, "probability": 0.0629 }, { "start": 16153.86, "end": 16156.72, "probability": 0.4397 }, { "start": 16156.84, "end": 16157.26, "probability": 0.7587 }, { "start": 16157.86, "end": 16158.82, "probability": 0.9395 }, { "start": 16158.92, "end": 16159.56, "probability": 0.8041 }, { "start": 16160.12, "end": 16161.06, "probability": 0.5077 }, { "start": 16161.06, "end": 16162.18, "probability": 0.5715 }, { "start": 16162.68, "end": 16163.38, "probability": 0.0847 }, { "start": 16163.86, "end": 16166.72, "probability": 0.9088 }, { "start": 16166.84, "end": 16169.3, "probability": 0.8392 }, { "start": 16169.42, "end": 16172.52, "probability": 0.8367 }, { "start": 16172.64, "end": 16173.78, "probability": 0.7736 }, { "start": 16174.32, "end": 16176.0, "probability": 0.8423 }, { "start": 16176.5, "end": 16178.28, "probability": 0.9574 }, { "start": 16179.4, "end": 16180.36, "probability": 0.7544 }, { "start": 16181.2, "end": 16183.56, "probability": 0.954 }, { "start": 16184.02, "end": 16186.54, "probability": 0.8289 }, { "start": 16187.38, "end": 16190.56, "probability": 0.5739 }, { "start": 16194.4, "end": 16195.58, "probability": 0.2964 }, { "start": 16195.66, "end": 16197.12, "probability": 0.741 }, { "start": 16197.24, "end": 16199.04, "probability": 0.5434 }, { "start": 16199.04, "end": 16203.92, "probability": 0.6851 }, { "start": 16204.72, "end": 16206.76, "probability": 0.1695 }, { "start": 16206.78, "end": 16209.56, "probability": 0.7599 }, { "start": 16210.4, "end": 16210.62, "probability": 0.1359 }, { "start": 16210.62, "end": 16211.94, "probability": 0.7783 }, { "start": 16212.32, "end": 16212.54, "probability": 0.1658 }, { "start": 16212.54, "end": 16212.54, "probability": 0.2496 }, { "start": 16212.54, "end": 16213.65, "probability": 0.2817 }, { "start": 16214.34, "end": 16216.56, "probability": 0.2205 }, { "start": 16216.64, "end": 16217.18, "probability": 0.2043 }, { "start": 16219.25, "end": 16219.32, "probability": 0.088 }, { "start": 16219.32, "end": 16222.68, "probability": 0.9834 }, { "start": 16222.96, "end": 16222.96, "probability": 0.0069 }, { "start": 16222.96, "end": 16226.58, "probability": 0.0944 }, { "start": 16226.58, "end": 16228.08, "probability": 0.0309 }, { "start": 16228.48, "end": 16230.93, "probability": 0.0889 }, { "start": 16231.0, "end": 16231.72, "probability": 0.5481 }, { "start": 16231.86, "end": 16232.44, "probability": 0.5297 }, { "start": 16232.58, "end": 16234.44, "probability": 0.8925 }, { "start": 16234.52, "end": 16237.03, "probability": 0.7657 }, { "start": 16237.68, "end": 16239.18, "probability": 0.9714 }, { "start": 16239.28, "end": 16240.32, "probability": 0.7837 }, { "start": 16240.34, "end": 16244.67, "probability": 0.9084 }, { "start": 16245.24, "end": 16248.2, "probability": 0.9643 }, { "start": 16248.88, "end": 16251.2, "probability": 0.9341 }, { "start": 16251.46, "end": 16254.04, "probability": 0.99 }, { "start": 16254.7, "end": 16255.68, "probability": 0.6953 }, { "start": 16256.36, "end": 16257.56, "probability": 0.8958 }, { "start": 16260.36, "end": 16262.0, "probability": 0.3026 }, { "start": 16262.76, "end": 16265.28, "probability": 0.9766 }, { "start": 16266.08, "end": 16266.66, "probability": 0.9234 }, { "start": 16268.8, "end": 16271.58, "probability": 0.4708 }, { "start": 16271.58, "end": 16271.96, "probability": 0.8474 }, { "start": 16272.02, "end": 16272.92, "probability": 0.6996 }, { "start": 16273.04, "end": 16273.66, "probability": 0.5556 }, { "start": 16273.82, "end": 16276.2, "probability": 0.705 }, { "start": 16276.76, "end": 16276.76, "probability": 0.4872 }, { "start": 16277.0, "end": 16277.98, "probability": 0.3111 }, { "start": 16282.48, "end": 16283.24, "probability": 0.8428 }, { "start": 16284.18, "end": 16284.96, "probability": 0.6802 }, { "start": 16285.12, "end": 16286.04, "probability": 0.8958 }, { "start": 16286.04, "end": 16286.94, "probability": 0.9523 }, { "start": 16287.22, "end": 16293.08, "probability": 0.6313 }, { "start": 16293.7, "end": 16294.02, "probability": 0.4473 }, { "start": 16297.22, "end": 16297.82, "probability": 0.4077 }, { "start": 16298.27, "end": 16302.74, "probability": 0.9846 }, { "start": 16302.86, "end": 16305.82, "probability": 0.9866 }, { "start": 16306.46, "end": 16309.4, "probability": 0.9973 }, { "start": 16310.04, "end": 16312.26, "probability": 0.8087 }, { "start": 16312.92, "end": 16315.1, "probability": 0.9689 }, { "start": 16316.6, "end": 16317.68, "probability": 0.1156 }, { "start": 16318.56, "end": 16320.62, "probability": 0.4773 }, { "start": 16320.92, "end": 16322.52, "probability": 0.5186 }, { "start": 16323.68, "end": 16325.56, "probability": 0.6746 }, { "start": 16325.64, "end": 16330.66, "probability": 0.9731 }, { "start": 16332.26, "end": 16335.04, "probability": 0.7538 }, { "start": 16335.4, "end": 16336.66, "probability": 0.8865 }, { "start": 16336.78, "end": 16338.63, "probability": 0.9977 }, { "start": 16340.18, "end": 16341.08, "probability": 0.739 }, { "start": 16341.18, "end": 16343.02, "probability": 0.9971 }, { "start": 16345.28, "end": 16350.22, "probability": 0.9946 }, { "start": 16354.64, "end": 16357.47, "probability": 0.8206 }, { "start": 16357.9, "end": 16359.22, "probability": 0.7766 }, { "start": 16359.48, "end": 16359.74, "probability": 0.0522 }, { "start": 16360.78, "end": 16363.52, "probability": 0.8928 }, { "start": 16364.32, "end": 16366.48, "probability": 0.8674 }, { "start": 16367.02, "end": 16369.1, "probability": 0.8664 }, { "start": 16369.14, "end": 16369.64, "probability": 0.808 }, { "start": 16369.68, "end": 16370.36, "probability": 0.4499 }, { "start": 16370.8, "end": 16372.02, "probability": 0.3581 }, { "start": 16372.52, "end": 16376.08, "probability": 0.9785 }, { "start": 16377.18, "end": 16377.76, "probability": 0.7485 }, { "start": 16377.92, "end": 16378.72, "probability": 0.0954 }, { "start": 16378.88, "end": 16379.5, "probability": 0.4987 }, { "start": 16379.7, "end": 16380.26, "probability": 0.6762 }, { "start": 16380.8, "end": 16382.94, "probability": 0.7622 }, { "start": 16383.06, "end": 16384.5, "probability": 0.8084 }, { "start": 16385.14, "end": 16387.58, "probability": 0.9537 }, { "start": 16388.0, "end": 16391.76, "probability": 0.6637 }, { "start": 16391.76, "end": 16395.4, "probability": 0.8508 }, { "start": 16395.9, "end": 16396.52, "probability": 0.7832 }, { "start": 16396.66, "end": 16397.52, "probability": 0.787 }, { "start": 16397.64, "end": 16398.62, "probability": 0.851 }, { "start": 16399.06, "end": 16407.06, "probability": 0.7636 }, { "start": 16408.51, "end": 16410.32, "probability": 0.6973 }, { "start": 16410.44, "end": 16412.14, "probability": 0.9785 }, { "start": 16413.0, "end": 16413.86, "probability": 0.9794 }, { "start": 16414.8, "end": 16416.54, "probability": 0.8076 }, { "start": 16417.06, "end": 16417.78, "probability": 0.8828 }, { "start": 16419.5, "end": 16420.2, "probability": 0.905 }, { "start": 16420.82, "end": 16421.08, "probability": 0.0288 }, { "start": 16426.6, "end": 16428.07, "probability": 0.0532 }, { "start": 16429.08, "end": 16430.2, "probability": 0.7737 }, { "start": 16430.32, "end": 16431.06, "probability": 0.5727 }, { "start": 16431.94, "end": 16432.4, "probability": 0.7421 }, { "start": 16433.28, "end": 16434.94, "probability": 0.9493 }, { "start": 16435.74, "end": 16436.46, "probability": 0.9086 }, { "start": 16436.66, "end": 16437.42, "probability": 0.653 }, { "start": 16437.66, "end": 16437.8, "probability": 0.2492 }, { "start": 16437.8, "end": 16439.96, "probability": 0.4929 }, { "start": 16441.82, "end": 16442.64, "probability": 0.3151 }, { "start": 16442.7, "end": 16443.56, "probability": 0.6312 }, { "start": 16444.56, "end": 16445.58, "probability": 0.8685 }, { "start": 16448.34, "end": 16449.42, "probability": 0.3153 }, { "start": 16449.66, "end": 16451.92, "probability": 0.2354 }, { "start": 16452.5, "end": 16455.26, "probability": 0.8959 }, { "start": 16456.2, "end": 16457.34, "probability": 0.6772 }, { "start": 16458.2, "end": 16463.14, "probability": 0.629 }, { "start": 16463.16, "end": 16463.38, "probability": 0.9166 }, { "start": 16479.44, "end": 16480.3, "probability": 0.7271 }, { "start": 16481.12, "end": 16483.6, "probability": 0.7315 }, { "start": 16484.88, "end": 16490.08, "probability": 0.933 }, { "start": 16490.6, "end": 16493.64, "probability": 0.9789 }, { "start": 16494.58, "end": 16499.62, "probability": 0.9668 }, { "start": 16500.4, "end": 16502.62, "probability": 0.9167 }, { "start": 16502.9, "end": 16503.99, "probability": 0.633 }, { "start": 16504.68, "end": 16506.48, "probability": 0.8164 }, { "start": 16509.42, "end": 16509.52, "probability": 0.1887 }, { "start": 16509.52, "end": 16510.6, "probability": 0.4995 }, { "start": 16511.14, "end": 16512.68, "probability": 0.7626 }, { "start": 16513.22, "end": 16517.24, "probability": 0.9274 }, { "start": 16517.6, "end": 16520.38, "probability": 0.6847 }, { "start": 16520.8, "end": 16522.88, "probability": 0.6922 }, { "start": 16524.64, "end": 16524.96, "probability": 0.0549 }, { "start": 16524.96, "end": 16528.12, "probability": 0.8636 }, { "start": 16529.16, "end": 16529.6, "probability": 0.8534 }, { "start": 16529.68, "end": 16530.72, "probability": 0.8765 }, { "start": 16530.8, "end": 16532.0, "probability": 0.7491 }, { "start": 16532.06, "end": 16532.79, "probability": 0.6108 }, { "start": 16533.9, "end": 16536.58, "probability": 0.8627 }, { "start": 16537.18, "end": 16538.72, "probability": 0.886 }, { "start": 16539.1, "end": 16540.6, "probability": 0.6675 }, { "start": 16540.66, "end": 16544.14, "probability": 0.9281 }, { "start": 16544.3, "end": 16548.26, "probability": 0.9124 }, { "start": 16550.56, "end": 16552.12, "probability": 0.6111 }, { "start": 16552.16, "end": 16554.13, "probability": 0.8608 }, { "start": 16554.84, "end": 16556.46, "probability": 0.9105 }, { "start": 16557.18, "end": 16559.12, "probability": 0.8622 }, { "start": 16559.34, "end": 16560.92, "probability": 0.6111 }, { "start": 16562.72, "end": 16563.04, "probability": 0.3755 }, { "start": 16563.92, "end": 16564.66, "probability": 0.1226 }, { "start": 16565.8, "end": 16567.4, "probability": 0.1611 }, { "start": 16568.64, "end": 16569.4, "probability": 0.0149 }, { "start": 16569.9, "end": 16571.46, "probability": 0.0194 }, { "start": 16571.46, "end": 16571.46, "probability": 0.0533 }, { "start": 16571.58, "end": 16574.8, "probability": 0.7668 }, { "start": 16575.78, "end": 16576.68, "probability": 0.9576 }, { "start": 16578.5, "end": 16582.0, "probability": 0.7379 }, { "start": 16583.6, "end": 16584.1, "probability": 0.1133 }, { "start": 16588.04, "end": 16588.04, "probability": 0.0073 }, { "start": 16589.62, "end": 16591.78, "probability": 0.0503 }, { "start": 16594.12, "end": 16596.02, "probability": 0.9202 }, { "start": 16596.36, "end": 16601.04, "probability": 0.3436 }, { "start": 16602.06, "end": 16602.34, "probability": 0.5051 }, { "start": 16602.36, "end": 16604.28, "probability": 0.7894 }, { "start": 16604.32, "end": 16606.64, "probability": 0.6631 }, { "start": 16607.44, "end": 16611.18, "probability": 0.9888 }, { "start": 16611.18, "end": 16614.56, "probability": 0.9818 }, { "start": 16614.98, "end": 16618.18, "probability": 0.3093 }, { "start": 16620.95, "end": 16623.08, "probability": 0.9549 }, { "start": 16623.22, "end": 16625.26, "probability": 0.5562 }, { "start": 16625.26, "end": 16625.9, "probability": 0.5396 }, { "start": 16626.22, "end": 16626.56, "probability": 0.4759 }, { "start": 16626.56, "end": 16627.86, "probability": 0.4666 }, { "start": 16627.98, "end": 16630.18, "probability": 0.9844 }, { "start": 16631.02, "end": 16632.62, "probability": 0.691 }, { "start": 16632.78, "end": 16636.98, "probability": 0.6613 }, { "start": 16637.5, "end": 16638.44, "probability": 0.9888 }, { "start": 16638.96, "end": 16640.64, "probability": 0.7912 }, { "start": 16641.44, "end": 16648.32, "probability": 0.9224 }, { "start": 16648.34, "end": 16648.54, "probability": 0.9221 }, { "start": 16680.96, "end": 16682.62, "probability": 0.8534 }, { "start": 16683.2, "end": 16684.22, "probability": 0.7782 }, { "start": 16685.36, "end": 16688.4, "probability": 0.8815 }, { "start": 16689.66, "end": 16693.54, "probability": 0.9547 }, { "start": 16693.54, "end": 16696.76, "probability": 0.9834 }, { "start": 16697.96, "end": 16698.38, "probability": 0.3334 }, { "start": 16698.96, "end": 16701.2, "probability": 0.8495 }, { "start": 16702.0, "end": 16705.64, "probability": 0.9208 }, { "start": 16706.28, "end": 16707.68, "probability": 0.9771 }, { "start": 16708.44, "end": 16709.44, "probability": 0.9863 }, { "start": 16710.22, "end": 16711.1, "probability": 0.9938 }, { "start": 16711.64, "end": 16713.12, "probability": 0.9327 }, { "start": 16714.04, "end": 16714.94, "probability": 0.9653 }, { "start": 16715.98, "end": 16722.44, "probability": 0.7992 }, { "start": 16722.54, "end": 16725.42, "probability": 0.9373 }, { "start": 16725.56, "end": 16726.5, "probability": 0.6894 }, { "start": 16726.82, "end": 16727.68, "probability": 0.6265 }, { "start": 16728.66, "end": 16729.84, "probability": 0.7771 }, { "start": 16730.64, "end": 16733.65, "probability": 0.9774 }, { "start": 16734.74, "end": 16739.08, "probability": 0.935 }, { "start": 16739.96, "end": 16740.54, "probability": 0.802 }, { "start": 16741.26, "end": 16744.16, "probability": 0.9987 }, { "start": 16745.28, "end": 16745.6, "probability": 0.783 }, { "start": 16746.38, "end": 16748.04, "probability": 0.9989 }, { "start": 16748.72, "end": 16751.0, "probability": 0.9868 }, { "start": 16751.8, "end": 16755.88, "probability": 0.8821 }, { "start": 16756.4, "end": 16759.24, "probability": 0.9955 }, { "start": 16759.92, "end": 16761.88, "probability": 0.9764 }, { "start": 16762.78, "end": 16764.3, "probability": 0.9882 }, { "start": 16765.26, "end": 16766.52, "probability": 0.9965 }, { "start": 16767.34, "end": 16771.66, "probability": 0.9873 }, { "start": 16772.38, "end": 16773.9, "probability": 0.9805 }, { "start": 16774.82, "end": 16780.1, "probability": 0.8816 }, { "start": 16780.1, "end": 16784.68, "probability": 0.9648 }, { "start": 16785.72, "end": 16789.06, "probability": 0.9909 }, { "start": 16789.72, "end": 16790.86, "probability": 0.9745 }, { "start": 16791.88, "end": 16794.02, "probability": 0.9888 }, { "start": 16794.64, "end": 16801.58, "probability": 0.7614 }, { "start": 16801.58, "end": 16805.46, "probability": 0.9849 }, { "start": 16807.3, "end": 16808.9, "probability": 0.9707 }, { "start": 16809.72, "end": 16811.28, "probability": 0.9972 }, { "start": 16811.48, "end": 16812.44, "probability": 0.9798 }, { "start": 16812.52, "end": 16813.3, "probability": 0.9469 }, { "start": 16813.4, "end": 16815.08, "probability": 0.9744 }, { "start": 16815.62, "end": 16815.8, "probability": 0.8849 }, { "start": 16815.84, "end": 16818.06, "probability": 0.9941 }, { "start": 16818.48, "end": 16819.54, "probability": 0.6672 }, { "start": 16821.28, "end": 16822.92, "probability": 0.9712 }, { "start": 16823.64, "end": 16827.44, "probability": 0.9611 }, { "start": 16828.08, "end": 16832.06, "probability": 0.993 }, { "start": 16833.6, "end": 16836.3, "probability": 0.9961 }, { "start": 16836.44, "end": 16840.68, "probability": 0.9937 }, { "start": 16841.32, "end": 16843.38, "probability": 0.9827 }, { "start": 16844.12, "end": 16845.18, "probability": 0.697 }, { "start": 16846.18, "end": 16850.76, "probability": 0.9831 }, { "start": 16851.42, "end": 16854.56, "probability": 0.9952 }, { "start": 16855.44, "end": 16856.12, "probability": 0.8739 }, { "start": 16858.8, "end": 16862.96, "probability": 0.9875 }, { "start": 16863.62, "end": 16865.54, "probability": 0.6233 }, { "start": 16866.34, "end": 16870.36, "probability": 0.9859 }, { "start": 16871.9, "end": 16876.22, "probability": 0.998 }, { "start": 16876.98, "end": 16879.48, "probability": 0.9766 }, { "start": 16880.0, "end": 16884.5, "probability": 0.9995 }, { "start": 16885.02, "end": 16888.1, "probability": 0.8947 }, { "start": 16888.64, "end": 16891.78, "probability": 0.8507 }, { "start": 16892.36, "end": 16896.76, "probability": 0.9878 }, { "start": 16897.24, "end": 16898.78, "probability": 0.9995 }, { "start": 16899.42, "end": 16903.5, "probability": 0.9831 }, { "start": 16903.72, "end": 16908.74, "probability": 0.9401 }, { "start": 16909.26, "end": 16912.54, "probability": 0.9958 }, { "start": 16912.9, "end": 16914.36, "probability": 0.9635 }, { "start": 16915.14, "end": 16918.14, "probability": 0.96 }, { "start": 16918.46, "end": 16925.2, "probability": 0.9446 }, { "start": 16925.3, "end": 16928.34, "probability": 0.9976 }, { "start": 16928.9, "end": 16929.78, "probability": 0.91 }, { "start": 16931.04, "end": 16931.9, "probability": 0.7395 }, { "start": 16932.66, "end": 16933.64, "probability": 0.9206 }, { "start": 16933.72, "end": 16937.04, "probability": 0.8602 }, { "start": 16937.06, "end": 16937.38, "probability": 0.8592 }, { "start": 16938.98, "end": 16940.37, "probability": 0.5437 }, { "start": 16941.54, "end": 16945.12, "probability": 0.92 }, { "start": 16945.6, "end": 16946.7, "probability": 0.9773 }, { "start": 16946.74, "end": 16947.84, "probability": 0.9802 }, { "start": 16947.96, "end": 16948.54, "probability": 0.7681 }, { "start": 16949.2, "end": 16950.62, "probability": 0.9985 }, { "start": 16951.16, "end": 16954.56, "probability": 0.9943 }, { "start": 16955.02, "end": 16957.1, "probability": 0.9949 }, { "start": 16957.82, "end": 16961.76, "probability": 0.9238 }, { "start": 16962.52, "end": 16966.56, "probability": 0.9634 }, { "start": 16967.5, "end": 16968.78, "probability": 0.9133 }, { "start": 16969.36, "end": 16973.24, "probability": 0.9294 }, { "start": 16973.96, "end": 16975.86, "probability": 0.9943 }, { "start": 16976.58, "end": 16977.53, "probability": 0.9849 }, { "start": 16978.14, "end": 16981.54, "probability": 0.9888 }, { "start": 16982.64, "end": 16984.16, "probability": 0.9961 }, { "start": 16984.92, "end": 16986.36, "probability": 0.9885 }, { "start": 16987.16, "end": 16992.62, "probability": 0.7895 }, { "start": 16993.4, "end": 16995.68, "probability": 0.9611 }, { "start": 16996.22, "end": 16996.5, "probability": 0.6484 }, { "start": 16996.76, "end": 16997.66, "probability": 0.8997 }, { "start": 16997.94, "end": 17000.52, "probability": 0.7878 }, { "start": 17001.44, "end": 17005.06, "probability": 0.9989 }, { "start": 17005.06, "end": 17008.68, "probability": 0.8672 }, { "start": 17010.45, "end": 17015.14, "probability": 0.9926 }, { "start": 17015.14, "end": 17018.46, "probability": 0.9578 }, { "start": 17018.62, "end": 17019.12, "probability": 0.7891 }, { "start": 17019.16, "end": 17021.6, "probability": 0.8349 }, { "start": 17022.04, "end": 17028.46, "probability": 0.9976 }, { "start": 17029.34, "end": 17033.56, "probability": 0.9697 }, { "start": 17033.96, "end": 17035.38, "probability": 0.5103 }, { "start": 17035.52, "end": 17038.05, "probability": 0.9852 }, { "start": 17038.44, "end": 17038.97, "probability": 0.7432 }, { "start": 17039.8, "end": 17042.58, "probability": 0.9736 }, { "start": 17043.0, "end": 17044.82, "probability": 0.8792 }, { "start": 17045.76, "end": 17050.48, "probability": 0.7935 }, { "start": 17050.72, "end": 17051.06, "probability": 0.9465 }, { "start": 17051.12, "end": 17053.9, "probability": 0.9894 }, { "start": 17054.48, "end": 17059.14, "probability": 0.9353 }, { "start": 17059.34, "end": 17064.28, "probability": 0.9897 }, { "start": 17064.46, "end": 17067.2, "probability": 0.9437 }, { "start": 17067.86, "end": 17069.46, "probability": 0.9653 }, { "start": 17070.22, "end": 17070.6, "probability": 0.0088 }, { "start": 17071.22, "end": 17074.0, "probability": 0.9056 }, { "start": 17074.92, "end": 17077.4, "probability": 0.9904 }, { "start": 17077.98, "end": 17082.46, "probability": 0.9937 }, { "start": 17082.46, "end": 17085.84, "probability": 0.9961 }, { "start": 17086.22, "end": 17089.06, "probability": 0.9714 }, { "start": 17090.32, "end": 17091.28, "probability": 0.8322 }, { "start": 17091.98, "end": 17093.12, "probability": 0.9919 }, { "start": 17095.58, "end": 17096.14, "probability": 0.5489 }, { "start": 17098.88, "end": 17102.98, "probability": 0.7784 }, { "start": 17103.26, "end": 17106.94, "probability": 0.7949 }, { "start": 17107.4, "end": 17109.56, "probability": 0.9891 }, { "start": 17110.34, "end": 17110.98, "probability": 0.9129 }, { "start": 17111.72, "end": 17114.3, "probability": 0.9512 }, { "start": 17114.5, "end": 17117.1, "probability": 0.9637 }, { "start": 17117.1, "end": 17119.54, "probability": 0.9447 }, { "start": 17119.92, "end": 17122.54, "probability": 0.9374 }, { "start": 17123.68, "end": 17124.68, "probability": 0.9509 }, { "start": 17124.92, "end": 17126.5, "probability": 0.7489 }, { "start": 17127.06, "end": 17130.56, "probability": 0.9598 }, { "start": 17131.33, "end": 17133.86, "probability": 0.852 }, { "start": 17134.46, "end": 17135.14, "probability": 0.782 }, { "start": 17136.22, "end": 17139.76, "probability": 0.8789 }, { "start": 17140.1, "end": 17144.42, "probability": 0.9928 }, { "start": 17144.42, "end": 17148.12, "probability": 0.9946 }, { "start": 17148.64, "end": 17149.9, "probability": 0.8542 }, { "start": 17150.44, "end": 17151.26, "probability": 0.6344 }, { "start": 17151.38, "end": 17151.56, "probability": 0.8733 }, { "start": 17151.64, "end": 17152.88, "probability": 0.9929 }, { "start": 17153.28, "end": 17154.6, "probability": 0.986 }, { "start": 17154.88, "end": 17155.56, "probability": 0.2606 }, { "start": 17156.02, "end": 17157.26, "probability": 0.4554 }, { "start": 17158.47, "end": 17162.4, "probability": 0.8953 }, { "start": 17162.84, "end": 17163.84, "probability": 0.6111 }, { "start": 17163.96, "end": 17164.18, "probability": 0.9292 }, { "start": 17164.56, "end": 17168.02, "probability": 0.9644 }, { "start": 17168.92, "end": 17170.86, "probability": 0.775 }, { "start": 17171.56, "end": 17175.42, "probability": 0.9836 }, { "start": 17175.92, "end": 17176.64, "probability": 0.7505 }, { "start": 17176.98, "end": 17179.82, "probability": 0.9357 }, { "start": 17180.1, "end": 17182.26, "probability": 0.7759 }, { "start": 17182.74, "end": 17185.28, "probability": 0.7773 }, { "start": 17185.86, "end": 17189.94, "probability": 0.9973 }, { "start": 17190.2, "end": 17191.7, "probability": 0.967 }, { "start": 17193.45, "end": 17193.79, "probability": 0.0292 }, { "start": 17194.02, "end": 17195.82, "probability": 0.3642 }, { "start": 17196.26, "end": 17196.88, "probability": 0.5874 }, { "start": 17196.88, "end": 17197.33, "probability": 0.4999 }, { "start": 17197.4, "end": 17199.2, "probability": 0.5981 }, { "start": 17199.22, "end": 17199.22, "probability": 0.272 }, { "start": 17199.4, "end": 17199.74, "probability": 0.6659 }, { "start": 17200.48, "end": 17203.34, "probability": 0.743 }, { "start": 17203.68, "end": 17209.48, "probability": 0.9282 }, { "start": 17210.08, "end": 17212.4, "probability": 0.9199 }, { "start": 17213.2, "end": 17215.32, "probability": 0.9517 }, { "start": 17215.36, "end": 17217.78, "probability": 0.9919 }, { "start": 17218.98, "end": 17223.26, "probability": 0.9813 }, { "start": 17223.86, "end": 17226.36, "probability": 0.8716 }, { "start": 17226.64, "end": 17226.66, "probability": 0.0007 }, { "start": 17227.74, "end": 17229.08, "probability": 0.8885 }, { "start": 17231.92, "end": 17232.6, "probability": 0.7198 }, { "start": 17234.54, "end": 17235.76, "probability": 0.925 }, { "start": 17235.9, "end": 17236.48, "probability": 0.8902 }, { "start": 17236.54, "end": 17237.26, "probability": 0.9209 }, { "start": 17237.74, "end": 17239.22, "probability": 0.2472 }, { "start": 17240.34, "end": 17241.04, "probability": 0.2752 }, { "start": 17242.64, "end": 17244.0, "probability": 0.9678 }, { "start": 17244.42, "end": 17244.96, "probability": 0.3219 }, { "start": 17245.6, "end": 17247.36, "probability": 0.1568 }, { "start": 17248.3, "end": 17249.18, "probability": 0.7887 }, { "start": 17249.26, "end": 17255.24, "probability": 0.8651 }, { "start": 17255.78, "end": 17256.94, "probability": 0.8986 }, { "start": 17257.28, "end": 17257.8, "probability": 0.5787 }, { "start": 17257.96, "end": 17258.92, "probability": 0.887 }, { "start": 17259.6, "end": 17261.22, "probability": 0.7568 }, { "start": 17261.84, "end": 17267.94, "probability": 0.9491 }, { "start": 17268.4, "end": 17270.12, "probability": 0.5715 }, { "start": 17271.41, "end": 17277.08, "probability": 0.7597 }, { "start": 17277.56, "end": 17279.5, "probability": 0.9889 }, { "start": 17279.62, "end": 17279.9, "probability": 0.4207 }, { "start": 17279.96, "end": 17280.7, "probability": 0.578 }, { "start": 17281.34, "end": 17281.85, "probability": 0.9082 }, { "start": 17282.56, "end": 17283.74, "probability": 0.9924 }, { "start": 17284.26, "end": 17285.16, "probability": 0.0011 }, { "start": 17285.34, "end": 17285.96, "probability": 0.7944 }, { "start": 17286.0, "end": 17286.64, "probability": 0.9659 }, { "start": 17286.74, "end": 17287.4, "probability": 0.771 }, { "start": 17287.8, "end": 17291.96, "probability": 0.9901 }, { "start": 17291.98, "end": 17293.82, "probability": 0.2331 }, { "start": 17294.46, "end": 17296.38, "probability": 0.5924 }, { "start": 17296.54, "end": 17298.3, "probability": 0.4943 }, { "start": 17298.8, "end": 17300.68, "probability": 0.6538 }, { "start": 17300.68, "end": 17302.66, "probability": 0.9419 }, { "start": 17302.98, "end": 17303.82, "probability": 0.5415 }, { "start": 17303.82, "end": 17304.18, "probability": 0.5096 }, { "start": 17304.18, "end": 17304.54, "probability": 0.1522 }, { "start": 17304.68, "end": 17306.1, "probability": 0.9365 }, { "start": 17306.6, "end": 17307.72, "probability": 0.95 }, { "start": 17307.9, "end": 17308.82, "probability": 0.6604 }, { "start": 17309.26, "end": 17312.82, "probability": 0.7408 }, { "start": 17312.86, "end": 17314.43, "probability": 0.3245 }, { "start": 17315.32, "end": 17315.54, "probability": 0.4111 }, { "start": 17315.6, "end": 17319.12, "probability": 0.5605 }, { "start": 17319.26, "end": 17320.04, "probability": 0.253 }, { "start": 17320.08, "end": 17320.58, "probability": 0.2839 }, { "start": 17321.38, "end": 17325.4, "probability": 0.8436 }, { "start": 17326.24, "end": 17327.32, "probability": 0.4674 }, { "start": 17328.16, "end": 17328.6, "probability": 0.6277 }, { "start": 17341.3, "end": 17342.82, "probability": 0.5529 }, { "start": 17345.28, "end": 17345.92, "probability": 0.6989 }, { "start": 17346.06, "end": 17346.7, "probability": 0.8655 }, { "start": 17346.78, "end": 17348.46, "probability": 0.988 }, { "start": 17348.54, "end": 17351.42, "probability": 0.9857 }, { "start": 17351.74, "end": 17353.86, "probability": 0.9412 }, { "start": 17354.56, "end": 17355.98, "probability": 0.6049 }, { "start": 17356.36, "end": 17356.64, "probability": 0.4616 }, { "start": 17358.58, "end": 17359.96, "probability": 0.7891 }, { "start": 17360.66, "end": 17360.92, "probability": 0.7786 }, { "start": 17361.7, "end": 17364.74, "probability": 0.8796 }, { "start": 17365.56, "end": 17367.24, "probability": 0.7764 }, { "start": 17368.11, "end": 17370.72, "probability": 0.7791 }, { "start": 17370.86, "end": 17371.34, "probability": 0.5712 }, { "start": 17372.16, "end": 17372.66, "probability": 0.364 }, { "start": 17373.72, "end": 17375.12, "probability": 0.2603 }, { "start": 17376.26, "end": 17378.4, "probability": 0.8817 }, { "start": 17378.42, "end": 17382.76, "probability": 0.9788 }, { "start": 17382.78, "end": 17385.32, "probability": 0.7859 }, { "start": 17386.08, "end": 17386.14, "probability": 0.0213 }, { "start": 17386.14, "end": 17387.77, "probability": 0.7993 }, { "start": 17388.24, "end": 17395.36, "probability": 0.7993 }, { "start": 17396.7, "end": 17397.4, "probability": 0.9613 }, { "start": 17399.36, "end": 17399.46, "probability": 0.0002 }, { "start": 17400.86, "end": 17401.9, "probability": 0.5102 }, { "start": 17401.9, "end": 17402.25, "probability": 0.7233 }, { "start": 17403.0, "end": 17404.8, "probability": 0.8922 }, { "start": 17407.32, "end": 17409.08, "probability": 0.4453 }, { "start": 17409.18, "end": 17409.38, "probability": 0.0195 }, { "start": 17409.38, "end": 17409.38, "probability": 0.566 }, { "start": 17409.38, "end": 17411.04, "probability": 0.8265 }, { "start": 17411.12, "end": 17412.26, "probability": 0.9557 }, { "start": 17413.14, "end": 17415.04, "probability": 0.9565 }, { "start": 17415.18, "end": 17417.38, "probability": 0.9469 }, { "start": 17418.26, "end": 17419.51, "probability": 0.9606 }, { "start": 17420.16, "end": 17420.68, "probability": 0.8551 }, { "start": 17421.98, "end": 17422.26, "probability": 0.0044 }, { "start": 17422.26, "end": 17422.68, "probability": 0.717 }, { "start": 17423.06, "end": 17423.72, "probability": 0.8452 }, { "start": 17423.8, "end": 17425.07, "probability": 0.9076 }, { "start": 17425.88, "end": 17426.92, "probability": 0.9583 }, { "start": 17427.92, "end": 17429.02, "probability": 0.9697 }, { "start": 17429.42, "end": 17431.55, "probability": 0.8812 }, { "start": 17432.94, "end": 17434.68, "probability": 0.4409 }, { "start": 17435.22, "end": 17435.5, "probability": 0.9292 }, { "start": 17436.16, "end": 17438.16, "probability": 0.8193 }, { "start": 17438.76, "end": 17441.36, "probability": 0.9849 }, { "start": 17442.18, "end": 17445.22, "probability": 0.9542 }, { "start": 17446.34, "end": 17447.6, "probability": 0.9736 }, { "start": 17448.12, "end": 17453.92, "probability": 0.9972 }, { "start": 17454.42, "end": 17454.9, "probability": 0.4653 }, { "start": 17454.96, "end": 17455.84, "probability": 0.8662 }, { "start": 17456.16, "end": 17457.18, "probability": 0.7276 }, { "start": 17457.46, "end": 17458.22, "probability": 0.6838 }, { "start": 17459.12, "end": 17463.04, "probability": 0.9343 }, { "start": 17463.58, "end": 17463.94, "probability": 0.3779 }, { "start": 17464.66, "end": 17468.82, "probability": 0.9298 }, { "start": 17469.3, "end": 17470.28, "probability": 0.4629 }, { "start": 17471.0, "end": 17475.3, "probability": 0.9506 }, { "start": 17475.92, "end": 17476.88, "probability": 0.9922 }, { "start": 17477.42, "end": 17480.52, "probability": 0.9108 }, { "start": 17481.22, "end": 17487.26, "probability": 0.9048 }, { "start": 17488.38, "end": 17489.78, "probability": 0.96 }, { "start": 17489.88, "end": 17491.39, "probability": 0.8792 }, { "start": 17492.04, "end": 17492.48, "probability": 0.5827 }, { "start": 17492.64, "end": 17493.52, "probability": 0.8409 }, { "start": 17493.6, "end": 17496.78, "probability": 0.9439 }, { "start": 17497.4, "end": 17499.52, "probability": 0.998 }, { "start": 17500.2, "end": 17501.24, "probability": 0.7843 }, { "start": 17501.98, "end": 17502.94, "probability": 0.9445 }, { "start": 17503.64, "end": 17507.0, "probability": 0.9854 }, { "start": 17507.48, "end": 17509.24, "probability": 0.9831 }, { "start": 17509.8, "end": 17510.02, "probability": 0.7495 }, { "start": 17510.16, "end": 17511.1, "probability": 0.7414 }, { "start": 17511.2, "end": 17511.68, "probability": 0.3755 }, { "start": 17511.78, "end": 17512.3, "probability": 0.9151 }, { "start": 17513.2, "end": 17517.5, "probability": 0.94 }, { "start": 17518.06, "end": 17523.72, "probability": 0.9756 }, { "start": 17524.36, "end": 17528.64, "probability": 0.9855 }, { "start": 17529.32, "end": 17534.52, "probability": 0.9769 }, { "start": 17534.96, "end": 17538.8, "probability": 0.9852 }, { "start": 17538.92, "end": 17539.84, "probability": 0.9871 }, { "start": 17540.36, "end": 17542.64, "probability": 0.98 }, { "start": 17544.18, "end": 17546.9, "probability": 0.9984 }, { "start": 17547.44, "end": 17548.52, "probability": 0.981 }, { "start": 17549.18, "end": 17550.32, "probability": 0.9928 }, { "start": 17550.68, "end": 17551.64, "probability": 0.8889 }, { "start": 17552.12, "end": 17552.58, "probability": 0.7253 }, { "start": 17552.62, "end": 17553.98, "probability": 0.8224 }, { "start": 17554.6, "end": 17554.88, "probability": 0.4473 }, { "start": 17554.92, "end": 17555.72, "probability": 0.9426 }, { "start": 17555.78, "end": 17556.1, "probability": 0.4784 }, { "start": 17556.44, "end": 17559.02, "probability": 0.942 }, { "start": 17559.52, "end": 17560.98, "probability": 0.9742 }, { "start": 17563.06, "end": 17564.38, "probability": 0.3144 }, { "start": 17564.92, "end": 17565.54, "probability": 0.8931 }, { "start": 17567.33, "end": 17570.36, "probability": 0.9981 }, { "start": 17571.02, "end": 17574.34, "probability": 0.9924 }, { "start": 17575.28, "end": 17578.12, "probability": 0.97 }, { "start": 17578.66, "end": 17580.54, "probability": 0.9976 }, { "start": 17581.36, "end": 17582.06, "probability": 0.5404 }, { "start": 17582.94, "end": 17584.08, "probability": 0.5068 }, { "start": 17586.49, "end": 17587.36, "probability": 0.9479 }, { "start": 17587.98, "end": 17590.56, "probability": 0.7876 }, { "start": 17590.76, "end": 17591.64, "probability": 0.9968 }, { "start": 17591.64, "end": 17592.24, "probability": 0.7112 }, { "start": 17592.74, "end": 17594.86, "probability": 0.5209 }, { "start": 17595.96, "end": 17597.84, "probability": 0.6967 }, { "start": 17598.36, "end": 17599.82, "probability": 0.1248 }, { "start": 17600.7, "end": 17602.34, "probability": 0.2812 }, { "start": 17603.0, "end": 17603.0, "probability": 0.124 }, { "start": 17603.0, "end": 17604.14, "probability": 0.8225 }, { "start": 17604.48, "end": 17606.36, "probability": 0.9663 }, { "start": 17606.76, "end": 17606.82, "probability": 0.0116 }, { "start": 17606.86, "end": 17607.52, "probability": 0.7199 }, { "start": 17607.62, "end": 17608.22, "probability": 0.3784 }, { "start": 17608.54, "end": 17609.68, "probability": 0.5594 }, { "start": 17610.08, "end": 17610.72, "probability": 0.5412 }, { "start": 17611.1, "end": 17611.92, "probability": 0.2159 }, { "start": 17611.92, "end": 17612.88, "probability": 0.0724 }, { "start": 17613.16, "end": 17614.04, "probability": 0.4096 }, { "start": 17614.2, "end": 17616.84, "probability": 0.9229 }, { "start": 17617.38, "end": 17620.32, "probability": 0.981 }, { "start": 17621.3, "end": 17623.18, "probability": 0.8824 }, { "start": 17623.54, "end": 17626.14, "probability": 0.7203 }, { "start": 17626.46, "end": 17627.58, "probability": 0.5689 }, { "start": 17627.92, "end": 17628.96, "probability": 0.1962 }, { "start": 17629.88, "end": 17630.04, "probability": 0.0922 }, { "start": 17630.04, "end": 17632.82, "probability": 0.7431 }, { "start": 17633.4, "end": 17634.18, "probability": 0.001 }, { "start": 17635.68, "end": 17638.58, "probability": 0.2534 }, { "start": 17638.58, "end": 17638.58, "probability": 0.4978 }, { "start": 17638.58, "end": 17638.58, "probability": 0.4979 }, { "start": 17638.58, "end": 17638.58, "probability": 0.2391 }, { "start": 17638.58, "end": 17639.64, "probability": 0.7864 }, { "start": 17640.04, "end": 17643.44, "probability": 0.9191 }, { "start": 17644.08, "end": 17645.96, "probability": 0.6581 }, { "start": 17646.62, "end": 17646.62, "probability": 0.1 }, { "start": 17646.62, "end": 17648.08, "probability": 0.2698 }, { "start": 17649.64, "end": 17650.74, "probability": 0.0704 }, { "start": 17651.4, "end": 17652.48, "probability": 0.4738 }, { "start": 17652.6, "end": 17653.24, "probability": 0.7961 }, { "start": 17656.38, "end": 17657.66, "probability": 0.9562 }, { "start": 17658.02, "end": 17663.6, "probability": 0.3851 }, { "start": 17663.6, "end": 17664.62, "probability": 0.9993 }, { "start": 17665.77, "end": 17666.64, "probability": 0.7921 }, { "start": 17666.74, "end": 17667.94, "probability": 0.678 }, { "start": 17669.28, "end": 17670.51, "probability": 0.6606 }, { "start": 17671.18, "end": 17675.72, "probability": 0.4349 }, { "start": 17681.78, "end": 17682.72, "probability": 0.3877 }, { "start": 17682.72, "end": 17682.72, "probability": 0.036 }, { "start": 17682.72, "end": 17682.72, "probability": 0.1508 }, { "start": 17682.72, "end": 17682.72, "probability": 0.0908 }, { "start": 17682.72, "end": 17682.82, "probability": 0.0306 }, { "start": 17683.6, "end": 17684.62, "probability": 0.6385 }, { "start": 17684.82, "end": 17685.74, "probability": 0.8308 }, { "start": 17686.24, "end": 17688.92, "probability": 0.936 }, { "start": 17689.52, "end": 17695.6, "probability": 0.998 }, { "start": 17695.82, "end": 17697.62, "probability": 0.8572 }, { "start": 17698.14, "end": 17701.56, "probability": 0.9438 }, { "start": 17701.6, "end": 17702.5, "probability": 0.9978 }, { "start": 17702.62, "end": 17703.9, "probability": 0.9336 }, { "start": 17704.46, "end": 17704.58, "probability": 0.6313 }, { "start": 17704.72, "end": 17705.64, "probability": 0.691 }, { "start": 17705.84, "end": 17707.4, "probability": 0.2199 }, { "start": 17707.62, "end": 17711.44, "probability": 0.9718 }, { "start": 17711.86, "end": 17715.84, "probability": 0.8696 }, { "start": 17716.32, "end": 17717.44, "probability": 0.9978 }, { "start": 17718.1, "end": 17721.1, "probability": 0.9879 }, { "start": 17721.62, "end": 17722.54, "probability": 0.9079 }, { "start": 17723.16, "end": 17723.52, "probability": 0.8037 }, { "start": 17723.66, "end": 17726.24, "probability": 0.965 }, { "start": 17726.42, "end": 17729.24, "probability": 0.9078 }, { "start": 17729.29, "end": 17730.38, "probability": 0.9185 }, { "start": 17731.22, "end": 17733.64, "probability": 0.9644 }, { "start": 17734.24, "end": 17736.06, "probability": 0.8999 }, { "start": 17736.64, "end": 17740.9, "probability": 0.9925 }, { "start": 17741.4, "end": 17745.3, "probability": 0.9954 }, { "start": 17745.84, "end": 17746.9, "probability": 0.9847 }, { "start": 17746.92, "end": 17750.06, "probability": 0.9885 }, { "start": 17750.72, "end": 17755.26, "probability": 0.8668 }, { "start": 17755.76, "end": 17757.86, "probability": 0.9652 }, { "start": 17758.2, "end": 17758.96, "probability": 0.6931 }, { "start": 17759.5, "end": 17761.0, "probability": 0.9976 }, { "start": 17761.66, "end": 17762.72, "probability": 0.9966 }, { "start": 17763.64, "end": 17764.4, "probability": 0.7922 }, { "start": 17765.76, "end": 17766.82, "probability": 0.8808 }, { "start": 17767.44, "end": 17769.9, "probability": 0.9873 }, { "start": 17770.48, "end": 17772.0, "probability": 0.9499 }, { "start": 17772.96, "end": 17773.86, "probability": 0.9992 }, { "start": 17774.82, "end": 17775.82, "probability": 0.6503 }, { "start": 17776.6, "end": 17778.92, "probability": 0.8717 }, { "start": 17779.96, "end": 17781.42, "probability": 0.5362 }, { "start": 17782.22, "end": 17783.26, "probability": 0.9673 }, { "start": 17784.08, "end": 17786.12, "probability": 0.8335 }, { "start": 17786.66, "end": 17787.08, "probability": 0.9092 }, { "start": 17787.22, "end": 17790.22, "probability": 0.6841 }, { "start": 17790.78, "end": 17791.86, "probability": 0.8436 }, { "start": 17792.3, "end": 17794.84, "probability": 0.9648 }, { "start": 17795.54, "end": 17801.32, "probability": 0.864 }, { "start": 17802.04, "end": 17803.42, "probability": 0.9491 }, { "start": 17803.8, "end": 17804.3, "probability": 0.8075 }, { "start": 17804.38, "end": 17805.0, "probability": 0.8748 }, { "start": 17805.14, "end": 17807.51, "probability": 0.792 }, { "start": 17808.08, "end": 17810.4, "probability": 0.9601 }, { "start": 17811.02, "end": 17813.38, "probability": 0.8872 }, { "start": 17814.0, "end": 17817.56, "probability": 0.9907 }, { "start": 17818.26, "end": 17820.48, "probability": 0.8597 }, { "start": 17820.78, "end": 17821.68, "probability": 0.7419 }, { "start": 17821.86, "end": 17822.62, "probability": 0.9717 }, { "start": 17823.76, "end": 17824.6, "probability": 0.9308 }, { "start": 17825.4, "end": 17826.7, "probability": 0.3112 }, { "start": 17827.36, "end": 17827.44, "probability": 0.2306 }, { "start": 17827.58, "end": 17833.46, "probability": 0.9041 }, { "start": 17834.02, "end": 17835.42, "probability": 0.9277 }, { "start": 17836.12, "end": 17837.42, "probability": 0.9463 }, { "start": 17837.52, "end": 17838.92, "probability": 0.9356 }, { "start": 17839.48, "end": 17842.36, "probability": 0.938 }, { "start": 17843.06, "end": 17846.56, "probability": 0.9812 }, { "start": 17847.16, "end": 17852.16, "probability": 0.9926 }, { "start": 17852.94, "end": 17856.46, "probability": 0.8367 }, { "start": 17857.12, "end": 17858.26, "probability": 0.8207 }, { "start": 17858.86, "end": 17860.9, "probability": 0.735 }, { "start": 17861.38, "end": 17863.54, "probability": 0.9559 }, { "start": 17864.1, "end": 17866.84, "probability": 0.9933 }, { "start": 17867.38, "end": 17869.52, "probability": 0.9118 }, { "start": 17869.88, "end": 17871.54, "probability": 0.7835 }, { "start": 17872.0, "end": 17874.0, "probability": 0.9879 }, { "start": 17874.64, "end": 17877.86, "probability": 0.8724 }, { "start": 17878.32, "end": 17879.54, "probability": 0.9731 }, { "start": 17880.5, "end": 17882.22, "probability": 0.9858 }, { "start": 17882.72, "end": 17885.66, "probability": 0.9933 }, { "start": 17885.68, "end": 17886.24, "probability": 0.9192 }, { "start": 17886.84, "end": 17887.86, "probability": 0.6559 }, { "start": 17888.44, "end": 17889.7, "probability": 0.8046 }, { "start": 17889.84, "end": 17890.82, "probability": 0.6868 }, { "start": 17891.16, "end": 17893.62, "probability": 0.9769 }, { "start": 17894.5, "end": 17896.52, "probability": 0.8834 }, { "start": 17896.72, "end": 17899.34, "probability": 0.9604 }, { "start": 17899.98, "end": 17905.0, "probability": 0.9369 }, { "start": 17905.42, "end": 17906.44, "probability": 0.9848 }, { "start": 17907.34, "end": 17909.4, "probability": 0.8672 }, { "start": 17910.06, "end": 17910.82, "probability": 0.9565 }, { "start": 17911.44, "end": 17912.14, "probability": 0.981 }, { "start": 17912.44, "end": 17914.12, "probability": 0.4863 }, { "start": 17914.72, "end": 17915.68, "probability": 0.9758 }, { "start": 17916.12, "end": 17920.97, "probability": 0.972 }, { "start": 17921.98, "end": 17923.32, "probability": 0.9865 }, { "start": 17923.84, "end": 17926.1, "probability": 0.9654 }, { "start": 17926.84, "end": 17928.4, "probability": 0.9937 }, { "start": 17929.02, "end": 17930.02, "probability": 0.8082 }, { "start": 17930.28, "end": 17936.42, "probability": 0.9889 }, { "start": 17936.92, "end": 17938.18, "probability": 0.5728 }, { "start": 17938.72, "end": 17941.4, "probability": 0.8919 }, { "start": 17942.02, "end": 17944.32, "probability": 0.7256 }, { "start": 17944.42, "end": 17947.34, "probability": 0.9957 }, { "start": 17947.82, "end": 17949.54, "probability": 0.9982 }, { "start": 17950.04, "end": 17951.1, "probability": 0.6304 }, { "start": 17951.74, "end": 17953.86, "probability": 0.9761 }, { "start": 17954.08, "end": 17955.1, "probability": 0.9784 }, { "start": 17955.64, "end": 17956.6, "probability": 0.7595 }, { "start": 17956.6, "end": 17957.09, "probability": 0.4273 }, { "start": 17957.32, "end": 17957.85, "probability": 0.879 }, { "start": 17958.0, "end": 17959.01, "probability": 0.6101 }, { "start": 17959.84, "end": 17961.62, "probability": 0.4498 }, { "start": 17963.0, "end": 17963.88, "probability": 0.9963 }, { "start": 17964.3, "end": 17965.0, "probability": 0.9786 }, { "start": 17965.22, "end": 17965.98, "probability": 0.9814 }, { "start": 17966.92, "end": 17968.74, "probability": 0.8849 }, { "start": 17968.87, "end": 17970.64, "probability": 0.8435 }, { "start": 17970.64, "end": 17971.52, "probability": 0.736 }, { "start": 17971.74, "end": 17971.9, "probability": 0.3512 }, { "start": 17971.94, "end": 17971.94, "probability": 0.1808 }, { "start": 17971.94, "end": 17972.78, "probability": 0.8336 }, { "start": 17973.46, "end": 17975.66, "probability": 0.7205 }, { "start": 17976.11, "end": 17978.12, "probability": 0.8744 }, { "start": 17978.12, "end": 17981.18, "probability": 0.9019 }, { "start": 17981.2, "end": 17982.68, "probability": 0.669 }, { "start": 17982.7, "end": 17982.76, "probability": 0.797 }, { "start": 17982.76, "end": 17982.76, "probability": 0.7307 }, { "start": 17982.76, "end": 17983.54, "probability": 0.9436 }, { "start": 17983.6, "end": 17984.2, "probability": 0.8326 }, { "start": 17984.58, "end": 17985.54, "probability": 0.5742 }, { "start": 17985.96, "end": 17986.26, "probability": 0.8823 }, { "start": 17988.24, "end": 17990.76, "probability": 0.9675 }, { "start": 17990.76, "end": 17991.34, "probability": 0.9184 }, { "start": 17992.1, "end": 17992.4, "probability": 0.4878 }, { "start": 17994.74, "end": 17997.04, "probability": 0.5709 }, { "start": 17997.2, "end": 17998.9, "probability": 0.9336 }, { "start": 17999.48, "end": 18001.16, "probability": 0.9499 }, { "start": 18001.5, "end": 18003.62, "probability": 0.2463 }, { "start": 18003.62, "end": 18003.8, "probability": 0.0571 }, { "start": 18005.48, "end": 18006.92, "probability": 0.8574 }, { "start": 18007.1, "end": 18009.38, "probability": 0.8783 }, { "start": 18009.46, "end": 18010.08, "probability": 0.9885 }, { "start": 18011.06, "end": 18013.94, "probability": 0.9861 }, { "start": 18014.7, "end": 18016.16, "probability": 0.9668 }, { "start": 18016.3, "end": 18016.83, "probability": 0.7742 }, { "start": 18017.42, "end": 18018.56, "probability": 0.8187 }, { "start": 18020.76, "end": 18021.63, "probability": 0.979 }, { "start": 18021.92, "end": 18025.38, "probability": 0.9068 }, { "start": 18026.02, "end": 18027.32, "probability": 0.7792 }, { "start": 18027.96, "end": 18028.22, "probability": 0.2718 }, { "start": 18028.22, "end": 18029.15, "probability": 0.3729 }, { "start": 18029.64, "end": 18031.94, "probability": 0.9635 }, { "start": 18031.98, "end": 18034.04, "probability": 0.9795 }, { "start": 18034.06, "end": 18035.72, "probability": 0.7799 }, { "start": 18036.58, "end": 18037.76, "probability": 0.8682 }, { "start": 18038.36, "end": 18038.72, "probability": 0.9868 }, { "start": 18039.72, "end": 18040.54, "probability": 0.809 }, { "start": 18041.72, "end": 18043.32, "probability": 0.8357 }, { "start": 18044.97, "end": 18047.5, "probability": 0.9486 }, { "start": 18048.16, "end": 18048.86, "probability": 0.945 }, { "start": 18050.3, "end": 18051.02, "probability": 0.1933 }, { "start": 18052.4, "end": 18056.0, "probability": 0.2544 }, { "start": 18057.38, "end": 18062.14, "probability": 0.6549 }, { "start": 18062.6, "end": 18066.66, "probability": 0.9653 }, { "start": 18067.26, "end": 18068.66, "probability": 0.9506 }, { "start": 18069.26, "end": 18071.65, "probability": 0.9652 }, { "start": 18072.2, "end": 18076.64, "probability": 0.9819 }, { "start": 18078.66, "end": 18080.1, "probability": 0.0294 }, { "start": 18083.42, "end": 18084.02, "probability": 0.096 }, { "start": 18084.48, "end": 18087.18, "probability": 0.5038 }, { "start": 18087.96, "end": 18090.9, "probability": 0.5612 }, { "start": 18091.44, "end": 18092.94, "probability": 0.4263 }, { "start": 18092.94, "end": 18093.76, "probability": 0.683 }, { "start": 18093.98, "end": 18095.92, "probability": 0.6454 }, { "start": 18095.92, "end": 18096.9, "probability": 0.8573 }, { "start": 18097.62, "end": 18099.78, "probability": 0.3676 }, { "start": 18101.19, "end": 18102.24, "probability": 0.055 }, { "start": 18103.6, "end": 18103.6, "probability": 0.1987 }, { "start": 18103.6, "end": 18105.56, "probability": 0.7726 }, { "start": 18105.56, "end": 18105.56, "probability": 0.2395 }, { "start": 18105.56, "end": 18105.56, "probability": 0.6712 }, { "start": 18105.56, "end": 18105.66, "probability": 0.7949 }, { "start": 18105.74, "end": 18112.02, "probability": 0.9912 }, { "start": 18112.88, "end": 18117.29, "probability": 0.9697 }, { "start": 18117.5, "end": 18124.28, "probability": 0.9968 }, { "start": 18124.98, "end": 18126.12, "probability": 0.8074 }, { "start": 18126.28, "end": 18129.3, "probability": 0.8218 }, { "start": 18129.3, "end": 18129.32, "probability": 0.0837 }, { "start": 18129.46, "end": 18133.32, "probability": 0.0418 }, { "start": 18133.38, "end": 18138.1, "probability": 0.9148 }, { "start": 18138.7, "end": 18140.58, "probability": 0.5011 }, { "start": 18140.64, "end": 18143.44, "probability": 0.724 }, { "start": 18143.96, "end": 18145.28, "probability": 0.8912 }, { "start": 18145.58, "end": 18146.46, "probability": 0.5342 }, { "start": 18146.96, "end": 18148.72, "probability": 0.5213 }, { "start": 18149.02, "end": 18150.5, "probability": 0.006 }, { "start": 18150.64, "end": 18151.92, "probability": 0.494 }, { "start": 18155.6, "end": 18160.72, "probability": 0.9946 }, { "start": 18160.72, "end": 18164.32, "probability": 0.9979 }, { "start": 18164.32, "end": 18168.56, "probability": 0.988 }, { "start": 18169.58, "end": 18172.8, "probability": 0.9937 }, { "start": 18172.82, "end": 18174.96, "probability": 0.9289 }, { "start": 18175.4, "end": 18178.17, "probability": 0.9887 }, { "start": 18179.04, "end": 18185.14, "probability": 0.9833 }, { "start": 18186.12, "end": 18191.24, "probability": 0.9327 }, { "start": 18192.38, "end": 18196.1, "probability": 0.8833 }, { "start": 18196.64, "end": 18198.48, "probability": 0.9962 }, { "start": 18199.4, "end": 18200.1, "probability": 0.9624 }, { "start": 18200.6, "end": 18203.16, "probability": 0.9952 }, { "start": 18203.7, "end": 18208.16, "probability": 0.9958 }, { "start": 18208.82, "end": 18214.04, "probability": 0.9867 }, { "start": 18214.12, "end": 18219.44, "probability": 0.9838 }, { "start": 18230.46, "end": 18231.26, "probability": 0.0324 }, { "start": 18231.26, "end": 18232.89, "probability": 0.0365 }, { "start": 18232.92, "end": 18233.79, "probability": 0.5518 }, { "start": 18234.26, "end": 18237.5, "probability": 0.963 }, { "start": 18237.52, "end": 18238.42, "probability": 0.6218 }, { "start": 18239.22, "end": 18239.88, "probability": 0.7206 }, { "start": 18239.88, "end": 18240.12, "probability": 0.3958 }, { "start": 18240.18, "end": 18241.29, "probability": 0.8711 }, { "start": 18242.02, "end": 18243.42, "probability": 0.8863 }, { "start": 18243.5, "end": 18244.98, "probability": 0.9175 }, { "start": 18245.36, "end": 18246.98, "probability": 0.9802 }, { "start": 18247.34, "end": 18249.88, "probability": 0.9944 }, { "start": 18250.22, "end": 18252.07, "probability": 0.9866 }, { "start": 18252.68, "end": 18253.8, "probability": 0.9642 }, { "start": 18253.92, "end": 18255.34, "probability": 0.9838 }, { "start": 18255.34, "end": 18256.56, "probability": 0.9881 }, { "start": 18257.52, "end": 18258.82, "probability": 0.9505 }, { "start": 18258.9, "end": 18259.92, "probability": 0.927 }, { "start": 18260.06, "end": 18262.14, "probability": 0.1009 }, { "start": 18262.32, "end": 18263.44, "probability": 0.1515 }, { "start": 18264.4, "end": 18264.6, "probability": 0.0589 }, { "start": 18264.6, "end": 18264.6, "probability": 0.034 }, { "start": 18264.6, "end": 18266.74, "probability": 0.609 }, { "start": 18266.82, "end": 18271.08, "probability": 0.5493 }, { "start": 18271.28, "end": 18271.74, "probability": 0.4804 }, { "start": 18271.88, "end": 18275.08, "probability": 0.3062 }, { "start": 18275.08, "end": 18275.9, "probability": 0.0046 }, { "start": 18276.46, "end": 18279.78, "probability": 0.9959 }, { "start": 18280.24, "end": 18284.7, "probability": 0.8867 }, { "start": 18287.6, "end": 18288.64, "probability": 0.3224 }, { "start": 18289.16, "end": 18292.52, "probability": 0.7075 }, { "start": 18292.54, "end": 18292.78, "probability": 0.801 }, { "start": 18294.18, "end": 18294.24, "probability": 0.064 }, { "start": 18294.7, "end": 18297.5, "probability": 0.7457 }, { "start": 18297.8, "end": 18301.64, "probability": 0.985 }, { "start": 18301.8, "end": 18305.62, "probability": 0.9382 }, { "start": 18306.36, "end": 18309.16, "probability": 0.667 }, { "start": 18309.28, "end": 18310.4, "probability": 0.8775 }, { "start": 18311.3, "end": 18311.4, "probability": 0.83 }, { "start": 18313.16, "end": 18314.06, "probability": 0.8367 }, { "start": 18314.74, "end": 18317.26, "probability": 0.8848 }, { "start": 18317.78, "end": 18318.64, "probability": 0.635 }, { "start": 18318.8, "end": 18319.52, "probability": 0.9155 }, { "start": 18319.6, "end": 18320.28, "probability": 0.8529 }, { "start": 18320.38, "end": 18321.82, "probability": 0.6216 }, { "start": 18322.3, "end": 18324.06, "probability": 0.7568 }, { "start": 18324.58, "end": 18325.5, "probability": 0.9646 }, { "start": 18326.38, "end": 18327.24, "probability": 0.9077 }, { "start": 18328.48, "end": 18329.4, "probability": 0.9042 }, { "start": 18330.94, "end": 18333.32, "probability": 0.9707 }, { "start": 18334.42, "end": 18335.34, "probability": 0.9746 }, { "start": 18335.9, "end": 18338.24, "probability": 0.9989 }, { "start": 18339.18, "end": 18341.1, "probability": 0.9049 }, { "start": 18341.12, "end": 18343.48, "probability": 0.9466 }, { "start": 18346.58, "end": 18348.5, "probability": 0.0318 }, { "start": 18350.14, "end": 18352.22, "probability": 0.7104 }, { "start": 18352.44, "end": 18354.84, "probability": 0.6644 }, { "start": 18354.9, "end": 18357.64, "probability": 0.9603 }, { "start": 18357.78, "end": 18359.16, "probability": 0.9358 }, { "start": 18359.58, "end": 18361.76, "probability": 0.5927 }, { "start": 18362.16, "end": 18363.34, "probability": 0.8637 }, { "start": 18363.46, "end": 18364.74, "probability": 0.2666 }, { "start": 18364.9, "end": 18366.2, "probability": 0.8129 }, { "start": 18366.68, "end": 18369.52, "probability": 0.9901 }, { "start": 18370.02, "end": 18371.36, "probability": 0.9542 }, { "start": 18371.44, "end": 18372.18, "probability": 0.6354 }, { "start": 18372.36, "end": 18375.7, "probability": 0.7427 }, { "start": 18376.16, "end": 18377.08, "probability": 0.583 }, { "start": 18381.7, "end": 18382.76, "probability": 0.2465 }, { "start": 18383.42, "end": 18385.76, "probability": 0.5288 }, { "start": 18387.18, "end": 18389.82, "probability": 0.4309 }, { "start": 18389.82, "end": 18391.7, "probability": 0.8198 }, { "start": 18391.76, "end": 18397.26, "probability": 0.9984 }, { "start": 18397.72, "end": 18404.6, "probability": 0.9973 }, { "start": 18404.94, "end": 18406.75, "probability": 0.9939 }, { "start": 18407.3, "end": 18409.42, "probability": 0.664 }, { "start": 18409.56, "end": 18410.98, "probability": 0.8494 }, { "start": 18411.06, "end": 18411.7, "probability": 0.0095 }, { "start": 18413.16, "end": 18414.46, "probability": 0.8496 }, { "start": 18415.1, "end": 18416.96, "probability": 0.9805 }, { "start": 18417.42, "end": 18419.2, "probability": 0.9013 }, { "start": 18419.66, "end": 18424.6, "probability": 0.9969 }, { "start": 18424.66, "end": 18426.1, "probability": 0.7572 }, { "start": 18426.48, "end": 18427.59, "probability": 0.6884 }, { "start": 18428.28, "end": 18428.94, "probability": 0.9548 }, { "start": 18429.02, "end": 18434.82, "probability": 0.9748 }, { "start": 18434.82, "end": 18439.18, "probability": 0.9983 }, { "start": 18439.98, "end": 18440.32, "probability": 0.8884 }, { "start": 18442.14, "end": 18445.25, "probability": 0.9595 }, { "start": 18445.5, "end": 18448.34, "probability": 0.9425 }, { "start": 18448.4, "end": 18449.78, "probability": 0.9897 }, { "start": 18450.8, "end": 18451.26, "probability": 0.8489 }, { "start": 18451.34, "end": 18455.36, "probability": 0.9572 }, { "start": 18455.68, "end": 18456.86, "probability": 0.5865 }, { "start": 18457.5, "end": 18459.58, "probability": 0.7981 }, { "start": 18463.98, "end": 18466.18, "probability": 0.7381 }, { "start": 18469.0, "end": 18470.29, "probability": 0.7516 }, { "start": 18475.14, "end": 18475.62, "probability": 0.3794 }, { "start": 18476.66, "end": 18478.36, "probability": 0.6732 }, { "start": 18479.34, "end": 18479.76, "probability": 0.1504 }, { "start": 18481.96, "end": 18484.08, "probability": 0.1756 }, { "start": 18484.54, "end": 18484.64, "probability": 0.0153 }, { "start": 18488.94, "end": 18491.18, "probability": 0.0669 }, { "start": 18523.52, "end": 18525.0, "probability": 0.5582 }, { "start": 18526.46, "end": 18528.38, "probability": 0.6577 }, { "start": 18528.66, "end": 18530.88, "probability": 0.8957 }, { "start": 18530.94, "end": 18532.08, "probability": 0.9564 }, { "start": 18533.5, "end": 18537.74, "probability": 0.9203 }, { "start": 18538.28, "end": 18540.8, "probability": 0.9907 }, { "start": 18540.8, "end": 18542.8, "probability": 0.9983 }, { "start": 18543.4, "end": 18544.86, "probability": 0.1371 }, { "start": 18544.88, "end": 18545.52, "probability": 0.975 }, { "start": 18545.62, "end": 18546.82, "probability": 0.9858 }, { "start": 18547.28, "end": 18550.14, "probability": 0.9958 }, { "start": 18550.84, "end": 18554.92, "probability": 0.991 }, { "start": 18555.64, "end": 18555.66, "probability": 0.5063 }, { "start": 18555.66, "end": 18556.4, "probability": 0.8568 }, { "start": 18556.5, "end": 18561.06, "probability": 0.7159 }, { "start": 18561.56, "end": 18563.52, "probability": 0.9946 }, { "start": 18565.22, "end": 18566.5, "probability": 0.9267 }, { "start": 18567.28, "end": 18573.58, "probability": 0.9644 }, { "start": 18574.4, "end": 18578.26, "probability": 0.8363 }, { "start": 18578.26, "end": 18584.54, "probability": 0.9847 }, { "start": 18585.08, "end": 18587.82, "probability": 0.9916 }, { "start": 18588.25, "end": 18591.2, "probability": 0.922 }, { "start": 18592.14, "end": 18598.24, "probability": 0.9226 }, { "start": 18599.84, "end": 18602.84, "probability": 0.9537 }, { "start": 18603.18, "end": 18607.6, "probability": 0.7906 }, { "start": 18607.7, "end": 18609.48, "probability": 0.881 }, { "start": 18609.5, "end": 18611.54, "probability": 0.7894 }, { "start": 18611.72, "end": 18612.06, "probability": 0.634 }, { "start": 18612.76, "end": 18615.26, "probability": 0.9964 }, { "start": 18616.28, "end": 18619.74, "probability": 0.99 }, { "start": 18619.82, "end": 18620.12, "probability": 0.6722 }, { "start": 18620.26, "end": 18620.5, "probability": 0.6535 }, { "start": 18620.68, "end": 18621.72, "probability": 0.8142 }, { "start": 18622.82, "end": 18626.12, "probability": 0.9944 }, { "start": 18626.7, "end": 18630.98, "probability": 0.9994 }, { "start": 18631.64, "end": 18632.16, "probability": 0.8369 }, { "start": 18632.32, "end": 18637.5, "probability": 0.9941 }, { "start": 18637.72, "end": 18638.14, "probability": 0.9943 }, { "start": 18639.0, "end": 18642.28, "probability": 0.9851 }, { "start": 18642.82, "end": 18644.56, "probability": 0.9023 }, { "start": 18644.76, "end": 18646.74, "probability": 0.9813 }, { "start": 18647.3, "end": 18649.02, "probability": 0.9845 }, { "start": 18649.04, "end": 18652.88, "probability": 0.9905 }, { "start": 18653.44, "end": 18656.58, "probability": 0.9956 }, { "start": 18657.14, "end": 18660.3, "probability": 0.995 }, { "start": 18660.36, "end": 18661.28, "probability": 0.9744 }, { "start": 18661.44, "end": 18663.28, "probability": 0.7072 }, { "start": 18664.36, "end": 18666.24, "probability": 0.8894 }, { "start": 18666.34, "end": 18666.62, "probability": 0.509 }, { "start": 18666.78, "end": 18667.24, "probability": 0.5779 }, { "start": 18667.62, "end": 18671.36, "probability": 0.9961 }, { "start": 18672.86, "end": 18677.64, "probability": 0.9684 }, { "start": 18678.34, "end": 18680.12, "probability": 0.8398 }, { "start": 18680.4, "end": 18681.58, "probability": 0.9 }, { "start": 18681.74, "end": 18685.68, "probability": 0.9868 }, { "start": 18686.48, "end": 18688.44, "probability": 0.9945 }, { "start": 18689.02, "end": 18690.81, "probability": 0.7715 }, { "start": 18691.94, "end": 18698.08, "probability": 0.9824 }, { "start": 18698.08, "end": 18702.1, "probability": 0.9843 }, { "start": 18702.82, "end": 18706.04, "probability": 0.9541 }, { "start": 18707.48, "end": 18710.8, "probability": 0.9864 }, { "start": 18711.44, "end": 18712.92, "probability": 0.9965 }, { "start": 18713.72, "end": 18716.16, "probability": 0.9888 }, { "start": 18717.7, "end": 18719.06, "probability": 0.9619 }, { "start": 18719.84, "end": 18723.03, "probability": 0.9958 }, { "start": 18723.96, "end": 18725.68, "probability": 0.96 }, { "start": 18726.3, "end": 18729.4, "probability": 0.9907 }, { "start": 18729.4, "end": 18733.52, "probability": 0.9961 }, { "start": 18734.22, "end": 18736.35, "probability": 0.9081 }, { "start": 18737.08, "end": 18737.98, "probability": 0.8945 }, { "start": 18738.66, "end": 18741.5, "probability": 0.9865 }, { "start": 18742.52, "end": 18745.94, "probability": 0.8658 }, { "start": 18746.06, "end": 18751.26, "probability": 0.9879 }, { "start": 18751.26, "end": 18754.94, "probability": 0.9978 }, { "start": 18756.56, "end": 18760.0, "probability": 0.9987 }, { "start": 18760.22, "end": 18762.81, "probability": 0.8938 }, { "start": 18763.94, "end": 18770.2, "probability": 0.948 }, { "start": 18772.1, "end": 18777.22, "probability": 0.9654 }, { "start": 18777.76, "end": 18782.02, "probability": 0.9821 }, { "start": 18782.22, "end": 18783.04, "probability": 0.7546 }, { "start": 18786.0, "end": 18789.66, "probability": 0.8311 }, { "start": 18790.2, "end": 18791.92, "probability": 0.9518 }, { "start": 18793.04, "end": 18797.04, "probability": 0.9908 }, { "start": 18798.2, "end": 18801.94, "probability": 0.9862 }, { "start": 18802.5, "end": 18807.1, "probability": 0.9199 }, { "start": 18808.24, "end": 18814.78, "probability": 0.9965 }, { "start": 18815.56, "end": 18817.88, "probability": 0.8612 }, { "start": 18819.2, "end": 18821.44, "probability": 0.9934 }, { "start": 18821.44, "end": 18824.56, "probability": 0.9864 }, { "start": 18825.24, "end": 18828.98, "probability": 0.9776 }, { "start": 18829.68, "end": 18831.46, "probability": 0.9443 }, { "start": 18831.62, "end": 18836.76, "probability": 0.8217 }, { "start": 18837.04, "end": 18837.96, "probability": 0.5435 }, { "start": 18838.08, "end": 18839.38, "probability": 0.8596 }, { "start": 18840.18, "end": 18841.76, "probability": 0.9774 }, { "start": 18842.56, "end": 18844.92, "probability": 0.9995 }, { "start": 18844.92, "end": 18848.36, "probability": 0.9968 }, { "start": 18848.5, "end": 18850.88, "probability": 0.9952 }, { "start": 18851.6, "end": 18852.8, "probability": 0.9382 }, { "start": 18852.86, "end": 18857.5, "probability": 0.8949 }, { "start": 18857.66, "end": 18860.14, "probability": 0.9955 }, { "start": 18861.16, "end": 18863.62, "probability": 0.993 }, { "start": 18863.74, "end": 18865.18, "probability": 0.9054 }, { "start": 18865.82, "end": 18867.12, "probability": 0.9163 }, { "start": 18867.22, "end": 18867.78, "probability": 0.7469 }, { "start": 18868.0, "end": 18871.04, "probability": 0.8234 }, { "start": 18871.72, "end": 18874.22, "probability": 0.9941 }, { "start": 18874.28, "end": 18874.52, "probability": 0.5999 }, { "start": 18875.6, "end": 18876.98, "probability": 0.9902 }, { "start": 18877.62, "end": 18878.72, "probability": 0.678 }, { "start": 18879.24, "end": 18882.8, "probability": 0.9325 }, { "start": 18883.48, "end": 18885.49, "probability": 0.7123 }, { "start": 18886.86, "end": 18888.2, "probability": 0.8922 }, { "start": 18888.4, "end": 18890.42, "probability": 0.995 }, { "start": 18891.2, "end": 18893.3, "probability": 0.7395 }, { "start": 18893.3, "end": 18897.52, "probability": 0.7222 }, { "start": 18898.26, "end": 18898.87, "probability": 0.6384 }, { "start": 18899.2, "end": 18903.18, "probability": 0.4867 }, { "start": 18905.08, "end": 18906.96, "probability": 0.8277 }, { "start": 18907.56, "end": 18907.94, "probability": 0.5341 }, { "start": 18908.1, "end": 18910.1, "probability": 0.7831 }, { "start": 18911.52, "end": 18915.74, "probability": 0.8745 }, { "start": 18916.26, "end": 18920.24, "probability": 0.9355 }, { "start": 18920.92, "end": 18923.52, "probability": 0.994 }, { "start": 18923.94, "end": 18927.48, "probability": 0.9854 }, { "start": 18928.2, "end": 18930.9, "probability": 0.9391 }, { "start": 18931.38, "end": 18933.04, "probability": 0.9978 }, { "start": 18933.58, "end": 18934.62, "probability": 0.8748 }, { "start": 18935.72, "end": 18937.6, "probability": 0.9035 }, { "start": 18938.74, "end": 18942.28, "probability": 0.992 }, { "start": 18942.9, "end": 18951.64, "probability": 0.9863 }, { "start": 18952.18, "end": 18953.06, "probability": 0.972 }, { "start": 18953.74, "end": 18955.3, "probability": 0.9333 }, { "start": 18956.02, "end": 18957.56, "probability": 0.9553 }, { "start": 18958.08, "end": 18960.46, "probability": 0.8022 }, { "start": 18961.28, "end": 18964.6, "probability": 0.9648 }, { "start": 18965.44, "end": 18970.96, "probability": 0.9921 }, { "start": 18971.48, "end": 18974.76, "probability": 0.9648 }, { "start": 18975.4, "end": 18977.94, "probability": 0.943 }, { "start": 18978.64, "end": 18983.54, "probability": 0.9905 }, { "start": 18984.02, "end": 18985.1, "probability": 0.5459 }, { "start": 18985.64, "end": 18987.54, "probability": 0.9249 }, { "start": 18988.06, "end": 18992.62, "probability": 0.9961 }, { "start": 18992.98, "end": 18993.72, "probability": 0.3316 }, { "start": 18994.52, "end": 18997.5, "probability": 0.8654 }, { "start": 18997.98, "end": 18999.04, "probability": 0.8292 }, { "start": 18999.48, "end": 19001.52, "probability": 0.8577 }, { "start": 19001.9, "end": 19002.4, "probability": 0.5167 }, { "start": 19003.38, "end": 19004.28, "probability": 0.7808 }, { "start": 19004.94, "end": 19005.68, "probability": 0.8288 }, { "start": 19005.82, "end": 19006.76, "probability": 0.8576 }, { "start": 19006.82, "end": 19008.12, "probability": 0.9011 }, { "start": 19008.82, "end": 19008.88, "probability": 0.0975 }, { "start": 19009.04, "end": 19010.24, "probability": 0.7854 }, { "start": 19010.82, "end": 19011.04, "probability": 0.312 }, { "start": 19011.64, "end": 19016.74, "probability": 0.9878 }, { "start": 19017.32, "end": 19018.9, "probability": 0.8292 }, { "start": 19019.16, "end": 19021.48, "probability": 0.909 }, { "start": 19021.9, "end": 19026.04, "probability": 0.9958 }, { "start": 19026.36, "end": 19027.88, "probability": 0.7193 }, { "start": 19028.34, "end": 19030.07, "probability": 0.953 }, { "start": 19030.58, "end": 19033.88, "probability": 0.9945 }, { "start": 19033.88, "end": 19037.46, "probability": 0.9941 }, { "start": 19038.46, "end": 19039.26, "probability": 0.7265 }, { "start": 19039.72, "end": 19041.53, "probability": 0.9224 }, { "start": 19042.02, "end": 19044.22, "probability": 0.9885 }, { "start": 19044.94, "end": 19046.7, "probability": 0.9847 }, { "start": 19047.4, "end": 19049.62, "probability": 0.9975 }, { "start": 19050.24, "end": 19051.22, "probability": 0.982 }, { "start": 19051.88, "end": 19053.52, "probability": 0.9324 }, { "start": 19055.79, "end": 19056.66, "probability": 0.1639 }, { "start": 19056.66, "end": 19056.66, "probability": 0.0641 }, { "start": 19056.9, "end": 19061.54, "probability": 0.7278 }, { "start": 19062.28, "end": 19063.7, "probability": 0.934 }, { "start": 19064.12, "end": 19065.96, "probability": 0.9891 }, { "start": 19066.72, "end": 19070.28, "probability": 0.8489 }, { "start": 19072.34, "end": 19073.54, "probability": 0.5027 }, { "start": 19073.64, "end": 19078.42, "probability": 0.8688 }, { "start": 19079.0, "end": 19081.8, "probability": 0.9965 }, { "start": 19083.96, "end": 19085.38, "probability": 0.9852 }, { "start": 19086.54, "end": 19087.42, "probability": 0.9432 }, { "start": 19087.98, "end": 19089.2, "probability": 0.9761 }, { "start": 19089.54, "end": 19090.28, "probability": 0.962 }, { "start": 19091.44, "end": 19092.92, "probability": 0.9676 }, { "start": 19093.56, "end": 19094.18, "probability": 0.8131 }, { "start": 19094.46, "end": 19096.8, "probability": 0.7687 }, { "start": 19097.36, "end": 19099.08, "probability": 0.7939 }, { "start": 19099.38, "end": 19099.48, "probability": 0.5707 }, { "start": 19099.48, "end": 19101.08, "probability": 0.9951 }, { "start": 19101.4, "end": 19103.86, "probability": 0.9943 }, { "start": 19104.18, "end": 19107.54, "probability": 0.9589 }, { "start": 19108.12, "end": 19110.45, "probability": 0.5816 }, { "start": 19111.4, "end": 19113.04, "probability": 0.9967 }, { "start": 19113.16, "end": 19114.78, "probability": 0.634 }, { "start": 19114.82, "end": 19115.12, "probability": 0.6479 }, { "start": 19115.6, "end": 19118.88, "probability": 0.3831 }, { "start": 19118.98, "end": 19119.63, "probability": 0.2596 }, { "start": 19119.94, "end": 19121.56, "probability": 0.2673 }, { "start": 19121.8, "end": 19123.98, "probability": 0.8213 }, { "start": 19124.02, "end": 19125.42, "probability": 0.0781 }, { "start": 19125.93, "end": 19128.98, "probability": 0.5344 }, { "start": 19129.0, "end": 19129.34, "probability": 0.6813 }, { "start": 19129.34, "end": 19130.3, "probability": 0.4964 }, { "start": 19132.27, "end": 19133.9, "probability": 0.5558 }, { "start": 19134.43, "end": 19137.66, "probability": 0.7695 }, { "start": 19140.44, "end": 19143.5, "probability": 0.3951 }, { "start": 19143.6, "end": 19144.2, "probability": 0.4534 }, { "start": 19144.28, "end": 19144.52, "probability": 0.5217 }, { "start": 19144.7, "end": 19145.38, "probability": 0.1258 }, { "start": 19145.48, "end": 19146.98, "probability": 0.7015 }, { "start": 19147.56, "end": 19149.96, "probability": 0.6456 }, { "start": 19151.86, "end": 19152.82, "probability": 0.4125 }, { "start": 19153.24, "end": 19154.86, "probability": 0.3849 }, { "start": 19157.68, "end": 19160.38, "probability": 0.3957 }, { "start": 19160.44, "end": 19163.94, "probability": 0.4391 }, { "start": 19164.98, "end": 19166.37, "probability": 0.5078 }, { "start": 19167.18, "end": 19167.66, "probability": 0.708 }, { "start": 19170.46, "end": 19173.28, "probability": 0.7073 }, { "start": 19174.38, "end": 19176.22, "probability": 0.6227 }, { "start": 19176.66, "end": 19177.44, "probability": 0.3651 }, { "start": 19178.2, "end": 19180.1, "probability": 0.551 }, { "start": 19180.12, "end": 19180.84, "probability": 0.697 }, { "start": 19180.96, "end": 19183.04, "probability": 0.7751 }, { "start": 19183.46, "end": 19185.4, "probability": 0.6375 }, { "start": 19185.48, "end": 19186.06, "probability": 0.6222 }, { "start": 19186.76, "end": 19188.58, "probability": 0.3205 }, { "start": 19190.06, "end": 19191.68, "probability": 0.3898 }, { "start": 19192.1, "end": 19193.1, "probability": 0.75 }, { "start": 19193.18, "end": 19193.44, "probability": 0.822 }, { "start": 19193.62, "end": 19195.64, "probability": 0.6149 }, { "start": 19195.64, "end": 19195.95, "probability": 0.2197 }, { "start": 19196.04, "end": 19198.12, "probability": 0.8115 }, { "start": 19198.82, "end": 19203.54, "probability": 0.8341 }, { "start": 19204.28, "end": 19205.76, "probability": 0.9011 }, { "start": 19206.02, "end": 19206.34, "probability": 0.5098 }, { "start": 19206.38, "end": 19207.22, "probability": 0.8183 }, { "start": 19207.54, "end": 19207.76, "probability": 0.4584 }, { "start": 19207.76, "end": 19208.22, "probability": 0.1197 }, { "start": 19208.22, "end": 19208.6, "probability": 0.6943 }, { "start": 19209.74, "end": 19213.72, "probability": 0.0244 }, { "start": 19213.82, "end": 19215.28, "probability": 0.6128 }, { "start": 19215.8, "end": 19218.06, "probability": 0.8841 }, { "start": 19218.84, "end": 19221.49, "probability": 0.5326 }, { "start": 19221.78, "end": 19223.02, "probability": 0.3211 }, { "start": 19223.18, "end": 19225.9, "probability": 0.4429 }, { "start": 19239.34, "end": 19242.64, "probability": 0.5388 }, { "start": 19246.86, "end": 19248.92, "probability": 0.6572 }, { "start": 19249.86, "end": 19250.88, "probability": 0.8011 }, { "start": 19252.13, "end": 19256.09, "probability": 0.678 }, { "start": 19258.46, "end": 19263.94, "probability": 0.7719 }, { "start": 19265.96, "end": 19268.68, "probability": 0.9738 }, { "start": 19270.22, "end": 19272.62, "probability": 0.7898 }, { "start": 19273.92, "end": 19277.98, "probability": 0.9849 }, { "start": 19279.36, "end": 19286.36, "probability": 0.9944 }, { "start": 19286.6, "end": 19287.88, "probability": 0.9658 }, { "start": 19288.34, "end": 19289.1, "probability": 0.9493 }, { "start": 19289.66, "end": 19291.28, "probability": 0.9717 }, { "start": 19291.8, "end": 19292.78, "probability": 0.8838 }, { "start": 19292.88, "end": 19298.46, "probability": 0.979 }, { "start": 19299.72, "end": 19303.56, "probability": 0.9646 }, { "start": 19304.16, "end": 19306.68, "probability": 0.9966 }, { "start": 19307.2, "end": 19311.16, "probability": 0.9878 }, { "start": 19311.92, "end": 19313.66, "probability": 0.9379 }, { "start": 19314.2, "end": 19314.9, "probability": 0.3817 }, { "start": 19315.9, "end": 19317.8, "probability": 0.8347 }, { "start": 19318.36, "end": 19319.38, "probability": 0.6176 }, { "start": 19320.8, "end": 19322.3, "probability": 0.9922 }, { "start": 19322.52, "end": 19323.2, "probability": 0.9933 }, { "start": 19324.82, "end": 19326.46, "probability": 0.9967 }, { "start": 19326.54, "end": 19328.0, "probability": 0.9977 }, { "start": 19328.68, "end": 19331.42, "probability": 0.9953 }, { "start": 19332.02, "end": 19335.32, "probability": 0.6676 }, { "start": 19335.42, "end": 19336.31, "probability": 0.8277 }, { "start": 19337.4, "end": 19339.05, "probability": 0.7012 }, { "start": 19340.2, "end": 19342.06, "probability": 0.9632 }, { "start": 19342.54, "end": 19345.05, "probability": 0.9787 }, { "start": 19346.4, "end": 19347.48, "probability": 0.9708 }, { "start": 19349.46, "end": 19350.06, "probability": 0.3136 }, { "start": 19350.06, "end": 19351.1, "probability": 0.8187 }, { "start": 19351.58, "end": 19351.96, "probability": 0.8036 }, { "start": 19353.1, "end": 19353.59, "probability": 0.978 }, { "start": 19354.04, "end": 19358.4, "probability": 0.9302 }, { "start": 19359.42, "end": 19361.36, "probability": 0.9587 }, { "start": 19361.76, "end": 19363.98, "probability": 0.985 }, { "start": 19364.84, "end": 19370.65, "probability": 0.9621 }, { "start": 19371.4, "end": 19372.2, "probability": 0.5703 }, { "start": 19372.9, "end": 19373.58, "probability": 0.5158 }, { "start": 19374.04, "end": 19378.9, "probability": 0.9875 }, { "start": 19379.4, "end": 19380.08, "probability": 0.95 }, { "start": 19381.16, "end": 19381.8, "probability": 0.8923 }, { "start": 19384.3, "end": 19385.9, "probability": 0.6876 }, { "start": 19385.94, "end": 19386.8, "probability": 0.0802 }, { "start": 19386.8, "end": 19386.8, "probability": 0.1102 }, { "start": 19386.8, "end": 19386.8, "probability": 0.2577 }, { "start": 19386.8, "end": 19387.04, "probability": 0.26 }, { "start": 19389.4, "end": 19391.14, "probability": 0.7788 }, { "start": 19391.18, "end": 19393.18, "probability": 0.7124 }, { "start": 19393.76, "end": 19397.0, "probability": 0.806 }, { "start": 19397.02, "end": 19397.68, "probability": 0.7518 }, { "start": 19397.74, "end": 19398.92, "probability": 0.3795 }, { "start": 19399.52, "end": 19400.18, "probability": 0.9821 }, { "start": 19402.84, "end": 19405.22, "probability": 0.9814 }, { "start": 19406.7, "end": 19408.69, "probability": 0.7362 }, { "start": 19409.12, "end": 19410.84, "probability": 0.9299 }, { "start": 19411.8, "end": 19412.7, "probability": 0.1059 }, { "start": 19413.82, "end": 19415.32, "probability": 0.9296 }, { "start": 19416.1, "end": 19419.28, "probability": 0.5684 }, { "start": 19419.84, "end": 19422.76, "probability": 0.9806 }, { "start": 19423.54, "end": 19427.76, "probability": 0.9823 }, { "start": 19427.76, "end": 19431.42, "probability": 0.9805 }, { "start": 19432.76, "end": 19433.23, "probability": 0.7872 }, { "start": 19434.18, "end": 19435.34, "probability": 0.8777 }, { "start": 19435.88, "end": 19437.88, "probability": 0.9978 }, { "start": 19438.72, "end": 19440.24, "probability": 0.9813 }, { "start": 19440.88, "end": 19441.62, "probability": 0.9257 }, { "start": 19442.26, "end": 19443.06, "probability": 0.9431 }, { "start": 19443.64, "end": 19447.82, "probability": 0.9199 }, { "start": 19448.4, "end": 19451.02, "probability": 0.9843 }, { "start": 19451.46, "end": 19454.04, "probability": 0.9909 }, { "start": 19454.64, "end": 19455.24, "probability": 0.534 }, { "start": 19455.82, "end": 19456.78, "probability": 0.8833 }, { "start": 19457.4, "end": 19460.3, "probability": 0.9399 }, { "start": 19461.08, "end": 19461.78, "probability": 0.5902 }, { "start": 19462.3, "end": 19464.32, "probability": 0.842 }, { "start": 19464.72, "end": 19465.26, "probability": 0.9074 }, { "start": 19465.76, "end": 19466.76, "probability": 0.8291 }, { "start": 19466.88, "end": 19467.5, "probability": 0.9519 }, { "start": 19467.66, "end": 19468.24, "probability": 0.9441 }, { "start": 19468.64, "end": 19469.16, "probability": 0.9549 }, { "start": 19469.26, "end": 19470.24, "probability": 0.9806 }, { "start": 19470.38, "end": 19470.72, "probability": 0.8965 }, { "start": 19471.26, "end": 19473.26, "probability": 0.7037 }, { "start": 19473.82, "end": 19476.6, "probability": 0.9727 }, { "start": 19477.08, "end": 19478.08, "probability": 0.9943 }, { "start": 19478.66, "end": 19482.64, "probability": 0.9956 }, { "start": 19482.82, "end": 19485.3, "probability": 0.9424 }, { "start": 19486.68, "end": 19487.92, "probability": 0.9874 }, { "start": 19488.94, "end": 19492.58, "probability": 0.9974 }, { "start": 19493.22, "end": 19496.06, "probability": 0.786 }, { "start": 19496.62, "end": 19498.06, "probability": 0.9888 }, { "start": 19498.2, "end": 19500.82, "probability": 0.9544 }, { "start": 19501.7, "end": 19502.7, "probability": 0.8384 }, { "start": 19502.72, "end": 19504.54, "probability": 0.996 }, { "start": 19504.64, "end": 19508.96, "probability": 0.9825 }, { "start": 19509.56, "end": 19510.54, "probability": 0.5711 }, { "start": 19511.14, "end": 19513.68, "probability": 0.7566 }, { "start": 19514.52, "end": 19515.4, "probability": 0.8925 }, { "start": 19516.2, "end": 19516.86, "probability": 0.9854 }, { "start": 19518.02, "end": 19521.9, "probability": 0.7825 }, { "start": 19522.68, "end": 19526.32, "probability": 0.9888 }, { "start": 19526.92, "end": 19528.46, "probability": 0.3661 }, { "start": 19529.26, "end": 19532.7, "probability": 0.9801 }, { "start": 19533.42, "end": 19536.38, "probability": 0.9968 }, { "start": 19536.96, "end": 19539.76, "probability": 0.9926 }, { "start": 19541.12, "end": 19543.04, "probability": 0.7439 }, { "start": 19543.6, "end": 19545.14, "probability": 0.7435 }, { "start": 19545.98, "end": 19546.5, "probability": 0.8925 }, { "start": 19546.7, "end": 19546.98, "probability": 0.5364 }, { "start": 19547.02, "end": 19547.28, "probability": 0.7321 }, { "start": 19547.44, "end": 19548.08, "probability": 0.6951 }, { "start": 19548.4, "end": 19551.62, "probability": 0.9272 }, { "start": 19551.74, "end": 19552.5, "probability": 0.7869 }, { "start": 19553.12, "end": 19553.4, "probability": 0.8315 }, { "start": 19554.86, "end": 19556.96, "probability": 0.9956 }, { "start": 19557.98, "end": 19559.6, "probability": 0.9922 }, { "start": 19560.68, "end": 19563.08, "probability": 0.988 }, { "start": 19563.68, "end": 19565.12, "probability": 0.946 }, { "start": 19565.74, "end": 19567.16, "probability": 0.8878 }, { "start": 19568.46, "end": 19569.18, "probability": 0.7065 }, { "start": 19569.86, "end": 19570.4, "probability": 0.7779 }, { "start": 19572.04, "end": 19572.88, "probability": 0.8326 }, { "start": 19573.68, "end": 19575.74, "probability": 0.9343 }, { "start": 19576.4, "end": 19577.16, "probability": 0.9286 }, { "start": 19577.76, "end": 19580.62, "probability": 0.9132 }, { "start": 19581.3, "end": 19582.06, "probability": 0.9785 }, { "start": 19582.9, "end": 19585.02, "probability": 0.9771 }, { "start": 19585.66, "end": 19588.7, "probability": 0.9708 }, { "start": 19589.46, "end": 19592.62, "probability": 0.9541 }, { "start": 19593.58, "end": 19593.98, "probability": 0.8356 }, { "start": 19594.86, "end": 19598.48, "probability": 0.9966 }, { "start": 19599.28, "end": 19600.86, "probability": 0.9698 }, { "start": 19601.46, "end": 19604.86, "probability": 0.957 }, { "start": 19605.66, "end": 19610.68, "probability": 0.8964 }, { "start": 19611.28, "end": 19611.42, "probability": 0.3553 }, { "start": 19611.42, "end": 19611.76, "probability": 0.3196 }, { "start": 19612.0, "end": 19616.54, "probability": 0.9514 }, { "start": 19617.44, "end": 19621.22, "probability": 0.9937 }, { "start": 19621.86, "end": 19623.66, "probability": 0.9513 }, { "start": 19623.76, "end": 19625.48, "probability": 0.6379 }, { "start": 19626.1, "end": 19626.88, "probability": 0.7338 }, { "start": 19626.9, "end": 19627.84, "probability": 0.8484 }, { "start": 19628.08, "end": 19628.82, "probability": 0.5366 }, { "start": 19628.92, "end": 19630.2, "probability": 0.9094 }, { "start": 19630.76, "end": 19631.56, "probability": 0.9349 }, { "start": 19632.0, "end": 19635.82, "probability": 0.989 }, { "start": 19636.4, "end": 19640.08, "probability": 0.9961 }, { "start": 19640.62, "end": 19643.12, "probability": 0.979 }, { "start": 19643.94, "end": 19646.52, "probability": 0.9917 }, { "start": 19647.34, "end": 19649.26, "probability": 0.8031 }, { "start": 19650.14, "end": 19653.22, "probability": 0.9963 }, { "start": 19654.08, "end": 19657.74, "probability": 0.9107 }, { "start": 19658.24, "end": 19659.46, "probability": 0.917 }, { "start": 19660.44, "end": 19661.04, "probability": 0.8173 }, { "start": 19661.58, "end": 19662.6, "probability": 0.8311 }, { "start": 19663.2, "end": 19665.1, "probability": 0.9947 }, { "start": 19666.08, "end": 19667.8, "probability": 0.9724 }, { "start": 19668.42, "end": 19669.1, "probability": 0.9824 }, { "start": 19669.94, "end": 19671.14, "probability": 0.9846 }, { "start": 19671.6, "end": 19672.6, "probability": 0.9396 }, { "start": 19672.66, "end": 19675.47, "probability": 0.8995 }, { "start": 19676.08, "end": 19678.0, "probability": 0.9966 }, { "start": 19678.86, "end": 19681.11, "probability": 0.9699 }, { "start": 19681.92, "end": 19682.86, "probability": 0.9603 }, { "start": 19683.6, "end": 19685.96, "probability": 0.9557 }, { "start": 19686.96, "end": 19689.52, "probability": 0.8743 }, { "start": 19690.0, "end": 19691.68, "probability": 0.9994 }, { "start": 19692.22, "end": 19696.47, "probability": 0.9854 }, { "start": 19697.08, "end": 19698.6, "probability": 0.9702 }, { "start": 19700.2, "end": 19704.58, "probability": 0.97 }, { "start": 19705.12, "end": 19707.85, "probability": 0.7727 }, { "start": 19708.64, "end": 19712.72, "probability": 0.9895 }, { "start": 19713.4, "end": 19714.42, "probability": 0.9968 }, { "start": 19715.02, "end": 19716.36, "probability": 0.998 }, { "start": 19716.94, "end": 19719.94, "probability": 0.9868 }, { "start": 19719.94, "end": 19722.74, "probability": 0.9966 }, { "start": 19723.3, "end": 19723.66, "probability": 0.4943 }, { "start": 19723.88, "end": 19725.0, "probability": 0.8469 }, { "start": 19725.34, "end": 19725.94, "probability": 0.9833 }, { "start": 19726.78, "end": 19728.48, "probability": 0.9152 }, { "start": 19729.0, "end": 19729.58, "probability": 0.73 }, { "start": 19729.6, "end": 19729.66, "probability": 0.2199 }, { "start": 19729.66, "end": 19730.24, "probability": 0.499 }, { "start": 19730.78, "end": 19731.84, "probability": 0.2463 }, { "start": 19732.3, "end": 19735.12, "probability": 0.989 }, { "start": 19735.14, "end": 19735.21, "probability": 0.3044 }, { "start": 19735.72, "end": 19737.54, "probability": 0.8961 }, { "start": 19739.02, "end": 19739.46, "probability": 0.3067 }, { "start": 19739.54, "end": 19741.94, "probability": 0.7145 }, { "start": 19742.46, "end": 19743.74, "probability": 0.8193 }, { "start": 19744.44, "end": 19747.68, "probability": 0.6049 }, { "start": 19747.84, "end": 19747.84, "probability": 0.0046 }, { "start": 19747.84, "end": 19747.84, "probability": 0.2339 }, { "start": 19747.84, "end": 19747.84, "probability": 0.079 }, { "start": 19747.84, "end": 19749.18, "probability": 0.737 }, { "start": 19749.74, "end": 19750.78, "probability": 0.6512 }, { "start": 19750.78, "end": 19754.16, "probability": 0.9924 }, { "start": 19754.3, "end": 19755.68, "probability": 0.9827 }, { "start": 19756.18, "end": 19759.5, "probability": 0.9856 }, { "start": 19760.18, "end": 19762.14, "probability": 0.9771 }, { "start": 19762.88, "end": 19766.92, "probability": 0.9958 }, { "start": 19767.36, "end": 19769.34, "probability": 0.9781 }, { "start": 19769.94, "end": 19775.94, "probability": 0.9807 }, { "start": 19776.44, "end": 19779.82, "probability": 0.8309 }, { "start": 19779.92, "end": 19780.28, "probability": 0.7351 }, { "start": 19780.7, "end": 19782.18, "probability": 0.9955 }, { "start": 19782.78, "end": 19785.88, "probability": 0.9945 }, { "start": 19786.44, "end": 19787.34, "probability": 0.5751 }, { "start": 19787.94, "end": 19791.84, "probability": 0.5985 }, { "start": 19791.84, "end": 19796.06, "probability": 0.9026 }, { "start": 19797.1, "end": 19799.2, "probability": 0.9792 }, { "start": 19799.86, "end": 19804.34, "probability": 0.7925 }, { "start": 19804.56, "end": 19805.26, "probability": 0.9199 }, { "start": 19805.96, "end": 19806.9, "probability": 0.5846 }, { "start": 19807.18, "end": 19807.6, "probability": 0.4492 }, { "start": 19807.74, "end": 19808.84, "probability": 0.6562 }, { "start": 19809.5, "end": 19812.82, "probability": 0.7677 }, { "start": 19813.24, "end": 19819.1, "probability": 0.9868 }, { "start": 19819.54, "end": 19822.34, "probability": 0.7856 }, { "start": 19822.92, "end": 19824.96, "probability": 0.9677 }, { "start": 19825.44, "end": 19826.4, "probability": 0.8877 }, { "start": 19826.84, "end": 19832.38, "probability": 0.9905 }, { "start": 19832.42, "end": 19838.72, "probability": 0.9525 }, { "start": 19839.26, "end": 19841.1, "probability": 0.7859 }, { "start": 19841.48, "end": 19843.72, "probability": 0.9452 }, { "start": 19844.18, "end": 19848.42, "probability": 0.9829 }, { "start": 19848.98, "end": 19853.34, "probability": 0.99 }, { "start": 19854.94, "end": 19857.28, "probability": 0.7484 }, { "start": 19857.38, "end": 19858.92, "probability": 0.9988 }, { "start": 19859.44, "end": 19863.1, "probability": 0.8352 }, { "start": 19863.6, "end": 19866.38, "probability": 0.7233 }, { "start": 19867.04, "end": 19870.28, "probability": 0.8979 }, { "start": 19870.28, "end": 19873.26, "probability": 0.8443 }, { "start": 19873.66, "end": 19875.98, "probability": 0.7557 }, { "start": 19876.68, "end": 19880.0, "probability": 0.829 }, { "start": 19880.8, "end": 19883.4, "probability": 0.7673 }, { "start": 19883.78, "end": 19886.86, "probability": 0.929 }, { "start": 19907.68, "end": 19908.5, "probability": 0.5245 }, { "start": 19908.54, "end": 19909.06, "probability": 0.6441 }, { "start": 19910.52, "end": 19913.66, "probability": 0.7712 }, { "start": 19915.78, "end": 19917.66, "probability": 0.9414 }, { "start": 19919.02, "end": 19921.04, "probability": 0.9451 }, { "start": 19922.28, "end": 19923.28, "probability": 0.7978 }, { "start": 19927.08, "end": 19927.68, "probability": 0.844 }, { "start": 19929.78, "end": 19931.38, "probability": 0.8706 }, { "start": 19933.0, "end": 19942.33, "probability": 0.9766 }, { "start": 19945.78, "end": 19947.19, "probability": 0.7436 }, { "start": 19948.86, "end": 19951.24, "probability": 0.9214 }, { "start": 19952.12, "end": 19953.14, "probability": 0.8932 }, { "start": 19953.98, "end": 19954.96, "probability": 0.6277 }, { "start": 19956.44, "end": 19960.16, "probability": 0.8787 }, { "start": 19962.08, "end": 19964.67, "probability": 0.7328 }, { "start": 19966.44, "end": 19968.5, "probability": 0.7075 }, { "start": 19969.04, "end": 19970.72, "probability": 0.9883 }, { "start": 19972.09, "end": 19974.8, "probability": 0.7625 }, { "start": 19975.32, "end": 19977.66, "probability": 0.5254 }, { "start": 19979.46, "end": 19980.5, "probability": 0.6005 }, { "start": 19982.5, "end": 19983.84, "probability": 0.682 }, { "start": 19986.54, "end": 19987.16, "probability": 0.2893 }, { "start": 19988.12, "end": 19990.18, "probability": 0.9336 }, { "start": 19991.26, "end": 19994.12, "probability": 0.7625 }, { "start": 19995.66, "end": 19997.02, "probability": 0.9971 }, { "start": 19997.72, "end": 19999.42, "probability": 0.6953 }, { "start": 19999.98, "end": 20002.14, "probability": 0.9088 }, { "start": 20003.34, "end": 20005.52, "probability": 0.9624 }, { "start": 20006.2, "end": 20007.08, "probability": 0.5075 }, { "start": 20008.1, "end": 20009.48, "probability": 0.5677 }, { "start": 20011.44, "end": 20014.4, "probability": 0.8065 }, { "start": 20015.14, "end": 20015.9, "probability": 0.9895 }, { "start": 20016.82, "end": 20018.58, "probability": 0.7988 }, { "start": 20020.38, "end": 20024.34, "probability": 0.8525 }, { "start": 20025.64, "end": 20027.54, "probability": 0.6124 }, { "start": 20028.42, "end": 20031.04, "probability": 0.7614 }, { "start": 20032.26, "end": 20033.64, "probability": 0.8771 }, { "start": 20034.84, "end": 20036.84, "probability": 0.9332 }, { "start": 20037.06, "end": 20041.62, "probability": 0.9556 }, { "start": 20042.76, "end": 20045.88, "probability": 0.8779 }, { "start": 20048.12, "end": 20054.38, "probability": 0.8875 }, { "start": 20055.52, "end": 20056.88, "probability": 0.7061 }, { "start": 20056.98, "end": 20057.58, "probability": 0.9731 }, { "start": 20057.86, "end": 20060.86, "probability": 0.915 }, { "start": 20062.08, "end": 20066.26, "probability": 0.9337 }, { "start": 20066.36, "end": 20069.12, "probability": 0.7867 }, { "start": 20070.44, "end": 20073.84, "probability": 0.9469 }, { "start": 20075.48, "end": 20076.81, "probability": 0.7226 }, { "start": 20078.26, "end": 20080.48, "probability": 0.991 }, { "start": 20082.36, "end": 20083.56, "probability": 0.9793 }, { "start": 20088.14, "end": 20093.86, "probability": 0.9775 }, { "start": 20094.32, "end": 20094.69, "probability": 0.0296 }, { "start": 20095.54, "end": 20096.14, "probability": 0.6927 }, { "start": 20097.88, "end": 20098.56, "probability": 0.5446 }, { "start": 20098.9, "end": 20099.56, "probability": 0.3778 }, { "start": 20099.56, "end": 20100.63, "probability": 0.8189 }, { "start": 20101.7, "end": 20102.08, "probability": 0.8191 }, { "start": 20103.0, "end": 20104.26, "probability": 0.9722 }, { "start": 20105.18, "end": 20107.28, "probability": 0.9626 }, { "start": 20107.36, "end": 20108.24, "probability": 0.8778 }, { "start": 20108.72, "end": 20110.92, "probability": 0.8549 }, { "start": 20111.28, "end": 20112.0, "probability": 0.8392 }, { "start": 20113.08, "end": 20115.34, "probability": 0.9776 }, { "start": 20116.86, "end": 20122.92, "probability": 0.9946 }, { "start": 20122.92, "end": 20125.06, "probability": 0.9799 }, { "start": 20126.16, "end": 20129.0, "probability": 0.9868 }, { "start": 20130.18, "end": 20131.18, "probability": 0.8915 }, { "start": 20131.78, "end": 20134.04, "probability": 0.8418 }, { "start": 20134.88, "end": 20137.82, "probability": 0.8911 }, { "start": 20138.58, "end": 20139.14, "probability": 0.9559 }, { "start": 20139.94, "end": 20140.18, "probability": 0.8594 }, { "start": 20141.66, "end": 20142.14, "probability": 0.9388 }, { "start": 20142.68, "end": 20144.24, "probability": 0.9705 }, { "start": 20145.66, "end": 20145.68, "probability": 0.0353 }, { "start": 20145.84, "end": 20146.62, "probability": 0.82 }, { "start": 20147.88, "end": 20150.98, "probability": 0.793 }, { "start": 20151.54, "end": 20156.6, "probability": 0.8789 }, { "start": 20157.54, "end": 20161.1, "probability": 0.9453 }, { "start": 20162.2, "end": 20164.5, "probability": 0.9982 }, { "start": 20165.6, "end": 20168.36, "probability": 0.7554 }, { "start": 20168.94, "end": 20171.14, "probability": 0.9636 }, { "start": 20171.76, "end": 20173.2, "probability": 0.4702 }, { "start": 20173.8, "end": 20175.02, "probability": 0.9127 }, { "start": 20176.16, "end": 20180.26, "probability": 0.9753 }, { "start": 20180.54, "end": 20181.58, "probability": 0.9911 }, { "start": 20182.2, "end": 20187.5, "probability": 0.7845 }, { "start": 20188.4, "end": 20190.92, "probability": 0.8591 }, { "start": 20192.08, "end": 20196.14, "probability": 0.9747 }, { "start": 20198.68, "end": 20201.5, "probability": 0.976 }, { "start": 20202.12, "end": 20203.6, "probability": 0.8884 }, { "start": 20203.79, "end": 20204.78, "probability": 0.8208 }, { "start": 20205.5, "end": 20206.26, "probability": 0.6351 }, { "start": 20207.1, "end": 20207.98, "probability": 0.79 }, { "start": 20208.7, "end": 20210.82, "probability": 0.9969 }, { "start": 20211.34, "end": 20213.48, "probability": 0.6604 }, { "start": 20214.48, "end": 20215.56, "probability": 0.7406 }, { "start": 20216.64, "end": 20218.64, "probability": 0.7523 }, { "start": 20219.38, "end": 20220.34, "probability": 0.8467 }, { "start": 20220.76, "end": 20226.6, "probability": 0.9197 }, { "start": 20226.92, "end": 20227.76, "probability": 0.7741 }, { "start": 20228.56, "end": 20231.44, "probability": 0.7417 }, { "start": 20232.32, "end": 20234.4, "probability": 0.9626 }, { "start": 20234.86, "end": 20235.7, "probability": 0.9229 }, { "start": 20235.76, "end": 20236.26, "probability": 0.881 }, { "start": 20236.72, "end": 20239.06, "probability": 0.9611 }, { "start": 20239.1, "end": 20239.82, "probability": 0.8853 }, { "start": 20240.4, "end": 20242.86, "probability": 0.9001 }, { "start": 20243.86, "end": 20244.76, "probability": 0.787 }, { "start": 20246.06, "end": 20249.26, "probability": 0.7513 }, { "start": 20251.06, "end": 20251.48, "probability": 0.4993 }, { "start": 20252.04, "end": 20255.14, "probability": 0.7615 }, { "start": 20257.28, "end": 20261.94, "probability": 0.9902 }, { "start": 20263.34, "end": 20264.08, "probability": 0.6211 }, { "start": 20264.64, "end": 20265.2, "probability": 0.8323 }, { "start": 20265.74, "end": 20266.48, "probability": 0.8784 }, { "start": 20267.18, "end": 20267.76, "probability": 0.8373 }, { "start": 20268.42, "end": 20269.44, "probability": 0.9844 }, { "start": 20269.62, "end": 20273.9, "probability": 0.9229 }, { "start": 20274.62, "end": 20275.64, "probability": 0.6848 }, { "start": 20275.82, "end": 20276.24, "probability": 0.4563 }, { "start": 20276.38, "end": 20277.66, "probability": 0.7037 }, { "start": 20278.48, "end": 20280.9, "probability": 0.9473 }, { "start": 20282.1, "end": 20291.08, "probability": 0.9626 }, { "start": 20292.1, "end": 20292.64, "probability": 0.9828 }, { "start": 20294.38, "end": 20297.4, "probability": 0.9979 }, { "start": 20297.94, "end": 20298.48, "probability": 0.685 }, { "start": 20298.62, "end": 20299.42, "probability": 0.7373 }, { "start": 20299.9, "end": 20300.74, "probability": 0.8577 }, { "start": 20301.22, "end": 20302.12, "probability": 0.9814 }, { "start": 20304.21, "end": 20309.26, "probability": 0.9218 }, { "start": 20310.04, "end": 20312.85, "probability": 0.6551 }, { "start": 20314.76, "end": 20316.06, "probability": 0.6066 }, { "start": 20317.18, "end": 20321.62, "probability": 0.9554 }, { "start": 20323.04, "end": 20324.52, "probability": 0.9834 }, { "start": 20325.52, "end": 20325.93, "probability": 0.8789 }, { "start": 20326.84, "end": 20328.79, "probability": 0.6715 }, { "start": 20329.78, "end": 20330.88, "probability": 0.8088 }, { "start": 20331.56, "end": 20332.12, "probability": 0.7972 }, { "start": 20333.14, "end": 20334.44, "probability": 0.9705 }, { "start": 20334.54, "end": 20335.18, "probability": 0.5981 }, { "start": 20335.58, "end": 20336.02, "probability": 0.5784 }, { "start": 20336.92, "end": 20337.2, "probability": 0.7072 }, { "start": 20337.76, "end": 20340.34, "probability": 0.8207 }, { "start": 20340.96, "end": 20343.06, "probability": 0.9913 }, { "start": 20343.86, "end": 20344.6, "probability": 0.7741 }, { "start": 20345.46, "end": 20347.92, "probability": 0.7088 }, { "start": 20348.6, "end": 20350.96, "probability": 0.6292 }, { "start": 20351.94, "end": 20355.32, "probability": 0.9075 }, { "start": 20356.54, "end": 20358.62, "probability": 0.0958 }, { "start": 20359.98, "end": 20363.76, "probability": 0.3156 }, { "start": 20364.36, "end": 20364.92, "probability": 0.7118 }, { "start": 20364.96, "end": 20365.48, "probability": 0.1563 }, { "start": 20366.56, "end": 20367.32, "probability": 0.0811 }, { "start": 20367.32, "end": 20367.32, "probability": 0.2878 }, { "start": 20367.32, "end": 20367.62, "probability": 0.0129 }, { "start": 20368.9, "end": 20369.68, "probability": 0.3056 }, { "start": 20370.18, "end": 20370.82, "probability": 0.3189 }, { "start": 20371.0, "end": 20372.02, "probability": 0.7952 }, { "start": 20372.48, "end": 20373.48, "probability": 0.878 }, { "start": 20373.94, "end": 20374.8, "probability": 0.5382 }, { "start": 20375.62, "end": 20378.62, "probability": 0.3047 }, { "start": 20378.93, "end": 20381.08, "probability": 0.421 }, { "start": 20381.52, "end": 20381.9, "probability": 0.582 }, { "start": 20381.94, "end": 20386.06, "probability": 0.6471 }, { "start": 20386.6, "end": 20389.18, "probability": 0.8769 }, { "start": 20389.84, "end": 20394.06, "probability": 0.9122 }, { "start": 20395.3, "end": 20399.88, "probability": 0.5021 }, { "start": 20401.19, "end": 20404.9, "probability": 0.8827 }, { "start": 20406.0, "end": 20406.95, "probability": 0.8664 }, { "start": 20407.08, "end": 20408.68, "probability": 0.8747 }, { "start": 20409.1, "end": 20411.22, "probability": 0.9773 }, { "start": 20411.72, "end": 20412.88, "probability": 0.9591 }, { "start": 20413.94, "end": 20414.34, "probability": 0.4789 }, { "start": 20414.78, "end": 20416.22, "probability": 0.6662 }, { "start": 20416.32, "end": 20416.98, "probability": 0.7316 }, { "start": 20417.14, "end": 20418.02, "probability": 0.8816 }, { "start": 20419.2, "end": 20422.64, "probability": 0.9663 }, { "start": 20423.4, "end": 20428.74, "probability": 0.9945 }, { "start": 20428.86, "end": 20430.04, "probability": 0.9631 }, { "start": 20430.7, "end": 20431.26, "probability": 0.3811 }, { "start": 20431.4, "end": 20432.96, "probability": 0.8279 }, { "start": 20433.42, "end": 20434.42, "probability": 0.9907 }, { "start": 20434.94, "end": 20439.34, "probability": 0.9369 }, { "start": 20439.84, "end": 20440.4, "probability": 0.8056 }, { "start": 20440.46, "end": 20441.9, "probability": 0.7093 }, { "start": 20442.0, "end": 20443.76, "probability": 0.8638 }, { "start": 20444.14, "end": 20446.02, "probability": 0.7961 }, { "start": 20446.46, "end": 20447.14, "probability": 0.1797 }, { "start": 20448.26, "end": 20454.56, "probability": 0.937 }, { "start": 20454.6, "end": 20457.08, "probability": 0.876 }, { "start": 20457.64, "end": 20462.42, "probability": 0.9604 }, { "start": 20463.24, "end": 20464.3, "probability": 0.9981 }, { "start": 20464.88, "end": 20467.64, "probability": 0.9669 }, { "start": 20468.02, "end": 20471.34, "probability": 0.8745 }, { "start": 20471.88, "end": 20473.22, "probability": 0.6342 }, { "start": 20473.5, "end": 20473.7, "probability": 0.8102 }, { "start": 20474.68, "end": 20476.82, "probability": 0.8368 }, { "start": 20477.8, "end": 20480.38, "probability": 0.6952 }, { "start": 20481.94, "end": 20485.78, "probability": 0.9429 }, { "start": 20487.44, "end": 20489.1, "probability": 0.6144 }, { "start": 20494.71, "end": 20498.74, "probability": 0.9763 }, { "start": 20499.26, "end": 20505.06, "probability": 0.9843 }, { "start": 20505.72, "end": 20506.22, "probability": 0.8518 }, { "start": 20507.18, "end": 20509.1, "probability": 0.8368 }, { "start": 20509.52, "end": 20509.72, "probability": 0.0381 }, { "start": 20509.72, "end": 20511.26, "probability": 0.5768 }, { "start": 20511.76, "end": 20513.2, "probability": 0.8109 }, { "start": 20518.62, "end": 20520.36, "probability": 0.4347 }, { "start": 20520.68, "end": 20521.44, "probability": 0.628 }, { "start": 20521.62, "end": 20523.0, "probability": 0.8108 }, { "start": 20523.44, "end": 20524.18, "probability": 0.6487 }, { "start": 20524.68, "end": 20526.58, "probability": 0.6574 }, { "start": 20527.36, "end": 20528.28, "probability": 0.7954 }, { "start": 20528.46, "end": 20529.16, "probability": 0.4973 }, { "start": 20529.18, "end": 20529.5, "probability": 0.8891 }, { "start": 20529.94, "end": 20530.52, "probability": 0.8199 }, { "start": 20531.42, "end": 20532.18, "probability": 0.4219 }, { "start": 20549.36, "end": 20552.26, "probability": 0.3336 }, { "start": 20552.32, "end": 20553.12, "probability": 0.9509 }, { "start": 20554.94, "end": 20555.62, "probability": 0.5823 }, { "start": 20555.7, "end": 20558.28, "probability": 0.7213 }, { "start": 20559.56, "end": 20563.4, "probability": 0.9634 }, { "start": 20564.34, "end": 20566.26, "probability": 0.9944 }, { "start": 20568.48, "end": 20569.3, "probability": 0.9548 }, { "start": 20569.66, "end": 20571.58, "probability": 0.9541 }, { "start": 20571.78, "end": 20575.44, "probability": 0.9911 }, { "start": 20575.44, "end": 20579.36, "probability": 0.9938 }, { "start": 20580.24, "end": 20582.5, "probability": 0.913 }, { "start": 20583.36, "end": 20584.1, "probability": 0.3679 }, { "start": 20584.24, "end": 20584.66, "probability": 0.828 }, { "start": 20584.98, "end": 20590.06, "probability": 0.9867 }, { "start": 20591.2, "end": 20594.08, "probability": 0.9902 }, { "start": 20594.08, "end": 20598.76, "probability": 0.9966 }, { "start": 20599.28, "end": 20599.96, "probability": 0.7614 }, { "start": 20600.48, "end": 20603.56, "probability": 0.9917 }, { "start": 20604.42, "end": 20604.98, "probability": 0.7772 }, { "start": 20605.68, "end": 20609.68, "probability": 0.9869 }, { "start": 20610.42, "end": 20613.4, "probability": 0.9701 }, { "start": 20613.68, "end": 20617.54, "probability": 0.9932 }, { "start": 20618.08, "end": 20621.32, "probability": 0.9833 }, { "start": 20622.88, "end": 20624.94, "probability": 0.8931 }, { "start": 20625.06, "end": 20628.9, "probability": 0.9972 }, { "start": 20629.78, "end": 20633.26, "probability": 0.9969 }, { "start": 20633.42, "end": 20636.86, "probability": 0.9675 }, { "start": 20637.28, "end": 20638.86, "probability": 0.719 }, { "start": 20639.08, "end": 20642.38, "probability": 0.9919 }, { "start": 20642.38, "end": 20646.32, "probability": 0.9978 }, { "start": 20647.88, "end": 20649.1, "probability": 0.661 }, { "start": 20650.2, "end": 20654.8, "probability": 0.9844 }, { "start": 20655.76, "end": 20659.26, "probability": 0.9965 }, { "start": 20659.26, "end": 20662.4, "probability": 0.9997 }, { "start": 20663.04, "end": 20666.92, "probability": 0.9906 }, { "start": 20667.16, "end": 20672.14, "probability": 0.9971 }, { "start": 20672.72, "end": 20674.42, "probability": 0.999 }, { "start": 20674.5, "end": 20675.66, "probability": 0.7617 }, { "start": 20676.08, "end": 20678.58, "probability": 0.9688 }, { "start": 20679.2, "end": 20684.9, "probability": 0.9907 }, { "start": 20685.88, "end": 20690.42, "probability": 0.9302 }, { "start": 20691.3, "end": 20693.0, "probability": 0.7594 }, { "start": 20693.64, "end": 20695.56, "probability": 0.9285 }, { "start": 20696.04, "end": 20699.62, "probability": 0.9185 }, { "start": 20699.68, "end": 20699.84, "probability": 0.9259 }, { "start": 20699.96, "end": 20701.18, "probability": 0.9773 }, { "start": 20701.24, "end": 20703.36, "probability": 0.9765 }, { "start": 20704.1, "end": 20707.9, "probability": 0.9984 }, { "start": 20708.34, "end": 20712.72, "probability": 0.9906 }, { "start": 20713.36, "end": 20718.66, "probability": 0.9971 }, { "start": 20718.68, "end": 20720.2, "probability": 0.5811 }, { "start": 20720.62, "end": 20722.64, "probability": 0.9951 }, { "start": 20723.12, "end": 20725.08, "probability": 0.9965 }, { "start": 20726.06, "end": 20726.72, "probability": 0.6957 }, { "start": 20727.26, "end": 20730.68, "probability": 0.7397 }, { "start": 20731.28, "end": 20732.74, "probability": 0.9753 }, { "start": 20733.84, "end": 20736.66, "probability": 0.9979 }, { "start": 20736.72, "end": 20739.46, "probability": 0.9702 }, { "start": 20740.26, "end": 20740.64, "probability": 0.4689 }, { "start": 20741.34, "end": 20743.82, "probability": 0.9202 }, { "start": 20743.82, "end": 20746.46, "probability": 0.9951 }, { "start": 20747.34, "end": 20749.58, "probability": 0.946 }, { "start": 20749.62, "end": 20754.04, "probability": 0.9629 }, { "start": 20754.58, "end": 20758.26, "probability": 0.9692 }, { "start": 20758.76, "end": 20762.08, "probability": 0.917 }, { "start": 20762.6, "end": 20763.56, "probability": 0.8724 }, { "start": 20764.08, "end": 20766.74, "probability": 0.9538 }, { "start": 20768.48, "end": 20772.56, "probability": 0.9618 }, { "start": 20773.9, "end": 20776.84, "probability": 0.968 }, { "start": 20777.42, "end": 20779.08, "probability": 0.8738 }, { "start": 20779.22, "end": 20779.44, "probability": 0.8658 }, { "start": 20782.04, "end": 20785.02, "probability": 0.7836 }, { "start": 20785.92, "end": 20787.94, "probability": 0.9442 }, { "start": 20789.02, "end": 20792.7, "probability": 0.5694 }, { "start": 20793.36, "end": 20793.58, "probability": 0.2312 }, { "start": 20793.62, "end": 20796.18, "probability": 0.7838 }, { "start": 20796.18, "end": 20796.84, "probability": 0.6025 }, { "start": 20797.28, "end": 20797.5, "probability": 0.1858 }, { "start": 20798.3, "end": 20799.16, "probability": 0.0223 }, { "start": 20800.6, "end": 20801.02, "probability": 0.762 }, { "start": 20802.1, "end": 20803.06, "probability": 0.7807 }, { "start": 20804.68, "end": 20806.68, "probability": 0.6838 }, { "start": 20808.7, "end": 20810.54, "probability": 0.7561 }, { "start": 20813.58, "end": 20815.66, "probability": 0.6818 }, { "start": 20817.26, "end": 20817.98, "probability": 0.7059 }, { "start": 20828.84, "end": 20829.2, "probability": 0.7004 }, { "start": 20831.02, "end": 20831.86, "probability": 0.4713 }, { "start": 20832.78, "end": 20833.24, "probability": 0.8508 }, { "start": 20834.5, "end": 20835.58, "probability": 0.7199 }, { "start": 20836.4, "end": 20838.62, "probability": 0.6653 }, { "start": 20841.58, "end": 20843.86, "probability": 0.5895 }, { "start": 20844.94, "end": 20847.04, "probability": 0.7058 }, { "start": 20849.18, "end": 20850.18, "probability": 0.9342 }, { "start": 20851.32, "end": 20852.14, "probability": 0.866 }, { "start": 20854.72, "end": 20856.9, "probability": 0.9363 }, { "start": 20857.54, "end": 20857.54, "probability": 0.2023 }, { "start": 20860.04, "end": 20861.28, "probability": 0.4755 }, { "start": 20862.9, "end": 20867.2, "probability": 0.7967 }, { "start": 20868.24, "end": 20868.54, "probability": 0.5346 }, { "start": 20869.46, "end": 20870.3, "probability": 0.8356 }, { "start": 20873.24, "end": 20874.3, "probability": 0.8145 }, { "start": 20875.1, "end": 20875.9, "probability": 0.8051 }, { "start": 20876.66, "end": 20877.32, "probability": 0.9692 }, { "start": 20878.46, "end": 20879.52, "probability": 0.8131 }, { "start": 20881.6, "end": 20884.12, "probability": 0.9214 }, { "start": 20885.2, "end": 20885.66, "probability": 0.9883 }, { "start": 20886.74, "end": 20887.7, "probability": 0.6875 }, { "start": 20888.62, "end": 20889.0, "probability": 0.7239 }, { "start": 20890.12, "end": 20891.02, "probability": 0.9562 }, { "start": 20891.76, "end": 20893.46, "probability": 0.7946 }, { "start": 20896.6, "end": 20899.88, "probability": 0.9607 }, { "start": 20902.0, "end": 20909.02, "probability": 0.9606 }, { "start": 20910.88, "end": 20911.7, "probability": 0.975 }, { "start": 20912.58, "end": 20913.82, "probability": 0.6985 }, { "start": 20914.42, "end": 20914.98, "probability": 0.9953 }, { "start": 20916.3, "end": 20918.02, "probability": 0.5629 }, { "start": 20918.62, "end": 20919.36, "probability": 0.7392 }, { "start": 20920.04, "end": 20922.16, "probability": 0.9005 }, { "start": 20923.26, "end": 20923.88, "probability": 0.9717 }, { "start": 20924.96, "end": 20925.74, "probability": 0.7955 }, { "start": 20928.06, "end": 20928.08, "probability": 0.3783 }, { "start": 20928.96, "end": 20929.1, "probability": 0.293 }, { "start": 20933.08, "end": 20933.93, "probability": 0.6011 }, { "start": 20934.74, "end": 20935.27, "probability": 0.7086 }, { "start": 20935.98, "end": 20936.82, "probability": 0.7862 }, { "start": 20938.96, "end": 20939.49, "probability": 0.895 }, { "start": 20941.11, "end": 20941.97, "probability": 0.8246 }, { "start": 20943.6, "end": 20944.15, "probability": 0.9609 }, { "start": 20945.3, "end": 20946.22, "probability": 0.685 }, { "start": 20947.01, "end": 20947.57, "probability": 0.8475 }, { "start": 20952.83, "end": 20953.61, "probability": 0.6795 }, { "start": 20954.19, "end": 20954.91, "probability": 0.8227 }, { "start": 20956.16, "end": 20957.01, "probability": 0.7205 }, { "start": 20958.04, "end": 20958.51, "probability": 0.8589 }, { "start": 20959.91, "end": 20960.89, "probability": 0.8868 }, { "start": 20961.49, "end": 20962.19, "probability": 0.9744 }, { "start": 20962.91, "end": 20963.73, "probability": 0.9465 }, { "start": 20964.55, "end": 20966.99, "probability": 0.9339 }, { "start": 20968.89, "end": 20971.17, "probability": 0.4934 }, { "start": 20973.73, "end": 20974.81, "probability": 0.6683 }, { "start": 20976.37, "end": 20978.75, "probability": 0.8264 }, { "start": 20982.23, "end": 20985.35, "probability": 0.6851 }, { "start": 20985.99, "end": 20986.45, "probability": 0.7111 }, { "start": 20987.73, "end": 20988.43, "probability": 0.4301 }, { "start": 20989.69, "end": 20990.21, "probability": 0.8996 }, { "start": 20991.33, "end": 20992.51, "probability": 0.8039 }, { "start": 20997.03, "end": 20997.89, "probability": 0.8099 }, { "start": 20998.81, "end": 21001.41, "probability": 0.897 }, { "start": 21002.61, "end": 21003.17, "probability": 0.9557 }, { "start": 21005.45, "end": 21006.71, "probability": 0.9098 }, { "start": 21007.47, "end": 21008.11, "probability": 0.9834 }, { "start": 21009.67, "end": 21010.85, "probability": 0.7036 }, { "start": 21011.81, "end": 21013.47, "probability": 0.4574 }, { "start": 21016.69, "end": 21022.25, "probability": 0.487 }, { "start": 21022.93, "end": 21023.31, "probability": 0.9264 }, { "start": 21024.33, "end": 21025.13, "probability": 0.5211 }, { "start": 21025.71, "end": 21026.49, "probability": 0.6014 }, { "start": 21027.93, "end": 21028.73, "probability": 0.9295 }, { "start": 21030.17, "end": 21030.47, "probability": 0.7727 }, { "start": 21031.95, "end": 21032.71, "probability": 0.7573 }, { "start": 21034.51, "end": 21035.15, "probability": 0.9705 }, { "start": 21036.69, "end": 21038.03, "probability": 0.7808 }, { "start": 21039.06, "end": 21041.73, "probability": 0.9254 }, { "start": 21042.53, "end": 21043.17, "probability": 0.985 }, { "start": 21045.09, "end": 21045.59, "probability": 0.656 }, { "start": 21048.37, "end": 21048.93, "probability": 0.6608 }, { "start": 21050.53, "end": 21051.33, "probability": 0.7289 }, { "start": 21053.51, "end": 21054.63, "probability": 0.8625 }, { "start": 21055.97, "end": 21057.29, "probability": 0.9614 }, { "start": 21058.17, "end": 21058.69, "probability": 0.9049 }, { "start": 21059.89, "end": 21060.71, "probability": 0.9298 }, { "start": 21061.89, "end": 21062.25, "probability": 0.9866 }, { "start": 21062.91, "end": 21063.61, "probability": 0.9731 }, { "start": 21065.03, "end": 21066.23, "probability": 0.9885 }, { "start": 21067.31, "end": 21068.03, "probability": 0.9924 }, { "start": 21069.43, "end": 21071.33, "probability": 0.9929 }, { "start": 21072.17, "end": 21073.65, "probability": 0.9849 }, { "start": 21074.49, "end": 21075.01, "probability": 0.9731 }, { "start": 21077.09, "end": 21079.27, "probability": 0.7505 }, { "start": 21080.43, "end": 21081.21, "probability": 0.8011 }, { "start": 21082.85, "end": 21083.75, "probability": 0.9775 }, { "start": 21085.35, "end": 21086.47, "probability": 0.9648 }, { "start": 21088.25, "end": 21088.77, "probability": 0.8904 }, { "start": 21090.17, "end": 21091.01, "probability": 0.9584 }, { "start": 21092.37, "end": 21094.71, "probability": 0.9646 }, { "start": 21096.21, "end": 21096.85, "probability": 0.9932 }, { "start": 21098.37, "end": 21099.39, "probability": 0.9918 }, { "start": 21100.25, "end": 21101.09, "probability": 0.9756 }, { "start": 21101.81, "end": 21102.63, "probability": 0.989 }, { "start": 21103.94, "end": 21104.99, "probability": 0.0197 }, { "start": 21106.79, "end": 21109.59, "probability": 0.3397 }, { "start": 21110.71, "end": 21111.13, "probability": 0.7687 }, { "start": 21112.79, "end": 21113.11, "probability": 0.7507 }, { "start": 21117.07, "end": 21117.91, "probability": 0.113 }, { "start": 21119.93, "end": 21120.21, "probability": 0.6851 }, { "start": 21123.09, "end": 21123.91, "probability": 0.5049 }, { "start": 21131.55, "end": 21132.35, "probability": 0.5457 }, { "start": 21134.03, "end": 21136.05, "probability": 0.569 }, { "start": 21137.61, "end": 21138.57, "probability": 0.7003 }, { "start": 21140.37, "end": 21143.31, "probability": 0.9323 }, { "start": 21144.11, "end": 21144.61, "probability": 0.9132 }, { "start": 21145.63, "end": 21146.67, "probability": 0.9596 }, { "start": 21148.13, "end": 21148.55, "probability": 0.9822 }, { "start": 21150.23, "end": 21150.81, "probability": 0.9492 }, { "start": 21152.19, "end": 21154.27, "probability": 0.9849 }, { "start": 21156.57, "end": 21157.71, "probability": 0.9905 }, { "start": 21158.79, "end": 21160.03, "probability": 0.5222 }, { "start": 21161.07, "end": 21161.51, "probability": 0.7253 }, { "start": 21162.95, "end": 21163.87, "probability": 0.662 }, { "start": 21165.27, "end": 21168.15, "probability": 0.7916 }, { "start": 21171.21, "end": 21171.83, "probability": 0.9743 }, { "start": 21172.63, "end": 21173.69, "probability": 0.9428 }, { "start": 21175.91, "end": 21176.47, "probability": 0.9575 }, { "start": 21177.65, "end": 21178.53, "probability": 0.7966 }, { "start": 21179.51, "end": 21180.03, "probability": 0.9718 }, { "start": 21180.83, "end": 21182.59, "probability": 0.9153 }, { "start": 21183.35, "end": 21184.33, "probability": 0.9032 }, { "start": 21187.25, "end": 21187.59, "probability": 0.8652 }, { "start": 21188.55, "end": 21189.23, "probability": 0.6234 }, { "start": 21190.61, "end": 21191.17, "probability": 0.5697 }, { "start": 21192.15, "end": 21192.93, "probability": 0.6162 }, { "start": 21197.77, "end": 21198.29, "probability": 0.847 }, { "start": 21200.25, "end": 21201.17, "probability": 0.4842 }, { "start": 21202.29, "end": 21203.43, "probability": 0.9792 }, { "start": 21204.05, "end": 21205.05, "probability": 0.7146 }, { "start": 21206.37, "end": 21206.91, "probability": 0.7712 }, { "start": 21208.19, "end": 21209.23, "probability": 0.6993 }, { "start": 21210.51, "end": 21211.89, "probability": 0.9856 }, { "start": 21212.57, "end": 21213.47, "probability": 0.9368 }, { "start": 21215.93, "end": 21216.51, "probability": 0.9808 }, { "start": 21218.17, "end": 21218.93, "probability": 0.9162 }, { "start": 21219.91, "end": 21220.39, "probability": 0.9929 }, { "start": 21221.35, "end": 21222.75, "probability": 0.4905 }, { "start": 21227.47, "end": 21228.41, "probability": 0.3014 }, { "start": 21231.33, "end": 21234.39, "probability": 0.8716 }, { "start": 21234.75, "end": 21236.83, "probability": 0.804 }, { "start": 21237.75, "end": 21238.25, "probability": 0.8057 }, { "start": 21238.93, "end": 21239.95, "probability": 0.9297 }, { "start": 21240.77, "end": 21241.35, "probability": 0.9901 }, { "start": 21242.53, "end": 21243.33, "probability": 0.9038 }, { "start": 21243.99, "end": 21244.53, "probability": 0.993 }, { "start": 21245.49, "end": 21246.41, "probability": 0.8961 }, { "start": 21247.57, "end": 21248.07, "probability": 0.9749 }, { "start": 21249.49, "end": 21249.87, "probability": 0.9837 }, { "start": 21250.49, "end": 21253.11, "probability": 0.7718 }, { "start": 21253.95, "end": 21254.79, "probability": 0.6858 }, { "start": 21256.89, "end": 21257.73, "probability": 0.7042 }, { "start": 21259.73, "end": 21260.25, "probability": 0.8772 }, { "start": 21261.89, "end": 21262.71, "probability": 0.8833 }, { "start": 21264.29, "end": 21266.65, "probability": 0.9235 }, { "start": 21268.67, "end": 21272.07, "probability": 0.9737 }, { "start": 21273.39, "end": 21273.91, "probability": 0.9819 }, { "start": 21274.71, "end": 21275.83, "probability": 0.9496 }, { "start": 21277.05, "end": 21277.61, "probability": 0.9561 }, { "start": 21278.73, "end": 21279.91, "probability": 0.9749 }, { "start": 21281.37, "end": 21282.17, "probability": 0.4737 }, { "start": 21285.15, "end": 21287.19, "probability": 0.4953 }, { "start": 21290.59, "end": 21291.57, "probability": 0.7 }, { "start": 21292.21, "end": 21293.37, "probability": 0.7611 }, { "start": 21294.31, "end": 21294.93, "probability": 0.9635 }, { "start": 21295.55, "end": 21296.69, "probability": 0.9111 }, { "start": 21297.55, "end": 21298.11, "probability": 0.9691 }, { "start": 21299.55, "end": 21300.57, "probability": 0.8506 }, { "start": 21301.45, "end": 21302.01, "probability": 0.9894 }, { "start": 21302.87, "end": 21303.75, "probability": 0.9341 }, { "start": 21305.63, "end": 21306.11, "probability": 0.811 }, { "start": 21307.15, "end": 21311.57, "probability": 0.838 }, { "start": 21312.77, "end": 21313.17, "probability": 0.6879 }, { "start": 21314.05, "end": 21314.87, "probability": 0.3722 }, { "start": 21315.53, "end": 21316.05, "probability": 0.9562 }, { "start": 21316.93, "end": 21317.91, "probability": 0.8178 }, { "start": 21318.87, "end": 21319.37, "probability": 0.9402 }, { "start": 21320.31, "end": 21321.45, "probability": 0.7749 }, { "start": 21323.43, "end": 21324.15, "probability": 0.9849 }, { "start": 21325.11, "end": 21325.37, "probability": 0.835 }, { "start": 21329.21, "end": 21330.27, "probability": 0.4203 }, { "start": 21339.67, "end": 21340.49, "probability": 0.7436 }, { "start": 21342.59, "end": 21343.25, "probability": 0.5666 }, { "start": 21343.99, "end": 21344.49, "probability": 0.9771 }, { "start": 21345.11, "end": 21346.19, "probability": 0.8235 }, { "start": 21347.07, "end": 21349.69, "probability": 0.8158 }, { "start": 21350.83, "end": 21351.4, "probability": 0.6604 }, { "start": 21352.77, "end": 21353.27, "probability": 0.9709 }, { "start": 21355.49, "end": 21356.41, "probability": 0.28 }, { "start": 21357.33, "end": 21357.77, "probability": 0.5649 }, { "start": 21359.97, "end": 21360.89, "probability": 0.715 }, { "start": 21361.89, "end": 21363.85, "probability": 0.8698 }, { "start": 21365.31, "end": 21366.65, "probability": 0.9487 }, { "start": 21367.53, "end": 21368.41, "probability": 0.9736 }, { "start": 21370.52, "end": 21372.81, "probability": 0.9797 }, { "start": 21377.09, "end": 21377.57, "probability": 0.8088 }, { "start": 21380.79, "end": 21381.57, "probability": 0.3518 }, { "start": 21382.41, "end": 21383.07, "probability": 0.9513 }, { "start": 21385.41, "end": 21386.07, "probability": 0.9492 }, { "start": 21386.93, "end": 21388.25, "probability": 0.988 }, { "start": 21389.79, "end": 21390.89, "probability": 0.9757 }, { "start": 21391.99, "end": 21395.35, "probability": 0.8372 }, { "start": 21398.23, "end": 21400.47, "probability": 0.9406 }, { "start": 21401.55, "end": 21402.07, "probability": 0.9629 }, { "start": 21405.27, "end": 21406.03, "probability": 0.7379 }, { "start": 21406.97, "end": 21409.71, "probability": 0.8557 }, { "start": 21410.55, "end": 21411.07, "probability": 0.9473 }, { "start": 21413.09, "end": 21414.37, "probability": 0.9795 }, { "start": 21415.73, "end": 21416.63, "probability": 0.984 }, { "start": 21417.93, "end": 21419.19, "probability": 0.8069 }, { "start": 21420.33, "end": 21422.01, "probability": 0.7815 }, { "start": 21423.39, "end": 21424.33, "probability": 0.9571 }, { "start": 21427.71, "end": 21428.43, "probability": 0.6567 }, { "start": 21429.51, "end": 21429.97, "probability": 0.7959 }, { "start": 21432.94, "end": 21433.83, "probability": 0.6403 }, { "start": 21434.9, "end": 21435.8, "probability": 0.8272 }, { "start": 21436.54, "end": 21437.46, "probability": 0.7653 }, { "start": 21438.28, "end": 21440.7, "probability": 0.8572 }, { "start": 21442.1, "end": 21443.1, "probability": 0.9808 }, { "start": 21445.03, "end": 21447.05, "probability": 0.4508 }, { "start": 21447.14, "end": 21448.58, "probability": 0.6216 }, { "start": 21449.14, "end": 21451.11, "probability": 0.5487 }, { "start": 21452.68, "end": 21454.43, "probability": 0.7513 }, { "start": 21456.38, "end": 21458.08, "probability": 0.4597 }, { "start": 21458.34, "end": 21459.5, "probability": 0.9479 }, { "start": 21460.98, "end": 21461.04, "probability": 0.0128 }, { "start": 21463.32, "end": 21464.4, "probability": 0.1305 }, { "start": 21471.28, "end": 21471.42, "probability": 0.0413 }, { "start": 21474.62, "end": 21474.8, "probability": 0.1519 }, { "start": 21476.76, "end": 21476.98, "probability": 0.1432 }, { "start": 21530.42, "end": 21541.24, "probability": 0.0181 }, { "start": 21542.54, "end": 21543.66, "probability": 0.0885 }, { "start": 21544.38, "end": 21549.24, "probability": 0.0744 }, { "start": 21552.18, "end": 21560.78, "probability": 0.1799 }, { "start": 21563.44, "end": 21564.56, "probability": 0.1477 }, { "start": 21631.0, "end": 21631.0, "probability": 0.0 }, { "start": 21631.0, "end": 21631.0, "probability": 0.0 }, { "start": 21631.0, "end": 21631.0, "probability": 0.0 }, { "start": 21631.12, "end": 21632.46, "probability": 0.6917 }, { "start": 21645.84, "end": 21649.02, "probability": 0.9279 }, { "start": 21651.0, "end": 21652.76, "probability": 0.7841 }, { "start": 21653.76, "end": 21654.5, "probability": 0.6003 }, { "start": 21656.7, "end": 21657.38, "probability": 0.9656 }, { "start": 21659.2, "end": 21661.5, "probability": 0.9821 }, { "start": 21662.38, "end": 21663.2, "probability": 0.9399 }, { "start": 21664.24, "end": 21666.68, "probability": 0.9697 }, { "start": 21667.44, "end": 21672.02, "probability": 0.9276 }, { "start": 21672.68, "end": 21674.28, "probability": 0.999 }, { "start": 21675.84, "end": 21676.62, "probability": 0.9188 }, { "start": 21677.02, "end": 21677.98, "probability": 0.9948 }, { "start": 21678.34, "end": 21681.62, "probability": 0.984 }, { "start": 21683.04, "end": 21687.5, "probability": 0.9954 }, { "start": 21688.74, "end": 21691.76, "probability": 0.9798 }, { "start": 21692.42, "end": 21695.42, "probability": 0.9934 }, { "start": 21696.16, "end": 21698.14, "probability": 0.9399 }, { "start": 21701.2, "end": 21703.4, "probability": 0.4994 }, { "start": 21705.66, "end": 21706.56, "probability": 0.6885 }, { "start": 21707.34, "end": 21708.62, "probability": 0.8188 }, { "start": 21709.64, "end": 21710.74, "probability": 0.9355 }, { "start": 21711.34, "end": 21714.04, "probability": 0.9251 }, { "start": 21714.1, "end": 21714.52, "probability": 0.5049 }, { "start": 21716.88, "end": 21717.48, "probability": 0.9011 }, { "start": 21717.62, "end": 21721.5, "probability": 0.9487 }, { "start": 21721.78, "end": 21722.54, "probability": 0.8258 }, { "start": 21723.38, "end": 21724.74, "probability": 0.8893 }, { "start": 21725.56, "end": 21731.72, "probability": 0.9885 }, { "start": 21733.16, "end": 21733.52, "probability": 0.958 }, { "start": 21734.04, "end": 21735.14, "probability": 0.5671 }, { "start": 21735.66, "end": 21736.9, "probability": 0.9731 }, { "start": 21738.12, "end": 21741.14, "probability": 0.998 }, { "start": 21741.7, "end": 21743.32, "probability": 0.8602 }, { "start": 21744.34, "end": 21747.82, "probability": 0.9885 }, { "start": 21749.2, "end": 21753.2, "probability": 0.9355 }, { "start": 21753.92, "end": 21756.22, "probability": 0.9866 }, { "start": 21756.96, "end": 21757.24, "probability": 0.753 }, { "start": 21758.42, "end": 21761.16, "probability": 0.9961 }, { "start": 21762.38, "end": 21764.4, "probability": 0.996 }, { "start": 21766.1, "end": 21768.32, "probability": 0.5819 }, { "start": 21768.32, "end": 21770.04, "probability": 0.481 }, { "start": 21770.74, "end": 21771.3, "probability": 0.6805 }, { "start": 21773.1, "end": 21775.86, "probability": 0.6428 }, { "start": 21776.58, "end": 21778.06, "probability": 0.8057 }, { "start": 21779.4, "end": 21781.26, "probability": 0.8678 }, { "start": 21783.28, "end": 21784.92, "probability": 0.7025 }, { "start": 21785.06, "end": 21785.36, "probability": 0.516 }, { "start": 21787.66, "end": 21788.32, "probability": 0.4026 }, { "start": 21789.08, "end": 21789.6, "probability": 0.8233 }, { "start": 21790.26, "end": 21790.68, "probability": 0.6723 }, { "start": 21791.3, "end": 21793.28, "probability": 0.9336 }, { "start": 21794.22, "end": 21794.44, "probability": 0.9224 }, { "start": 21795.78, "end": 21797.0, "probability": 0.8978 }, { "start": 21797.12, "end": 21797.94, "probability": 0.9691 }, { "start": 21797.98, "end": 21798.42, "probability": 0.9453 }, { "start": 21798.46, "end": 21799.2, "probability": 0.6786 }, { "start": 21799.92, "end": 21800.44, "probability": 0.6738 }, { "start": 21801.46, "end": 21802.7, "probability": 0.9934 }, { "start": 21807.72, "end": 21809.68, "probability": 0.7395 }, { "start": 21810.54, "end": 21811.32, "probability": 0.515 }, { "start": 21812.1, "end": 21813.08, "probability": 0.9285 }, { "start": 21814.54, "end": 21814.84, "probability": 0.7346 }, { "start": 21815.12, "end": 21815.74, "probability": 0.8319 }, { "start": 21815.78, "end": 21816.1, "probability": 0.8605 }, { "start": 21818.8, "end": 21819.59, "probability": 0.9443 }, { "start": 21820.14, "end": 21822.9, "probability": 0.9976 }, { "start": 21823.76, "end": 21826.84, "probability": 0.7728 }, { "start": 21827.72, "end": 21829.42, "probability": 0.9829 }, { "start": 21830.0, "end": 21830.95, "probability": 0.872 }, { "start": 21831.48, "end": 21835.16, "probability": 0.9896 }, { "start": 21835.84, "end": 21838.46, "probability": 0.927 }, { "start": 21838.64, "end": 21839.78, "probability": 0.9901 }, { "start": 21840.34, "end": 21841.42, "probability": 0.9966 }, { "start": 21841.84, "end": 21845.38, "probability": 0.9645 }, { "start": 21845.38, "end": 21848.66, "probability": 0.9981 }, { "start": 21849.14, "end": 21850.82, "probability": 0.9551 }, { "start": 21851.46, "end": 21852.0, "probability": 0.7795 }, { "start": 21852.84, "end": 21855.64, "probability": 0.9852 }, { "start": 21856.68, "end": 21857.6, "probability": 0.6756 }, { "start": 21858.36, "end": 21859.92, "probability": 0.9865 }, { "start": 21860.6, "end": 21861.3, "probability": 0.8425 }, { "start": 21862.24, "end": 21864.62, "probability": 0.9977 }, { "start": 21865.7, "end": 21868.1, "probability": 0.9713 }, { "start": 21868.66, "end": 21873.24, "probability": 0.9238 }, { "start": 21873.8, "end": 21877.2, "probability": 0.9967 }, { "start": 21878.28, "end": 21882.32, "probability": 0.9168 }, { "start": 21882.78, "end": 21884.28, "probability": 0.9412 }, { "start": 21885.08, "end": 21889.96, "probability": 0.9986 }, { "start": 21891.3, "end": 21892.52, "probability": 0.9268 }, { "start": 21893.18, "end": 21897.7, "probability": 0.9859 }, { "start": 21898.26, "end": 21900.36, "probability": 0.9973 }, { "start": 21900.82, "end": 21903.98, "probability": 0.9258 }, { "start": 21904.44, "end": 21907.2, "probability": 0.9989 }, { "start": 21907.72, "end": 21909.06, "probability": 0.9488 }, { "start": 21909.4, "end": 21910.4, "probability": 0.8485 }, { "start": 21911.18, "end": 21911.84, "probability": 0.7987 }, { "start": 21912.54, "end": 21913.53, "probability": 0.9893 }, { "start": 21914.22, "end": 21914.88, "probability": 0.8256 }, { "start": 21915.52, "end": 21916.22, "probability": 0.6157 }, { "start": 21917.0, "end": 21918.28, "probability": 0.6708 }, { "start": 21919.9, "end": 21921.42, "probability": 0.89 }, { "start": 21923.54, "end": 21923.84, "probability": 0.7407 }, { "start": 21923.92, "end": 21929.02, "probability": 0.9971 }, { "start": 21929.24, "end": 21932.0, "probability": 0.9963 }, { "start": 21932.06, "end": 21933.72, "probability": 0.9905 }, { "start": 21934.04, "end": 21936.0, "probability": 0.9793 }, { "start": 21937.42, "end": 21940.62, "probability": 0.8799 }, { "start": 21942.2, "end": 21943.92, "probability": 0.9615 }, { "start": 21945.04, "end": 21947.56, "probability": 0.9858 }, { "start": 21947.82, "end": 21951.06, "probability": 0.9992 }, { "start": 21951.62, "end": 21956.26, "probability": 0.8499 }, { "start": 21956.9, "end": 21958.92, "probability": 0.8527 }, { "start": 21959.34, "end": 21959.56, "probability": 0.3801 }, { "start": 21959.62, "end": 21963.4, "probability": 0.9788 }, { "start": 21963.82, "end": 21964.43, "probability": 0.8662 }, { "start": 21966.54, "end": 21968.08, "probability": 0.9977 }, { "start": 21968.92, "end": 21970.54, "probability": 0.9121 }, { "start": 21971.28, "end": 21974.36, "probability": 0.9979 }, { "start": 21975.5, "end": 21976.88, "probability": 0.8212 }, { "start": 21977.86, "end": 21981.52, "probability": 0.989 }, { "start": 21981.52, "end": 21984.6, "probability": 0.9956 }, { "start": 21985.12, "end": 21986.18, "probability": 0.969 }, { "start": 21987.68, "end": 21991.4, "probability": 0.9812 }, { "start": 21991.94, "end": 21995.28, "probability": 0.8877 }, { "start": 21996.04, "end": 21997.4, "probability": 0.9318 }, { "start": 21998.04, "end": 22001.16, "probability": 0.9867 }, { "start": 22001.68, "end": 22002.66, "probability": 0.9731 }, { "start": 22003.06, "end": 22004.06, "probability": 0.9889 }, { "start": 22004.46, "end": 22005.94, "probability": 0.9844 }, { "start": 22007.44, "end": 22008.06, "probability": 0.9089 }, { "start": 22008.62, "end": 22012.82, "probability": 0.9953 }, { "start": 22013.42, "end": 22015.74, "probability": 0.9961 }, { "start": 22015.74, "end": 22018.16, "probability": 0.9939 }, { "start": 22019.3, "end": 22022.42, "probability": 0.9966 }, { "start": 22022.76, "end": 22023.53, "probability": 0.7362 }, { "start": 22024.22, "end": 22026.34, "probability": 0.9912 }, { "start": 22026.88, "end": 22030.18, "probability": 0.9795 }, { "start": 22031.76, "end": 22036.3, "probability": 0.9951 }, { "start": 22036.56, "end": 22039.26, "probability": 0.9983 }, { "start": 22039.8, "end": 22040.18, "probability": 0.8023 }, { "start": 22041.1, "end": 22044.9, "probability": 0.9948 }, { "start": 22046.18, "end": 22047.12, "probability": 0.9984 }, { "start": 22047.78, "end": 22049.42, "probability": 0.9515 }, { "start": 22050.06, "end": 22053.06, "probability": 0.9768 }, { "start": 22053.84, "end": 22056.26, "probability": 0.9517 }, { "start": 22056.34, "end": 22056.9, "probability": 0.8545 }, { "start": 22057.88, "end": 22059.66, "probability": 0.9741 }, { "start": 22059.72, "end": 22060.38, "probability": 0.672 }, { "start": 22060.76, "end": 22061.88, "probability": 0.4358 }, { "start": 22062.3, "end": 22065.04, "probability": 0.9966 }, { "start": 22065.96, "end": 22068.08, "probability": 0.9663 }, { "start": 22070.0, "end": 22070.84, "probability": 0.8398 }, { "start": 22071.66, "end": 22074.9, "probability": 0.9593 }, { "start": 22075.56, "end": 22078.2, "probability": 0.954 }, { "start": 22078.6, "end": 22080.67, "probability": 0.9217 }, { "start": 22082.0, "end": 22084.0, "probability": 0.9609 }, { "start": 22085.02, "end": 22088.02, "probability": 0.9849 }, { "start": 22088.54, "end": 22092.94, "probability": 0.9926 }, { "start": 22093.38, "end": 22094.04, "probability": 0.527 }, { "start": 22094.34, "end": 22095.06, "probability": 0.4509 }, { "start": 22095.38, "end": 22098.82, "probability": 0.9924 }, { "start": 22099.24, "end": 22100.36, "probability": 0.9652 }, { "start": 22101.44, "end": 22102.14, "probability": 0.5424 }, { "start": 22102.66, "end": 22103.8, "probability": 0.8548 }, { "start": 22104.24, "end": 22105.38, "probability": 0.7079 }, { "start": 22105.84, "end": 22106.46, "probability": 0.8099 }, { "start": 22106.84, "end": 22108.36, "probability": 0.692 }, { "start": 22108.58, "end": 22109.04, "probability": 0.9768 }, { "start": 22109.16, "end": 22111.14, "probability": 0.8653 }, { "start": 22111.42, "end": 22112.18, "probability": 0.8954 }, { "start": 22113.1, "end": 22116.86, "probability": 0.9814 }, { "start": 22117.18, "end": 22117.72, "probability": 0.8493 }, { "start": 22118.18, "end": 22119.06, "probability": 0.9452 }, { "start": 22119.68, "end": 22120.42, "probability": 0.6629 }, { "start": 22121.28, "end": 22122.18, "probability": 0.9383 }, { "start": 22122.84, "end": 22125.46, "probability": 0.8746 }, { "start": 22125.98, "end": 22132.38, "probability": 0.9902 }, { "start": 22134.36, "end": 22137.36, "probability": 0.8813 }, { "start": 22138.64, "end": 22139.92, "probability": 0.2912 }, { "start": 22141.22, "end": 22144.7, "probability": 0.9963 }, { "start": 22145.04, "end": 22145.99, "probability": 0.9457 }, { "start": 22147.8, "end": 22150.48, "probability": 0.9976 }, { "start": 22150.5, "end": 22153.58, "probability": 0.985 }, { "start": 22154.1, "end": 22156.44, "probability": 0.9026 }, { "start": 22156.98, "end": 22159.08, "probability": 0.9922 }, { "start": 22159.64, "end": 22162.72, "probability": 0.9338 }, { "start": 22163.04, "end": 22164.54, "probability": 0.9823 }, { "start": 22165.94, "end": 22167.96, "probability": 0.7698 }, { "start": 22168.1, "end": 22170.84, "probability": 0.9961 }, { "start": 22170.92, "end": 22173.29, "probability": 0.5402 }, { "start": 22175.4, "end": 22177.16, "probability": 0.999 }, { "start": 22177.9, "end": 22181.04, "probability": 0.9401 }, { "start": 22181.82, "end": 22182.84, "probability": 0.7628 }, { "start": 22183.68, "end": 22188.32, "probability": 0.9983 }, { "start": 22188.64, "end": 22189.82, "probability": 0.9821 }, { "start": 22190.44, "end": 22192.5, "probability": 0.9977 }, { "start": 22193.08, "end": 22194.14, "probability": 0.9941 }, { "start": 22194.32, "end": 22195.02, "probability": 0.514 }, { "start": 22195.1, "end": 22197.1, "probability": 0.9904 }, { "start": 22197.96, "end": 22199.58, "probability": 0.8039 }, { "start": 22200.36, "end": 22204.34, "probability": 0.9779 }, { "start": 22204.82, "end": 22204.96, "probability": 0.469 }, { "start": 22205.08, "end": 22205.62, "probability": 0.8374 }, { "start": 22205.66, "end": 22207.32, "probability": 0.9642 }, { "start": 22207.34, "end": 22210.3, "probability": 0.9948 }, { "start": 22210.92, "end": 22212.72, "probability": 0.9611 }, { "start": 22213.38, "end": 22216.32, "probability": 0.9867 }, { "start": 22217.8, "end": 22218.88, "probability": 0.8215 }, { "start": 22219.74, "end": 22221.44, "probability": 0.9557 }, { "start": 22221.88, "end": 22226.52, "probability": 0.9939 }, { "start": 22227.56, "end": 22230.56, "probability": 0.9873 }, { "start": 22231.04, "end": 22231.92, "probability": 0.8927 }, { "start": 22231.98, "end": 22232.74, "probability": 0.8333 }, { "start": 22233.26, "end": 22238.14, "probability": 0.9719 }, { "start": 22239.02, "end": 22239.52, "probability": 0.8642 }, { "start": 22240.72, "end": 22243.26, "probability": 0.6718 }, { "start": 22244.16, "end": 22244.46, "probability": 0.6681 }, { "start": 22245.94, "end": 22248.14, "probability": 0.6527 }, { "start": 22248.18, "end": 22248.8, "probability": 0.6443 }, { "start": 22256.76, "end": 22257.38, "probability": 0.5935 }, { "start": 22258.4, "end": 22259.3, "probability": 0.9728 }, { "start": 22260.28, "end": 22261.16, "probability": 0.8841 }, { "start": 22262.28, "end": 22262.76, "probability": 0.5254 }, { "start": 22262.98, "end": 22265.72, "probability": 0.7193 }, { "start": 22266.28, "end": 22267.16, "probability": 0.8441 }, { "start": 22267.8, "end": 22269.58, "probability": 0.8019 }, { "start": 22270.5, "end": 22273.46, "probability": 0.9931 }, { "start": 22274.84, "end": 22280.58, "probability": 0.9601 }, { "start": 22281.18, "end": 22283.1, "probability": 0.9951 }, { "start": 22285.88, "end": 22287.26, "probability": 0.9477 }, { "start": 22287.78, "end": 22288.66, "probability": 0.4643 }, { "start": 22288.92, "end": 22292.54, "probability": 0.993 }, { "start": 22292.6, "end": 22294.94, "probability": 0.9614 }, { "start": 22295.84, "end": 22297.32, "probability": 0.9968 }, { "start": 22298.27, "end": 22301.38, "probability": 0.7269 }, { "start": 22301.96, "end": 22304.16, "probability": 0.8818 }, { "start": 22304.96, "end": 22306.04, "probability": 0.8793 }, { "start": 22307.28, "end": 22309.82, "probability": 0.9586 }, { "start": 22310.96, "end": 22313.74, "probability": 0.9995 }, { "start": 22314.48, "end": 22315.88, "probability": 0.9783 }, { "start": 22315.96, "end": 22319.04, "probability": 0.9995 }, { "start": 22319.6, "end": 22321.98, "probability": 0.9694 }, { "start": 22323.22, "end": 22325.09, "probability": 0.9837 }, { "start": 22326.34, "end": 22330.24, "probability": 0.8608 }, { "start": 22330.88, "end": 22332.28, "probability": 0.9823 }, { "start": 22333.04, "end": 22334.78, "probability": 0.8365 }, { "start": 22334.96, "end": 22336.94, "probability": 0.9949 }, { "start": 22338.62, "end": 22340.26, "probability": 0.9861 }, { "start": 22341.06, "end": 22345.34, "probability": 0.9785 }, { "start": 22346.2, "end": 22349.82, "probability": 0.998 }, { "start": 22349.82, "end": 22353.58, "probability": 0.9731 }, { "start": 22354.0, "end": 22356.6, "probability": 0.9523 }, { "start": 22357.66, "end": 22358.66, "probability": 0.7671 }, { "start": 22359.66, "end": 22362.04, "probability": 0.2814 }, { "start": 22362.82, "end": 22363.64, "probability": 0.8815 }, { "start": 22364.5, "end": 22366.33, "probability": 0.9863 }, { "start": 22367.32, "end": 22370.11, "probability": 0.9951 }, { "start": 22371.06, "end": 22373.88, "probability": 0.9862 }, { "start": 22373.96, "end": 22375.23, "probability": 0.9915 }, { "start": 22375.42, "end": 22376.88, "probability": 0.7417 }, { "start": 22376.94, "end": 22377.86, "probability": 0.0268 }, { "start": 22378.44, "end": 22384.28, "probability": 0.8672 }, { "start": 22384.8, "end": 22387.44, "probability": 0.9358 }, { "start": 22388.14, "end": 22391.58, "probability": 0.938 }, { "start": 22392.24, "end": 22398.04, "probability": 0.9912 }, { "start": 22398.72, "end": 22403.4, "probability": 0.9868 }, { "start": 22403.46, "end": 22404.52, "probability": 0.9674 }, { "start": 22404.68, "end": 22405.66, "probability": 0.9851 }, { "start": 22405.84, "end": 22406.46, "probability": 0.7428 }, { "start": 22407.0, "end": 22408.86, "probability": 0.9886 }, { "start": 22410.98, "end": 22414.4, "probability": 0.9963 }, { "start": 22416.04, "end": 22422.34, "probability": 0.9965 }, { "start": 22423.02, "end": 22425.48, "probability": 0.9978 }, { "start": 22425.6, "end": 22427.06, "probability": 0.9787 }, { "start": 22427.64, "end": 22429.5, "probability": 0.8531 }, { "start": 22429.94, "end": 22434.16, "probability": 0.9945 }, { "start": 22434.46, "end": 22435.72, "probability": 0.9707 }, { "start": 22437.62, "end": 22438.7, "probability": 0.0177 }, { "start": 22438.8, "end": 22438.8, "probability": 0.2075 }, { "start": 22438.8, "end": 22438.82, "probability": 0.0411 }, { "start": 22438.82, "end": 22438.88, "probability": 0.2559 }, { "start": 22438.9, "end": 22440.12, "probability": 0.1969 }, { "start": 22440.98, "end": 22441.9, "probability": 0.4167 }, { "start": 22443.34, "end": 22444.6, "probability": 0.4436 }, { "start": 22445.56, "end": 22446.02, "probability": 0.709 }, { "start": 22447.2, "end": 22450.36, "probability": 0.7599 }, { "start": 22450.86, "end": 22451.68, "probability": 0.5667 }, { "start": 22452.42, "end": 22453.44, "probability": 0.8267 }, { "start": 22453.58, "end": 22453.84, "probability": 0.5677 }, { "start": 22453.88, "end": 22455.0, "probability": 0.9689 }, { "start": 22455.32, "end": 22456.56, "probability": 0.5857 }, { "start": 22456.78, "end": 22458.36, "probability": 0.6605 }, { "start": 22459.92, "end": 22459.92, "probability": 0.072 }, { "start": 22459.92, "end": 22461.9, "probability": 0.744 }, { "start": 22462.36, "end": 22463.76, "probability": 0.9097 }, { "start": 22464.14, "end": 22465.5, "probability": 0.9738 }, { "start": 22466.3, "end": 22467.54, "probability": 0.8901 }, { "start": 22468.46, "end": 22469.4, "probability": 0.4671 }, { "start": 22470.8, "end": 22472.1, "probability": 0.9004 }, { "start": 22473.12, "end": 22474.51, "probability": 0.8499 }, { "start": 22474.6, "end": 22476.56, "probability": 0.8702 }, { "start": 22480.42, "end": 22481.86, "probability": 0.5987 }, { "start": 22482.2, "end": 22483.58, "probability": 0.8662 }, { "start": 22485.68, "end": 22488.36, "probability": 0.7434 }, { "start": 22489.6, "end": 22489.98, "probability": 0.4907 }, { "start": 22490.96, "end": 22491.72, "probability": 0.7734 }, { "start": 22492.32, "end": 22492.96, "probability": 0.7022 }, { "start": 22492.98, "end": 22494.58, "probability": 0.6987 }, { "start": 22494.76, "end": 22495.5, "probability": 0.7671 }, { "start": 22495.54, "end": 22495.98, "probability": 0.5628 }, { "start": 22498.7, "end": 22501.6, "probability": 0.5162 }, { "start": 22501.6, "end": 22502.66, "probability": 0.7613 }, { "start": 22503.96, "end": 22505.54, "probability": 0.9427 }, { "start": 22505.94, "end": 22506.06, "probability": 0.0121 }, { "start": 22506.14, "end": 22508.36, "probability": 0.5654 }, { "start": 22508.62, "end": 22508.62, "probability": 0.4544 }, { "start": 22508.62, "end": 22508.62, "probability": 0.328 }, { "start": 22508.62, "end": 22511.88, "probability": 0.4785 }, { "start": 22511.94, "end": 22512.82, "probability": 0.5461 }, { "start": 22512.98, "end": 22514.38, "probability": 0.7725 }, { "start": 22516.18, "end": 22516.67, "probability": 0.2685 }, { "start": 22516.78, "end": 22517.2, "probability": 0.8747 }, { "start": 22517.82, "end": 22517.92, "probability": 0.0565 }, { "start": 22517.92, "end": 22519.86, "probability": 0.387 }, { "start": 22521.68, "end": 22523.1, "probability": 0.5162 }, { "start": 22523.1, "end": 22524.1, "probability": 0.7681 }, { "start": 22525.02, "end": 22529.9, "probability": 0.7674 }, { "start": 22530.14, "end": 22531.02, "probability": 0.736 }, { "start": 22531.82, "end": 22533.12, "probability": 0.9867 }, { "start": 22533.94, "end": 22535.5, "probability": 0.9854 }, { "start": 22536.04, "end": 22540.8, "probability": 0.9838 }, { "start": 22541.64, "end": 22543.92, "probability": 0.1959 }, { "start": 22544.28, "end": 22544.78, "probability": 0.0102 }, { "start": 22544.8, "end": 22545.74, "probability": 0.0676 }, { "start": 22545.74, "end": 22546.16, "probability": 0.5038 }, { "start": 22546.24, "end": 22547.34, "probability": 0.5076 }, { "start": 22547.76, "end": 22548.84, "probability": 0.1778 }, { "start": 22549.42, "end": 22550.62, "probability": 0.3777 }, { "start": 22550.62, "end": 22552.26, "probability": 0.7783 }, { "start": 22552.42, "end": 22554.1, "probability": 0.6458 }, { "start": 22554.12, "end": 22554.74, "probability": 0.7604 }, { "start": 22554.88, "end": 22554.96, "probability": 0.0133 }, { "start": 22554.96, "end": 22556.16, "probability": 0.5023 }, { "start": 22556.2, "end": 22557.68, "probability": 0.3157 }, { "start": 22558.64, "end": 22559.12, "probability": 0.6274 }, { "start": 22559.3, "end": 22560.18, "probability": 0.3471 }, { "start": 22560.56, "end": 22560.56, "probability": 0.3638 }, { "start": 22560.56, "end": 22561.94, "probability": 0.5148 }, { "start": 22562.02, "end": 22562.84, "probability": 0.8073 }, { "start": 22563.08, "end": 22563.36, "probability": 0.4839 }, { "start": 22563.62, "end": 22564.2, "probability": 0.0704 }, { "start": 22565.0, "end": 22565.88, "probability": 0.0987 }, { "start": 22565.94, "end": 22569.04, "probability": 0.1081 }, { "start": 22570.58, "end": 22570.9, "probability": 0.3959 }, { "start": 22571.1, "end": 22571.1, "probability": 0.119 }, { "start": 22571.1, "end": 22571.1, "probability": 0.4541 }, { "start": 22571.1, "end": 22571.46, "probability": 0.3692 }, { "start": 22572.58, "end": 22573.54, "probability": 0.155 }, { "start": 22574.24, "end": 22574.24, "probability": 0.0841 }, { "start": 22574.24, "end": 22575.7, "probability": 0.5906 }, { "start": 22576.34, "end": 22578.48, "probability": 0.9878 }, { "start": 22579.04, "end": 22580.07, "probability": 0.1695 }, { "start": 22580.56, "end": 22580.88, "probability": 0.5586 }, { "start": 22581.04, "end": 22583.6, "probability": 0.9883 }, { "start": 22583.9, "end": 22584.54, "probability": 0.6333 }, { "start": 22585.34, "end": 22591.5, "probability": 0.9203 }, { "start": 22592.22, "end": 22595.9, "probability": 0.8111 }, { "start": 22596.52, "end": 22598.52, "probability": 0.9966 }, { "start": 22598.84, "end": 22603.94, "probability": 0.9983 }, { "start": 22604.34, "end": 22609.12, "probability": 0.9889 }, { "start": 22609.6, "end": 22611.63, "probability": 0.9985 }, { "start": 22612.32, "end": 22616.82, "probability": 0.9945 }, { "start": 22617.42, "end": 22618.78, "probability": 0.7422 }, { "start": 22619.72, "end": 22624.61, "probability": 0.9314 }, { "start": 22624.88, "end": 22626.62, "probability": 0.9744 }, { "start": 22627.38, "end": 22629.3, "probability": 0.9118 }, { "start": 22631.36, "end": 22632.1, "probability": 0.9988 }, { "start": 22632.82, "end": 22640.08, "probability": 0.9907 }, { "start": 22640.32, "end": 22644.52, "probability": 0.8593 }, { "start": 22644.74, "end": 22649.94, "probability": 0.7753 }, { "start": 22651.04, "end": 22658.76, "probability": 0.0551 }, { "start": 22658.9, "end": 22664.2, "probability": 0.1923 }, { "start": 22665.3, "end": 22669.62, "probability": 0.1438 }, { "start": 22671.49, "end": 22673.77, "probability": 0.4203 }, { "start": 22674.32, "end": 22675.88, "probability": 0.0964 }, { "start": 22676.04, "end": 22676.4, "probability": 0.0816 }, { "start": 22678.04, "end": 22679.12, "probability": 0.5509 }, { "start": 22679.12, "end": 22680.08, "probability": 0.083 }, { "start": 22684.46, "end": 22684.62, "probability": 0.075 }, { "start": 22686.12, "end": 22686.56, "probability": 0.537 }, { "start": 22686.56, "end": 22691.12, "probability": 0.0485 }, { "start": 22692.48, "end": 22693.64, "probability": 0.3254 }, { "start": 22693.77, "end": 22694.8, "probability": 0.085 }, { "start": 22696.84, "end": 22697.64, "probability": 0.1216 }, { "start": 22697.64, "end": 22699.14, "probability": 0.1707 }, { "start": 22699.65, "end": 22700.56, "probability": 0.0175 }, { "start": 22705.88, "end": 22706.64, "probability": 0.0051 }, { "start": 22708.59, "end": 22709.42, "probability": 0.0338 }, { "start": 22709.44, "end": 22709.44, "probability": 0.153 }, { "start": 22710.67, "end": 22712.52, "probability": 0.024 }, { "start": 22713.12, "end": 22715.84, "probability": 0.0911 }, { "start": 22717.62, "end": 22719.65, "probability": 0.0739 }, { "start": 22720.06, "end": 22720.24, "probability": 0.0805 }, { "start": 22720.24, "end": 22720.55, "probability": 0.0926 }, { "start": 22720.8, "end": 22722.62, "probability": 0.155 }, { "start": 22723.08, "end": 22725.64, "probability": 0.0227 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.0, "end": 22726.0, "probability": 0.0 }, { "start": 22726.14, "end": 22731.4, "probability": 0.4893 }, { "start": 22732.38, "end": 22732.84, "probability": 0.0225 }, { "start": 22732.84, "end": 22734.54, "probability": 0.5519 }, { "start": 22734.78, "end": 22736.98, "probability": 0.9973 }, { "start": 22737.52, "end": 22743.34, "probability": 0.9728 }, { "start": 22743.48, "end": 22744.74, "probability": 0.969 }, { "start": 22745.58, "end": 22749.04, "probability": 0.7121 }, { "start": 22749.68, "end": 22751.78, "probability": 0.9567 }, { "start": 22753.28, "end": 22757.38, "probability": 0.9981 }, { "start": 22757.38, "end": 22762.16, "probability": 0.9992 }, { "start": 22763.7, "end": 22765.72, "probability": 0.9517 }, { "start": 22766.42, "end": 22767.18, "probability": 0.7484 }, { "start": 22767.3, "end": 22767.6, "probability": 0.9403 }, { "start": 22767.78, "end": 22769.1, "probability": 0.9307 }, { "start": 22769.2, "end": 22770.54, "probability": 0.9608 }, { "start": 22771.08, "end": 22771.91, "probability": 0.9983 }, { "start": 22777.06, "end": 22779.66, "probability": 0.6936 }, { "start": 22779.82, "end": 22784.05, "probability": 0.907 }, { "start": 22785.04, "end": 22785.06, "probability": 0.285 }, { "start": 22785.06, "end": 22785.88, "probability": 0.9712 }, { "start": 22785.92, "end": 22787.84, "probability": 0.9194 }, { "start": 22788.25, "end": 22789.76, "probability": 0.101 }, { "start": 22789.76, "end": 22790.78, "probability": 0.1057 }, { "start": 22790.78, "end": 22790.78, "probability": 0.0617 }, { "start": 22790.78, "end": 22790.8, "probability": 0.2315 }, { "start": 22790.8, "end": 22793.0, "probability": 0.5467 }, { "start": 22793.32, "end": 22797.18, "probability": 0.9044 }, { "start": 22798.18, "end": 22798.7, "probability": 0.9231 }, { "start": 22799.34, "end": 22801.28, "probability": 0.945 }, { "start": 22801.46, "end": 22802.8, "probability": 0.7549 }, { "start": 22802.9, "end": 22803.58, "probability": 0.3903 }, { "start": 22804.2, "end": 22806.14, "probability": 0.1145 }, { "start": 22806.46, "end": 22807.94, "probability": 0.3074 }, { "start": 22808.18, "end": 22808.2, "probability": 0.7063 }, { "start": 22808.2, "end": 22810.54, "probability": 0.0961 }, { "start": 22810.8, "end": 22814.23, "probability": 0.3846 }, { "start": 22815.4, "end": 22816.68, "probability": 0.0466 }, { "start": 22817.27, "end": 22819.61, "probability": 0.0805 }, { "start": 22821.26, "end": 22823.0, "probability": 0.1056 }, { "start": 22825.74, "end": 22828.06, "probability": 0.0826 }, { "start": 22831.12, "end": 22834.78, "probability": 0.4197 }, { "start": 22835.88, "end": 22840.24, "probability": 0.4916 }, { "start": 22840.36, "end": 22844.74, "probability": 0.2983 }, { "start": 22856.39, "end": 22857.96, "probability": 0.0146 }, { "start": 22859.24, "end": 22861.46, "probability": 0.0134 }, { "start": 22866.98, "end": 22868.84, "probability": 0.1487 }, { "start": 22868.84, "end": 22868.84, "probability": 0.0919 }, { "start": 22868.84, "end": 22870.52, "probability": 0.0435 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22872.0, "end": 22872.0, "probability": 0.0 }, { "start": 22873.85, "end": 22876.06, "probability": 0.7943 }, { "start": 22876.16, "end": 22880.74, "probability": 0.9363 }, { "start": 22880.74, "end": 22884.78, "probability": 0.9952 }, { "start": 22885.3, "end": 22885.3, "probability": 0.1399 }, { "start": 22885.3, "end": 22886.56, "probability": 0.7852 }, { "start": 22887.81, "end": 22889.96, "probability": 0.3967 }, { "start": 22890.04, "end": 22890.66, "probability": 0.248 }, { "start": 22890.66, "end": 22891.3, "probability": 0.3288 }, { "start": 22891.3, "end": 22894.46, "probability": 0.9982 }, { "start": 22894.58, "end": 22898.05, "probability": 0.9973 }, { "start": 22898.46, "end": 22900.68, "probability": 0.9964 }, { "start": 22901.06, "end": 22901.86, "probability": 0.1619 }, { "start": 22903.3, "end": 22903.78, "probability": 0.0116 }, { "start": 22903.82, "end": 22905.08, "probability": 0.2296 }, { "start": 22905.08, "end": 22907.97, "probability": 0.6021 }, { "start": 22908.84, "end": 22911.9, "probability": 0.9269 }, { "start": 22912.38, "end": 22914.5, "probability": 0.9485 }, { "start": 22915.4, "end": 22919.12, "probability": 0.9935 }, { "start": 22919.56, "end": 22922.76, "probability": 0.9952 }, { "start": 22923.14, "end": 22925.98, "probability": 0.647 }, { "start": 22926.42, "end": 22928.66, "probability": 0.0415 }, { "start": 22930.48, "end": 22931.12, "probability": 0.0333 }, { "start": 22931.12, "end": 22931.12, "probability": 0.0137 }, { "start": 22931.12, "end": 22931.12, "probability": 0.2731 }, { "start": 22931.12, "end": 22931.12, "probability": 0.2117 }, { "start": 22931.12, "end": 22932.26, "probability": 0.2104 }, { "start": 22932.26, "end": 22934.02, "probability": 0.4496 }, { "start": 22934.34, "end": 22936.3, "probability": 0.2269 }, { "start": 22936.98, "end": 22937.66, "probability": 0.0378 }, { "start": 22937.66, "end": 22937.66, "probability": 0.1071 }, { "start": 22937.66, "end": 22937.66, "probability": 0.1167 }, { "start": 22937.66, "end": 22939.3, "probability": 0.6529 }, { "start": 22939.36, "end": 22943.5, "probability": 0.9829 }, { "start": 22943.86, "end": 22945.34, "probability": 0.9653 }, { "start": 22946.16, "end": 22950.44, "probability": 0.9493 }, { "start": 22950.86, "end": 22952.66, "probability": 0.9924 }, { "start": 22952.78, "end": 22957.28, "probability": 0.9648 }, { "start": 22957.7, "end": 22958.52, "probability": 0.9242 }, { "start": 22958.96, "end": 22959.78, "probability": 0.8411 }, { "start": 22960.3, "end": 22961.42, "probability": 0.986 }, { "start": 22961.6, "end": 22964.3, "probability": 0.9985 }, { "start": 22964.66, "end": 22967.7, "probability": 0.7204 }, { "start": 22968.04, "end": 22970.46, "probability": 0.9827 }, { "start": 22970.72, "end": 22972.36, "probability": 0.9724 }, { "start": 22972.96, "end": 22975.54, "probability": 0.8271 }, { "start": 22975.9, "end": 22980.2, "probability": 0.9976 }, { "start": 22980.62, "end": 22981.26, "probability": 0.7732 }, { "start": 22981.64, "end": 22982.5, "probability": 0.8042 }, { "start": 22982.56, "end": 22985.62, "probability": 0.9107 }, { "start": 22985.72, "end": 22988.18, "probability": 0.7349 }, { "start": 22988.44, "end": 22990.6, "probability": 0.9782 }, { "start": 22991.24, "end": 22992.6, "probability": 0.8903 }, { "start": 22992.84, "end": 22994.08, "probability": 0.6129 }, { "start": 22994.28, "end": 22997.74, "probability": 0.7601 }, { "start": 22998.26, "end": 23002.42, "probability": 0.6447 }, { "start": 23002.5, "end": 23005.2, "probability": 0.851 }, { "start": 23005.6, "end": 23007.66, "probability": 0.859 }, { "start": 23008.34, "end": 23009.01, "probability": 0.4582 }, { "start": 23010.26, "end": 23010.74, "probability": 0.8882 }, { "start": 23011.94, "end": 23012.9, "probability": 0.8341 }, { "start": 23014.34, "end": 23015.08, "probability": 0.3946 }, { "start": 23015.76, "end": 23017.52, "probability": 0.2097 }, { "start": 23018.14, "end": 23019.06, "probability": 0.6428 }, { "start": 23019.84, "end": 23020.24, "probability": 0.9683 }, { "start": 23021.4, "end": 23022.18, "probability": 0.6359 }, { "start": 23022.84, "end": 23023.2, "probability": 0.9565 }, { "start": 23024.1, "end": 23024.74, "probability": 0.8496 }, { "start": 23025.64, "end": 23026.1, "probability": 0.8496 }, { "start": 23027.5, "end": 23028.44, "probability": 0.642 }, { "start": 23029.52, "end": 23031.06, "probability": 0.9929 }, { "start": 23032.28, "end": 23033.34, "probability": 0.9255 }, { "start": 23034.66, "end": 23036.72, "probability": 0.7794 }, { "start": 23037.52, "end": 23038.04, "probability": 0.9951 }, { "start": 23038.94, "end": 23039.74, "probability": 0.9624 }, { "start": 23040.86, "end": 23041.28, "probability": 0.9929 }, { "start": 23042.36, "end": 23043.22, "probability": 0.9249 }, { "start": 23044.04, "end": 23046.4, "probability": 0.9944 }, { "start": 23047.26, "end": 23049.82, "probability": 0.9787 }, { "start": 23051.44, "end": 23052.06, "probability": 0.8183 }, { "start": 23053.42, "end": 23054.36, "probability": 0.8822 }, { "start": 23054.88, "end": 23055.42, "probability": 0.855 }, { "start": 23056.5, "end": 23057.32, "probability": 0.9436 }, { "start": 23058.26, "end": 23058.86, "probability": 0.9862 }, { "start": 23060.42, "end": 23061.24, "probability": 0.9734 }, { "start": 23063.2, "end": 23064.24, "probability": 0.9912 }, { "start": 23064.78, "end": 23065.68, "probability": 0.9186 }, { "start": 23066.28, "end": 23067.36, "probability": 0.9692 }, { "start": 23067.9, "end": 23068.86, "probability": 0.9654 }, { "start": 23070.2, "end": 23070.66, "probability": 0.9739 }, { "start": 23071.34, "end": 23072.26, "probability": 0.9292 }, { "start": 23073.82, "end": 23074.32, "probability": 0.9904 }, { "start": 23075.46, "end": 23076.32, "probability": 0.9813 }, { "start": 23077.12, "end": 23077.62, "probability": 0.9937 }, { "start": 23078.76, "end": 23079.52, "probability": 0.6013 }, { "start": 23080.22, "end": 23080.6, "probability": 0.7195 }, { "start": 23081.5, "end": 23082.66, "probability": 0.9852 }, { "start": 23083.58, "end": 23084.08, "probability": 0.7644 }, { "start": 23086.08, "end": 23087.06, "probability": 0.9531 }, { "start": 23089.0, "end": 23091.16, "probability": 0.9673 }, { "start": 23094.34, "end": 23095.72, "probability": 0.7764 }, { "start": 23097.12, "end": 23098.34, "probability": 0.7591 }, { "start": 23099.18, "end": 23099.8, "probability": 0.9702 }, { "start": 23101.08, "end": 23101.8, "probability": 0.9893 }, { "start": 23102.68, "end": 23103.2, "probability": 0.948 }, { "start": 23104.46, "end": 23105.28, "probability": 0.9707 }, { "start": 23105.98, "end": 23108.0, "probability": 0.9668 }, { "start": 23109.86, "end": 23110.44, "probability": 0.7279 }, { "start": 23111.42, "end": 23112.16, "probability": 0.5234 }, { "start": 23114.48, "end": 23114.98, "probability": 0.8767 }, { "start": 23116.64, "end": 23117.48, "probability": 0.8477 }, { "start": 23119.48, "end": 23120.44, "probability": 0.8841 }, { "start": 23121.42, "end": 23122.2, "probability": 0.894 }, { "start": 23123.32, "end": 23123.98, "probability": 0.9675 }, { "start": 23125.02, "end": 23125.88, "probability": 0.9314 }, { "start": 23127.04, "end": 23129.34, "probability": 0.7949 }, { "start": 23130.14, "end": 23130.7, "probability": 0.9705 }, { "start": 23131.98, "end": 23132.84, "probability": 0.9734 }, { "start": 23133.72, "end": 23136.62, "probability": 0.9328 }, { "start": 23137.54, "end": 23139.77, "probability": 0.1638 }, { "start": 23141.6, "end": 23142.14, "probability": 0.7876 }, { "start": 23143.66, "end": 23144.48, "probability": 0.825 }, { "start": 23145.28, "end": 23145.78, "probability": 0.7927 }, { "start": 23147.32, "end": 23148.6, "probability": 0.759 }, { "start": 23151.52, "end": 23151.92, "probability": 0.9792 }, { "start": 23153.64, "end": 23154.7, "probability": 0.9171 }, { "start": 23156.06, "end": 23158.12, "probability": 0.9612 }, { "start": 23159.34, "end": 23159.92, "probability": 0.9933 }, { "start": 23160.76, "end": 23161.7, "probability": 0.9563 }, { "start": 23162.83, "end": 23164.74, "probability": 0.7854 }, { "start": 23165.86, "end": 23166.38, "probability": 0.9919 }, { "start": 23167.5, "end": 23168.5, "probability": 0.9363 }, { "start": 23169.26, "end": 23171.22, "probability": 0.7112 }, { "start": 23172.62, "end": 23173.22, "probability": 0.9907 }, { "start": 23173.98, "end": 23175.2, "probability": 0.8944 }, { "start": 23177.68, "end": 23180.44, "probability": 0.8576 }, { "start": 23181.12, "end": 23182.7, "probability": 0.5603 }, { "start": 23184.32, "end": 23184.94, "probability": 0.9907 }, { "start": 23186.72, "end": 23187.78, "probability": 0.8946 }, { "start": 23189.34, "end": 23189.92, "probability": 0.9976 }, { "start": 23190.88, "end": 23191.74, "probability": 0.7668 }, { "start": 23192.96, "end": 23193.84, "probability": 0.7716 }, { "start": 23194.78, "end": 23195.54, "probability": 0.6602 }, { "start": 23198.36, "end": 23202.5, "probability": 0.5023 }, { "start": 23206.4, "end": 23206.98, "probability": 0.9268 }, { "start": 23209.18, "end": 23210.46, "probability": 0.692 }, { "start": 23213.08, "end": 23213.56, "probability": 0.9724 }, { "start": 23215.56, "end": 23216.66, "probability": 0.8492 }, { "start": 23217.5, "end": 23218.14, "probability": 0.9679 }, { "start": 23219.08, "end": 23219.86, "probability": 0.9432 }, { "start": 23221.18, "end": 23222.06, "probability": 0.2785 }, { "start": 23228.08, "end": 23228.54, "probability": 0.7304 }, { "start": 23229.66, "end": 23230.38, "probability": 0.5814 }, { "start": 23233.28, "end": 23234.98, "probability": 0.6803 }, { "start": 23235.9, "end": 23236.36, "probability": 0.7929 }, { "start": 23237.7, "end": 23238.04, "probability": 0.7285 }, { "start": 23239.76, "end": 23240.34, "probability": 0.9485 }, { "start": 23241.78, "end": 23243.64, "probability": 0.9724 }, { "start": 23246.08, "end": 23248.04, "probability": 0.9611 }, { "start": 23249.52, "end": 23250.1, "probability": 0.9927 }, { "start": 23252.52, "end": 23253.82, "probability": 0.7976 }, { "start": 23254.44, "end": 23254.94, "probability": 0.9902 }, { "start": 23256.2, "end": 23256.82, "probability": 0.8522 }, { "start": 23258.38, "end": 23258.98, "probability": 0.8195 }, { "start": 23260.02, "end": 23261.12, "probability": 0.9636 }, { "start": 23262.74, "end": 23263.24, "probability": 0.8809 }, { "start": 23264.46, "end": 23265.18, "probability": 0.9324 }, { "start": 23268.06, "end": 23270.7, "probability": 0.9814 }, { "start": 23272.06, "end": 23272.68, "probability": 0.9854 }, { "start": 23273.8, "end": 23274.8, "probability": 0.9852 }, { "start": 23275.95, "end": 23278.14, "probability": 0.987 }, { "start": 23279.12, "end": 23279.72, "probability": 0.9891 }, { "start": 23280.28, "end": 23281.06, "probability": 0.9669 }, { "start": 23282.18, "end": 23282.7, "probability": 0.9953 }, { "start": 23283.96, "end": 23285.08, "probability": 0.9695 }, { "start": 23286.08, "end": 23286.42, "probability": 0.9924 }, { "start": 23288.16, "end": 23288.98, "probability": 0.2768 }, { "start": 23290.78, "end": 23291.44, "probability": 0.9904 }, { "start": 23293.02, "end": 23293.8, "probability": 0.7326 }, { "start": 23294.86, "end": 23295.38, "probability": 0.8372 }, { "start": 23296.8, "end": 23297.98, "probability": 0.907 }, { "start": 23298.5, "end": 23299.14, "probability": 0.9868 }, { "start": 23300.06, "end": 23301.12, "probability": 0.7479 }, { "start": 23302.2, "end": 23302.76, "probability": 0.9906 }, { "start": 23304.0, "end": 23305.04, "probability": 0.8917 }, { "start": 23305.84, "end": 23306.36, "probability": 0.9953 }, { "start": 23307.44, "end": 23308.64, "probability": 0.9503 }, { "start": 23309.9, "end": 23310.36, "probability": 0.99 }, { "start": 23311.74, "end": 23312.42, "probability": 0.9474 }, { "start": 23313.36, "end": 23313.8, "probability": 0.9905 }, { "start": 23314.6, "end": 23315.28, "probability": 0.6466 }, { "start": 23316.56, "end": 23316.98, "probability": 0.5602 }, { "start": 23317.84, "end": 23319.08, "probability": 0.5879 }, { "start": 23319.92, "end": 23320.38, "probability": 0.9538 }, { "start": 23321.62, "end": 23322.58, "probability": 0.9402 }, { "start": 23323.92, "end": 23324.42, "probability": 0.9536 }, { "start": 23325.56, "end": 23326.48, "probability": 0.9497 }, { "start": 23327.2, "end": 23327.74, "probability": 0.8809 }, { "start": 23328.28, "end": 23329.24, "probability": 0.9778 }, { "start": 23329.94, "end": 23330.46, "probability": 0.9727 }, { "start": 23331.4, "end": 23332.16, "probability": 0.7893 }, { "start": 23332.78, "end": 23333.3, "probability": 0.9484 }, { "start": 23334.32, "end": 23335.2, "probability": 0.899 }, { "start": 23335.72, "end": 23336.2, "probability": 0.9914 }, { "start": 23336.92, "end": 23337.8, "probability": 0.956 }, { "start": 23340.48, "end": 23340.96, "probability": 0.9922 }, { "start": 23342.47, "end": 23342.82, "probability": 0.4205 }, { "start": 23344.84, "end": 23345.16, "probability": 0.5922 }, { "start": 23345.72, "end": 23346.62, "probability": 0.8139 }, { "start": 23347.54, "end": 23348.02, "probability": 0.9463 }, { "start": 23349.34, "end": 23350.24, "probability": 0.5007 }, { "start": 23351.12, "end": 23351.74, "probability": 0.964 }, { "start": 23353.36, "end": 23354.46, "probability": 0.8244 }, { "start": 23355.12, "end": 23355.58, "probability": 0.9194 }, { "start": 23356.28, "end": 23357.26, "probability": 0.7187 }, { "start": 23360.22, "end": 23367.92, "probability": 0.4983 }, { "start": 23370.94, "end": 23372.52, "probability": 0.1465 }, { "start": 23377.9, "end": 23380.72, "probability": 0.3024 }, { "start": 23382.7, "end": 23386.06, "probability": 0.8433 }, { "start": 23389.06, "end": 23391.32, "probability": 0.8924 }, { "start": 23391.98, "end": 23394.06, "probability": 0.7372 }, { "start": 23397.58, "end": 23398.06, "probability": 0.9482 }, { "start": 23399.44, "end": 23400.46, "probability": 0.9251 }, { "start": 23401.54, "end": 23402.38, "probability": 0.5019 }, { "start": 23406.08, "end": 23406.98, "probability": 0.5967 }, { "start": 23407.72, "end": 23408.12, "probability": 0.7104 }, { "start": 23409.24, "end": 23409.9, "probability": 0.812 }, { "start": 23411.16, "end": 23412.02, "probability": 0.7981 }, { "start": 23413.84, "end": 23414.62, "probability": 0.8148 }, { "start": 23416.78, "end": 23417.34, "probability": 0.9909 }, { "start": 23419.64, "end": 23420.46, "probability": 0.9102 }, { "start": 23421.5, "end": 23422.04, "probability": 0.9302 }, { "start": 23422.72, "end": 23423.46, "probability": 0.6727 }, { "start": 23425.52, "end": 23427.64, "probability": 0.9778 }, { "start": 23428.78, "end": 23429.32, "probability": 0.9899 }, { "start": 23430.52, "end": 23431.48, "probability": 0.944 }, { "start": 23432.16, "end": 23432.22, "probability": 0.0771 }, { "start": 23435.4, "end": 23437.48, "probability": 0.1677 }, { "start": 23438.12, "end": 23440.1, "probability": 0.7043 }, { "start": 23444.15, "end": 23445.86, "probability": 0.9757 }, { "start": 23447.42, "end": 23448.04, "probability": 0.9956 }, { "start": 23449.14, "end": 23450.36, "probability": 0.891 }, { "start": 23452.86, "end": 23454.84, "probability": 0.7143 }, { "start": 23455.5, "end": 23456.06, "probability": 0.9907 }, { "start": 23457.62, "end": 23458.72, "probability": 0.8794 }, { "start": 23459.42, "end": 23459.96, "probability": 0.9963 }, { "start": 23461.28, "end": 23462.16, "probability": 0.8629 }, { "start": 23462.88, "end": 23463.32, "probability": 0.7534 }, { "start": 23464.08, "end": 23464.9, "probability": 0.7974 }, { "start": 23466.44, "end": 23466.96, "probability": 0.8604 }, { "start": 23468.82, "end": 23469.5, "probability": 0.7558 }, { "start": 23470.86, "end": 23473.32, "probability": 0.9536 }, { "start": 23474.2, "end": 23478.22, "probability": 0.9015 }, { "start": 23479.1, "end": 23480.0, "probability": 0.6806 }, { "start": 23480.86, "end": 23481.32, "probability": 0.8206 }, { "start": 23482.48, "end": 23483.47, "probability": 0.6518 }, { "start": 23484.54, "end": 23485.14, "probability": 0.9163 }, { "start": 23486.54, "end": 23486.64, "probability": 0.4445 }, { "start": 23490.5, "end": 23491.44, "probability": 0.3449 }, { "start": 23492.2, "end": 23492.86, "probability": 0.7356 }, { "start": 23494.04, "end": 23494.64, "probability": 0.5056 }, { "start": 23498.92, "end": 23499.54, "probability": 0.7219 }, { "start": 23500.62, "end": 23501.82, "probability": 0.6359 }, { "start": 23503.24, "end": 23509.16, "probability": 0.8136 }, { "start": 23510.44, "end": 23511.36, "probability": 0.6139 }, { "start": 23512.56, "end": 23514.84, "probability": 0.8773 }, { "start": 23515.84, "end": 23516.4, "probability": 0.973 }, { "start": 23519.2, "end": 23519.92, "probability": 0.6881 }, { "start": 23520.66, "end": 23522.92, "probability": 0.9522 }, { "start": 23524.2, "end": 23525.78, "probability": 0.8262 }, { "start": 23526.76, "end": 23528.58, "probability": 0.908 }, { "start": 23529.74, "end": 23531.36, "probability": 0.9508 }, { "start": 23532.72, "end": 23533.58, "probability": 0.4359 }, { "start": 23537.62, "end": 23538.54, "probability": 0.3937 }, { "start": 23539.78, "end": 23545.24, "probability": 0.8592 }, { "start": 23546.58, "end": 23548.94, "probability": 0.8987 }, { "start": 23550.48, "end": 23552.78, "probability": 0.9186 }, { "start": 23553.38, "end": 23554.18, "probability": 0.9658 }, { "start": 23554.92, "end": 23556.86, "probability": 0.7601 }, { "start": 23557.7, "end": 23559.12, "probability": 0.4936 }, { "start": 23559.26, "end": 23560.58, "probability": 0.4488 }, { "start": 23560.82, "end": 23561.9, "probability": 0.9513 }, { "start": 23572.5, "end": 23573.8, "probability": 0.0379 }, { "start": 23577.62, "end": 23578.34, "probability": 0.1278 }, { "start": 23579.36, "end": 23579.88, "probability": 0.088 }, { "start": 23581.16, "end": 23581.8, "probability": 0.1285 }, { "start": 23582.32, "end": 23585.32, "probability": 0.0393 }, { "start": 23589.1, "end": 23589.1, "probability": 0.0532 }, { "start": 23593.1, "end": 23595.16, "probability": 0.1319 }, { "start": 23598.6, "end": 23599.25, "probability": 0.0849 }, { "start": 23600.0, "end": 23603.76, "probability": 0.0509 }, { "start": 23605.88, "end": 23608.84, "probability": 0.1033 }, { "start": 23608.84, "end": 23613.72, "probability": 0.0358 }, { "start": 23613.86, "end": 23613.86, "probability": 0.0003 }, { "start": 23615.56, "end": 23618.18, "probability": 0.0595 }, { "start": 23619.36, "end": 23622.02, "probability": 0.0443 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23827.0, "end": 23827.0, "probability": 0.0 }, { "start": 23828.47, "end": 23829.96, "probability": 0.0262 }, { "start": 23829.96, "end": 23829.96, "probability": 0.2319 }, { "start": 23830.22, "end": 23832.06, "probability": 0.8836 }, { "start": 23833.32, "end": 23835.24, "probability": 0.6401 }, { "start": 23839.24, "end": 23843.98, "probability": 0.9937 }, { "start": 23844.32, "end": 23845.4, "probability": 0.8151 }, { "start": 23846.34, "end": 23849.14, "probability": 0.8731 }, { "start": 23850.22, "end": 23851.78, "probability": 0.9434 }, { "start": 23853.16, "end": 23854.44, "probability": 0.9919 }, { "start": 23855.2, "end": 23858.6, "probability": 0.9946 }, { "start": 23858.6, "end": 23865.02, "probability": 0.9974 }, { "start": 23865.7, "end": 23866.72, "probability": 0.9929 }, { "start": 23867.92, "end": 23871.28, "probability": 0.9224 }, { "start": 23872.84, "end": 23873.36, "probability": 0.8763 }, { "start": 23875.68, "end": 23879.18, "probability": 0.9506 }, { "start": 23880.22, "end": 23881.34, "probability": 0.6083 }, { "start": 23882.12, "end": 23882.74, "probability": 0.9092 }, { "start": 23883.74, "end": 23885.9, "probability": 0.7829 }, { "start": 23886.96, "end": 23891.94, "probability": 0.9741 }, { "start": 23892.74, "end": 23894.6, "probability": 0.9847 }, { "start": 23896.46, "end": 23897.72, "probability": 0.8795 }, { "start": 23897.74, "end": 23899.62, "probability": 0.917 }, { "start": 23900.38, "end": 23901.88, "probability": 0.8867 }, { "start": 23905.38, "end": 23908.0, "probability": 0.5843 }, { "start": 23908.1, "end": 23910.34, "probability": 0.7258 }, { "start": 23911.92, "end": 23915.24, "probability": 0.6004 }, { "start": 23915.36, "end": 23916.72, "probability": 0.9143 }, { "start": 23917.22, "end": 23921.38, "probability": 0.9496 }, { "start": 23925.0, "end": 23928.07, "probability": 0.9943 }, { "start": 23928.84, "end": 23935.62, "probability": 0.9805 }, { "start": 23935.7, "end": 23937.82, "probability": 0.9273 }, { "start": 23938.58, "end": 23941.78, "probability": 0.9856 }, { "start": 23942.58, "end": 23944.98, "probability": 0.9456 }, { "start": 23945.54, "end": 23950.64, "probability": 0.9647 }, { "start": 23951.36, "end": 23952.76, "probability": 0.9285 }, { "start": 23952.96, "end": 23955.7, "probability": 0.8216 }, { "start": 23955.86, "end": 23956.46, "probability": 0.9563 }, { "start": 23956.82, "end": 23960.16, "probability": 0.8164 }, { "start": 23960.76, "end": 23963.0, "probability": 0.9399 }, { "start": 23963.52, "end": 23965.12, "probability": 0.9866 }, { "start": 23965.78, "end": 23966.46, "probability": 0.5665 }, { "start": 23967.12, "end": 23968.8, "probability": 0.9901 }, { "start": 23969.42, "end": 23971.12, "probability": 0.9473 }, { "start": 23971.62, "end": 23975.4, "probability": 0.8592 }, { "start": 23976.0, "end": 23976.47, "probability": 0.7695 }, { "start": 23977.34, "end": 23977.76, "probability": 0.9457 }, { "start": 23978.38, "end": 23979.73, "probability": 0.9412 }, { "start": 23980.4, "end": 23980.9, "probability": 0.9326 }, { "start": 23981.94, "end": 23982.6, "probability": 0.939 }, { "start": 23983.26, "end": 23984.94, "probability": 0.9865 }, { "start": 23984.94, "end": 23987.88, "probability": 0.9257 }, { "start": 23987.92, "end": 23990.08, "probability": 0.7264 }, { "start": 23990.74, "end": 23993.8, "probability": 0.8286 }, { "start": 23995.16, "end": 23995.34, "probability": 0.0772 }, { "start": 23995.34, "end": 24003.2, "probability": 0.5282 }, { "start": 24003.24, "end": 24006.39, "probability": 0.6928 }, { "start": 24006.92, "end": 24008.3, "probability": 0.8377 }, { "start": 24008.84, "end": 24010.42, "probability": 0.9916 }, { "start": 24010.8, "end": 24014.82, "probability": 0.8688 }, { "start": 24017.34, "end": 24019.48, "probability": 0.4569 }, { "start": 24020.06, "end": 24021.1, "probability": 0.7982 }, { "start": 24021.68, "end": 24023.44, "probability": 0.8376 }, { "start": 24024.02, "end": 24026.68, "probability": 0.9823 }, { "start": 24027.52, "end": 24028.46, "probability": 0.976 }, { "start": 24029.84, "end": 24036.06, "probability": 0.998 }, { "start": 24037.22, "end": 24038.58, "probability": 0.9471 }, { "start": 24038.64, "end": 24045.44, "probability": 0.9523 }, { "start": 24045.54, "end": 24046.04, "probability": 0.9329 }, { "start": 24046.38, "end": 24046.98, "probability": 0.4505 }, { "start": 24047.52, "end": 24049.84, "probability": 0.995 }, { "start": 24049.88, "end": 24051.18, "probability": 0.0231 }, { "start": 24051.18, "end": 24053.13, "probability": 0.659 }, { "start": 24054.28, "end": 24058.84, "probability": 0.7952 }, { "start": 24059.0, "end": 24061.49, "probability": 0.9302 }, { "start": 24062.1, "end": 24063.14, "probability": 0.7231 }, { "start": 24064.04, "end": 24067.7, "probability": 0.9592 }, { "start": 24068.34, "end": 24069.72, "probability": 0.5223 }, { "start": 24070.34, "end": 24072.1, "probability": 0.9834 }, { "start": 24073.92, "end": 24074.9, "probability": 0.8764 }, { "start": 24075.94, "end": 24077.96, "probability": 0.4348 }, { "start": 24077.96, "end": 24077.96, "probability": 0.1136 }, { "start": 24077.96, "end": 24078.38, "probability": 0.4051 }, { "start": 24078.66, "end": 24079.48, "probability": 0.8774 }, { "start": 24081.0, "end": 24081.42, "probability": 0.1242 }, { "start": 24081.42, "end": 24083.08, "probability": 0.1603 }, { "start": 24083.08, "end": 24084.28, "probability": 0.7022 }, { "start": 24085.48, "end": 24086.72, "probability": 0.6391 }, { "start": 24086.9, "end": 24087.86, "probability": 0.1449 }, { "start": 24088.48, "end": 24089.72, "probability": 0.1755 }, { "start": 24089.75, "end": 24089.84, "probability": 0.0248 }, { "start": 24089.84, "end": 24093.17, "probability": 0.6568 }, { "start": 24094.4, "end": 24096.04, "probability": 0.8356 }, { "start": 24096.62, "end": 24098.0, "probability": 0.9937 }, { "start": 24098.66, "end": 24100.18, "probability": 0.9412 }, { "start": 24101.14, "end": 24101.94, "probability": 0.6405 }, { "start": 24103.36, "end": 24107.72, "probability": 0.9971 }, { "start": 24108.92, "end": 24110.92, "probability": 0.8829 }, { "start": 24111.9, "end": 24114.52, "probability": 0.983 }, { "start": 24115.06, "end": 24116.28, "probability": 0.9857 }, { "start": 24117.22, "end": 24122.28, "probability": 0.9243 }, { "start": 24122.28, "end": 24126.68, "probability": 0.9897 }, { "start": 24126.7, "end": 24127.94, "probability": 0.9884 }, { "start": 24128.08, "end": 24129.5, "probability": 0.9964 }, { "start": 24130.08, "end": 24133.66, "probability": 0.992 }, { "start": 24134.38, "end": 24135.3, "probability": 0.847 }, { "start": 24135.54, "end": 24136.6, "probability": 0.6641 }, { "start": 24137.48, "end": 24139.62, "probability": 0.835 }, { "start": 24140.58, "end": 24144.2, "probability": 0.9896 }, { "start": 24144.56, "end": 24146.92, "probability": 0.9871 }, { "start": 24147.5, "end": 24150.88, "probability": 0.9966 }, { "start": 24151.06, "end": 24155.54, "probability": 0.9724 }, { "start": 24157.54, "end": 24157.84, "probability": 0.0243 }, { "start": 24157.84, "end": 24159.68, "probability": 0.02 }, { "start": 24159.68, "end": 24159.68, "probability": 0.2187 }, { "start": 24159.68, "end": 24159.68, "probability": 0.042 }, { "start": 24159.68, "end": 24162.16, "probability": 0.262 }, { "start": 24162.9, "end": 24165.1, "probability": 0.7572 }, { "start": 24165.62, "end": 24170.82, "probability": 0.8679 }, { "start": 24170.84, "end": 24171.9, "probability": 0.9934 }, { "start": 24172.76, "end": 24174.5, "probability": 0.7609 }, { "start": 24174.96, "end": 24177.8, "probability": 0.4861 }, { "start": 24177.84, "end": 24178.34, "probability": 0.782 }, { "start": 24178.82, "end": 24179.52, "probability": 0.5743 }, { "start": 24180.76, "end": 24185.2, "probability": 0.9224 }, { "start": 24186.8, "end": 24186.94, "probability": 0.4253 }, { "start": 24186.94, "end": 24187.43, "probability": 0.6431 }, { "start": 24188.6, "end": 24190.54, "probability": 0.6426 }, { "start": 24191.5, "end": 24194.5, "probability": 0.8758 }, { "start": 24194.6, "end": 24196.22, "probability": 0.9524 }, { "start": 24196.48, "end": 24202.26, "probability": 0.9973 }, { "start": 24202.46, "end": 24210.9, "probability": 0.9985 }, { "start": 24212.2, "end": 24216.0, "probability": 0.9883 }, { "start": 24216.24, "end": 24217.52, "probability": 0.8034 }, { "start": 24218.08, "end": 24220.02, "probability": 0.9871 }, { "start": 24221.24, "end": 24224.0, "probability": 0.9034 }, { "start": 24224.06, "end": 24227.52, "probability": 0.9881 }, { "start": 24228.38, "end": 24230.72, "probability": 0.8014 }, { "start": 24231.06, "end": 24236.9, "probability": 0.9939 }, { "start": 24237.52, "end": 24238.32, "probability": 0.7883 }, { "start": 24239.72, "end": 24240.66, "probability": 0.9229 }, { "start": 24241.44, "end": 24242.28, "probability": 0.5683 }, { "start": 24242.47, "end": 24242.54, "probability": 0.7428 }, { "start": 24242.56, "end": 24243.9, "probability": 0.7584 }, { "start": 24244.08, "end": 24244.78, "probability": 0.2676 }, { "start": 24244.8, "end": 24246.0, "probability": 0.8461 }, { "start": 24246.78, "end": 24248.86, "probability": 0.3123 }, { "start": 24249.16, "end": 24249.16, "probability": 0.0283 }, { "start": 24249.16, "end": 24250.28, "probability": 0.1044 }, { "start": 24250.56, "end": 24252.0, "probability": 0.2579 }, { "start": 24252.08, "end": 24252.22, "probability": 0.0409 }, { "start": 24252.22, "end": 24253.81, "probability": 0.2482 }, { "start": 24255.42, "end": 24256.76, "probability": 0.4619 }, { "start": 24256.98, "end": 24258.18, "probability": 0.4226 }, { "start": 24258.88, "end": 24262.32, "probability": 0.0414 }, { "start": 24262.72, "end": 24262.74, "probability": 0.1222 }, { "start": 24262.74, "end": 24263.92, "probability": 0.2547 }, { "start": 24264.25, "end": 24264.32, "probability": 0.0225 }, { "start": 24264.88, "end": 24265.76, "probability": 0.0584 }, { "start": 24268.7, "end": 24270.78, "probability": 0.4136 }, { "start": 24270.78, "end": 24271.52, "probability": 0.9465 }, { "start": 24272.72, "end": 24272.78, "probability": 0.7102 }, { "start": 24272.78, "end": 24274.06, "probability": 0.9648 }, { "start": 24277.35, "end": 24280.16, "probability": 0.7628 }, { "start": 24281.78, "end": 24282.26, "probability": 0.0076 }, { "start": 24282.26, "end": 24282.9, "probability": 0.5886 }, { "start": 24284.9, "end": 24286.1, "probability": 0.9024 }, { "start": 24286.4, "end": 24289.78, "probability": 0.9927 }, { "start": 24289.78, "end": 24292.48, "probability": 0.9886 }, { "start": 24293.64, "end": 24295.22, "probability": 0.9978 }, { "start": 24295.88, "end": 24299.28, "probability": 0.9992 }, { "start": 24299.88, "end": 24300.68, "probability": 0.6153 }, { "start": 24301.2, "end": 24304.33, "probability": 0.962 }, { "start": 24304.38, "end": 24309.1, "probability": 0.9993 }, { "start": 24310.24, "end": 24312.28, "probability": 0.9335 }, { "start": 24312.96, "end": 24317.08, "probability": 0.9654 }, { "start": 24318.72, "end": 24322.5, "probability": 0.6831 }, { "start": 24323.7, "end": 24325.14, "probability": 0.9982 }, { "start": 24325.68, "end": 24330.74, "probability": 0.9979 }, { "start": 24332.04, "end": 24337.6, "probability": 0.8073 }, { "start": 24338.08, "end": 24341.14, "probability": 0.9697 }, { "start": 24341.28, "end": 24341.68, "probability": 0.8095 }, { "start": 24341.9, "end": 24344.66, "probability": 0.9984 }, { "start": 24344.8, "end": 24345.76, "probability": 0.9023 }, { "start": 24346.32, "end": 24350.34, "probability": 0.9754 }, { "start": 24351.16, "end": 24352.34, "probability": 0.9771 }, { "start": 24353.36, "end": 24356.18, "probability": 0.9694 }, { "start": 24356.84, "end": 24357.06, "probability": 0.6436 }, { "start": 24359.42, "end": 24360.2, "probability": 0.8267 }, { "start": 24360.8, "end": 24362.4, "probability": 0.9785 }, { "start": 24363.06, "end": 24364.02, "probability": 0.8553 }, { "start": 24364.5, "end": 24366.48, "probability": 0.9231 }, { "start": 24366.7, "end": 24369.8, "probability": 0.7842 }, { "start": 24370.88, "end": 24374.74, "probability": 0.9905 }, { "start": 24375.5, "end": 24380.14, "probability": 0.985 }, { "start": 24380.34, "end": 24381.64, "probability": 0.8187 }, { "start": 24382.06, "end": 24384.04, "probability": 0.7581 }, { "start": 24384.42, "end": 24385.76, "probability": 0.9873 }, { "start": 24385.92, "end": 24386.18, "probability": 0.5167 }, { "start": 24386.52, "end": 24387.26, "probability": 0.8938 }, { "start": 24387.38, "end": 24388.84, "probability": 0.8416 }, { "start": 24389.3, "end": 24390.36, "probability": 0.8335 }, { "start": 24390.68, "end": 24393.32, "probability": 0.988 }, { "start": 24394.02, "end": 24395.18, "probability": 0.8711 }, { "start": 24395.26, "end": 24397.9, "probability": 0.9114 }, { "start": 24398.26, "end": 24400.98, "probability": 0.9141 }, { "start": 24401.36, "end": 24402.58, "probability": 0.6404 }, { "start": 24403.82, "end": 24407.66, "probability": 0.8527 }, { "start": 24407.72, "end": 24407.9, "probability": 0.7487 }, { "start": 24408.64, "end": 24409.7, "probability": 0.7489 }, { "start": 24409.7, "end": 24411.02, "probability": 0.6484 }, { "start": 24411.1, "end": 24413.3, "probability": 0.9861 }, { "start": 24413.84, "end": 24416.8, "probability": 0.9989 }, { "start": 24417.4, "end": 24421.1, "probability": 0.9988 }, { "start": 24421.24, "end": 24421.44, "probability": 0.6594 }, { "start": 24422.26, "end": 24422.66, "probability": 0.3362 }, { "start": 24422.84, "end": 24426.06, "probability": 0.8947 }, { "start": 24426.16, "end": 24427.82, "probability": 0.8955 }, { "start": 24434.36, "end": 24436.28, "probability": 0.7772 }, { "start": 24437.32, "end": 24438.28, "probability": 0.7733 }, { "start": 24440.38, "end": 24442.66, "probability": 0.9861 }, { "start": 24445.5, "end": 24446.87, "probability": 0.9669 }, { "start": 24447.74, "end": 24448.6, "probability": 0.9692 }, { "start": 24450.44, "end": 24451.54, "probability": 0.9926 }, { "start": 24452.94, "end": 24454.08, "probability": 0.7612 }, { "start": 24456.0, "end": 24457.18, "probability": 0.6393 }, { "start": 24459.04, "end": 24460.42, "probability": 0.6739 }, { "start": 24460.84, "end": 24461.94, "probability": 0.9402 }, { "start": 24462.1, "end": 24464.29, "probability": 0.936 }, { "start": 24465.44, "end": 24468.62, "probability": 0.9929 }, { "start": 24468.86, "end": 24468.86, "probability": 0.4517 }, { "start": 24469.62, "end": 24471.44, "probability": 0.9451 }, { "start": 24474.42, "end": 24475.86, "probability": 0.9781 }, { "start": 24477.0, "end": 24478.06, "probability": 0.9825 }, { "start": 24478.86, "end": 24480.64, "probability": 0.9613 }, { "start": 24482.1, "end": 24482.8, "probability": 0.9235 }, { "start": 24483.56, "end": 24484.78, "probability": 0.8653 }, { "start": 24486.42, "end": 24488.06, "probability": 0.9857 }, { "start": 24489.98, "end": 24491.64, "probability": 0.9963 }, { "start": 24492.82, "end": 24494.56, "probability": 0.9966 }, { "start": 24495.46, "end": 24499.84, "probability": 0.9971 }, { "start": 24499.84, "end": 24503.12, "probability": 0.991 }, { "start": 24504.94, "end": 24509.7, "probability": 0.9981 }, { "start": 24509.7, "end": 24512.32, "probability": 0.9931 }, { "start": 24513.3, "end": 24514.8, "probability": 0.5627 }, { "start": 24517.34, "end": 24518.72, "probability": 0.9993 }, { "start": 24519.98, "end": 24520.66, "probability": 0.7087 }, { "start": 24520.72, "end": 24521.4, "probability": 0.9285 }, { "start": 24521.56, "end": 24525.78, "probability": 0.9828 }, { "start": 24528.0, "end": 24530.7, "probability": 0.974 }, { "start": 24531.52, "end": 24533.86, "probability": 0.998 }, { "start": 24534.64, "end": 24535.36, "probability": 0.7506 }, { "start": 24538.78, "end": 24540.06, "probability": 0.9196 }, { "start": 24540.82, "end": 24542.68, "probability": 0.3772 }, { "start": 24542.92, "end": 24543.04, "probability": 0.3805 }, { "start": 24543.04, "end": 24543.46, "probability": 0.5395 }, { "start": 24543.72, "end": 24544.16, "probability": 0.9677 }, { "start": 24546.44, "end": 24548.48, "probability": 0.6848 }, { "start": 24548.76, "end": 24550.62, "probability": 0.7568 }, { "start": 24551.54, "end": 24553.66, "probability": 0.7958 }, { "start": 24554.82, "end": 24556.96, "probability": 0.7761 }, { "start": 24557.6, "end": 24558.4, "probability": 0.6766 }, { "start": 24558.64, "end": 24561.92, "probability": 0.987 }, { "start": 24562.92, "end": 24566.28, "probability": 0.7603 }, { "start": 24567.2, "end": 24567.48, "probability": 0.1111 }, { "start": 24571.7, "end": 24572.58, "probability": 0.4571 }, { "start": 24572.86, "end": 24574.08, "probability": 0.175 }, { "start": 24576.62, "end": 24577.21, "probability": 0.6694 }, { "start": 24578.58, "end": 24582.34, "probability": 0.9524 }, { "start": 24583.0, "end": 24585.7, "probability": 0.9644 }, { "start": 24587.16, "end": 24588.8, "probability": 0.7639 }, { "start": 24589.34, "end": 24592.84, "probability": 0.9943 }, { "start": 24594.0, "end": 24594.76, "probability": 0.7068 }, { "start": 24596.86, "end": 24599.62, "probability": 0.9966 }, { "start": 24600.1, "end": 24604.6, "probability": 0.9545 }, { "start": 24605.36, "end": 24606.38, "probability": 0.7841 }, { "start": 24607.02, "end": 24610.38, "probability": 0.9826 }, { "start": 24610.4, "end": 24612.98, "probability": 0.9098 }, { "start": 24613.54, "end": 24615.68, "probability": 0.7792 }, { "start": 24616.48, "end": 24617.64, "probability": 0.9124 }, { "start": 24617.74, "end": 24618.48, "probability": 0.6914 }, { "start": 24619.08, "end": 24619.54, "probability": 0.8003 }, { "start": 24620.04, "end": 24622.88, "probability": 0.9868 }, { "start": 24623.3, "end": 24628.08, "probability": 0.97 }, { "start": 24629.82, "end": 24630.26, "probability": 0.5267 }, { "start": 24642.96, "end": 24644.54, "probability": 0.8513 }, { "start": 24649.36, "end": 24650.28, "probability": 0.6608 }, { "start": 24650.94, "end": 24653.28, "probability": 0.8925 }, { "start": 24653.6, "end": 24655.2, "probability": 0.1128 }, { "start": 24655.28, "end": 24655.3, "probability": 0.3532 }, { "start": 24655.3, "end": 24655.76, "probability": 0.7566 }, { "start": 24657.06, "end": 24658.16, "probability": 0.754 }, { "start": 24658.86, "end": 24663.06, "probability": 0.9829 }, { "start": 24663.06, "end": 24666.1, "probability": 0.9939 }, { "start": 24666.72, "end": 24669.18, "probability": 0.9973 }, { "start": 24669.86, "end": 24670.64, "probability": 0.9783 }, { "start": 24671.78, "end": 24674.9, "probability": 0.9845 }, { "start": 24676.38, "end": 24679.02, "probability": 0.9903 }, { "start": 24679.6, "end": 24680.4, "probability": 0.9821 }, { "start": 24682.54, "end": 24686.26, "probability": 0.9961 }, { "start": 24686.88, "end": 24687.16, "probability": 0.9126 }, { "start": 24688.32, "end": 24692.12, "probability": 0.9682 }, { "start": 24693.28, "end": 24694.82, "probability": 0.972 }, { "start": 24695.38, "end": 24697.72, "probability": 0.9563 }, { "start": 24698.26, "end": 24699.4, "probability": 0.9985 }, { "start": 24699.94, "end": 24701.98, "probability": 0.9342 }, { "start": 24702.94, "end": 24706.78, "probability": 0.9965 }, { "start": 24708.1, "end": 24711.12, "probability": 0.9774 }, { "start": 24711.74, "end": 24715.78, "probability": 0.9843 }, { "start": 24716.32, "end": 24717.0, "probability": 0.7333 }, { "start": 24717.64, "end": 24719.38, "probability": 0.8741 }, { "start": 24720.37, "end": 24722.28, "probability": 0.9382 }, { "start": 24723.14, "end": 24723.37, "probability": 0.5788 }, { "start": 24724.82, "end": 24726.76, "probability": 0.7711 }, { "start": 24727.62, "end": 24729.72, "probability": 0.9893 }, { "start": 24730.32, "end": 24732.46, "probability": 0.7739 }, { "start": 24733.46, "end": 24733.56, "probability": 0.2425 }, { "start": 24734.52, "end": 24736.2, "probability": 0.6413 }, { "start": 24736.8, "end": 24740.52, "probability": 0.9971 }, { "start": 24741.38, "end": 24744.08, "probability": 0.8361 }, { "start": 24744.78, "end": 24745.36, "probability": 0.9358 }, { "start": 24746.24, "end": 24746.68, "probability": 0.9772 }, { "start": 24747.28, "end": 24748.0, "probability": 0.9271 }, { "start": 24748.42, "end": 24752.9, "probability": 0.962 }, { "start": 24754.0, "end": 24755.1, "probability": 0.88 }, { "start": 24755.74, "end": 24756.78, "probability": 0.6498 }, { "start": 24757.4, "end": 24759.12, "probability": 0.9865 }, { "start": 24760.48, "end": 24764.66, "probability": 0.9966 }, { "start": 24765.22, "end": 24765.58, "probability": 0.9557 }, { "start": 24766.48, "end": 24768.3, "probability": 0.9716 }, { "start": 24768.86, "end": 24770.5, "probability": 0.7784 }, { "start": 24771.18, "end": 24772.26, "probability": 0.9735 }, { "start": 24773.16, "end": 24777.6, "probability": 0.9937 }, { "start": 24778.44, "end": 24780.42, "probability": 0.996 }, { "start": 24781.36, "end": 24781.78, "probability": 0.9764 }, { "start": 24782.34, "end": 24785.08, "probability": 0.9429 }, { "start": 24785.64, "end": 24787.24, "probability": 0.9832 }, { "start": 24787.94, "end": 24790.54, "probability": 0.8256 }, { "start": 24790.7, "end": 24792.68, "probability": 0.8754 }, { "start": 24793.58, "end": 24796.18, "probability": 0.821 }, { "start": 24796.82, "end": 24798.08, "probability": 0.8568 }, { "start": 24799.06, "end": 24800.58, "probability": 0.9324 }, { "start": 24801.16, "end": 24802.88, "probability": 0.8672 }, { "start": 24803.46, "end": 24804.88, "probability": 0.9786 }, { "start": 24805.56, "end": 24808.8, "probability": 0.9683 }, { "start": 24809.1, "end": 24810.09, "probability": 0.9824 }, { "start": 24810.74, "end": 24811.92, "probability": 0.9496 }, { "start": 24812.18, "end": 24812.5, "probability": 0.6928 }, { "start": 24812.82, "end": 24815.02, "probability": 0.8934 }, { "start": 24815.64, "end": 24819.06, "probability": 0.8866 }, { "start": 24819.52, "end": 24821.33, "probability": 0.6689 }, { "start": 24822.02, "end": 24823.26, "probability": 0.5774 }, { "start": 24826.86, "end": 24828.84, "probability": 0.9155 }, { "start": 24830.96, "end": 24831.94, "probability": 0.0926 }, { "start": 24837.4, "end": 24837.82, "probability": 0.3245 }, { "start": 24849.96, "end": 24853.96, "probability": 0.0494 }, { "start": 24854.58, "end": 24854.92, "probability": 0.8823 }, { "start": 24855.36, "end": 24857.64, "probability": 0.1825 }, { "start": 24858.1, "end": 24859.22, "probability": 0.7285 }, { "start": 24861.88, "end": 24862.82, "probability": 0.5649 }, { "start": 24862.82, "end": 24865.52, "probability": 0.3372 }, { "start": 24866.48, "end": 24869.6, "probability": 0.8106 }, { "start": 24870.78, "end": 24877.1, "probability": 0.9676 }, { "start": 24877.64, "end": 24883.1, "probability": 0.9941 }, { "start": 24883.32, "end": 24887.26, "probability": 0.9404 }, { "start": 24887.52, "end": 24889.44, "probability": 0.9802 }, { "start": 24890.0, "end": 24893.5, "probability": 0.9707 }, { "start": 24894.44, "end": 24901.3, "probability": 0.929 }, { "start": 24902.04, "end": 24904.76, "probability": 0.9348 }, { "start": 24905.38, "end": 24906.54, "probability": 0.3218 }, { "start": 24907.7, "end": 24909.56, "probability": 0.5945 }, { "start": 24910.42, "end": 24911.32, "probability": 0.4203 }, { "start": 24915.38, "end": 24915.5, "probability": 0.0774 }, { "start": 24915.5, "end": 24915.5, "probability": 0.3202 }, { "start": 24915.5, "end": 24915.5, "probability": 0.016 }, { "start": 24915.5, "end": 24915.5, "probability": 0.3394 }, { "start": 24915.5, "end": 24920.6, "probability": 0.3204 }, { "start": 24920.6, "end": 24920.6, "probability": 0.1091 }, { "start": 24920.6, "end": 24920.66, "probability": 0.0256 }, { "start": 24920.84, "end": 24922.48, "probability": 0.4623 }, { "start": 24922.98, "end": 24933.08, "probability": 0.9958 }, { "start": 24933.86, "end": 24936.1, "probability": 0.8707 }, { "start": 24937.78, "end": 24941.72, "probability": 0.9714 }, { "start": 24942.64, "end": 24950.22, "probability": 0.9983 }, { "start": 24950.98, "end": 24953.86, "probability": 0.0435 }, { "start": 24954.62, "end": 24957.42, "probability": 0.6499 }, { "start": 24958.36, "end": 24961.22, "probability": 0.7573 }, { "start": 24961.9, "end": 24964.86, "probability": 0.94 }, { "start": 24965.08, "end": 24966.22, "probability": 0.9137 }, { "start": 24966.32, "end": 24968.0, "probability": 0.9448 }, { "start": 24968.46, "end": 24977.58, "probability": 0.9685 }, { "start": 24978.86, "end": 24979.5, "probability": 0.5181 }, { "start": 24980.28, "end": 24987.66, "probability": 0.7928 }, { "start": 24988.04, "end": 24990.84, "probability": 0.9219 }, { "start": 24991.48, "end": 24992.12, "probability": 0.9191 }, { "start": 24992.84, "end": 24999.9, "probability": 0.9888 }, { "start": 25000.36, "end": 25008.7, "probability": 0.9565 }, { "start": 25009.22, "end": 25014.24, "probability": 0.937 }, { "start": 25015.16, "end": 25015.2, "probability": 0.0029 }, { "start": 25015.2, "end": 25018.6, "probability": 0.9204 }, { "start": 25019.3, "end": 25020.24, "probability": 0.3367 }, { "start": 25020.38, "end": 25023.16, "probability": 0.9818 }, { "start": 25023.36, "end": 25024.4, "probability": 0.8245 }, { "start": 25024.66, "end": 25025.7, "probability": 0.1111 }, { "start": 25026.5, "end": 25027.42, "probability": 0.2251 }, { "start": 25029.26, "end": 25029.3, "probability": 0.0371 }, { "start": 25033.1, "end": 25034.2, "probability": 0.0411 }, { "start": 25034.63, "end": 25038.28, "probability": 0.0205 }, { "start": 25039.06, "end": 25041.98, "probability": 0.1552 }, { "start": 25042.76, "end": 25047.38, "probability": 0.2135 }, { "start": 25047.76, "end": 25048.74, "probability": 0.08 }, { "start": 25050.72, "end": 25051.12, "probability": 0.1694 }, { "start": 25051.12, "end": 25051.22, "probability": 0.208 }, { "start": 25051.44, "end": 25054.07, "probability": 0.1201 }, { "start": 25055.5, "end": 25061.56, "probability": 0.0296 }, { "start": 25061.9, "end": 25064.69, "probability": 0.0732 }, { "start": 25065.04, "end": 25069.62, "probability": 0.1773 }, { "start": 25070.14, "end": 25070.14, "probability": 0.201 }, { "start": 25070.14, "end": 25071.0, "probability": 0.0397 }, { "start": 25071.72, "end": 25072.06, "probability": 0.1872 }, { "start": 25073.38, "end": 25073.52, "probability": 0.1855 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.0, "end": 25104.0, "probability": 0.0 }, { "start": 25104.2, "end": 25106.94, "probability": 0.1841 }, { "start": 25107.02, "end": 25109.58, "probability": 0.7883 }, { "start": 25109.94, "end": 25110.36, "probability": 0.1319 }, { "start": 25110.48, "end": 25111.64, "probability": 0.682 }, { "start": 25112.26, "end": 25114.28, "probability": 0.1054 }, { "start": 25114.28, "end": 25115.26, "probability": 0.5518 }, { "start": 25115.4, "end": 25116.06, "probability": 0.6975 }, { "start": 25116.9, "end": 25117.98, "probability": 0.9218 }, { "start": 25118.22, "end": 25119.14, "probability": 0.8977 }, { "start": 25120.06, "end": 25121.62, "probability": 0.586 }, { "start": 25121.62, "end": 25123.04, "probability": 0.7832 }, { "start": 25126.18, "end": 25126.44, "probability": 0.0637 }, { "start": 25126.44, "end": 25127.42, "probability": 0.7146 }, { "start": 25128.18, "end": 25129.8, "probability": 0.8972 }, { "start": 25130.5, "end": 25134.08, "probability": 0.9768 }, { "start": 25135.14, "end": 25138.84, "probability": 0.3913 }, { "start": 25148.36, "end": 25151.38, "probability": 0.7639 }, { "start": 25153.96, "end": 25155.38, "probability": 0.0466 }, { "start": 25156.2, "end": 25160.34, "probability": 0.0467 }, { "start": 25168.98, "end": 25169.4, "probability": 0.0635 }, { "start": 25173.94, "end": 25178.6, "probability": 0.1944 }, { "start": 25179.62, "end": 25180.92, "probability": 0.0044 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.0, "end": 25234.0, "probability": 0.0 }, { "start": 25234.4, "end": 25234.98, "probability": 0.0434 }, { "start": 25234.98, "end": 25234.98, "probability": 0.0436 }, { "start": 25234.98, "end": 25236.4, "probability": 0.1053 }, { "start": 25236.88, "end": 25238.96, "probability": 0.9668 }, { "start": 25239.08, "end": 25239.34, "probability": 0.5843 }, { "start": 25239.42, "end": 25240.12, "probability": 0.9486 }, { "start": 25240.62, "end": 25243.68, "probability": 0.9964 }, { "start": 25244.04, "end": 25244.6, "probability": 0.6421 }, { "start": 25244.74, "end": 25246.5, "probability": 0.9741 }, { "start": 25247.34, "end": 25252.7, "probability": 0.9875 }, { "start": 25253.56, "end": 25256.04, "probability": 0.9705 }, { "start": 25256.8, "end": 25260.26, "probability": 0.9619 }, { "start": 25261.26, "end": 25263.73, "probability": 0.9023 }, { "start": 25264.5, "end": 25268.28, "probability": 0.9832 }, { "start": 25269.1, "end": 25270.38, "probability": 0.9516 }, { "start": 25270.82, "end": 25272.66, "probability": 0.9316 }, { "start": 25273.1, "end": 25274.04, "probability": 0.9121 }, { "start": 25274.54, "end": 25275.8, "probability": 0.9385 }, { "start": 25275.9, "end": 25276.88, "probability": 0.9934 }, { "start": 25277.96, "end": 25278.94, "probability": 0.7753 }, { "start": 25279.42, "end": 25280.92, "probability": 0.9779 }, { "start": 25281.32, "end": 25283.3, "probability": 0.9661 }, { "start": 25283.38, "end": 25283.8, "probability": 0.9279 }, { "start": 25284.04, "end": 25284.74, "probability": 0.9814 }, { "start": 25285.04, "end": 25286.16, "probability": 0.9853 }, { "start": 25286.56, "end": 25287.4, "probability": 0.6283 }, { "start": 25288.0, "end": 25291.21, "probability": 0.9895 }, { "start": 25292.16, "end": 25297.28, "probability": 0.9913 }, { "start": 25297.68, "end": 25302.18, "probability": 0.9947 }, { "start": 25302.8, "end": 25304.3, "probability": 0.9785 }, { "start": 25304.84, "end": 25308.42, "probability": 0.974 }, { "start": 25308.66, "end": 25309.48, "probability": 0.8184 }, { "start": 25309.56, "end": 25310.04, "probability": 0.8265 }, { "start": 25311.26, "end": 25314.12, "probability": 0.8656 }, { "start": 25315.64, "end": 25316.3, "probability": 0.8654 }, { "start": 25318.7, "end": 25319.94, "probability": 0.9802 }, { "start": 25320.16, "end": 25320.7, "probability": 0.9548 }, { "start": 25321.84, "end": 25322.5, "probability": 0.9842 }, { "start": 25324.54, "end": 25325.42, "probability": 0.9404 }, { "start": 25327.16, "end": 25328.28, "probability": 0.9561 }, { "start": 25329.04, "end": 25329.8, "probability": 0.9634 }, { "start": 25336.8, "end": 25338.72, "probability": 0.7437 }, { "start": 25339.8, "end": 25340.22, "probability": 0.9607 }, { "start": 25342.69, "end": 25344.2, "probability": 0.8354 }, { "start": 25351.68, "end": 25353.73, "probability": 0.5646 }, { "start": 25355.72, "end": 25358.38, "probability": 0.7317 }, { "start": 25359.94, "end": 25362.16, "probability": 0.7493 }, { "start": 25362.34, "end": 25364.02, "probability": 0.9873 }, { "start": 25364.14, "end": 25364.34, "probability": 0.3716 }, { "start": 25365.0, "end": 25368.18, "probability": 0.9741 }, { "start": 25369.0, "end": 25369.9, "probability": 0.837 }, { "start": 25371.32, "end": 25375.2, "probability": 0.9844 }, { "start": 25376.1, "end": 25377.62, "probability": 0.9878 }, { "start": 25378.52, "end": 25381.9, "probability": 0.74 }, { "start": 25382.0, "end": 25385.34, "probability": 0.8398 }, { "start": 25386.02, "end": 25390.3, "probability": 0.9612 }, { "start": 25391.44, "end": 25392.6, "probability": 0.903 }, { "start": 25393.52, "end": 25394.4, "probability": 0.989 }, { "start": 25395.08, "end": 25395.84, "probability": 0.5013 }, { "start": 25396.24, "end": 25396.6, "probability": 0.7487 }, { "start": 25397.72, "end": 25399.64, "probability": 0.8067 }, { "start": 25403.06, "end": 25403.5, "probability": 0.6849 }, { "start": 25403.52, "end": 25405.3, "probability": 0.9724 }, { "start": 25405.38, "end": 25405.89, "probability": 0.1437 }, { "start": 25406.04, "end": 25406.24, "probability": 0.6733 }, { "start": 25408.24, "end": 25409.62, "probability": 0.9185 }, { "start": 25410.34, "end": 25412.38, "probability": 0.9868 }, { "start": 25412.94, "end": 25414.82, "probability": 0.9393 }, { "start": 25415.76, "end": 25417.76, "probability": 0.8421 }, { "start": 25418.48, "end": 25419.54, "probability": 0.9473 }, { "start": 25421.02, "end": 25423.66, "probability": 0.9525 }, { "start": 25424.48, "end": 25430.24, "probability": 0.9987 }, { "start": 25431.68, "end": 25435.51, "probability": 0.9974 }, { "start": 25437.68, "end": 25441.36, "probability": 0.9971 }, { "start": 25442.82, "end": 25443.7, "probability": 0.7712 }, { "start": 25444.32, "end": 25445.72, "probability": 0.9933 }, { "start": 25446.52, "end": 25447.1, "probability": 0.7504 }, { "start": 25447.36, "end": 25449.02, "probability": 0.5997 }, { "start": 25449.26, "end": 25450.84, "probability": 0.5949 }, { "start": 25452.0, "end": 25454.06, "probability": 0.9807 }, { "start": 25454.24, "end": 25456.23, "probability": 0.9923 }, { "start": 25458.16, "end": 25458.92, "probability": 0.9892 }, { "start": 25459.38, "end": 25460.26, "probability": 0.9906 }, { "start": 25460.58, "end": 25461.4, "probability": 0.9732 }, { "start": 25461.6, "end": 25462.76, "probability": 0.978 }, { "start": 25463.54, "end": 25466.12, "probability": 0.9834 }, { "start": 25466.12, "end": 25472.08, "probability": 0.8654 }, { "start": 25472.78, "end": 25476.48, "probability": 0.9621 }, { "start": 25476.96, "end": 25477.9, "probability": 0.6991 }, { "start": 25478.96, "end": 25482.08, "probability": 0.9554 }, { "start": 25482.98, "end": 25484.28, "probability": 0.8787 }, { "start": 25484.88, "end": 25485.4, "probability": 0.7727 }, { "start": 25485.6, "end": 25486.04, "probability": 0.7059 }, { "start": 25486.12, "end": 25492.08, "probability": 0.9507 }, { "start": 25492.44, "end": 25494.8, "probability": 0.9785 }, { "start": 25495.64, "end": 25496.66, "probability": 0.9614 }, { "start": 25497.46, "end": 25499.6, "probability": 0.9989 }, { "start": 25499.7, "end": 25501.2, "probability": 0.8407 }, { "start": 25501.88, "end": 25505.42, "probability": 0.7941 }, { "start": 25505.74, "end": 25508.28, "probability": 0.9346 }, { "start": 25509.27, "end": 25511.74, "probability": 0.8761 }, { "start": 25512.0, "end": 25512.75, "probability": 0.8091 }, { "start": 25513.86, "end": 25514.56, "probability": 0.7421 }, { "start": 25514.62, "end": 25518.4, "probability": 0.9921 }, { "start": 25519.12, "end": 25520.98, "probability": 0.9164 }, { "start": 25522.02, "end": 25522.58, "probability": 0.3698 }, { "start": 25523.28, "end": 25523.58, "probability": 0.8599 }, { "start": 25524.6, "end": 25525.74, "probability": 0.7743 }, { "start": 25526.46, "end": 25528.8, "probability": 0.9148 }, { "start": 25529.18, "end": 25530.8, "probability": 0.9651 }, { "start": 25530.86, "end": 25533.1, "probability": 0.9302 }, { "start": 25534.3, "end": 25535.3, "probability": 0.6776 }, { "start": 25535.46, "end": 25538.78, "probability": 0.9668 }, { "start": 25539.04, "end": 25540.45, "probability": 0.8883 }, { "start": 25540.8, "end": 25541.94, "probability": 0.8148 }, { "start": 25542.02, "end": 25543.64, "probability": 0.9979 }, { "start": 25543.7, "end": 25544.16, "probability": 0.9303 }, { "start": 25544.24, "end": 25548.6, "probability": 0.9802 }, { "start": 25548.6, "end": 25549.04, "probability": 0.4887 }, { "start": 25550.46, "end": 25551.32, "probability": 0.3645 }, { "start": 25552.16, "end": 25552.6, "probability": 0.5988 }, { "start": 25555.03, "end": 25557.15, "probability": 0.9007 }, { "start": 25578.42, "end": 25579.21, "probability": 0.7964 }, { "start": 25581.38, "end": 25581.7, "probability": 0.4174 }, { "start": 25581.76, "end": 25583.7, "probability": 0.7651 }, { "start": 25585.16, "end": 25585.96, "probability": 0.9793 }, { "start": 25587.36, "end": 25588.92, "probability": 0.9114 }, { "start": 25589.62, "end": 25591.18, "probability": 0.9041 }, { "start": 25592.5, "end": 25597.46, "probability": 0.8621 }, { "start": 25598.66, "end": 25602.42, "probability": 0.9952 }, { "start": 25603.14, "end": 25605.04, "probability": 0.979 }, { "start": 25605.64, "end": 25607.58, "probability": 0.9769 }, { "start": 25609.16, "end": 25611.78, "probability": 0.9721 }, { "start": 25612.78, "end": 25615.88, "probability": 0.9606 }, { "start": 25616.48, "end": 25620.58, "probability": 0.9974 }, { "start": 25621.64, "end": 25624.92, "probability": 0.9891 }, { "start": 25625.46, "end": 25629.2, "probability": 0.9991 }, { "start": 25630.18, "end": 25632.2, "probability": 0.916 }, { "start": 25632.78, "end": 25636.44, "probability": 0.9926 }, { "start": 25637.42, "end": 25639.24, "probability": 0.9739 }, { "start": 25639.3, "end": 25641.94, "probability": 0.9897 }, { "start": 25642.7, "end": 25642.9, "probability": 0.6309 }, { "start": 25642.94, "end": 25643.38, "probability": 0.976 }, { "start": 25643.46, "end": 25649.36, "probability": 0.99 }, { "start": 25649.58, "end": 25650.54, "probability": 0.7145 }, { "start": 25651.04, "end": 25653.8, "probability": 0.9977 }, { "start": 25654.42, "end": 25657.86, "probability": 0.936 }, { "start": 25658.44, "end": 25661.86, "probability": 0.9976 }, { "start": 25663.1, "end": 25664.1, "probability": 0.539 }, { "start": 25665.8, "end": 25670.8, "probability": 0.9944 }, { "start": 25670.8, "end": 25676.68, "probability": 0.999 }, { "start": 25676.88, "end": 25679.64, "probability": 0.7806 }, { "start": 25680.98, "end": 25681.2, "probability": 0.0407 }, { "start": 25681.2, "end": 25683.54, "probability": 0.9501 }, { "start": 25684.02, "end": 25686.9, "probability": 0.9871 }, { "start": 25687.72, "end": 25689.24, "probability": 0.9681 }, { "start": 25689.6, "end": 25694.52, "probability": 0.961 }, { "start": 25695.18, "end": 25698.38, "probability": 0.9526 }, { "start": 25698.38, "end": 25701.74, "probability": 0.6467 }, { "start": 25702.36, "end": 25704.82, "probability": 0.9962 }, { "start": 25704.82, "end": 25707.14, "probability": 0.9989 }, { "start": 25708.14, "end": 25708.46, "probability": 0.4774 }, { "start": 25708.62, "end": 25711.0, "probability": 0.9936 }, { "start": 25711.18, "end": 25715.92, "probability": 0.9835 }, { "start": 25716.0, "end": 25720.38, "probability": 0.9863 }, { "start": 25721.24, "end": 25721.82, "probability": 0.9653 }, { "start": 25722.6, "end": 25727.14, "probability": 0.7867 }, { "start": 25727.2, "end": 25732.8, "probability": 0.995 }, { "start": 25732.8, "end": 25737.44, "probability": 0.999 }, { "start": 25738.28, "end": 25741.64, "probability": 0.9692 }, { "start": 25742.28, "end": 25745.22, "probability": 0.9961 }, { "start": 25745.74, "end": 25748.32, "probability": 0.9974 }, { "start": 25748.32, "end": 25752.76, "probability": 0.9712 }, { "start": 25752.98, "end": 25756.9, "probability": 0.998 }, { "start": 25756.9, "end": 25760.64, "probability": 0.9977 }, { "start": 25761.14, "end": 25764.08, "probability": 0.9956 }, { "start": 25764.72, "end": 25766.2, "probability": 0.8784 }, { "start": 25766.88, "end": 25767.8, "probability": 0.8445 }, { "start": 25768.5, "end": 25772.94, "probability": 0.9868 }, { "start": 25773.56, "end": 25777.54, "probability": 0.8963 }, { "start": 25777.68, "end": 25777.98, "probability": 0.7277 }, { "start": 25778.22, "end": 25778.72, "probability": 0.5993 }, { "start": 25779.52, "end": 25782.22, "probability": 0.5972 }, { "start": 25784.58, "end": 25785.16, "probability": 0.7267 }, { "start": 25785.56, "end": 25787.56, "probability": 0.9583 }, { "start": 25800.82, "end": 25801.6, "probability": 0.462 }, { "start": 25801.6, "end": 25802.0, "probability": 0.6667 }, { "start": 25802.4, "end": 25803.74, "probability": 0.7105 }, { "start": 25803.88, "end": 25807.84, "probability": 0.7265 }, { "start": 25809.34, "end": 25811.82, "probability": 0.9814 }, { "start": 25811.96, "end": 25815.1, "probability": 0.9814 }, { "start": 25816.12, "end": 25818.82, "probability": 0.9973 }, { "start": 25819.2, "end": 25819.76, "probability": 0.8285 }, { "start": 25819.84, "end": 25821.62, "probability": 0.8367 }, { "start": 25822.32, "end": 25827.56, "probability": 0.8093 }, { "start": 25828.62, "end": 25832.0, "probability": 0.9906 }, { "start": 25832.52, "end": 25833.2, "probability": 0.8279 }, { "start": 25835.1, "end": 25839.44, "probability": 0.9923 }, { "start": 25839.88, "end": 25842.44, "probability": 0.9072 }, { "start": 25842.5, "end": 25843.34, "probability": 0.7309 }, { "start": 25843.46, "end": 25844.34, "probability": 0.8493 }, { "start": 25844.46, "end": 25845.04, "probability": 0.8737 }, { "start": 25846.82, "end": 25851.2, "probability": 0.9049 }, { "start": 25852.22, "end": 25854.68, "probability": 0.9655 }, { "start": 25855.96, "end": 25856.82, "probability": 0.9223 }, { "start": 25857.02, "end": 25857.66, "probability": 0.7437 }, { "start": 25857.72, "end": 25860.66, "probability": 0.9763 }, { "start": 25862.04, "end": 25867.32, "probability": 0.8296 }, { "start": 25867.54, "end": 25868.68, "probability": 0.6989 }, { "start": 25868.96, "end": 25871.79, "probability": 0.9927 }, { "start": 25872.66, "end": 25876.56, "probability": 0.9762 }, { "start": 25876.76, "end": 25877.74, "probability": 0.8046 }, { "start": 25878.58, "end": 25880.42, "probability": 0.9929 }, { "start": 25881.6, "end": 25883.52, "probability": 0.8931 }, { "start": 25884.44, "end": 25885.18, "probability": 0.8884 }, { "start": 25885.78, "end": 25890.3, "probability": 0.8658 }, { "start": 25891.16, "end": 25893.9, "probability": 0.9639 }, { "start": 25893.96, "end": 25895.26, "probability": 0.9351 }, { "start": 25895.78, "end": 25896.48, "probability": 0.863 }, { "start": 25897.9, "end": 25898.78, "probability": 0.433 }, { "start": 25898.98, "end": 25899.98, "probability": 0.9475 }, { "start": 25901.24, "end": 25901.92, "probability": 0.9805 }, { "start": 25903.12, "end": 25906.56, "probability": 0.9832 }, { "start": 25907.74, "end": 25912.02, "probability": 0.999 }, { "start": 25912.84, "end": 25915.68, "probability": 0.9967 }, { "start": 25916.56, "end": 25919.84, "probability": 0.8923 }, { "start": 25922.0, "end": 25922.84, "probability": 0.9241 }, { "start": 25924.36, "end": 25927.64, "probability": 0.9253 }, { "start": 25928.18, "end": 25930.6, "probability": 0.8363 }, { "start": 25931.18, "end": 25932.24, "probability": 0.7283 }, { "start": 25933.56, "end": 25936.48, "probability": 0.6369 }, { "start": 25937.02, "end": 25938.22, "probability": 0.8239 }, { "start": 25938.92, "end": 25941.56, "probability": 0.9935 }, { "start": 25942.1, "end": 25942.9, "probability": 0.9634 }, { "start": 25943.26, "end": 25944.34, "probability": 0.8105 }, { "start": 25944.4, "end": 25946.13, "probability": 0.9053 }, { "start": 25946.96, "end": 25949.58, "probability": 0.9917 }, { "start": 25950.58, "end": 25954.0, "probability": 0.8941 }, { "start": 25954.8, "end": 25956.7, "probability": 0.9648 }, { "start": 25957.28, "end": 25962.72, "probability": 0.9695 }, { "start": 25963.32, "end": 25963.78, "probability": 0.7912 }, { "start": 25964.52, "end": 25965.04, "probability": 0.8512 }, { "start": 25965.18, "end": 25967.88, "probability": 0.7491 }, { "start": 25969.28, "end": 25969.88, "probability": 0.7758 }, { "start": 25970.72, "end": 25971.88, "probability": 0.9338 }, { "start": 25972.26, "end": 25974.56, "probability": 0.9635 }, { "start": 25974.58, "end": 25978.0, "probability": 0.998 }, { "start": 25978.12, "end": 25979.1, "probability": 0.9808 }, { "start": 25980.36, "end": 25984.66, "probability": 0.9859 }, { "start": 25985.54, "end": 25986.3, "probability": 0.8732 }, { "start": 25987.0, "end": 25987.48, "probability": 0.8413 }, { "start": 25988.04, "end": 25990.24, "probability": 0.9963 }, { "start": 25990.78, "end": 25994.14, "probability": 0.9995 }, { "start": 25994.7, "end": 25997.68, "probability": 0.9952 }, { "start": 25998.14, "end": 25999.18, "probability": 0.7759 }, { "start": 25999.78, "end": 26000.32, "probability": 0.9413 }, { "start": 26000.46, "end": 26000.78, "probability": 0.7542 }, { "start": 26001.5, "end": 26004.36, "probability": 0.9465 }, { "start": 26004.92, "end": 26007.45, "probability": 0.8722 }, { "start": 26011.9, "end": 26012.9, "probability": 0.3893 }, { "start": 26035.28, "end": 26037.12, "probability": 0.5475 }, { "start": 26038.32, "end": 26038.73, "probability": 0.9227 }, { "start": 26041.26, "end": 26043.22, "probability": 0.2834 }, { "start": 26043.8, "end": 26044.32, "probability": 0.5208 }, { "start": 26045.2, "end": 26048.52, "probability": 0.8766 }, { "start": 26049.24, "end": 26051.69, "probability": 0.9787 }, { "start": 26052.58, "end": 26055.5, "probability": 0.7961 }, { "start": 26056.7, "end": 26059.56, "probability": 0.5162 }, { "start": 26060.06, "end": 26062.34, "probability": 0.8552 }, { "start": 26063.04, "end": 26066.16, "probability": 0.9401 }, { "start": 26066.16, "end": 26068.56, "probability": 0.9878 }, { "start": 26069.34, "end": 26071.2, "probability": 0.8532 }, { "start": 26071.74, "end": 26074.3, "probability": 0.9593 }, { "start": 26074.58, "end": 26077.84, "probability": 0.8554 }, { "start": 26079.14, "end": 26081.4, "probability": 0.9946 }, { "start": 26081.48, "end": 26082.37, "probability": 0.9841 }, { "start": 26083.04, "end": 26085.28, "probability": 0.6653 }, { "start": 26085.86, "end": 26086.24, "probability": 0.76 }, { "start": 26086.64, "end": 26087.04, "probability": 0.8389 }, { "start": 26087.12, "end": 26091.14, "probability": 0.9479 }, { "start": 26091.38, "end": 26092.99, "probability": 0.939 }, { "start": 26093.9, "end": 26097.82, "probability": 0.8968 }, { "start": 26097.86, "end": 26098.3, "probability": 0.6828 }, { "start": 26098.74, "end": 26100.23, "probability": 0.9612 }, { "start": 26100.36, "end": 26102.2, "probability": 0.4694 }, { "start": 26102.2, "end": 26102.7, "probability": 0.7044 }, { "start": 26102.8, "end": 26104.26, "probability": 0.0991 }, { "start": 26104.56, "end": 26107.52, "probability": 0.9006 }, { "start": 26107.54, "end": 26113.68, "probability": 0.9712 }, { "start": 26114.32, "end": 26118.13, "probability": 0.9557 }, { "start": 26118.92, "end": 26119.86, "probability": 0.9233 }, { "start": 26120.1, "end": 26123.7, "probability": 0.9142 }, { "start": 26123.7, "end": 26126.76, "probability": 0.9912 }, { "start": 26126.92, "end": 26128.76, "probability": 0.7507 }, { "start": 26129.24, "end": 26130.64, "probability": 0.9795 }, { "start": 26131.04, "end": 26133.12, "probability": 0.9703 }, { "start": 26133.62, "end": 26135.3, "probability": 0.5197 }, { "start": 26135.38, "end": 26135.62, "probability": 0.64 }, { "start": 26135.7, "end": 26136.86, "probability": 0.9671 }, { "start": 26137.2, "end": 26139.4, "probability": 0.9885 }, { "start": 26140.08, "end": 26142.16, "probability": 0.9966 }, { "start": 26143.2, "end": 26143.76, "probability": 0.497 }, { "start": 26143.82, "end": 26147.82, "probability": 0.821 }, { "start": 26148.88, "end": 26152.0, "probability": 0.9595 }, { "start": 26152.08, "end": 26155.6, "probability": 0.9771 }, { "start": 26155.76, "end": 26157.16, "probability": 0.9818 }, { "start": 26157.74, "end": 26161.54, "probability": 0.9257 }, { "start": 26161.72, "end": 26167.8, "probability": 0.7955 }, { "start": 26168.0, "end": 26171.5, "probability": 0.932 }, { "start": 26172.78, "end": 26177.46, "probability": 0.6658 }, { "start": 26178.02, "end": 26183.0, "probability": 0.8373 }, { "start": 26183.8, "end": 26187.44, "probability": 0.9893 }, { "start": 26188.18, "end": 26190.16, "probability": 0.8752 }, { "start": 26190.28, "end": 26190.56, "probability": 0.9585 }, { "start": 26190.64, "end": 26194.6, "probability": 0.9763 }, { "start": 26194.98, "end": 26196.92, "probability": 0.8536 }, { "start": 26197.42, "end": 26200.76, "probability": 0.9578 }, { "start": 26200.88, "end": 26201.78, "probability": 0.6894 }, { "start": 26202.14, "end": 26202.88, "probability": 0.9053 }, { "start": 26203.08, "end": 26204.72, "probability": 0.8723 }, { "start": 26206.06, "end": 26209.42, "probability": 0.9652 }, { "start": 26209.82, "end": 26214.96, "probability": 0.7875 }, { "start": 26215.12, "end": 26217.74, "probability": 0.7699 }, { "start": 26218.08, "end": 26220.78, "probability": 0.8859 }, { "start": 26221.38, "end": 26225.08, "probability": 0.4427 }, { "start": 26225.58, "end": 26225.9, "probability": 0.5086 }, { "start": 26226.58, "end": 26227.68, "probability": 0.8489 }, { "start": 26227.94, "end": 26230.88, "probability": 0.7503 }, { "start": 26231.08, "end": 26232.24, "probability": 0.8953 }, { "start": 26232.36, "end": 26233.3, "probability": 0.4776 }, { "start": 26233.76, "end": 26235.62, "probability": 0.6083 }, { "start": 26235.7, "end": 26236.42, "probability": 0.8078 }, { "start": 26236.5, "end": 26243.12, "probability": 0.9051 }, { "start": 26243.88, "end": 26246.58, "probability": 0.7903 }, { "start": 26246.96, "end": 26249.84, "probability": 0.9968 }, { "start": 26249.84, "end": 26253.46, "probability": 0.9004 }, { "start": 26253.96, "end": 26256.52, "probability": 0.9955 }, { "start": 26256.52, "end": 26260.02, "probability": 0.7983 }, { "start": 26260.54, "end": 26261.47, "probability": 0.9607 }, { "start": 26262.0, "end": 26263.02, "probability": 0.7675 }, { "start": 26263.42, "end": 26265.02, "probability": 0.8952 }, { "start": 26265.16, "end": 26268.34, "probability": 0.9673 }, { "start": 26268.76, "end": 26271.2, "probability": 0.9827 }, { "start": 26271.7, "end": 26274.44, "probability": 0.9417 }, { "start": 26274.44, "end": 26277.68, "probability": 0.9835 }, { "start": 26277.82, "end": 26279.68, "probability": 0.8948 }, { "start": 26279.74, "end": 26280.6, "probability": 0.6998 }, { "start": 26280.74, "end": 26281.56, "probability": 0.7115 }, { "start": 26281.68, "end": 26282.54, "probability": 0.9248 }, { "start": 26282.62, "end": 26283.36, "probability": 0.761 }, { "start": 26283.74, "end": 26287.88, "probability": 0.9723 }, { "start": 26289.06, "end": 26292.18, "probability": 0.9938 }, { "start": 26292.58, "end": 26294.94, "probability": 0.9731 }, { "start": 26294.94, "end": 26299.0, "probability": 0.9237 }, { "start": 26299.06, "end": 26302.27, "probability": 0.6638 }, { "start": 26302.38, "end": 26305.34, "probability": 0.9716 }, { "start": 26305.9, "end": 26308.36, "probability": 0.7302 }, { "start": 26308.7, "end": 26312.32, "probability": 0.9911 }, { "start": 26312.64, "end": 26316.34, "probability": 0.9941 }, { "start": 26316.68, "end": 26318.02, "probability": 0.0935 }, { "start": 26318.02, "end": 26320.26, "probability": 0.6345 }, { "start": 26320.38, "end": 26320.4, "probability": 0.5709 }, { "start": 26320.62, "end": 26322.7, "probability": 0.8002 }, { "start": 26322.86, "end": 26325.16, "probability": 0.9207 }, { "start": 26325.54, "end": 26328.72, "probability": 0.834 }, { "start": 26329.26, "end": 26329.46, "probability": 0.8517 }, { "start": 26329.78, "end": 26334.7, "probability": 0.8751 }, { "start": 26334.7, "end": 26339.76, "probability": 0.9971 }, { "start": 26339.78, "end": 26340.22, "probability": 0.6751 }, { "start": 26341.2, "end": 26342.18, "probability": 0.5798 }, { "start": 26344.08, "end": 26344.2, "probability": 0.9236 }, { "start": 26348.08, "end": 26349.22, "probability": 0.5969 }, { "start": 26352.52, "end": 26353.56, "probability": 0.9776 }, { "start": 26354.58, "end": 26357.64, "probability": 0.9766 }, { "start": 26358.94, "end": 26360.34, "probability": 0.9912 }, { "start": 26361.38, "end": 26363.32, "probability": 0.8152 }, { "start": 26364.92, "end": 26366.12, "probability": 0.991 }, { "start": 26366.7, "end": 26369.2, "probability": 0.9952 }, { "start": 26370.08, "end": 26372.24, "probability": 0.8923 }, { "start": 26399.2, "end": 26399.87, "probability": 0.4199 }, { "start": 26403.62, "end": 26405.08, "probability": 0.9817 }, { "start": 26406.64, "end": 26408.26, "probability": 0.8382 }, { "start": 26408.92, "end": 26415.94, "probability": 0.6687 }, { "start": 26416.78, "end": 26419.18, "probability": 0.9922 }, { "start": 26422.32, "end": 26425.48, "probability": 0.6072 }, { "start": 26425.72, "end": 26428.06, "probability": 0.577 }, { "start": 26428.16, "end": 26429.09, "probability": 0.9452 }, { "start": 26429.86, "end": 26431.54, "probability": 0.9561 }, { "start": 26432.34, "end": 26432.98, "probability": 0.9536 }, { "start": 26434.04, "end": 26437.28, "probability": 0.7099 }, { "start": 26438.16, "end": 26441.05, "probability": 0.7944 }, { "start": 26441.46, "end": 26449.33, "probability": 0.9293 }, { "start": 26449.62, "end": 26454.32, "probability": 0.7215 }, { "start": 26454.4, "end": 26456.86, "probability": 0.9558 }, { "start": 26457.34, "end": 26457.6, "probability": 0.419 }, { "start": 26457.62, "end": 26458.54, "probability": 0.9292 }, { "start": 26458.84, "end": 26460.5, "probability": 0.6879 }, { "start": 26461.38, "end": 26461.82, "probability": 0.7028 }, { "start": 26461.82, "end": 26462.2, "probability": 0.8906 }, { "start": 26462.82, "end": 26463.64, "probability": 0.9878 }, { "start": 26463.64, "end": 26465.9, "probability": 0.9764 }, { "start": 26466.58, "end": 26469.12, "probability": 0.9688 }, { "start": 26469.94, "end": 26470.78, "probability": 0.0001 }, { "start": 26471.6, "end": 26475.4, "probability": 0.7375 }, { "start": 26476.02, "end": 26477.48, "probability": 0.7769 }, { "start": 26478.64, "end": 26480.86, "probability": 0.8717 }, { "start": 26481.46, "end": 26483.06, "probability": 0.9441 }, { "start": 26483.72, "end": 26485.72, "probability": 0.8026 }, { "start": 26485.78, "end": 26487.92, "probability": 0.8604 }, { "start": 26488.14, "end": 26488.6, "probability": 0.1452 }, { "start": 26488.68, "end": 26489.98, "probability": 0.7436 }, { "start": 26490.44, "end": 26490.98, "probability": 0.7497 }, { "start": 26491.06, "end": 26494.5, "probability": 0.7735 }, { "start": 26494.74, "end": 26495.18, "probability": 0.777 }, { "start": 26495.86, "end": 26497.76, "probability": 0.9578 }, { "start": 26498.54, "end": 26501.9, "probability": 0.9749 }, { "start": 26502.92, "end": 26505.46, "probability": 0.8317 }, { "start": 26506.38, "end": 26510.54, "probability": 0.647 }, { "start": 26511.34, "end": 26516.14, "probability": 0.9675 }, { "start": 26516.25, "end": 26520.22, "probability": 0.9504 }, { "start": 26520.52, "end": 26521.8, "probability": 0.6564 }, { "start": 26523.16, "end": 26523.75, "probability": 0.7594 }, { "start": 26525.2, "end": 26527.16, "probability": 0.9567 }, { "start": 26528.4, "end": 26529.88, "probability": 0.0544 }, { "start": 26530.0, "end": 26534.24, "probability": 0.7825 }, { "start": 26535.06, "end": 26537.58, "probability": 0.9337 }, { "start": 26539.22, "end": 26539.8, "probability": 0.5452 }, { "start": 26539.84, "end": 26541.38, "probability": 0.7101 }, { "start": 26541.58, "end": 26542.08, "probability": 0.4616 }, { "start": 26542.66, "end": 26546.36, "probability": 0.9447 }, { "start": 26546.88, "end": 26548.0, "probability": 0.6281 }, { "start": 26548.98, "end": 26551.06, "probability": 0.9064 }, { "start": 26552.88, "end": 26555.56, "probability": 0.8146 }, { "start": 26555.72, "end": 26557.32, "probability": 0.9884 }, { "start": 26557.34, "end": 26559.88, "probability": 0.9964 }, { "start": 26561.46, "end": 26562.06, "probability": 0.9955 }, { "start": 26562.74, "end": 26564.86, "probability": 0.6029 }, { "start": 26565.44, "end": 26566.44, "probability": 0.6134 }, { "start": 26566.9, "end": 26567.44, "probability": 0.7541 }, { "start": 26568.86, "end": 26570.06, "probability": 0.4889 }, { "start": 26570.14, "end": 26571.6, "probability": 0.9537 }, { "start": 26573.06, "end": 26574.82, "probability": 0.5638 }, { "start": 26575.62, "end": 26578.23, "probability": 0.99 }, { "start": 26578.6, "end": 26581.72, "probability": 0.9912 }, { "start": 26582.94, "end": 26585.94, "probability": 0.7257 }, { "start": 26587.26, "end": 26588.18, "probability": 0.9465 }, { "start": 26588.32, "end": 26590.95, "probability": 0.9932 }, { "start": 26592.54, "end": 26593.08, "probability": 0.6826 }, { "start": 26593.16, "end": 26594.36, "probability": 0.9985 }, { "start": 26595.52, "end": 26597.14, "probability": 0.9888 }, { "start": 26598.22, "end": 26598.8, "probability": 0.7956 }, { "start": 26598.98, "end": 26604.94, "probability": 0.9883 }, { "start": 26606.0, "end": 26608.82, "probability": 0.7164 }, { "start": 26609.4, "end": 26610.4, "probability": 0.8014 }, { "start": 26610.52, "end": 26611.27, "probability": 0.7087 }, { "start": 26612.48, "end": 26614.68, "probability": 0.7725 }, { "start": 26615.22, "end": 26617.38, "probability": 0.8551 }, { "start": 26617.74, "end": 26619.94, "probability": 0.8953 }, { "start": 26621.68, "end": 26623.2, "probability": 0.7088 }, { "start": 26623.36, "end": 26627.72, "probability": 0.6266 }, { "start": 26628.18, "end": 26630.28, "probability": 0.9829 }, { "start": 26631.36, "end": 26631.98, "probability": 0.8406 }, { "start": 26638.0, "end": 26639.4, "probability": 0.8737 }, { "start": 26659.1, "end": 26660.42, "probability": 0.4969 }, { "start": 26661.04, "end": 26664.22, "probability": 0.2103 }, { "start": 26664.48, "end": 26666.0, "probability": 0.0577 }, { "start": 26666.0, "end": 26669.72, "probability": 0.0491 }, { "start": 26670.4, "end": 26671.4, "probability": 0.3125 }, { "start": 26693.66, "end": 26695.06, "probability": 0.1669 }, { "start": 26695.72, "end": 26696.46, "probability": 0.9316 }, { "start": 26697.36, "end": 26699.9, "probability": 0.8693 }, { "start": 26700.86, "end": 26701.08, "probability": 0.9203 }, { "start": 26702.3, "end": 26702.8, "probability": 0.3404 }, { "start": 26703.6, "end": 26705.68, "probability": 0.9664 }, { "start": 26706.66, "end": 26707.58, "probability": 0.8454 }, { "start": 26708.98, "end": 26709.88, "probability": 0.6492 }, { "start": 26709.98, "end": 26710.6, "probability": 0.9594 }, { "start": 26711.6, "end": 26712.64, "probability": 0.78 }, { "start": 26713.72, "end": 26716.08, "probability": 0.9613 }, { "start": 26717.84, "end": 26720.88, "probability": 0.9927 }, { "start": 26721.04, "end": 26723.0, "probability": 0.623 }, { "start": 26723.38, "end": 26723.66, "probability": 0.7833 }, { "start": 26723.86, "end": 26725.32, "probability": 0.9299 }, { "start": 26725.68, "end": 26728.72, "probability": 0.9575 }, { "start": 26729.59, "end": 26733.4, "probability": 0.995 }, { "start": 26734.2, "end": 26735.46, "probability": 0.0571 }, { "start": 26735.46, "end": 26738.78, "probability": 0.3634 }, { "start": 26738.84, "end": 26739.96, "probability": 0.7489 }, { "start": 26740.72, "end": 26741.16, "probability": 0.4688 }, { "start": 26741.28, "end": 26742.38, "probability": 0.9027 }, { "start": 26742.56, "end": 26745.54, "probability": 0.9771 }, { "start": 26746.48, "end": 26747.42, "probability": 0.6407 }, { "start": 26747.58, "end": 26747.6, "probability": 0.3426 }, { "start": 26747.6, "end": 26748.12, "probability": 0.7754 }, { "start": 26749.16, "end": 26750.81, "probability": 0.011 }, { "start": 26751.26, "end": 26753.4, "probability": 0.6131 }, { "start": 26754.24, "end": 26754.3, "probability": 0.0359 }, { "start": 26754.36, "end": 26754.54, "probability": 0.0837 }, { "start": 26754.54, "end": 26755.22, "probability": 0.0578 }, { "start": 26755.39, "end": 26755.71, "probability": 0.2342 }, { "start": 26755.82, "end": 26757.4, "probability": 0.1392 }, { "start": 26758.02, "end": 26759.13, "probability": 0.5692 }, { "start": 26759.46, "end": 26759.46, "probability": 0.2761 }, { "start": 26759.7, "end": 26762.44, "probability": 0.9917 }, { "start": 26762.44, "end": 26765.46, "probability": 0.8448 }, { "start": 26766.24, "end": 26768.6, "probability": 0.8014 }, { "start": 26768.8, "end": 26769.36, "probability": 0.0091 }, { "start": 26769.48, "end": 26770.34, "probability": 0.8664 }, { "start": 26770.74, "end": 26772.78, "probability": 0.9805 }, { "start": 26773.74, "end": 26776.84, "probability": 0.9974 }, { "start": 26777.58, "end": 26781.52, "probability": 0.9473 }, { "start": 26782.2, "end": 26783.72, "probability": 0.982 }, { "start": 26784.32, "end": 26786.22, "probability": 0.9154 }, { "start": 26786.54, "end": 26788.25, "probability": 0.7059 }, { "start": 26790.56, "end": 26793.9, "probability": 0.5017 }, { "start": 26794.62, "end": 26796.6, "probability": 0.6713 }, { "start": 26797.44, "end": 26799.7, "probability": 0.7949 }, { "start": 26800.12, "end": 26801.3, "probability": 0.4335 }, { "start": 26801.34, "end": 26803.36, "probability": 0.9811 }, { "start": 26804.0, "end": 26806.9, "probability": 0.9927 }, { "start": 26807.96, "end": 26810.98, "probability": 0.7989 }, { "start": 26811.91, "end": 26813.22, "probability": 0.6565 }, { "start": 26813.36, "end": 26815.84, "probability": 0.8709 }, { "start": 26817.56, "end": 26820.9, "probability": 0.5519 }, { "start": 26821.28, "end": 26823.08, "probability": 0.3535 }, { "start": 26824.24, "end": 26824.26, "probability": 0.0482 }, { "start": 26824.46, "end": 26829.76, "probability": 0.9778 }, { "start": 26829.88, "end": 26832.52, "probability": 0.7376 }, { "start": 26832.76, "end": 26834.22, "probability": 0.5874 }, { "start": 26834.5, "end": 26834.94, "probability": 0.0258 }, { "start": 26835.46, "end": 26836.96, "probability": 0.5034 }, { "start": 26837.46, "end": 26837.86, "probability": 0.6839 }, { "start": 26838.04, "end": 26844.34, "probability": 0.995 }, { "start": 26845.02, "end": 26847.18, "probability": 0.8105 }, { "start": 26848.33, "end": 26851.88, "probability": 0.984 }, { "start": 26852.42, "end": 26852.92, "probability": 0.3302 }, { "start": 26852.92, "end": 26853.68, "probability": 0.8966 }, { "start": 26853.82, "end": 26854.36, "probability": 0.1755 }, { "start": 26855.0, "end": 26855.48, "probability": 0.7489 }, { "start": 26855.78, "end": 26857.26, "probability": 0.7818 }, { "start": 26858.08, "end": 26860.96, "probability": 0.8846 }, { "start": 26861.04, "end": 26862.26, "probability": 0.3945 }, { "start": 26862.42, "end": 26864.96, "probability": 0.7599 }, { "start": 26865.22, "end": 26865.94, "probability": 0.7444 }, { "start": 26866.5, "end": 26867.54, "probability": 0.5464 }, { "start": 26867.68, "end": 26867.9, "probability": 0.6967 }, { "start": 26868.96, "end": 26870.16, "probability": 0.9784 }, { "start": 26870.52, "end": 26873.41, "probability": 0.8906 }, { "start": 26873.66, "end": 26877.58, "probability": 0.9702 }, { "start": 26878.22, "end": 26880.4, "probability": 0.989 }, { "start": 26880.46, "end": 26881.58, "probability": 0.6126 }, { "start": 26882.18, "end": 26882.88, "probability": 0.9701 }, { "start": 26883.78, "end": 26886.44, "probability": 0.9563 }, { "start": 26887.16, "end": 26889.8, "probability": 0.9974 }, { "start": 26890.56, "end": 26896.16, "probability": 0.8059 }, { "start": 26896.76, "end": 26899.38, "probability": 0.9282 }, { "start": 26900.62, "end": 26902.1, "probability": 0.9766 }, { "start": 26902.56, "end": 26904.88, "probability": 0.9472 }, { "start": 26905.44, "end": 26907.86, "probability": 0.9461 }, { "start": 26908.2, "end": 26910.16, "probability": 0.8336 }, { "start": 26911.02, "end": 26912.44, "probability": 0.9624 }, { "start": 26912.54, "end": 26913.1, "probability": 0.4059 }, { "start": 26913.34, "end": 26914.12, "probability": 0.6376 }, { "start": 26914.16, "end": 26915.42, "probability": 0.9169 }, { "start": 26915.52, "end": 26917.26, "probability": 0.3562 }, { "start": 26917.28, "end": 26918.62, "probability": 0.9561 }, { "start": 26919.5, "end": 26921.6, "probability": 0.8507 }, { "start": 26922.38, "end": 26923.9, "probability": 0.9808 }, { "start": 26924.62, "end": 26925.26, "probability": 0.9237 }, { "start": 26925.9, "end": 26926.22, "probability": 0.8138 }, { "start": 26927.44, "end": 26927.9, "probability": 0.6418 }, { "start": 26928.0, "end": 26929.68, "probability": 0.8971 }, { "start": 26945.9, "end": 26946.92, "probability": 0.6119 }, { "start": 26948.2, "end": 26948.96, "probability": 0.8033 }, { "start": 26950.7, "end": 26951.8, "probability": 0.9871 }, { "start": 26953.52, "end": 26955.99, "probability": 0.9163 }, { "start": 26957.94, "end": 26959.26, "probability": 0.9973 }, { "start": 26960.04, "end": 26963.1, "probability": 0.8744 }, { "start": 26963.64, "end": 26964.75, "probability": 0.9546 }, { "start": 26965.56, "end": 26966.76, "probability": 0.9569 }, { "start": 26968.5, "end": 26969.3, "probability": 0.888 }, { "start": 26969.76, "end": 26970.56, "probability": 0.769 }, { "start": 26970.68, "end": 26972.38, "probability": 0.9866 }, { "start": 26973.66, "end": 26976.22, "probability": 0.999 }, { "start": 26977.08, "end": 26978.08, "probability": 0.8984 }, { "start": 26980.0, "end": 26982.24, "probability": 0.9989 }, { "start": 26983.04, "end": 26983.84, "probability": 0.8719 }, { "start": 26986.92, "end": 26990.32, "probability": 0.9941 }, { "start": 26991.0, "end": 26991.6, "probability": 0.881 }, { "start": 26992.56, "end": 26994.5, "probability": 0.9407 }, { "start": 26995.92, "end": 27001.04, "probability": 0.9926 }, { "start": 27002.12, "end": 27003.08, "probability": 0.8139 }, { "start": 27003.86, "end": 27007.0, "probability": 0.9958 }, { "start": 27007.78, "end": 27009.14, "probability": 0.963 }, { "start": 27009.82, "end": 27012.5, "probability": 0.9915 }, { "start": 27014.12, "end": 27019.38, "probability": 0.9531 }, { "start": 27020.62, "end": 27023.3, "probability": 0.824 }, { "start": 27023.3, "end": 27024.34, "probability": 0.9622 }, { "start": 27024.46, "end": 27027.16, "probability": 0.9976 }, { "start": 27027.66, "end": 27028.58, "probability": 0.9966 }, { "start": 27029.46, "end": 27030.61, "probability": 0.9982 }, { "start": 27033.78, "end": 27038.42, "probability": 0.9705 }, { "start": 27038.5, "end": 27039.06, "probability": 0.9165 }, { "start": 27039.28, "end": 27040.4, "probability": 0.8635 }, { "start": 27041.84, "end": 27044.44, "probability": 0.9886 }, { "start": 27044.58, "end": 27044.82, "probability": 0.845 }, { "start": 27044.86, "end": 27046.08, "probability": 0.5602 }, { "start": 27046.42, "end": 27048.22, "probability": 0.7364 }, { "start": 27048.66, "end": 27048.66, "probability": 0.2671 }, { "start": 27048.66, "end": 27048.82, "probability": 0.361 }, { "start": 27048.88, "end": 27050.69, "probability": 0.9592 }, { "start": 27051.34, "end": 27052.58, "probability": 0.7513 }, { "start": 27053.42, "end": 27054.0, "probability": 0.2457 }, { "start": 27055.4, "end": 27057.32, "probability": 0.9515 }, { "start": 27058.38, "end": 27060.28, "probability": 0.9707 }, { "start": 27061.1, "end": 27065.1, "probability": 0.9438 }, { "start": 27065.92, "end": 27066.52, "probability": 0.9651 }, { "start": 27067.26, "end": 27070.42, "probability": 0.9708 }, { "start": 27071.14, "end": 27072.3, "probability": 0.7603 }, { "start": 27073.82, "end": 27074.35, "probability": 0.8715 }, { "start": 27075.04, "end": 27078.62, "probability": 0.9641 }, { "start": 27078.7, "end": 27079.28, "probability": 0.8899 }, { "start": 27080.82, "end": 27082.22, "probability": 0.9543 }, { "start": 27082.5, "end": 27085.12, "probability": 0.9224 }, { "start": 27086.88, "end": 27088.36, "probability": 0.9179 }, { "start": 27088.76, "end": 27090.08, "probability": 0.9353 }, { "start": 27091.04, "end": 27095.38, "probability": 0.9916 }, { "start": 27097.5, "end": 27098.36, "probability": 0.9726 }, { "start": 27099.5, "end": 27100.98, "probability": 0.9309 }, { "start": 27102.46, "end": 27106.06, "probability": 0.7857 }, { "start": 27106.58, "end": 27110.22, "probability": 0.9868 }, { "start": 27110.74, "end": 27113.2, "probability": 0.9699 }, { "start": 27115.32, "end": 27117.04, "probability": 0.9967 }, { "start": 27117.12, "end": 27119.92, "probability": 0.9755 }, { "start": 27120.02, "end": 27120.56, "probability": 0.6454 }, { "start": 27120.74, "end": 27121.72, "probability": 0.9708 }, { "start": 27122.18, "end": 27126.46, "probability": 0.9859 }, { "start": 27126.68, "end": 27128.0, "probability": 0.9216 }, { "start": 27128.16, "end": 27128.78, "probability": 0.8205 }, { "start": 27129.1, "end": 27129.66, "probability": 0.6256 }, { "start": 27129.94, "end": 27131.88, "probability": 0.9672 }, { "start": 27132.32, "end": 27135.58, "probability": 0.8419 }, { "start": 27138.2, "end": 27138.66, "probability": 0.8177 }, { "start": 27138.76, "end": 27140.57, "probability": 0.9922 }, { "start": 27140.8, "end": 27142.98, "probability": 0.9307 }, { "start": 27143.34, "end": 27150.92, "probability": 0.98 }, { "start": 27150.92, "end": 27154.3, "probability": 0.9966 }, { "start": 27155.2, "end": 27158.52, "probability": 0.9768 }, { "start": 27159.94, "end": 27163.5, "probability": 0.9976 }, { "start": 27163.5, "end": 27166.04, "probability": 0.9982 }, { "start": 27166.62, "end": 27167.46, "probability": 0.4195 }, { "start": 27168.3, "end": 27172.4, "probability": 0.7636 }, { "start": 27173.24, "end": 27175.94, "probability": 0.516 }, { "start": 27176.24, "end": 27178.48, "probability": 0.9199 }, { "start": 27178.94, "end": 27181.72, "probability": 0.9044 }, { "start": 27182.24, "end": 27186.92, "probability": 0.9616 }, { "start": 27187.46, "end": 27190.32, "probability": 0.8447 }, { "start": 27191.4, "end": 27192.0, "probability": 0.9267 }, { "start": 27192.46, "end": 27193.1, "probability": 0.9682 }, { "start": 27193.42, "end": 27194.02, "probability": 0.9849 }, { "start": 27194.24, "end": 27194.98, "probability": 0.9755 }, { "start": 27195.16, "end": 27197.5, "probability": 0.9538 }, { "start": 27197.92, "end": 27199.4, "probability": 0.4783 }, { "start": 27200.76, "end": 27201.82, "probability": 0.1391 }, { "start": 27202.88, "end": 27204.86, "probability": 0.9466 }, { "start": 27230.28, "end": 27231.06, "probability": 0.7085 }, { "start": 27231.18, "end": 27232.38, "probability": 0.9006 }, { "start": 27232.54, "end": 27234.78, "probability": 0.9888 }, { "start": 27235.26, "end": 27240.08, "probability": 0.9541 }, { "start": 27240.16, "end": 27241.26, "probability": 0.9317 }, { "start": 27242.04, "end": 27246.88, "probability": 0.9189 }, { "start": 27247.12, "end": 27249.4, "probability": 0.7893 }, { "start": 27250.12, "end": 27250.48, "probability": 0.741 }, { "start": 27253.24, "end": 27253.48, "probability": 0.3799 }, { "start": 27253.48, "end": 27255.22, "probability": 0.8612 }, { "start": 27256.52, "end": 27258.16, "probability": 0.9917 }, { "start": 27258.7, "end": 27260.6, "probability": 0.9551 }, { "start": 27261.96, "end": 27263.04, "probability": 0.7755 }, { "start": 27263.96, "end": 27266.32, "probability": 0.9943 }, { "start": 27267.64, "end": 27267.84, "probability": 0.749 }, { "start": 27268.6, "end": 27269.2, "probability": 0.8006 }, { "start": 27270.3, "end": 27271.0, "probability": 0.9971 }, { "start": 27272.51, "end": 27278.68, "probability": 0.6976 }, { "start": 27278.94, "end": 27282.36, "probability": 0.9427 }, { "start": 27284.1, "end": 27286.64, "probability": 0.9823 }, { "start": 27288.02, "end": 27290.16, "probability": 0.8893 }, { "start": 27290.28, "end": 27291.14, "probability": 0.726 }, { "start": 27291.38, "end": 27292.2, "probability": 0.3501 }, { "start": 27293.32, "end": 27296.88, "probability": 0.6267 }, { "start": 27297.64, "end": 27299.26, "probability": 0.9001 }, { "start": 27300.5, "end": 27304.2, "probability": 0.9521 }, { "start": 27304.2, "end": 27307.46, "probability": 0.887 }, { "start": 27307.88, "end": 27308.74, "probability": 0.9186 }, { "start": 27310.0, "end": 27311.2, "probability": 0.8099 }, { "start": 27312.74, "end": 27315.18, "probability": 0.8146 }, { "start": 27316.72, "end": 27320.04, "probability": 0.9909 }, { "start": 27320.1, "end": 27320.38, "probability": 0.7371 }, { "start": 27320.54, "end": 27321.14, "probability": 0.7655 }, { "start": 27321.3, "end": 27323.62, "probability": 0.9856 }, { "start": 27324.68, "end": 27325.66, "probability": 0.7618 }, { "start": 27326.62, "end": 27330.82, "probability": 0.9453 }, { "start": 27331.42, "end": 27332.8, "probability": 0.9361 }, { "start": 27333.5, "end": 27334.4, "probability": 0.8553 }, { "start": 27335.08, "end": 27336.34, "probability": 0.7835 }, { "start": 27336.78, "end": 27339.4, "probability": 0.8524 }, { "start": 27340.52, "end": 27345.28, "probability": 0.9959 }, { "start": 27346.32, "end": 27348.52, "probability": 0.6692 }, { "start": 27349.82, "end": 27356.64, "probability": 0.9733 }, { "start": 27356.8, "end": 27357.58, "probability": 0.8655 }, { "start": 27359.24, "end": 27361.8, "probability": 0.9966 }, { "start": 27362.84, "end": 27363.84, "probability": 0.6415 }, { "start": 27364.02, "end": 27368.58, "probability": 0.9868 }, { "start": 27368.58, "end": 27372.74, "probability": 0.9878 }, { "start": 27372.94, "end": 27374.94, "probability": 0.9635 }, { "start": 27375.94, "end": 27379.8, "probability": 0.9163 }, { "start": 27381.54, "end": 27385.34, "probability": 0.9905 }, { "start": 27386.28, "end": 27393.4, "probability": 0.8226 }, { "start": 27394.6, "end": 27398.96, "probability": 0.9079 }, { "start": 27399.06, "end": 27403.0, "probability": 0.9993 }, { "start": 27404.22, "end": 27405.74, "probability": 0.7112 }, { "start": 27406.84, "end": 27407.64, "probability": 0.856 }, { "start": 27408.84, "end": 27411.44, "probability": 0.8246 }, { "start": 27414.16, "end": 27416.48, "probability": 0.9915 }, { "start": 27418.5, "end": 27421.38, "probability": 0.9393 }, { "start": 27422.56, "end": 27425.3, "probability": 0.9982 }, { "start": 27426.56, "end": 27429.86, "probability": 0.9967 }, { "start": 27429.96, "end": 27431.04, "probability": 0.5095 }, { "start": 27431.34, "end": 27434.28, "probability": 0.9635 }, { "start": 27434.36, "end": 27435.24, "probability": 0.9503 }, { "start": 27435.96, "end": 27441.56, "probability": 0.9957 }, { "start": 27442.18, "end": 27445.5, "probability": 0.9624 }, { "start": 27447.1, "end": 27447.82, "probability": 0.6347 }, { "start": 27448.04, "end": 27449.8, "probability": 0.753 }, { "start": 27449.94, "end": 27452.72, "probability": 0.9232 }, { "start": 27453.66, "end": 27457.8, "probability": 0.9858 }, { "start": 27459.28, "end": 27461.7, "probability": 0.9857 }, { "start": 27461.76, "end": 27462.34, "probability": 0.7601 }, { "start": 27462.48, "end": 27462.84, "probability": 0.5793 }, { "start": 27463.16, "end": 27465.56, "probability": 0.9775 }, { "start": 27466.08, "end": 27471.42, "probability": 0.9595 }, { "start": 27471.94, "end": 27472.44, "probability": 0.6358 }, { "start": 27473.12, "end": 27473.72, "probability": 0.7301 }, { "start": 27476.66, "end": 27477.74, "probability": 0.9595 }, { "start": 27478.4, "end": 27478.88, "probability": 0.4575 }, { "start": 27479.94, "end": 27481.8, "probability": 0.951 }, { "start": 27483.34, "end": 27487.06, "probability": 0.4023 }, { "start": 27505.18, "end": 27506.56, "probability": 0.4857 }, { "start": 27508.68, "end": 27512.98, "probability": 0.9925 }, { "start": 27512.98, "end": 27518.14, "probability": 0.9956 }, { "start": 27518.98, "end": 27520.28, "probability": 0.9762 }, { "start": 27521.02, "end": 27522.04, "probability": 0.8015 }, { "start": 27523.24, "end": 27528.12, "probability": 0.9711 }, { "start": 27529.2, "end": 27531.88, "probability": 0.98 }, { "start": 27533.41, "end": 27538.0, "probability": 0.9939 }, { "start": 27538.54, "end": 27541.7, "probability": 0.899 }, { "start": 27542.22, "end": 27545.18, "probability": 0.9804 }, { "start": 27545.7, "end": 27547.62, "probability": 0.9934 }, { "start": 27548.16, "end": 27548.9, "probability": 0.3954 }, { "start": 27549.28, "end": 27556.02, "probability": 0.9673 }, { "start": 27556.64, "end": 27558.34, "probability": 0.8628 }, { "start": 27558.84, "end": 27563.38, "probability": 0.9926 }, { "start": 27563.74, "end": 27564.88, "probability": 0.8169 }, { "start": 27566.16, "end": 27569.12, "probability": 0.9114 }, { "start": 27569.52, "end": 27572.3, "probability": 0.9733 }, { "start": 27572.96, "end": 27575.26, "probability": 0.8045 }, { "start": 27576.3, "end": 27579.44, "probability": 0.9907 }, { "start": 27580.06, "end": 27583.76, "probability": 0.8823 }, { "start": 27584.32, "end": 27586.2, "probability": 0.9011 }, { "start": 27586.74, "end": 27591.66, "probability": 0.7354 }, { "start": 27592.78, "end": 27595.04, "probability": 0.9002 }, { "start": 27595.26, "end": 27596.14, "probability": 0.4478 }, { "start": 27596.56, "end": 27598.9, "probability": 0.8906 }, { "start": 27599.38, "end": 27603.52, "probability": 0.7584 }, { "start": 27603.92, "end": 27610.16, "probability": 0.9932 }, { "start": 27610.84, "end": 27614.98, "probability": 0.9713 }, { "start": 27615.48, "end": 27618.82, "probability": 0.9945 }, { "start": 27618.82, "end": 27624.44, "probability": 0.8447 }, { "start": 27624.64, "end": 27625.12, "probability": 0.7825 }, { "start": 27625.54, "end": 27627.37, "probability": 0.8047 }, { "start": 27628.42, "end": 27630.06, "probability": 0.9727 }, { "start": 27630.9, "end": 27633.24, "probability": 0.9757 }, { "start": 27634.06, "end": 27635.5, "probability": 0.7225 }, { "start": 27636.64, "end": 27639.68, "probability": 0.8882 }, { "start": 27640.7, "end": 27644.82, "probability": 0.9665 }, { "start": 27645.08, "end": 27647.9, "probability": 0.9382 }, { "start": 27648.5, "end": 27649.08, "probability": 0.8113 }, { "start": 27649.22, "end": 27650.16, "probability": 0.9571 }, { "start": 27650.56, "end": 27651.4, "probability": 0.9465 }, { "start": 27651.58, "end": 27652.92, "probability": 0.2669 }, { "start": 27653.2, "end": 27655.3, "probability": 0.9913 }, { "start": 27656.1, "end": 27662.02, "probability": 0.9274 }, { "start": 27662.94, "end": 27668.94, "probability": 0.9855 }, { "start": 27669.54, "end": 27675.26, "probability": 0.9473 }, { "start": 27675.34, "end": 27677.66, "probability": 0.9891 }, { "start": 27677.78, "end": 27678.68, "probability": 0.6591 }, { "start": 27680.56, "end": 27681.71, "probability": 0.7783 }, { "start": 27682.7, "end": 27687.04, "probability": 0.9974 }, { "start": 27687.84, "end": 27688.8, "probability": 0.8667 }, { "start": 27689.48, "end": 27689.76, "probability": 0.8628 }, { "start": 27690.38, "end": 27692.34, "probability": 0.9578 }, { "start": 27692.82, "end": 27692.82, "probability": 0.5314 }, { "start": 27692.82, "end": 27693.64, "probability": 0.577 }, { "start": 27693.98, "end": 27694.84, "probability": 0.8226 }, { "start": 27694.9, "end": 27695.36, "probability": 0.5646 }, { "start": 27695.44, "end": 27698.48, "probability": 0.9661 }, { "start": 27698.6, "end": 27699.96, "probability": 0.7353 }, { "start": 27700.62, "end": 27702.18, "probability": 0.9595 }, { "start": 27702.56, "end": 27703.78, "probability": 0.7397 }, { "start": 27703.92, "end": 27705.16, "probability": 0.9268 }, { "start": 27705.26, "end": 27705.5, "probability": 0.4126 }, { "start": 27705.98, "end": 27706.62, "probability": 0.7548 }, { "start": 27707.22, "end": 27707.66, "probability": 0.7569 }, { "start": 27708.2, "end": 27709.82, "probability": 0.9438 }, { "start": 27711.28, "end": 27712.14, "probability": 0.9438 }, { "start": 27713.62, "end": 27714.72, "probability": 0.8492 }, { "start": 27717.64, "end": 27721.82, "probability": 0.6627 }, { "start": 27736.87, "end": 27737.9, "probability": 0.9852 }, { "start": 27738.68, "end": 27740.6, "probability": 0.8435 }, { "start": 27741.2, "end": 27747.54, "probability": 0.9874 }, { "start": 27748.52, "end": 27752.88, "probability": 0.7729 }, { "start": 27753.96, "end": 27757.88, "probability": 0.8759 }, { "start": 27758.54, "end": 27759.32, "probability": 0.936 }, { "start": 27761.87, "end": 27765.4, "probability": 0.9941 }, { "start": 27766.18, "end": 27767.32, "probability": 0.9958 }, { "start": 27768.0, "end": 27769.71, "probability": 0.9436 }, { "start": 27770.54, "end": 27772.46, "probability": 0.9941 }, { "start": 27773.54, "end": 27774.29, "probability": 0.5411 }, { "start": 27775.24, "end": 27777.08, "probability": 0.9604 }, { "start": 27777.98, "end": 27780.4, "probability": 0.9821 }, { "start": 27781.0, "end": 27782.58, "probability": 0.8255 }, { "start": 27783.86, "end": 27784.3, "probability": 0.6496 }, { "start": 27785.34, "end": 27786.36, "probability": 0.8419 }, { "start": 27787.52, "end": 27789.06, "probability": 0.748 }, { "start": 27790.26, "end": 27791.04, "probability": 0.9338 }, { "start": 27792.28, "end": 27794.68, "probability": 0.9929 }, { "start": 27795.44, "end": 27796.62, "probability": 0.9249 }, { "start": 27797.82, "end": 27798.94, "probability": 0.8975 }, { "start": 27800.38, "end": 27802.88, "probability": 0.7972 }, { "start": 27803.72, "end": 27805.74, "probability": 0.9108 }, { "start": 27806.8, "end": 27809.86, "probability": 0.6996 }, { "start": 27810.96, "end": 27815.3, "probability": 0.9507 }, { "start": 27816.58, "end": 27819.6, "probability": 0.8542 }, { "start": 27820.28, "end": 27821.08, "probability": 0.8481 }, { "start": 27822.42, "end": 27824.46, "probability": 0.9016 }, { "start": 27825.72, "end": 27827.16, "probability": 0.8791 }, { "start": 27828.0, "end": 27830.22, "probability": 0.7479 }, { "start": 27830.82, "end": 27832.42, "probability": 0.9947 }, { "start": 27832.48, "end": 27833.38, "probability": 0.7533 }, { "start": 27834.08, "end": 27835.98, "probability": 0.8605 }, { "start": 27836.84, "end": 27838.38, "probability": 0.917 }, { "start": 27839.42, "end": 27839.78, "probability": 0.8178 }, { "start": 27840.64, "end": 27843.48, "probability": 0.958 }, { "start": 27844.64, "end": 27845.34, "probability": 0.9768 }, { "start": 27845.96, "end": 27848.7, "probability": 0.8899 }, { "start": 27849.4, "end": 27850.34, "probability": 0.8133 }, { "start": 27851.38, "end": 27853.58, "probability": 0.9674 }, { "start": 27854.36, "end": 27855.47, "probability": 0.9983 }, { "start": 27856.36, "end": 27858.87, "probability": 0.6759 }, { "start": 27859.54, "end": 27861.84, "probability": 0.8709 }, { "start": 27862.66, "end": 27863.74, "probability": 0.9385 }, { "start": 27863.88, "end": 27864.14, "probability": 0.703 }, { "start": 27864.36, "end": 27865.3, "probability": 0.4177 }, { "start": 27866.4, "end": 27868.24, "probability": 0.9661 }, { "start": 27869.3, "end": 27870.88, "probability": 0.8607 }, { "start": 27871.02, "end": 27872.74, "probability": 0.9643 }, { "start": 27873.92, "end": 27875.62, "probability": 0.7327 }, { "start": 27876.26, "end": 27880.48, "probability": 0.8795 }, { "start": 27881.06, "end": 27882.72, "probability": 0.7796 }, { "start": 27883.44, "end": 27887.18, "probability": 0.9491 }, { "start": 27887.9, "end": 27891.18, "probability": 0.9824 }, { "start": 27891.9, "end": 27893.64, "probability": 0.9757 }, { "start": 27894.22, "end": 27894.66, "probability": 0.9603 }, { "start": 27895.2, "end": 27896.26, "probability": 0.8078 }, { "start": 27896.38, "end": 27897.89, "probability": 0.8097 }, { "start": 27898.64, "end": 27900.02, "probability": 0.9286 }, { "start": 27900.58, "end": 27902.32, "probability": 0.986 }, { "start": 27903.18, "end": 27905.2, "probability": 0.9868 }, { "start": 27906.06, "end": 27907.38, "probability": 0.9956 }, { "start": 27908.58, "end": 27910.54, "probability": 0.9504 }, { "start": 27911.4, "end": 27913.22, "probability": 0.9644 }, { "start": 27913.74, "end": 27918.28, "probability": 0.9728 }, { "start": 27919.14, "end": 27920.36, "probability": 0.8211 }, { "start": 27920.7, "end": 27921.36, "probability": 0.8388 }, { "start": 27921.82, "end": 27922.54, "probability": 0.4401 }, { "start": 27923.4, "end": 27927.38, "probability": 0.8952 }, { "start": 27928.0, "end": 27930.12, "probability": 0.636 }, { "start": 27930.28, "end": 27930.7, "probability": 0.9739 }, { "start": 27931.3, "end": 27935.05, "probability": 0.9487 }, { "start": 27935.58, "end": 27936.52, "probability": 0.9941 }, { "start": 27936.68, "end": 27937.06, "probability": 0.925 }, { "start": 27937.48, "end": 27938.22, "probability": 0.3503 }, { "start": 27939.0, "end": 27940.74, "probability": 0.853 }, { "start": 27967.94, "end": 27969.4, "probability": 0.7232 }, { "start": 27971.5, "end": 27974.62, "probability": 0.9935 }, { "start": 27974.66, "end": 27977.98, "probability": 0.9637 }, { "start": 27978.2, "end": 27978.82, "probability": 0.9461 }, { "start": 27979.74, "end": 27980.04, "probability": 0.7692 }, { "start": 27980.8, "end": 27982.1, "probability": 0.9863 }, { "start": 27983.66, "end": 27984.8, "probability": 0.8439 }, { "start": 27985.86, "end": 27986.68, "probability": 0.8362 }, { "start": 27987.38, "end": 27992.4, "probability": 0.9563 }, { "start": 27993.08, "end": 27993.82, "probability": 0.7372 }, { "start": 27994.68, "end": 27995.28, "probability": 0.8167 }, { "start": 27996.34, "end": 27996.4, "probability": 0.1305 }, { "start": 27996.4, "end": 27996.4, "probability": 0.4389 }, { "start": 27996.4, "end": 27997.76, "probability": 0.7593 }, { "start": 27999.0, "end": 27999.9, "probability": 0.7094 }, { "start": 28001.12, "end": 28002.06, "probability": 0.1161 }, { "start": 28002.64, "end": 28002.64, "probability": 0.009 }, { "start": 28002.64, "end": 28004.54, "probability": 0.0451 }, { "start": 28005.24, "end": 28007.24, "probability": 0.7614 }, { "start": 28007.86, "end": 28009.82, "probability": 0.864 }, { "start": 28010.4, "end": 28018.0, "probability": 0.9185 }, { "start": 28018.92, "end": 28025.0, "probability": 0.9435 }, { "start": 28026.02, "end": 28029.68, "probability": 0.9251 }, { "start": 28030.9, "end": 28036.0, "probability": 0.9399 }, { "start": 28036.28, "end": 28039.88, "probability": 0.8166 }, { "start": 28040.8, "end": 28042.64, "probability": 0.8372 }, { "start": 28043.44, "end": 28045.22, "probability": 0.9979 }, { "start": 28045.76, "end": 28048.28, "probability": 0.954 }, { "start": 28049.62, "end": 28051.48, "probability": 0.9083 }, { "start": 28052.06, "end": 28053.92, "probability": 0.8707 }, { "start": 28054.64, "end": 28060.78, "probability": 0.8353 }, { "start": 28061.34, "end": 28062.18, "probability": 0.3703 }, { "start": 28062.62, "end": 28069.56, "probability": 0.9878 }, { "start": 28069.86, "end": 28070.4, "probability": 0.5497 }, { "start": 28071.42, "end": 28075.1, "probability": 0.9941 }, { "start": 28075.82, "end": 28078.18, "probability": 0.988 }, { "start": 28079.64, "end": 28081.48, "probability": 0.9895 }, { "start": 28082.1, "end": 28083.94, "probability": 0.6829 }, { "start": 28084.82, "end": 28088.22, "probability": 0.6571 }, { "start": 28089.8, "end": 28090.68, "probability": 0.5418 }, { "start": 28091.2, "end": 28092.3, "probability": 0.8337 }, { "start": 28093.3, "end": 28094.58, "probability": 0.8182 }, { "start": 28095.52, "end": 28097.42, "probability": 0.6792 }, { "start": 28097.98, "end": 28099.44, "probability": 0.433 }, { "start": 28100.08, "end": 28104.98, "probability": 0.96 }, { "start": 28105.18, "end": 28107.76, "probability": 0.9473 }, { "start": 28108.28, "end": 28111.12, "probability": 0.846 }, { "start": 28112.18, "end": 28113.16, "probability": 0.9702 }, { "start": 28113.78, "end": 28115.36, "probability": 0.9408 }, { "start": 28115.8, "end": 28118.5, "probability": 0.8413 }, { "start": 28118.8, "end": 28119.82, "probability": 0.9934 }, { "start": 28120.38, "end": 28122.4, "probability": 0.7876 }, { "start": 28123.02, "end": 28123.02, "probability": 0.384 }, { "start": 28123.6, "end": 28127.08, "probability": 0.9316 }, { "start": 28127.7, "end": 28129.46, "probability": 0.6354 }, { "start": 28130.26, "end": 28131.64, "probability": 0.5956 }, { "start": 28133.26, "end": 28135.24, "probability": 0.5722 }, { "start": 28135.6, "end": 28136.48, "probability": 0.9692 }, { "start": 28140.8, "end": 28143.26, "probability": 0.6331 }, { "start": 28144.68, "end": 28148.66, "probability": 0.9834 }, { "start": 28149.96, "end": 28152.92, "probability": 0.9911 }, { "start": 28153.26, "end": 28156.04, "probability": 0.7241 }, { "start": 28156.48, "end": 28160.4, "probability": 0.9694 }, { "start": 28161.36, "end": 28161.36, "probability": 0.3119 }, { "start": 28161.36, "end": 28163.86, "probability": 0.7076 }, { "start": 28164.68, "end": 28167.2, "probability": 0.9905 }, { "start": 28167.36, "end": 28168.14, "probability": 0.9157 }, { "start": 28168.64, "end": 28170.4, "probability": 0.9543 }, { "start": 28172.08, "end": 28173.5, "probability": 0.9749 }, { "start": 28173.58, "end": 28175.32, "probability": 0.908 }, { "start": 28175.44, "end": 28175.7, "probability": 0.6847 }, { "start": 28175.7, "end": 28175.7, "probability": 0.1061 }, { "start": 28175.7, "end": 28176.72, "probability": 0.5583 }, { "start": 28176.88, "end": 28177.02, "probability": 0.3658 }, { "start": 28177.06, "end": 28177.62, "probability": 0.3088 }, { "start": 28177.77, "end": 28180.1, "probability": 0.9723 }, { "start": 28181.18, "end": 28183.64, "probability": 0.8866 }, { "start": 28183.96, "end": 28185.66, "probability": 0.8483 }, { "start": 28186.58, "end": 28186.9, "probability": 0.454 }, { "start": 28187.02, "end": 28187.92, "probability": 0.8142 }, { "start": 28188.36, "end": 28191.68, "probability": 0.9949 }, { "start": 28192.16, "end": 28193.3, "probability": 0.8845 }, { "start": 28194.02, "end": 28195.76, "probability": 0.9595 }, { "start": 28195.9, "end": 28197.1, "probability": 0.9715 }, { "start": 28197.48, "end": 28199.9, "probability": 0.9714 }, { "start": 28200.32, "end": 28203.72, "probability": 0.9614 }, { "start": 28203.98, "end": 28204.06, "probability": 0.5457 }, { "start": 28204.08, "end": 28208.12, "probability": 0.4987 }, { "start": 28208.14, "end": 28210.7, "probability": 0.8676 }, { "start": 28210.74, "end": 28211.35, "probability": 0.8874 }, { "start": 28211.86, "end": 28212.38, "probability": 0.8871 }, { "start": 28212.62, "end": 28213.2, "probability": 0.9917 }, { "start": 28213.86, "end": 28215.74, "probability": 0.1934 }, { "start": 28216.4, "end": 28218.3, "probability": 0.8347 }, { "start": 28218.92, "end": 28220.5, "probability": 0.921 }, { "start": 28220.86, "end": 28223.14, "probability": 0.9766 }, { "start": 28246.2, "end": 28249.52, "probability": 0.7595 }, { "start": 28250.94, "end": 28256.04, "probability": 0.7838 }, { "start": 28257.28, "end": 28259.24, "probability": 0.5909 }, { "start": 28260.08, "end": 28260.62, "probability": 0.967 }, { "start": 28261.5, "end": 28263.12, "probability": 0.8672 }, { "start": 28264.52, "end": 28266.52, "probability": 0.9508 }, { "start": 28267.44, "end": 28268.1, "probability": 0.6054 }, { "start": 28269.14, "end": 28270.74, "probability": 0.8635 }, { "start": 28274.64, "end": 28278.84, "probability": 0.949 }, { "start": 28280.16, "end": 28281.36, "probability": 0.9615 }, { "start": 28282.66, "end": 28283.42, "probability": 0.7392 }, { "start": 28285.34, "end": 28288.48, "probability": 0.9948 }, { "start": 28289.3, "end": 28292.98, "probability": 0.9916 }, { "start": 28294.14, "end": 28296.42, "probability": 0.9443 }, { "start": 28297.44, "end": 28298.28, "probability": 0.9634 }, { "start": 28299.5, "end": 28300.52, "probability": 0.9966 }, { "start": 28301.64, "end": 28302.88, "probability": 0.711 }, { "start": 28303.42, "end": 28303.94, "probability": 0.9484 }, { "start": 28305.38, "end": 28307.4, "probability": 0.9497 }, { "start": 28309.02, "end": 28312.08, "probability": 0.6506 }, { "start": 28313.46, "end": 28316.94, "probability": 0.9424 }, { "start": 28318.58, "end": 28319.16, "probability": 0.8708 }, { "start": 28320.48, "end": 28321.3, "probability": 0.8335 }, { "start": 28321.8, "end": 28328.58, "probability": 0.9821 }, { "start": 28329.44, "end": 28332.7, "probability": 0.5254 }, { "start": 28333.52, "end": 28337.3, "probability": 0.8679 }, { "start": 28338.9, "end": 28340.18, "probability": 0.9303 }, { "start": 28341.24, "end": 28342.74, "probability": 0.5287 }, { "start": 28343.44, "end": 28345.9, "probability": 0.984 }, { "start": 28346.34, "end": 28347.86, "probability": 0.747 }, { "start": 28348.92, "end": 28350.12, "probability": 0.5704 }, { "start": 28350.18, "end": 28352.04, "probability": 0.9321 }, { "start": 28352.54, "end": 28354.68, "probability": 0.7354 }, { "start": 28355.46, "end": 28358.74, "probability": 0.9878 }, { "start": 28360.54, "end": 28361.54, "probability": 0.737 }, { "start": 28362.48, "end": 28362.78, "probability": 0.4892 }, { "start": 28363.6, "end": 28364.08, "probability": 0.3433 }, { "start": 28364.82, "end": 28365.56, "probability": 0.6839 }, { "start": 28366.36, "end": 28367.38, "probability": 0.9121 }, { "start": 28368.04, "end": 28372.12, "probability": 0.9434 }, { "start": 28373.64, "end": 28373.98, "probability": 0.5799 }, { "start": 28374.18, "end": 28379.9, "probability": 0.6126 }, { "start": 28380.2, "end": 28381.3, "probability": 0.7737 }, { "start": 28382.9, "end": 28387.96, "probability": 0.6667 }, { "start": 28390.08, "end": 28393.5, "probability": 0.9974 }, { "start": 28393.5, "end": 28398.3, "probability": 0.9963 }, { "start": 28400.4, "end": 28404.34, "probability": 0.9873 }, { "start": 28404.88, "end": 28407.14, "probability": 0.7361 }, { "start": 28408.02, "end": 28410.2, "probability": 0.9966 }, { "start": 28410.8, "end": 28414.02, "probability": 0.9927 }, { "start": 28414.96, "end": 28415.36, "probability": 0.5175 }, { "start": 28415.5, "end": 28416.74, "probability": 0.9391 }, { "start": 28417.14, "end": 28421.48, "probability": 0.9865 }, { "start": 28424.16, "end": 28426.14, "probability": 0.8174 }, { "start": 28426.94, "end": 28428.2, "probability": 0.9761 }, { "start": 28429.14, "end": 28431.12, "probability": 0.9602 }, { "start": 28431.9, "end": 28433.64, "probability": 0.8031 }, { "start": 28435.72, "end": 28441.62, "probability": 0.8147 }, { "start": 28441.74, "end": 28442.97, "probability": 0.8604 }, { "start": 28443.56, "end": 28445.02, "probability": 0.9629 }, { "start": 28446.14, "end": 28446.5, "probability": 0.9073 }, { "start": 28446.64, "end": 28447.29, "probability": 0.8783 }, { "start": 28448.08, "end": 28448.86, "probability": 0.981 }, { "start": 28450.34, "end": 28453.22, "probability": 0.9293 }, { "start": 28453.62, "end": 28454.8, "probability": 0.6765 }, { "start": 28455.5, "end": 28456.2, "probability": 0.9897 }, { "start": 28456.9, "end": 28460.42, "probability": 0.9213 }, { "start": 28460.54, "end": 28462.48, "probability": 0.7964 }, { "start": 28462.84, "end": 28465.08, "probability": 0.8382 }, { "start": 28465.62, "end": 28466.82, "probability": 0.7286 }, { "start": 28467.36, "end": 28471.44, "probability": 0.9165 }, { "start": 28471.98, "end": 28472.3, "probability": 0.8293 }, { "start": 28474.08, "end": 28474.86, "probability": 0.7281 }, { "start": 28477.08, "end": 28479.28, "probability": 0.9487 }, { "start": 28494.5, "end": 28497.06, "probability": 0.3818 }, { "start": 28497.36, "end": 28497.94, "probability": 0.7436 }, { "start": 28498.02, "end": 28498.36, "probability": 0.4762 }, { "start": 28498.44, "end": 28498.9, "probability": 0.8325 }, { "start": 28499.0, "end": 28502.24, "probability": 0.8792 }, { "start": 28502.24, "end": 28502.76, "probability": 0.519 }, { "start": 28502.82, "end": 28503.18, "probability": 0.8167 }, { "start": 28506.96, "end": 28511.02, "probability": 0.2544 }, { "start": 28514.44, "end": 28517.11, "probability": 0.6889 }, { "start": 28518.6, "end": 28519.34, "probability": 0.3287 }, { "start": 28529.72, "end": 28530.44, "probability": 0.4874 }, { "start": 28530.92, "end": 28534.4, "probability": 0.8144 }, { "start": 28535.94, "end": 28545.26, "probability": 0.9908 }, { "start": 28545.26, "end": 28554.4, "probability": 0.993 }, { "start": 28555.42, "end": 28556.68, "probability": 0.9245 }, { "start": 28557.56, "end": 28566.08, "probability": 0.9967 }, { "start": 28568.22, "end": 28568.92, "probability": 0.5195 }, { "start": 28570.38, "end": 28571.5, "probability": 0.7756 }, { "start": 28572.92, "end": 28575.66, "probability": 0.9607 }, { "start": 28577.06, "end": 28582.06, "probability": 0.7889 }, { "start": 28583.16, "end": 28587.62, "probability": 0.9917 }, { "start": 28587.82, "end": 28589.18, "probability": 0.9204 }, { "start": 28589.36, "end": 28590.66, "probability": 0.951 }, { "start": 28591.36, "end": 28595.68, "probability": 0.9084 }, { "start": 28595.98, "end": 28597.52, "probability": 0.8021 }, { "start": 28598.94, "end": 28603.62, "probability": 0.93 }, { "start": 28605.44, "end": 28607.26, "probability": 0.8951 }, { "start": 28608.82, "end": 28612.26, "probability": 0.8986 }, { "start": 28613.24, "end": 28619.5, "probability": 0.9773 }, { "start": 28620.28, "end": 28624.7, "probability": 0.9928 }, { "start": 28625.22, "end": 28626.98, "probability": 0.977 }, { "start": 28627.76, "end": 28628.98, "probability": 0.9858 }, { "start": 28630.02, "end": 28635.44, "probability": 0.9987 }, { "start": 28635.44, "end": 28639.94, "probability": 0.9957 }, { "start": 28640.78, "end": 28643.3, "probability": 0.9411 }, { "start": 28644.08, "end": 28644.96, "probability": 0.9477 }, { "start": 28645.5, "end": 28646.32, "probability": 0.7491 }, { "start": 28648.68, "end": 28651.78, "probability": 0.9316 }, { "start": 28651.78, "end": 28656.38, "probability": 0.9902 }, { "start": 28656.44, "end": 28656.95, "probability": 0.8424 }, { "start": 28657.82, "end": 28659.8, "probability": 0.9255 }, { "start": 28659.8, "end": 28664.1, "probability": 0.9302 }, { "start": 28665.74, "end": 28667.26, "probability": 0.9439 }, { "start": 28667.46, "end": 28670.22, "probability": 0.723 }, { "start": 28671.6, "end": 28674.24, "probability": 0.9294 }, { "start": 28674.62, "end": 28676.64, "probability": 0.8569 }, { "start": 28677.48, "end": 28683.82, "probability": 0.9955 }, { "start": 28684.32, "end": 28687.82, "probability": 0.9983 }, { "start": 28688.62, "end": 28689.42, "probability": 0.787 }, { "start": 28689.48, "end": 28691.64, "probability": 0.9461 }, { "start": 28691.76, "end": 28692.68, "probability": 0.7288 }, { "start": 28692.88, "end": 28694.34, "probability": 0.9747 }, { "start": 28695.18, "end": 28695.4, "probability": 0.4395 }, { "start": 28696.06, "end": 28697.24, "probability": 0.8152 }, { "start": 28697.36, "end": 28701.86, "probability": 0.9684 }, { "start": 28702.06, "end": 28702.6, "probability": 0.7364 }, { "start": 28703.2, "end": 28704.6, "probability": 0.914 }, { "start": 28704.86, "end": 28706.76, "probability": 0.876 }, { "start": 28707.2, "end": 28707.74, "probability": 0.7915 }, { "start": 28708.96, "end": 28710.15, "probability": 0.9973 }, { "start": 28710.62, "end": 28712.14, "probability": 0.8121 }, { "start": 28712.26, "end": 28716.19, "probability": 0.8569 }, { "start": 28716.4, "end": 28718.76, "probability": 0.9957 }, { "start": 28719.24, "end": 28722.0, "probability": 0.9017 }, { "start": 28722.6, "end": 28723.22, "probability": 0.8784 }, { "start": 28723.28, "end": 28728.16, "probability": 0.9858 }, { "start": 28729.1, "end": 28731.2, "probability": 0.9963 }, { "start": 28731.62, "end": 28735.34, "probability": 0.6018 }, { "start": 28738.88, "end": 28739.02, "probability": 0.0426 }, { "start": 28739.02, "end": 28739.76, "probability": 0.0475 }, { "start": 28740.4, "end": 28740.99, "probability": 0.4916 }, { "start": 28742.44, "end": 28745.32, "probability": 0.9102 }, { "start": 28745.32, "end": 28749.16, "probability": 0.9957 }, { "start": 28749.6, "end": 28750.42, "probability": 0.7659 }, { "start": 28750.76, "end": 28754.18, "probability": 0.9932 }, { "start": 28755.06, "end": 28756.2, "probability": 0.9822 }, { "start": 28756.32, "end": 28761.92, "probability": 0.8317 }, { "start": 28762.66, "end": 28765.54, "probability": 0.9539 }, { "start": 28766.14, "end": 28770.26, "probability": 0.9977 }, { "start": 28770.28, "end": 28771.18, "probability": 0.7597 }, { "start": 28771.56, "end": 28774.65, "probability": 0.999 }, { "start": 28775.96, "end": 28776.46, "probability": 0.9021 }, { "start": 28777.72, "end": 28781.34, "probability": 0.9966 }, { "start": 28781.96, "end": 28785.02, "probability": 0.9749 }, { "start": 28785.58, "end": 28789.08, "probability": 0.9971 }, { "start": 28790.18, "end": 28790.58, "probability": 0.5238 }, { "start": 28790.6, "end": 28791.52, "probability": 0.9345 }, { "start": 28801.34, "end": 28803.24, "probability": 0.1565 }, { "start": 28803.28, "end": 28803.48, "probability": 0.3781 }, { "start": 28803.48, "end": 28803.6, "probability": 0.2136 }, { "start": 28803.6, "end": 28803.84, "probability": 0.0552 }, { "start": 28803.84, "end": 28804.02, "probability": 0.0381 }, { "start": 28804.1, "end": 28804.22, "probability": 0.0926 }, { "start": 28816.56, "end": 28817.36, "probability": 0.5443 }, { "start": 28831.7, "end": 28833.4, "probability": 0.5579 }, { "start": 28834.2, "end": 28835.36, "probability": 0.6158 }, { "start": 28836.42, "end": 28839.9, "probability": 0.7738 }, { "start": 28839.9, "end": 28843.9, "probability": 0.9839 }, { "start": 28844.52, "end": 28845.4, "probability": 0.7637 }, { "start": 28846.66, "end": 28847.42, "probability": 0.9799 }, { "start": 28848.36, "end": 28851.18, "probability": 0.9211 }, { "start": 28851.8, "end": 28855.44, "probability": 0.9331 }, { "start": 28856.38, "end": 28860.74, "probability": 0.9771 }, { "start": 28861.78, "end": 28863.08, "probability": 0.9985 }, { "start": 28863.68, "end": 28868.32, "probability": 0.9817 }, { "start": 28868.32, "end": 28872.22, "probability": 0.9415 }, { "start": 28873.12, "end": 28876.82, "probability": 0.9889 }, { "start": 28877.48, "end": 28881.78, "probability": 0.9948 }, { "start": 28882.4, "end": 28887.32, "probability": 0.9651 }, { "start": 28887.34, "end": 28889.96, "probability": 0.9988 }, { "start": 28890.72, "end": 28893.46, "probability": 0.9761 }, { "start": 28894.24, "end": 28896.62, "probability": 0.9985 }, { "start": 28897.7, "end": 28899.36, "probability": 0.7317 }, { "start": 28900.12, "end": 28902.32, "probability": 0.7808 }, { "start": 28902.98, "end": 28904.12, "probability": 0.8967 }, { "start": 28904.7, "end": 28905.1, "probability": 0.9556 }, { "start": 28906.26, "end": 28906.36, "probability": 0.7488 }, { "start": 28906.44, "end": 28907.52, "probability": 0.9966 }, { "start": 28907.66, "end": 28908.4, "probability": 0.8209 }, { "start": 28909.24, "end": 28912.96, "probability": 0.7949 }, { "start": 28913.18, "end": 28916.3, "probability": 0.9004 }, { "start": 28917.2, "end": 28918.25, "probability": 0.8152 }, { "start": 28919.02, "end": 28920.04, "probability": 0.8936 }, { "start": 28920.6, "end": 28922.36, "probability": 0.9886 }, { "start": 28922.42, "end": 28923.28, "probability": 0.942 }, { "start": 28923.76, "end": 28924.84, "probability": 0.7947 }, { "start": 28924.94, "end": 28925.72, "probability": 0.9966 }, { "start": 28926.54, "end": 28928.7, "probability": 0.8401 }, { "start": 28929.84, "end": 28930.28, "probability": 0.6843 }, { "start": 28931.92, "end": 28932.44, "probability": 0.9297 }, { "start": 28933.54, "end": 28936.3, "probability": 0.9742 }, { "start": 28937.02, "end": 28940.76, "probability": 0.9927 }, { "start": 28941.8, "end": 28943.8, "probability": 0.9938 }, { "start": 28944.38, "end": 28945.94, "probability": 0.9371 }, { "start": 28946.76, "end": 28948.66, "probability": 0.9977 }, { "start": 28949.26, "end": 28951.42, "probability": 0.9696 }, { "start": 28951.6, "end": 28951.9, "probability": 0.8123 }, { "start": 28952.04, "end": 28953.68, "probability": 0.9883 }, { "start": 28954.26, "end": 28954.94, "probability": 0.9595 }, { "start": 28955.66, "end": 28960.3, "probability": 0.9808 }, { "start": 28961.2, "end": 28964.98, "probability": 0.9126 }, { "start": 28965.2, "end": 28965.22, "probability": 0.1843 }, { "start": 28965.26, "end": 28967.95, "probability": 0.7217 }, { "start": 28968.46, "end": 28969.28, "probability": 0.8863 }, { "start": 28969.66, "end": 28970.4, "probability": 0.837 }, { "start": 28970.9, "end": 28972.32, "probability": 0.9445 }, { "start": 28972.54, "end": 28973.54, "probability": 0.9719 }, { "start": 28973.62, "end": 28974.72, "probability": 0.9684 }, { "start": 28974.94, "end": 28976.4, "probability": 0.8796 }, { "start": 28976.78, "end": 28978.72, "probability": 0.743 }, { "start": 28979.5, "end": 28980.26, "probability": 0.7682 }, { "start": 28980.72, "end": 28981.66, "probability": 0.6798 }, { "start": 28981.84, "end": 28982.96, "probability": 0.9347 }, { "start": 28983.38, "end": 28984.96, "probability": 0.1778 }, { "start": 28985.57, "end": 28987.23, "probability": 0.4767 }, { "start": 28987.38, "end": 28988.82, "probability": 0.9989 }, { "start": 28989.02, "end": 28990.52, "probability": 0.9982 }, { "start": 28990.58, "end": 28990.9, "probability": 0.1194 }, { "start": 28992.16, "end": 28993.52, "probability": 0.8274 }, { "start": 28993.52, "end": 28993.52, "probability": 0.1454 }, { "start": 28993.52, "end": 28994.08, "probability": 0.5914 }, { "start": 28994.34, "end": 28997.29, "probability": 0.6112 }, { "start": 29000.28, "end": 29000.48, "probability": 0.3734 }, { "start": 29000.48, "end": 29000.48, "probability": 0.0729 }, { "start": 29000.48, "end": 29000.48, "probability": 0.1929 }, { "start": 29000.48, "end": 29000.9, "probability": 0.4777 }, { "start": 29000.9, "end": 29000.9, "probability": 0.0997 }, { "start": 29000.9, "end": 29000.9, "probability": 0.394 }, { "start": 29000.9, "end": 29001.92, "probability": 0.4804 }, { "start": 29002.06, "end": 29004.24, "probability": 0.552 }, { "start": 29004.42, "end": 29006.06, "probability": 0.8066 }, { "start": 29006.38, "end": 29007.56, "probability": 0.8237 }, { "start": 29007.6, "end": 29008.6, "probability": 0.2384 }, { "start": 29009.2, "end": 29009.24, "probability": 0.1485 }, { "start": 29009.24, "end": 29012.63, "probability": 0.3967 }, { "start": 29012.86, "end": 29013.96, "probability": 0.5364 }, { "start": 29014.52, "end": 29015.48, "probability": 0.8969 }, { "start": 29016.54, "end": 29018.18, "probability": 0.9217 }, { "start": 29019.36, "end": 29021.56, "probability": 0.2114 }, { "start": 29021.96, "end": 29023.4, "probability": 0.1652 }, { "start": 29023.4, "end": 29023.98, "probability": 0.1779 }, { "start": 29024.46, "end": 29025.7, "probability": 0.0942 }, { "start": 29025.98, "end": 29027.7, "probability": 0.0558 }, { "start": 29030.16, "end": 29032.24, "probability": 0.2241 }, { "start": 29036.3, "end": 29036.6, "probability": 0.0851 }, { "start": 29063.44, "end": 29064.16, "probability": 0.169 }, { "start": 29072.84, "end": 29077.38, "probability": 0.9971 }, { "start": 29077.48, "end": 29082.92, "probability": 0.9713 }, { "start": 29083.02, "end": 29084.3, "probability": 0.9855 }, { "start": 29084.74, "end": 29086.96, "probability": 0.9978 }, { "start": 29087.6, "end": 29089.32, "probability": 0.7017 }, { "start": 29089.92, "end": 29089.92, "probability": 0.0128 }, { "start": 29089.92, "end": 29092.9, "probability": 0.8575 }, { "start": 29093.04, "end": 29095.1, "probability": 0.4707 }, { "start": 29095.1, "end": 29095.34, "probability": 0.7964 }, { "start": 29096.06, "end": 29097.1, "probability": 0.6933 }, { "start": 29097.38, "end": 29098.55, "probability": 0.7726 }, { "start": 29100.51, "end": 29102.78, "probability": 0.3522 }, { "start": 29102.78, "end": 29102.78, "probability": 0.0603 }, { "start": 29102.78, "end": 29103.22, "probability": 0.1165 }, { "start": 29103.34, "end": 29105.01, "probability": 0.9615 }, { "start": 29105.12, "end": 29105.88, "probability": 0.798 }, { "start": 29106.44, "end": 29110.3, "probability": 0.9406 }, { "start": 29110.68, "end": 29110.68, "probability": 0.0282 }, { "start": 29110.68, "end": 29112.22, "probability": 0.7053 }, { "start": 29112.3, "end": 29113.74, "probability": 0.9915 }, { "start": 29114.06, "end": 29114.61, "probability": 0.7427 }, { "start": 29114.98, "end": 29118.3, "probability": 0.6435 }, { "start": 29118.88, "end": 29121.06, "probability": 0.9937 }, { "start": 29121.28, "end": 29123.42, "probability": 0.7941 }, { "start": 29124.92, "end": 29125.04, "probability": 0.1404 }, { "start": 29125.04, "end": 29125.16, "probability": 0.6517 }, { "start": 29125.16, "end": 29126.88, "probability": 0.5114 }, { "start": 29128.1, "end": 29129.62, "probability": 0.4071 }, { "start": 29131.58, "end": 29132.26, "probability": 0.914 }, { "start": 29133.36, "end": 29134.86, "probability": 0.8314 }, { "start": 29135.3, "end": 29136.78, "probability": 0.9131 }, { "start": 29137.92, "end": 29140.78, "probability": 0.9263 }, { "start": 29141.54, "end": 29142.76, "probability": 0.9749 }, { "start": 29143.44, "end": 29145.6, "probability": 0.7708 }, { "start": 29146.24, "end": 29147.72, "probability": 0.9922 }, { "start": 29148.16, "end": 29148.78, "probability": 0.9047 }, { "start": 29149.96, "end": 29153.48, "probability": 0.9292 }, { "start": 29154.02, "end": 29155.64, "probability": 0.9739 }, { "start": 29156.26, "end": 29159.5, "probability": 0.9738 }, { "start": 29159.96, "end": 29162.04, "probability": 0.9354 }, { "start": 29162.12, "end": 29164.52, "probability": 0.8797 }, { "start": 29164.86, "end": 29166.26, "probability": 0.7943 }, { "start": 29166.74, "end": 29167.54, "probability": 0.8232 }, { "start": 29168.68, "end": 29170.52, "probability": 0.9976 }, { "start": 29171.12, "end": 29176.34, "probability": 0.9783 }, { "start": 29177.02, "end": 29179.04, "probability": 0.9789 }, { "start": 29179.42, "end": 29180.14, "probability": 0.5022 }, { "start": 29180.46, "end": 29181.52, "probability": 0.9715 }, { "start": 29181.66, "end": 29183.18, "probability": 0.9846 }, { "start": 29183.94, "end": 29184.94, "probability": 0.9868 }, { "start": 29185.06, "end": 29189.18, "probability": 0.8745 }, { "start": 29189.64, "end": 29193.22, "probability": 0.9981 }, { "start": 29193.66, "end": 29196.42, "probability": 0.9902 }, { "start": 29197.8, "end": 29202.56, "probability": 0.636 }, { "start": 29203.46, "end": 29205.66, "probability": 0.9601 }, { "start": 29206.62, "end": 29208.42, "probability": 0.9875 }, { "start": 29208.74, "end": 29209.78, "probability": 0.9615 }, { "start": 29210.36, "end": 29211.5, "probability": 0.9761 }, { "start": 29211.66, "end": 29213.67, "probability": 0.9702 }, { "start": 29214.9, "end": 29215.9, "probability": 0.4935 }, { "start": 29223.46, "end": 29225.14, "probability": 0.214 }, { "start": 29225.14, "end": 29225.14, "probability": 0.019 }, { "start": 29225.14, "end": 29225.14, "probability": 0.0611 }, { "start": 29225.14, "end": 29225.14, "probability": 0.2741 }, { "start": 29225.14, "end": 29225.14, "probability": 0.0248 }, { "start": 29225.14, "end": 29225.14, "probability": 0.004 }, { "start": 29225.14, "end": 29227.16, "probability": 0.4948 }, { "start": 29227.76, "end": 29230.68, "probability": 0.8468 }, { "start": 29230.74, "end": 29232.18, "probability": 0.852 }, { "start": 29232.72, "end": 29234.54, "probability": 0.9944 }, { "start": 29235.5, "end": 29240.86, "probability": 0.9845 }, { "start": 29240.94, "end": 29241.92, "probability": 0.9841 }, { "start": 29242.02, "end": 29242.6, "probability": 0.813 }, { "start": 29242.68, "end": 29244.28, "probability": 0.8569 }, { "start": 29244.36, "end": 29244.66, "probability": 0.8831 }, { "start": 29247.75, "end": 29249.52, "probability": 0.6981 }, { "start": 29249.52, "end": 29249.52, "probability": 0.1817 }, { "start": 29249.52, "end": 29250.02, "probability": 0.8398 }, { "start": 29250.38, "end": 29251.56, "probability": 0.8811 }, { "start": 29251.84, "end": 29253.18, "probability": 0.9075 }, { "start": 29253.28, "end": 29254.56, "probability": 0.9529 }, { "start": 29254.8, "end": 29255.5, "probability": 0.8244 }, { "start": 29257.44, "end": 29259.12, "probability": 0.9834 }, { "start": 29259.78, "end": 29261.04, "probability": 0.6312 }, { "start": 29262.46, "end": 29262.46, "probability": 0.0004 }, { "start": 29279.9, "end": 29279.96, "probability": 0.0056 }, { "start": 29279.96, "end": 29279.96, "probability": 0.2991 }, { "start": 29279.96, "end": 29279.96, "probability": 0.5237 }, { "start": 29279.96, "end": 29280.7, "probability": 0.0447 }, { "start": 29281.44, "end": 29281.44, "probability": 0.0703 }, { "start": 29281.44, "end": 29281.44, "probability": 0.1556 }, { "start": 29281.44, "end": 29281.44, "probability": 0.178 }, { "start": 29281.44, "end": 29282.13, "probability": 0.4864 }, { "start": 29283.42, "end": 29284.06, "probability": 0.5915 }, { "start": 29286.04, "end": 29286.66, "probability": 0.6569 }, { "start": 29287.56, "end": 29288.98, "probability": 0.9558 }, { "start": 29290.26, "end": 29290.88, "probability": 0.6239 }, { "start": 29292.48, "end": 29295.6, "probability": 0.9878 }, { "start": 29295.98, "end": 29298.08, "probability": 0.9838 }, { "start": 29298.26, "end": 29301.99, "probability": 0.9718 }, { "start": 29303.62, "end": 29306.26, "probability": 0.9714 }, { "start": 29307.16, "end": 29309.04, "probability": 0.993 }, { "start": 29309.1, "end": 29312.46, "probability": 0.9701 }, { "start": 29314.14, "end": 29315.96, "probability": 0.662 }, { "start": 29316.08, "end": 29316.88, "probability": 0.9634 }, { "start": 29317.0, "end": 29318.05, "probability": 0.9902 }, { "start": 29318.1, "end": 29319.8, "probability": 0.9731 }, { "start": 29320.24, "end": 29321.38, "probability": 0.9537 }, { "start": 29322.34, "end": 29327.42, "probability": 0.9802 }, { "start": 29328.48, "end": 29331.74, "probability": 0.9963 }, { "start": 29331.78, "end": 29332.64, "probability": 0.6505 }, { "start": 29333.18, "end": 29334.36, "probability": 0.7567 }, { "start": 29335.72, "end": 29339.24, "probability": 0.9819 }, { "start": 29339.96, "end": 29342.6, "probability": 0.8361 }, { "start": 29343.94, "end": 29344.46, "probability": 0.4578 }, { "start": 29344.62, "end": 29345.8, "probability": 0.7262 }, { "start": 29345.84, "end": 29348.12, "probability": 0.9871 }, { "start": 29348.26, "end": 29352.36, "probability": 0.993 }, { "start": 29352.36, "end": 29356.24, "probability": 0.9775 }, { "start": 29356.3, "end": 29358.68, "probability": 0.8785 }, { "start": 29358.76, "end": 29359.54, "probability": 0.7897 }, { "start": 29360.06, "end": 29362.16, "probability": 0.9418 }, { "start": 29365.06, "end": 29368.88, "probability": 0.9959 }, { "start": 29371.18, "end": 29374.58, "probability": 0.9897 }, { "start": 29374.82, "end": 29382.5, "probability": 0.9554 }, { "start": 29383.34, "end": 29384.92, "probability": 0.9854 }, { "start": 29385.64, "end": 29388.68, "probability": 0.9817 }, { "start": 29388.74, "end": 29391.08, "probability": 0.895 }, { "start": 29393.12, "end": 29395.6, "probability": 0.9963 }, { "start": 29395.7, "end": 29396.33, "probability": 0.8731 }, { "start": 29396.74, "end": 29398.38, "probability": 0.9296 }, { "start": 29398.86, "end": 29402.28, "probability": 0.9653 }, { "start": 29403.64, "end": 29405.18, "probability": 0.9354 }, { "start": 29405.26, "end": 29406.4, "probability": 0.8881 }, { "start": 29406.52, "end": 29407.72, "probability": 0.7946 }, { "start": 29408.08, "end": 29409.28, "probability": 0.9414 }, { "start": 29411.14, "end": 29412.38, "probability": 0.9736 }, { "start": 29412.44, "end": 29413.12, "probability": 0.7625 }, { "start": 29413.22, "end": 29417.0, "probability": 0.8877 }, { "start": 29419.28, "end": 29420.52, "probability": 0.9531 }, { "start": 29420.78, "end": 29423.18, "probability": 0.7744 }, { "start": 29423.34, "end": 29424.22, "probability": 0.8095 }, { "start": 29424.3, "end": 29424.82, "probability": 0.964 }, { "start": 29425.12, "end": 29425.46, "probability": 0.835 }, { "start": 29425.58, "end": 29425.68, "probability": 0.8377 }, { "start": 29426.14, "end": 29426.5, "probability": 0.7609 }, { "start": 29426.76, "end": 29427.82, "probability": 0.9001 }, { "start": 29428.78, "end": 29429.96, "probability": 0.79 }, { "start": 29432.02, "end": 29435.74, "probability": 0.6328 }, { "start": 29435.84, "end": 29436.58, "probability": 0.6105 }, { "start": 29436.64, "end": 29439.48, "probability": 0.9824 }, { "start": 29441.22, "end": 29444.2, "probability": 0.979 }, { "start": 29445.7, "end": 29447.99, "probability": 0.7746 }, { "start": 29451.06, "end": 29452.4, "probability": 0.9463 }, { "start": 29452.62, "end": 29455.24, "probability": 0.9935 }, { "start": 29456.68, "end": 29460.26, "probability": 0.9941 }, { "start": 29460.36, "end": 29462.88, "probability": 0.9821 }, { "start": 29463.0, "end": 29465.78, "probability": 0.9893 }, { "start": 29468.98, "end": 29471.02, "probability": 0.984 }, { "start": 29471.12, "end": 29471.56, "probability": 0.874 }, { "start": 29471.64, "end": 29472.16, "probability": 0.9812 }, { "start": 29472.32, "end": 29472.98, "probability": 0.8908 }, { "start": 29473.02, "end": 29473.78, "probability": 0.8871 }, { "start": 29474.06, "end": 29476.46, "probability": 0.8621 }, { "start": 29477.86, "end": 29478.5, "probability": 0.6701 }, { "start": 29478.6, "end": 29479.14, "probability": 0.697 }, { "start": 29479.22, "end": 29483.64, "probability": 0.9933 }, { "start": 29483.76, "end": 29484.6, "probability": 0.5811 }, { "start": 29486.14, "end": 29487.8, "probability": 0.7587 }, { "start": 29487.98, "end": 29490.7, "probability": 0.9674 }, { "start": 29492.54, "end": 29494.53, "probability": 0.7982 }, { "start": 29495.26, "end": 29496.18, "probability": 0.5349 }, { "start": 29496.58, "end": 29496.58, "probability": 0.0321 }, { "start": 29496.58, "end": 29498.0, "probability": 0.9842 }, { "start": 29498.38, "end": 29499.2, "probability": 0.9462 }, { "start": 29499.4, "end": 29499.96, "probability": 0.6937 }, { "start": 29500.0, "end": 29501.48, "probability": 0.7508 }, { "start": 29519.32, "end": 29521.46, "probability": 0.661 }, { "start": 29522.4, "end": 29523.54, "probability": 0.9297 }, { "start": 29524.7, "end": 29526.34, "probability": 0.8699 }, { "start": 29527.44, "end": 29528.52, "probability": 0.5911 }, { "start": 29529.32, "end": 29531.1, "probability": 0.9645 }, { "start": 29531.78, "end": 29532.48, "probability": 0.8021 }, { "start": 29533.16, "end": 29535.43, "probability": 0.9402 }, { "start": 29536.46, "end": 29540.52, "probability": 0.8563 }, { "start": 29541.04, "end": 29543.34, "probability": 0.8641 }, { "start": 29544.04, "end": 29545.02, "probability": 0.9847 }, { "start": 29546.04, "end": 29548.08, "probability": 0.9756 }, { "start": 29549.34, "end": 29550.6, "probability": 0.7471 }, { "start": 29551.28, "end": 29554.5, "probability": 0.9723 }, { "start": 29554.66, "end": 29556.38, "probability": 0.9536 }, { "start": 29557.11, "end": 29557.7, "probability": 0.7486 }, { "start": 29558.8, "end": 29559.66, "probability": 0.6068 }, { "start": 29560.52, "end": 29561.6, "probability": 0.8538 }, { "start": 29562.3, "end": 29563.78, "probability": 0.7827 }, { "start": 29564.44, "end": 29566.88, "probability": 0.9286 }, { "start": 29567.6, "end": 29569.88, "probability": 0.9852 }, { "start": 29570.46, "end": 29572.68, "probability": 0.9903 }, { "start": 29573.32, "end": 29574.94, "probability": 0.8877 }, { "start": 29575.54, "end": 29576.82, "probability": 0.6332 }, { "start": 29578.02, "end": 29579.5, "probability": 0.8662 }, { "start": 29580.28, "end": 29583.3, "probability": 0.9929 }, { "start": 29584.04, "end": 29586.38, "probability": 0.978 }, { "start": 29586.96, "end": 29588.52, "probability": 0.9534 }, { "start": 29589.46, "end": 29592.06, "probability": 0.979 }, { "start": 29592.6, "end": 29595.2, "probability": 0.9839 }, { "start": 29595.84, "end": 29598.76, "probability": 0.9945 }, { "start": 29600.0, "end": 29601.08, "probability": 0.9674 }, { "start": 29601.9, "end": 29602.6, "probability": 0.8502 }, { "start": 29603.88, "end": 29604.86, "probability": 0.7227 }, { "start": 29605.74, "end": 29608.54, "probability": 0.996 }, { "start": 29609.36, "end": 29611.58, "probability": 0.7844 }, { "start": 29612.24, "end": 29616.38, "probability": 0.9788 }, { "start": 29617.32, "end": 29618.28, "probability": 0.5175 }, { "start": 29618.92, "end": 29620.08, "probability": 0.6075 }, { "start": 29620.7, "end": 29621.84, "probability": 0.9824 }, { "start": 29622.42, "end": 29627.2, "probability": 0.9579 }, { "start": 29627.9, "end": 29630.5, "probability": 0.9879 }, { "start": 29631.16, "end": 29634.58, "probability": 0.9904 }, { "start": 29635.44, "end": 29639.04, "probability": 0.9985 }, { "start": 29639.76, "end": 29643.4, "probability": 0.9344 }, { "start": 29644.44, "end": 29645.78, "probability": 0.8835 }, { "start": 29646.36, "end": 29649.08, "probability": 0.8988 }, { "start": 29650.14, "end": 29651.66, "probability": 0.7876 }, { "start": 29652.68, "end": 29654.08, "probability": 0.9903 }, { "start": 29655.04, "end": 29657.36, "probability": 0.9912 }, { "start": 29658.0, "end": 29663.56, "probability": 0.9718 }, { "start": 29664.32, "end": 29666.5, "probability": 0.895 }, { "start": 29667.14, "end": 29671.12, "probability": 0.9782 }, { "start": 29671.74, "end": 29673.32, "probability": 0.8759 }, { "start": 29673.78, "end": 29675.7, "probability": 0.9982 }, { "start": 29676.14, "end": 29676.96, "probability": 0.9492 }, { "start": 29677.38, "end": 29678.28, "probability": 0.9769 }, { "start": 29678.74, "end": 29680.62, "probability": 0.9657 }, { "start": 29681.02, "end": 29682.88, "probability": 0.8237 }, { "start": 29690.8, "end": 29693.28, "probability": 0.8555 }, { "start": 29694.6, "end": 29695.74, "probability": 0.8678 }, { "start": 29696.36, "end": 29697.18, "probability": 0.9432 }, { "start": 29718.58, "end": 29719.56, "probability": 0.699 }, { "start": 29721.08, "end": 29722.24, "probability": 0.7541 }, { "start": 29723.46, "end": 29725.86, "probability": 0.9514 }, { "start": 29726.56, "end": 29728.72, "probability": 0.9637 }, { "start": 29729.46, "end": 29733.22, "probability": 0.9477 }, { "start": 29733.46, "end": 29735.3, "probability": 0.8277 }, { "start": 29736.38, "end": 29738.74, "probability": 0.8543 }, { "start": 29738.76, "end": 29740.55, "probability": 0.9062 }, { "start": 29741.92, "end": 29742.61, "probability": 0.962 }, { "start": 29743.04, "end": 29744.8, "probability": 0.9161 }, { "start": 29745.86, "end": 29748.94, "probability": 0.9978 }, { "start": 29749.68, "end": 29751.19, "probability": 0.9917 }, { "start": 29752.0, "end": 29752.86, "probability": 0.7205 }, { "start": 29752.96, "end": 29758.56, "probability": 0.9873 }, { "start": 29759.02, "end": 29759.81, "probability": 0.9419 }, { "start": 29760.08, "end": 29760.78, "probability": 0.8393 }, { "start": 29761.3, "end": 29766.04, "probability": 0.9911 }, { "start": 29766.42, "end": 29767.78, "probability": 0.835 }, { "start": 29768.26, "end": 29770.06, "probability": 0.8312 }, { "start": 29771.04, "end": 29773.6, "probability": 0.7221 }, { "start": 29774.56, "end": 29775.8, "probability": 0.8203 }, { "start": 29775.94, "end": 29779.38, "probability": 0.9629 }, { "start": 29779.84, "end": 29780.19, "probability": 0.9097 }, { "start": 29780.96, "end": 29784.08, "probability": 0.9954 }, { "start": 29784.08, "end": 29788.78, "probability": 0.9648 }, { "start": 29789.16, "end": 29790.06, "probability": 0.9185 }, { "start": 29790.12, "end": 29791.05, "probability": 0.981 }, { "start": 29791.66, "end": 29793.6, "probability": 0.9966 }, { "start": 29794.08, "end": 29794.78, "probability": 0.7542 }, { "start": 29796.0, "end": 29797.32, "probability": 0.4852 }, { "start": 29798.06, "end": 29803.0, "probability": 0.933 }, { "start": 29803.52, "end": 29807.62, "probability": 0.993 }, { "start": 29807.94, "end": 29811.13, "probability": 0.9802 }, { "start": 29811.66, "end": 29814.22, "probability": 0.9909 }, { "start": 29815.18, "end": 29819.28, "probability": 0.9736 }, { "start": 29819.28, "end": 29822.58, "probability": 0.9995 }, { "start": 29823.18, "end": 29826.63, "probability": 0.9747 }, { "start": 29827.22, "end": 29829.0, "probability": 0.8712 }, { "start": 29829.78, "end": 29833.88, "probability": 0.9722 }, { "start": 29834.1, "end": 29837.8, "probability": 0.9942 }, { "start": 29838.32, "end": 29844.64, "probability": 0.996 }, { "start": 29845.62, "end": 29849.76, "probability": 0.999 }, { "start": 29850.36, "end": 29851.64, "probability": 0.9275 }, { "start": 29852.7, "end": 29857.78, "probability": 0.9595 }, { "start": 29857.86, "end": 29860.36, "probability": 0.9837 }, { "start": 29860.72, "end": 29862.1, "probability": 0.8229 }, { "start": 29862.6, "end": 29865.7, "probability": 0.9944 }, { "start": 29866.4, "end": 29869.16, "probability": 0.978 }, { "start": 29869.68, "end": 29871.22, "probability": 0.9478 }, { "start": 29871.9, "end": 29877.64, "probability": 0.6708 }, { "start": 29878.54, "end": 29881.22, "probability": 0.9111 }, { "start": 29881.76, "end": 29883.9, "probability": 0.9875 }, { "start": 29884.44, "end": 29885.74, "probability": 0.99 }, { "start": 29886.22, "end": 29887.54, "probability": 0.8898 }, { "start": 29888.1, "end": 29890.54, "probability": 0.9727 }, { "start": 29891.18, "end": 29896.4, "probability": 0.9983 }, { "start": 29896.64, "end": 29898.34, "probability": 0.9745 }, { "start": 29898.52, "end": 29900.62, "probability": 0.9757 }, { "start": 29900.7, "end": 29901.48, "probability": 0.8271 }, { "start": 29901.6, "end": 29902.62, "probability": 0.6824 }, { "start": 29903.0, "end": 29903.96, "probability": 0.9683 }, { "start": 29904.82, "end": 29906.34, "probability": 0.711 }, { "start": 29907.26, "end": 29908.04, "probability": 0.9051 }, { "start": 29909.34, "end": 29911.34, "probability": 0.9764 }, { "start": 29912.24, "end": 29914.46, "probability": 0.9406 }, { "start": 29916.4, "end": 29916.64, "probability": 0.9822 }, { "start": 29917.38, "end": 29918.14, "probability": 0.4874 }, { "start": 29918.18, "end": 29919.38, "probability": 0.9832 }, { "start": 29919.44, "end": 29920.62, "probability": 0.9899 }, { "start": 29920.82, "end": 29924.82, "probability": 0.9973 }, { "start": 29925.36, "end": 29928.98, "probability": 0.9961 }, { "start": 29928.98, "end": 29932.98, "probability": 0.9665 }, { "start": 29933.08, "end": 29933.3, "probability": 0.6404 }, { "start": 29934.64, "end": 29935.02, "probability": 0.6711 }, { "start": 29935.14, "end": 29937.72, "probability": 0.7798 }, { "start": 29957.32, "end": 29958.48, "probability": 0.8171 }, { "start": 29959.46, "end": 29960.92, "probability": 0.9399 }, { "start": 29961.94, "end": 29963.1, "probability": 0.9233 }, { "start": 29964.52, "end": 29966.92, "probability": 0.9739 }, { "start": 29967.54, "end": 29970.82, "probability": 0.9946 }, { "start": 29971.24, "end": 29973.18, "probability": 0.9569 }, { "start": 29974.46, "end": 29979.54, "probability": 0.9266 }, { "start": 29980.18, "end": 29987.12, "probability": 0.9666 }, { "start": 29987.9, "end": 29988.78, "probability": 0.7893 }, { "start": 29988.8, "end": 29989.42, "probability": 0.9893 }, { "start": 29989.52, "end": 29994.96, "probability": 0.9972 }, { "start": 29995.7, "end": 29999.84, "probability": 0.9922 }, { "start": 29999.84, "end": 30004.54, "probability": 0.99 }, { "start": 30005.24, "end": 30009.28, "probability": 0.9944 }, { "start": 30009.28, "end": 30013.5, "probability": 0.9971 }, { "start": 30015.84, "end": 30018.96, "probability": 0.9991 }, { "start": 30019.12, "end": 30022.62, "probability": 0.9989 }, { "start": 30023.32, "end": 30029.4, "probability": 0.9984 }, { "start": 30030.08, "end": 30032.72, "probability": 0.9891 }, { "start": 30033.52, "end": 30035.14, "probability": 0.9172 }, { "start": 30035.54, "end": 30039.14, "probability": 0.8868 }, { "start": 30039.72, "end": 30042.4, "probability": 0.9967 }, { "start": 30042.96, "end": 30044.7, "probability": 0.9978 }, { "start": 30045.12, "end": 30046.32, "probability": 0.9459 }, { "start": 30046.7, "end": 30047.34, "probability": 0.9739 }, { "start": 30048.28, "end": 30050.04, "probability": 0.9878 }, { "start": 30050.92, "end": 30055.4, "probability": 0.9957 }, { "start": 30055.94, "end": 30059.16, "probability": 0.9835 }, { "start": 30060.4, "end": 30060.88, "probability": 0.5563 }, { "start": 30061.5, "end": 30063.32, "probability": 0.9901 }, { "start": 30064.3, "end": 30067.66, "probability": 0.9841 }, { "start": 30068.54, "end": 30073.22, "probability": 0.996 }, { "start": 30073.68, "end": 30074.14, "probability": 0.9824 }, { "start": 30074.5, "end": 30075.16, "probability": 0.6688 }, { "start": 30075.86, "end": 30079.88, "probability": 0.9924 }, { "start": 30080.54, "end": 30084.14, "probability": 0.8608 }, { "start": 30085.02, "end": 30090.8, "probability": 0.9897 }, { "start": 30091.4, "end": 30093.42, "probability": 0.9329 }, { "start": 30094.08, "end": 30096.98, "probability": 0.998 }, { "start": 30097.52, "end": 30100.48, "probability": 0.9866 }, { "start": 30101.34, "end": 30103.28, "probability": 0.8097 }, { "start": 30103.88, "end": 30107.42, "probability": 0.9992 }, { "start": 30108.08, "end": 30111.32, "probability": 0.9901 }, { "start": 30111.94, "end": 30115.92, "probability": 0.9988 }, { "start": 30115.92, "end": 30118.92, "probability": 0.9983 }, { "start": 30120.18, "end": 30121.6, "probability": 0.7558 }, { "start": 30121.74, "end": 30122.22, "probability": 0.7751 }, { "start": 30124.16, "end": 30124.96, "probability": 0.7179 }, { "start": 30126.22, "end": 30127.58, "probability": 0.9008 }, { "start": 30129.18, "end": 30131.18, "probability": 0.7928 }, { "start": 30140.76, "end": 30141.62, "probability": 0.2295 }, { "start": 30142.38, "end": 30142.8, "probability": 0.4999 }, { "start": 30142.8, "end": 30142.8, "probability": 0.0741 }, { "start": 30142.82, "end": 30142.82, "probability": 0.258 }, { "start": 30142.82, "end": 30143.98, "probability": 0.0238 }, { "start": 30143.98, "end": 30144.12, "probability": 0.1408 }, { "start": 30164.66, "end": 30171.32, "probability": 0.916 }, { "start": 30172.5, "end": 30175.68, "probability": 0.9912 }, { "start": 30176.12, "end": 30178.54, "probability": 0.9785 }, { "start": 30179.44, "end": 30183.72, "probability": 0.9877 }, { "start": 30184.96, "end": 30190.02, "probability": 0.9966 }, { "start": 30191.08, "end": 30193.32, "probability": 0.9335 }, { "start": 30194.28, "end": 30195.34, "probability": 0.999 }, { "start": 30196.44, "end": 30197.84, "probability": 0.0661 }, { "start": 30199.8, "end": 30204.86, "probability": 0.8525 }, { "start": 30205.94, "end": 30210.4, "probability": 0.9801 }, { "start": 30210.9, "end": 30212.16, "probability": 0.6502 }, { "start": 30212.64, "end": 30212.94, "probability": 0.0864 }, { "start": 30212.94, "end": 30214.08, "probability": 0.9264 }, { "start": 30214.34, "end": 30217.74, "probability": 0.8265 }, { "start": 30218.32, "end": 30218.32, "probability": 0.0074 }, { "start": 30218.32, "end": 30218.32, "probability": 0.0314 }, { "start": 30218.32, "end": 30218.38, "probability": 0.1283 }, { "start": 30218.52, "end": 30219.52, "probability": 0.8811 }, { "start": 30219.68, "end": 30221.82, "probability": 0.6962 }, { "start": 30221.94, "end": 30226.58, "probability": 0.9978 }, { "start": 30227.2, "end": 30230.32, "probability": 0.8943 }, { "start": 30230.64, "end": 30232.0, "probability": 0.9772 }, { "start": 30232.62, "end": 30238.66, "probability": 0.9873 }, { "start": 30239.24, "end": 30244.32, "probability": 0.8564 }, { "start": 30244.54, "end": 30244.54, "probability": 0.2034 }, { "start": 30244.54, "end": 30250.0, "probability": 0.9705 }, { "start": 30250.0, "end": 30254.92, "probability": 0.7215 }, { "start": 30255.88, "end": 30257.3, "probability": 0.5776 }, { "start": 30257.52, "end": 30258.78, "probability": 0.9667 }, { "start": 30258.78, "end": 30259.7, "probability": 0.6861 }, { "start": 30259.78, "end": 30264.24, "probability": 0.7778 }, { "start": 30264.76, "end": 30265.22, "probability": 0.7309 }, { "start": 30265.76, "end": 30268.24, "probability": 0.9724 }, { "start": 30268.72, "end": 30270.06, "probability": 0.8942 }, { "start": 30270.4, "end": 30271.42, "probability": 0.9841 }, { "start": 30271.88, "end": 30273.58, "probability": 0.9927 }, { "start": 30274.14, "end": 30277.46, "probability": 0.9882 }, { "start": 30277.46, "end": 30282.26, "probability": 0.9978 }, { "start": 30282.54, "end": 30282.8, "probability": 0.1139 }, { "start": 30282.8, "end": 30285.56, "probability": 0.9564 }, { "start": 30285.76, "end": 30287.94, "probability": 0.9819 }, { "start": 30288.06, "end": 30290.36, "probability": 0.9686 }, { "start": 30290.88, "end": 30297.3, "probability": 0.9868 }, { "start": 30297.54, "end": 30297.68, "probability": 0.0124 }, { "start": 30297.68, "end": 30297.68, "probability": 0.2045 }, { "start": 30297.68, "end": 30297.72, "probability": 0.4116 }, { "start": 30297.92, "end": 30299.5, "probability": 0.9795 }, { "start": 30299.66, "end": 30301.68, "probability": 0.4573 }, { "start": 30301.74, "end": 30305.52, "probability": 0.934 }, { "start": 30305.66, "end": 30306.0, "probability": 0.8456 }, { "start": 30306.76, "end": 30307.14, "probability": 0.1374 }, { "start": 30307.14, "end": 30307.24, "probability": 0.0178 }, { "start": 30307.4, "end": 30309.0, "probability": 0.3534 }, { "start": 30309.02, "end": 30309.08, "probability": 0.3964 }, { "start": 30309.16, "end": 30310.82, "probability": 0.7137 }, { "start": 30311.26, "end": 30313.34, "probability": 0.922 }, { "start": 30313.68, "end": 30316.33, "probability": 0.7416 }, { "start": 30316.6, "end": 30317.34, "probability": 0.7697 }, { "start": 30317.78, "end": 30322.42, "probability": 0.9866 }, { "start": 30322.5, "end": 30326.02, "probability": 0.973 }, { "start": 30326.52, "end": 30328.56, "probability": 0.6296 }, { "start": 30328.64, "end": 30330.32, "probability": 0.9932 }, { "start": 30330.68, "end": 30331.28, "probability": 0.0374 }, { "start": 30331.28, "end": 30332.14, "probability": 0.0253 }, { "start": 30332.14, "end": 30334.77, "probability": 0.2336 }, { "start": 30335.36, "end": 30336.28, "probability": 0.8518 }, { "start": 30336.28, "end": 30336.88, "probability": 0.4318 }, { "start": 30336.9, "end": 30338.62, "probability": 0.177 }, { "start": 30338.82, "end": 30340.4, "probability": 0.874 }, { "start": 30340.74, "end": 30342.28, "probability": 0.9897 }, { "start": 30342.4, "end": 30344.72, "probability": 0.7943 }, { "start": 30345.36, "end": 30347.24, "probability": 0.9275 }, { "start": 30347.62, "end": 30348.8, "probability": 0.993 }, { "start": 30349.24, "end": 30350.84, "probability": 0.9932 }, { "start": 30351.1, "end": 30352.16, "probability": 0.8592 }, { "start": 30352.52, "end": 30354.7, "probability": 0.5385 }, { "start": 30356.1, "end": 30356.92, "probability": 0.2523 }, { "start": 30358.14, "end": 30359.02, "probability": 0.7815 }, { "start": 30359.16, "end": 30359.96, "probability": 0.725 }, { "start": 30360.7, "end": 30361.1, "probability": 0.625 }, { "start": 30361.1, "end": 30363.64, "probability": 0.8698 }, { "start": 30364.48, "end": 30367.6, "probability": 0.0827 }, { "start": 30367.82, "end": 30368.54, "probability": 0.7891 }, { "start": 30368.72, "end": 30369.72, "probability": 0.5203 }, { "start": 30369.76, "end": 30371.9, "probability": 0.9353 }, { "start": 30372.2, "end": 30372.92, "probability": 0.1571 }, { "start": 30373.16, "end": 30373.56, "probability": 0.0765 }, { "start": 30373.56, "end": 30374.64, "probability": 0.5871 }, { "start": 30374.76, "end": 30376.5, "probability": 0.4765 }, { "start": 30377.28, "end": 30378.22, "probability": 0.0222 }, { "start": 30378.22, "end": 30378.98, "probability": 0.0849 }, { "start": 30379.12, "end": 30379.12, "probability": 0.1227 }, { "start": 30379.12, "end": 30379.3, "probability": 0.1308 }, { "start": 30379.3, "end": 30379.86, "probability": 0.0701 }, { "start": 30380.14, "end": 30381.08, "probability": 0.3861 }, { "start": 30382.58, "end": 30384.1, "probability": 0.3469 }, { "start": 30385.34, "end": 30387.05, "probability": 0.6292 }, { "start": 30390.16, "end": 30390.16, "probability": 0.0132 }, { "start": 30390.16, "end": 30390.2, "probability": 0.4373 }, { "start": 30390.2, "end": 30390.2, "probability": 0.2213 }, { "start": 30390.2, "end": 30390.7, "probability": 0.2557 }, { "start": 30390.78, "end": 30393.28, "probability": 0.9615 }, { "start": 30394.34, "end": 30397.89, "probability": 0.9976 }, { "start": 30399.14, "end": 30402.56, "probability": 0.947 }, { "start": 30403.72, "end": 30405.04, "probability": 0.8669 }, { "start": 30405.12, "end": 30405.98, "probability": 0.9291 }, { "start": 30406.12, "end": 30407.78, "probability": 0.8821 }, { "start": 30407.78, "end": 30411.06, "probability": 0.9959 }, { "start": 30412.14, "end": 30412.96, "probability": 0.5676 }, { "start": 30413.28, "end": 30414.66, "probability": 0.9939 }, { "start": 30414.86, "end": 30416.22, "probability": 0.5162 }, { "start": 30416.78, "end": 30419.6, "probability": 0.8827 }, { "start": 30420.14, "end": 30422.3, "probability": 0.8988 }, { "start": 30422.96, "end": 30424.16, "probability": 0.9105 }, { "start": 30424.66, "end": 30426.07, "probability": 0.83 }, { "start": 30427.22, "end": 30430.78, "probability": 0.6128 }, { "start": 30431.42, "end": 30432.26, "probability": 0.8596 }, { "start": 30433.26, "end": 30437.12, "probability": 0.9512 }, { "start": 30437.9, "end": 30439.82, "probability": 0.8068 }, { "start": 30440.18, "end": 30442.02, "probability": 0.9918 }, { "start": 30442.52, "end": 30444.24, "probability": 0.9917 }, { "start": 30445.36, "end": 30446.95, "probability": 0.7563 }, { "start": 30448.06, "end": 30449.66, "probability": 0.9829 }, { "start": 30450.46, "end": 30452.78, "probability": 0.759 }, { "start": 30454.1, "end": 30455.14, "probability": 0.9521 }, { "start": 30455.16, "end": 30456.02, "probability": 0.6702 }, { "start": 30456.46, "end": 30460.3, "probability": 0.9944 }, { "start": 30460.46, "end": 30461.36, "probability": 0.7742 }, { "start": 30462.18, "end": 30464.52, "probability": 0.9917 }, { "start": 30464.88, "end": 30469.28, "probability": 0.9756 }, { "start": 30471.88, "end": 30476.26, "probability": 0.9105 }, { "start": 30477.22, "end": 30478.72, "probability": 0.9417 }, { "start": 30478.8, "end": 30480.24, "probability": 0.9381 }, { "start": 30480.9, "end": 30481.84, "probability": 0.9151 }, { "start": 30481.96, "end": 30482.64, "probability": 0.9565 }, { "start": 30482.72, "end": 30483.84, "probability": 0.9766 }, { "start": 30484.56, "end": 30486.96, "probability": 0.91 }, { "start": 30488.58, "end": 30491.74, "probability": 0.8727 }, { "start": 30492.44, "end": 30493.38, "probability": 0.9651 }, { "start": 30494.48, "end": 30496.4, "probability": 0.9973 }, { "start": 30497.46, "end": 30498.32, "probability": 0.7302 }, { "start": 30499.22, "end": 30504.54, "probability": 0.9136 }, { "start": 30504.64, "end": 30507.96, "probability": 0.6655 }, { "start": 30507.96, "end": 30509.34, "probability": 0.8511 }, { "start": 30509.68, "end": 30510.5, "probability": 0.6413 }, { "start": 30510.68, "end": 30511.68, "probability": 0.956 }, { "start": 30512.94, "end": 30514.1, "probability": 0.9785 }, { "start": 30514.66, "end": 30515.92, "probability": 0.992 }, { "start": 30516.5, "end": 30519.98, "probability": 0.9958 }, { "start": 30520.1, "end": 30520.44, "probability": 0.9265 }, { "start": 30521.34, "end": 30522.96, "probability": 0.772 }, { "start": 30523.22, "end": 30525.14, "probability": 0.8997 }, { "start": 30525.26, "end": 30526.48, "probability": 0.9766 }, { "start": 30526.8, "end": 30527.84, "probability": 0.8309 }, { "start": 30529.12, "end": 30530.54, "probability": 0.9827 }, { "start": 30531.28, "end": 30533.8, "probability": 0.7754 }, { "start": 30534.68, "end": 30535.3, "probability": 0.7982 }, { "start": 30536.04, "end": 30537.22, "probability": 0.9331 }, { "start": 30537.38, "end": 30539.62, "probability": 0.7485 }, { "start": 30540.54, "end": 30542.22, "probability": 0.9775 }, { "start": 30542.56, "end": 30545.32, "probability": 0.9742 }, { "start": 30546.84, "end": 30548.88, "probability": 0.6642 }, { "start": 30548.94, "end": 30550.82, "probability": 0.9365 }, { "start": 30551.72, "end": 30553.32, "probability": 0.8967 }, { "start": 30554.16, "end": 30555.18, "probability": 0.9041 }, { "start": 30555.92, "end": 30556.72, "probability": 0.8473 }, { "start": 30558.14, "end": 30560.12, "probability": 0.9972 }, { "start": 30560.96, "end": 30563.3, "probability": 0.9595 }, { "start": 30563.98, "end": 30565.74, "probability": 0.9812 }, { "start": 30565.82, "end": 30568.84, "probability": 0.9472 }, { "start": 30569.5, "end": 30569.94, "probability": 0.9388 }, { "start": 30570.3, "end": 30571.08, "probability": 0.7776 }, { "start": 30571.66, "end": 30573.14, "probability": 0.3963 }, { "start": 30573.94, "end": 30576.28, "probability": 0.8086 }, { "start": 30577.2, "end": 30577.44, "probability": 0.2685 }, { "start": 30585.44, "end": 30585.7, "probability": 0.0225 }, { "start": 30586.27, "end": 30586.62, "probability": 0.1634 }, { "start": 30586.62, "end": 30586.66, "probability": 0.0347 }, { "start": 30586.82, "end": 30586.88, "probability": 0.39 }, { "start": 30586.9, "end": 30586.9, "probability": 0.0562 }, { "start": 30586.9, "end": 30587.0, "probability": 0.1165 }, { "start": 30587.0, "end": 30587.16, "probability": 0.027 }, { "start": 30603.14, "end": 30604.24, "probability": 0.5314 }, { "start": 30619.24, "end": 30620.1, "probability": 0.3884 }, { "start": 30620.18, "end": 30620.92, "probability": 0.6321 }, { "start": 30621.04, "end": 30622.12, "probability": 0.6432 }, { "start": 30622.3, "end": 30626.54, "probability": 0.9409 }, { "start": 30627.5, "end": 30629.56, "probability": 0.8096 }, { "start": 30630.29, "end": 30633.26, "probability": 0.8333 }, { "start": 30634.52, "end": 30635.85, "probability": 0.9478 }, { "start": 30636.84, "end": 30637.24, "probability": 0.5933 }, { "start": 30637.84, "end": 30640.48, "probability": 0.9948 }, { "start": 30641.3, "end": 30642.5, "probability": 0.8411 }, { "start": 30643.5, "end": 30646.3, "probability": 0.9557 }, { "start": 30646.98, "end": 30649.48, "probability": 0.9944 }, { "start": 30650.2, "end": 30653.32, "probability": 0.9906 }, { "start": 30654.4, "end": 30654.8, "probability": 0.6569 }, { "start": 30655.76, "end": 30656.32, "probability": 0.7288 }, { "start": 30658.02, "end": 30659.58, "probability": 0.6077 }, { "start": 30659.94, "end": 30662.08, "probability": 0.9875 }, { "start": 30663.04, "end": 30663.67, "probability": 0.8828 }, { "start": 30664.44, "end": 30665.12, "probability": 0.556 }, { "start": 30665.82, "end": 30669.98, "probability": 0.9587 }, { "start": 30670.96, "end": 30673.18, "probability": 0.7561 }, { "start": 30674.74, "end": 30677.22, "probability": 0.9903 }, { "start": 30678.64, "end": 30680.74, "probability": 0.9968 }, { "start": 30681.68, "end": 30684.24, "probability": 0.7444 }, { "start": 30684.56, "end": 30687.52, "probability": 0.8613 }, { "start": 30688.56, "end": 30690.24, "probability": 0.9976 }, { "start": 30690.5, "end": 30691.76, "probability": 0.8451 }, { "start": 30692.02, "end": 30693.32, "probability": 0.8654 }, { "start": 30694.56, "end": 30698.74, "probability": 0.9566 }, { "start": 30700.02, "end": 30700.18, "probability": 0.8555 }, { "start": 30701.08, "end": 30703.28, "probability": 0.9873 }, { "start": 30703.48, "end": 30704.35, "probability": 0.9728 }, { "start": 30704.58, "end": 30705.4, "probability": 0.9353 }, { "start": 30707.06, "end": 30708.96, "probability": 0.9463 }, { "start": 30709.46, "end": 30713.5, "probability": 0.9837 }, { "start": 30715.5, "end": 30719.06, "probability": 0.9478 }, { "start": 30720.22, "end": 30723.3, "probability": 0.9878 }, { "start": 30723.8, "end": 30725.74, "probability": 0.9797 }, { "start": 30725.76, "end": 30726.22, "probability": 0.6366 }, { "start": 30726.78, "end": 30728.0, "probability": 0.9578 }, { "start": 30728.28, "end": 30731.67, "probability": 0.9702 }, { "start": 30733.24, "end": 30736.18, "probability": 0.9938 }, { "start": 30737.38, "end": 30738.38, "probability": 0.9882 }, { "start": 30739.84, "end": 30740.42, "probability": 0.7226 }, { "start": 30741.44, "end": 30743.46, "probability": 0.9808 }, { "start": 30744.5, "end": 30745.5, "probability": 0.6658 }, { "start": 30746.58, "end": 30747.28, "probability": 0.8759 }, { "start": 30748.12, "end": 30748.9, "probability": 0.8272 }, { "start": 30752.38, "end": 30754.9, "probability": 0.9684 }, { "start": 30755.34, "end": 30756.22, "probability": 0.4807 }, { "start": 30756.92, "end": 30757.54, "probability": 0.708 }, { "start": 30758.18, "end": 30760.96, "probability": 0.8639 }, { "start": 30761.92, "end": 30765.26, "probability": 0.9343 }, { "start": 30766.4, "end": 30767.3, "probability": 0.9102 }, { "start": 30767.88, "end": 30771.64, "probability": 0.9146 }, { "start": 30771.78, "end": 30773.3, "probability": 0.6208 }, { "start": 30774.32, "end": 30776.04, "probability": 0.6227 }, { "start": 30777.74, "end": 30781.7, "probability": 0.9736 }, { "start": 30782.46, "end": 30783.58, "probability": 0.8596 }, { "start": 30784.32, "end": 30787.88, "probability": 0.9928 }, { "start": 30787.96, "end": 30788.84, "probability": 0.6991 }, { "start": 30790.82, "end": 30794.12, "probability": 0.989 }, { "start": 30794.88, "end": 30796.24, "probability": 0.821 }, { "start": 30796.78, "end": 30797.2, "probability": 0.5596 }, { "start": 30797.76, "end": 30798.76, "probability": 0.6466 }, { "start": 30798.76, "end": 30799.86, "probability": 0.2391 }, { "start": 30799.9, "end": 30800.52, "probability": 0.8793 }, { "start": 30800.6, "end": 30801.06, "probability": 0.9032 }, { "start": 30801.82, "end": 30809.08, "probability": 0.9885 }, { "start": 30809.9, "end": 30811.0, "probability": 0.7589 }, { "start": 30811.0, "end": 30811.42, "probability": 0.7421 }, { "start": 30811.56, "end": 30812.58, "probability": 0.6814 }, { "start": 30812.9, "end": 30813.92, "probability": 0.8847 }, { "start": 30814.42, "end": 30815.0, "probability": 0.8677 }, { "start": 30815.72, "end": 30819.26, "probability": 0.9326 }, { "start": 30819.68, "end": 30821.34, "probability": 0.9507 }, { "start": 30821.82, "end": 30823.36, "probability": 0.8411 }, { "start": 30824.54, "end": 30825.56, "probability": 0.3661 }, { "start": 30825.56, "end": 30830.02, "probability": 0.9779 }, { "start": 30830.32, "end": 30830.32, "probability": 0.557 }, { "start": 30830.32, "end": 30831.66, "probability": 0.8685 }, { "start": 30831.98, "end": 30832.18, "probability": 0.481 }, { "start": 30832.22, "end": 30832.64, "probability": 0.9314 }, { "start": 30834.52, "end": 30835.74, "probability": 0.9902 }, { "start": 30836.56, "end": 30837.2, "probability": 0.5625 }, { "start": 30837.56, "end": 30838.64, "probability": 0.6496 }, { "start": 30840.14, "end": 30841.06, "probability": 0.7913 }, { "start": 30856.94, "end": 30857.62, "probability": 0.7107 }, { "start": 30858.62, "end": 30859.16, "probability": 0.7851 }, { "start": 30860.74, "end": 30862.74, "probability": 0.8928 }, { "start": 30863.74, "end": 30865.34, "probability": 0.9442 }, { "start": 30865.6, "end": 30866.44, "probability": 0.8877 }, { "start": 30866.7, "end": 30870.08, "probability": 0.9893 }, { "start": 30871.44, "end": 30874.24, "probability": 0.7512 }, { "start": 30875.0, "end": 30877.18, "probability": 0.9928 }, { "start": 30878.1, "end": 30880.42, "probability": 0.9946 }, { "start": 30881.32, "end": 30884.62, "probability": 0.9994 }, { "start": 30884.9, "end": 30886.44, "probability": 0.5128 }, { "start": 30887.08, "end": 30888.22, "probability": 0.98 }, { "start": 30888.42, "end": 30888.74, "probability": 0.2683 }, { "start": 30889.32, "end": 30890.86, "probability": 0.9668 }, { "start": 30891.28, "end": 30892.32, "probability": 0.8099 }, { "start": 30892.46, "end": 30895.28, "probability": 0.9444 }, { "start": 30895.82, "end": 30896.3, "probability": 0.9784 }, { "start": 30896.96, "end": 30898.58, "probability": 0.9614 }, { "start": 30900.26, "end": 30902.21, "probability": 0.9907 }, { "start": 30902.84, "end": 30903.44, "probability": 0.95 }, { "start": 30904.3, "end": 30905.4, "probability": 0.9699 }, { "start": 30906.97, "end": 30909.32, "probability": 0.596 }, { "start": 30909.92, "end": 30910.46, "probability": 0.634 }, { "start": 30910.86, "end": 30911.52, "probability": 0.9875 }, { "start": 30911.6, "end": 30912.36, "probability": 0.9369 }, { "start": 30912.46, "end": 30915.7, "probability": 0.987 }, { "start": 30915.8, "end": 30916.42, "probability": 0.9178 }, { "start": 30917.06, "end": 30917.98, "probability": 0.7788 }, { "start": 30918.24, "end": 30918.72, "probability": 0.8163 }, { "start": 30919.66, "end": 30921.04, "probability": 0.9714 }, { "start": 30921.56, "end": 30922.2, "probability": 0.5227 }, { "start": 30922.94, "end": 30923.72, "probability": 0.9822 }, { "start": 30924.46, "end": 30925.68, "probability": 0.9715 }, { "start": 30925.8, "end": 30926.92, "probability": 0.9832 }, { "start": 30927.56, "end": 30928.24, "probability": 0.7059 }, { "start": 30929.04, "end": 30933.08, "probability": 0.9901 }, { "start": 30933.34, "end": 30934.04, "probability": 0.8638 }, { "start": 30934.82, "end": 30938.06, "probability": 0.9598 }, { "start": 30938.56, "end": 30940.96, "probability": 0.9258 }, { "start": 30941.84, "end": 30943.9, "probability": 0.8848 }, { "start": 30944.36, "end": 30945.3, "probability": 0.9042 }, { "start": 30946.4, "end": 30947.22, "probability": 0.6163 }, { "start": 30948.54, "end": 30950.32, "probability": 0.8063 }, { "start": 30950.46, "end": 30951.54, "probability": 0.8821 }, { "start": 30951.94, "end": 30956.26, "probability": 0.9917 }, { "start": 30956.8, "end": 30961.34, "probability": 0.9163 }, { "start": 30961.76, "end": 30962.96, "probability": 0.9988 }, { "start": 30963.76, "end": 30965.44, "probability": 0.4624 }, { "start": 30965.58, "end": 30968.6, "probability": 0.955 }, { "start": 30968.72, "end": 30972.06, "probability": 0.7895 }, { "start": 30972.14, "end": 30972.98, "probability": 0.6061 }, { "start": 30973.36, "end": 30974.34, "probability": 0.9761 }, { "start": 30974.88, "end": 30975.64, "probability": 0.9901 }, { "start": 30976.36, "end": 30977.78, "probability": 0.9968 }, { "start": 30977.86, "end": 30979.62, "probability": 0.9988 }, { "start": 30980.36, "end": 30981.86, "probability": 0.9995 }, { "start": 30982.68, "end": 30987.14, "probability": 0.9849 }, { "start": 30987.14, "end": 30987.98, "probability": 0.8801 }, { "start": 30988.96, "end": 30990.48, "probability": 0.9873 }, { "start": 30991.88, "end": 30992.36, "probability": 0.9139 }, { "start": 30993.4, "end": 30997.2, "probability": 0.9907 }, { "start": 30997.2, "end": 31003.3, "probability": 0.9849 }, { "start": 31003.48, "end": 31004.44, "probability": 0.9076 }, { "start": 31005.4, "end": 31005.92, "probability": 0.1909 }, { "start": 31006.1, "end": 31006.32, "probability": 0.0324 }, { "start": 31006.32, "end": 31006.36, "probability": 0.4492 }, { "start": 31006.56, "end": 31006.68, "probability": 0.0315 }, { "start": 31006.88, "end": 31010.54, "probability": 0.8837 }, { "start": 31010.7, "end": 31013.22, "probability": 0.7429 }, { "start": 31013.32, "end": 31013.8, "probability": 0.4962 }, { "start": 31013.8, "end": 31017.48, "probability": 0.9285 }, { "start": 31017.94, "end": 31019.48, "probability": 0.8555 }, { "start": 31020.5, "end": 31021.88, "probability": 0.9385 }, { "start": 31023.78, "end": 31024.18, "probability": 0.5551 }, { "start": 31024.66, "end": 31027.88, "probability": 0.7751 }, { "start": 31028.68, "end": 31031.3, "probability": 0.7867 }, { "start": 31031.42, "end": 31032.08, "probability": 0.6355 }, { "start": 31032.18, "end": 31034.32, "probability": 0.9136 }, { "start": 31035.18, "end": 31036.38, "probability": 0.4512 }, { "start": 31036.38, "end": 31037.68, "probability": 0.3009 }, { "start": 31037.92, "end": 31039.0, "probability": 0.9746 }, { "start": 31039.36, "end": 31043.6, "probability": 0.8362 }, { "start": 31043.7, "end": 31044.71, "probability": 0.2648 }, { "start": 31045.72, "end": 31048.2, "probability": 0.1677 }, { "start": 31048.2, "end": 31048.38, "probability": 0.7354 }, { "start": 31048.48, "end": 31053.16, "probability": 0.9376 }, { "start": 31053.9, "end": 31055.38, "probability": 0.8127 }, { "start": 31055.54, "end": 31055.96, "probability": 0.809 }, { "start": 31056.4, "end": 31058.02, "probability": 0.8257 }, { "start": 31058.06, "end": 31058.9, "probability": 0.7694 }, { "start": 31059.7, "end": 31060.72, "probability": 0.6345 }, { "start": 31061.28, "end": 31063.22, "probability": 0.7494 }, { "start": 31063.62, "end": 31065.9, "probability": 0.8876 }, { "start": 31066.6, "end": 31068.64, "probability": 0.9865 }, { "start": 31069.66, "end": 31070.62, "probability": 0.7418 }, { "start": 31070.66, "end": 31073.94, "probability": 0.9601 }, { "start": 31073.94, "end": 31075.98, "probability": 0.9989 }, { "start": 31076.02, "end": 31076.42, "probability": 0.7521 }, { "start": 31077.6, "end": 31078.32, "probability": 0.7186 }, { "start": 31079.94, "end": 31081.16, "probability": 0.9521 }, { "start": 31092.98, "end": 31093.1, "probability": 0.539 }, { "start": 31093.1, "end": 31094.0, "probability": 0.1622 }, { "start": 31103.1, "end": 31107.28, "probability": 0.9469 }, { "start": 31107.46, "end": 31111.66, "probability": 0.9951 }, { "start": 31112.36, "end": 31113.2, "probability": 0.998 }, { "start": 31113.34, "end": 31114.88, "probability": 0.9761 }, { "start": 31115.76, "end": 31117.1, "probability": 0.9346 }, { "start": 31117.68, "end": 31120.27, "probability": 0.9863 }, { "start": 31120.98, "end": 31122.0, "probability": 0.4198 }, { "start": 31122.3, "end": 31124.52, "probability": 0.9728 }, { "start": 31124.7, "end": 31125.66, "probability": 0.5884 }, { "start": 31126.24, "end": 31126.44, "probability": 0.5102 }, { "start": 31126.52, "end": 31128.56, "probability": 0.9564 }, { "start": 31128.92, "end": 31132.76, "probability": 0.9954 }, { "start": 31132.8, "end": 31134.08, "probability": 0.6119 }, { "start": 31134.7, "end": 31138.02, "probability": 0.9917 }, { "start": 31138.58, "end": 31144.28, "probability": 0.9922 }, { "start": 31144.84, "end": 31145.32, "probability": 0.7113 }, { "start": 31145.42, "end": 31148.3, "probability": 0.8459 }, { "start": 31148.36, "end": 31150.98, "probability": 0.7639 }, { "start": 31150.98, "end": 31153.52, "probability": 0.8988 }, { "start": 31154.0, "end": 31157.66, "probability": 0.9882 }, { "start": 31157.78, "end": 31160.46, "probability": 0.9907 }, { "start": 31160.68, "end": 31162.5, "probability": 0.7688 }, { "start": 31162.96, "end": 31166.86, "probability": 0.9935 }, { "start": 31166.96, "end": 31168.28, "probability": 0.9014 }, { "start": 31168.58, "end": 31169.79, "probability": 0.8833 }, { "start": 31170.22, "end": 31171.32, "probability": 0.5445 }, { "start": 31171.5, "end": 31172.28, "probability": 0.5683 }, { "start": 31172.9, "end": 31175.74, "probability": 0.9897 }, { "start": 31176.54, "end": 31177.9, "probability": 0.9139 }, { "start": 31178.2, "end": 31181.74, "probability": 0.9928 }, { "start": 31182.04, "end": 31184.26, "probability": 0.9844 }, { "start": 31184.58, "end": 31187.34, "probability": 0.9966 }, { "start": 31187.66, "end": 31192.72, "probability": 0.9958 }, { "start": 31193.36, "end": 31194.4, "probability": 0.705 }, { "start": 31194.92, "end": 31198.62, "probability": 0.9716 }, { "start": 31198.62, "end": 31202.48, "probability": 0.9892 }, { "start": 31203.08, "end": 31208.08, "probability": 0.9839 }, { "start": 31208.66, "end": 31215.32, "probability": 0.8298 }, { "start": 31215.38, "end": 31215.76, "probability": 0.5003 }, { "start": 31216.3, "end": 31220.2, "probability": 0.9723 }, { "start": 31220.76, "end": 31221.96, "probability": 0.9854 }, { "start": 31223.06, "end": 31224.64, "probability": 0.8292 }, { "start": 31225.1, "end": 31226.72, "probability": 0.9266 }, { "start": 31227.24, "end": 31228.56, "probability": 0.9044 }, { "start": 31229.0, "end": 31230.58, "probability": 0.9563 }, { "start": 31230.96, "end": 31231.92, "probability": 0.9867 }, { "start": 31232.3, "end": 31234.16, "probability": 0.9379 }, { "start": 31234.9, "end": 31240.0, "probability": 0.9635 }, { "start": 31240.36, "end": 31241.14, "probability": 0.6682 }, { "start": 31241.66, "end": 31245.3, "probability": 0.7347 }, { "start": 31245.32, "end": 31250.3, "probability": 0.9882 }, { "start": 31250.36, "end": 31251.6, "probability": 0.9883 }, { "start": 31252.16, "end": 31255.24, "probability": 0.9897 }, { "start": 31255.94, "end": 31257.0, "probability": 0.5091 }, { "start": 31257.1, "end": 31257.66, "probability": 0.5665 }, { "start": 31258.02, "end": 31259.64, "probability": 0.9753 }, { "start": 31260.0, "end": 31260.6, "probability": 0.428 }, { "start": 31261.76, "end": 31263.3, "probability": 0.8413 }, { "start": 31263.3, "end": 31264.42, "probability": 0.7865 }, { "start": 31264.92, "end": 31268.18, "probability": 0.662 }, { "start": 31268.72, "end": 31272.34, "probability": 0.9897 }, { "start": 31272.8, "end": 31274.16, "probability": 0.5441 }, { "start": 31274.54, "end": 31275.04, "probability": 0.563 }, { "start": 31275.1, "end": 31276.54, "probability": 0.9643 }, { "start": 31276.9, "end": 31278.7, "probability": 0.9482 }, { "start": 31279.08, "end": 31279.38, "probability": 0.4472 }, { "start": 31279.4, "end": 31279.94, "probability": 0.7229 }, { "start": 31280.36, "end": 31280.92, "probability": 0.8726 }, { "start": 31281.86, "end": 31285.92, "probability": 0.8439 }, { "start": 31286.46, "end": 31288.4, "probability": 0.7534 }, { "start": 31288.6, "end": 31290.68, "probability": 0.9168 }, { "start": 31291.24, "end": 31296.0, "probability": 0.9963 }, { "start": 31296.4, "end": 31297.02, "probability": 0.8179 }, { "start": 31297.28, "end": 31299.76, "probability": 0.9332 }, { "start": 31300.1, "end": 31301.0, "probability": 0.786 }, { "start": 31301.3, "end": 31304.32, "probability": 0.9844 }, { "start": 31304.64, "end": 31306.38, "probability": 0.9415 }, { "start": 31306.78, "end": 31309.1, "probability": 0.9689 }, { "start": 31309.48, "end": 31312.62, "probability": 0.8953 }, { "start": 31312.98, "end": 31315.04, "probability": 0.9117 }, { "start": 31315.04, "end": 31315.34, "probability": 0.717 }, { "start": 31315.5, "end": 31316.52, "probability": 0.7441 }, { "start": 31316.68, "end": 31319.88, "probability": 0.9971 }, { "start": 31319.88, "end": 31323.36, "probability": 0.9964 }, { "start": 31323.44, "end": 31324.38, "probability": 0.583 }, { "start": 31324.72, "end": 31326.72, "probability": 0.9789 }, { "start": 31327.06, "end": 31329.0, "probability": 0.986 }, { "start": 31329.02, "end": 31329.18, "probability": 0.4861 }, { "start": 31329.32, "end": 31334.3, "probability": 0.9628 }, { "start": 31334.62, "end": 31335.98, "probability": 0.9287 }, { "start": 31336.36, "end": 31337.2, "probability": 0.5046 }, { "start": 31337.5, "end": 31337.64, "probability": 0.3354 }, { "start": 31337.64, "end": 31339.12, "probability": 0.4791 }, { "start": 31339.12, "end": 31340.84, "probability": 0.9113 }, { "start": 31341.0, "end": 31341.94, "probability": 0.8761 }, { "start": 31342.76, "end": 31343.4, "probability": 0.6093 }, { "start": 31346.24, "end": 31346.92, "probability": 0.6285 }, { "start": 31347.08, "end": 31348.46, "probability": 0.7403 }, { "start": 31351.78, "end": 31353.16, "probability": 0.0334 }, { "start": 31353.4, "end": 31355.02, "probability": 0.1151 }, { "start": 31355.2, "end": 31355.62, "probability": 0.3601 }, { "start": 31355.72, "end": 31356.9, "probability": 0.9708 }, { "start": 31356.98, "end": 31359.28, "probability": 0.7388 }, { "start": 31359.28, "end": 31359.84, "probability": 0.6486 }, { "start": 31360.5, "end": 31362.56, "probability": 0.9627 }, { "start": 31362.64, "end": 31363.53, "probability": 0.3488 }, { "start": 31364.88, "end": 31366.92, "probability": 0.9099 }, { "start": 31367.06, "end": 31368.2, "probability": 0.98 }, { "start": 31368.32, "end": 31372.32, "probability": 0.8855 }, { "start": 31372.7, "end": 31376.54, "probability": 0.9723 }, { "start": 31376.96, "end": 31377.8, "probability": 0.5473 }, { "start": 31378.18, "end": 31380.08, "probability": 0.7417 }, { "start": 31381.0, "end": 31386.04, "probability": 0.9763 }, { "start": 31386.28, "end": 31386.83, "probability": 0.0833 }, { "start": 31386.92, "end": 31387.9, "probability": 0.1909 }, { "start": 31388.04, "end": 31388.12, "probability": 0.0258 }, { "start": 31388.22, "end": 31391.42, "probability": 0.9958 }, { "start": 31391.88, "end": 31393.36, "probability": 0.8078 }, { "start": 31393.4, "end": 31394.32, "probability": 0.798 }, { "start": 31394.32, "end": 31394.64, "probability": 0.9541 }, { "start": 31395.04, "end": 31395.77, "probability": 0.7651 }, { "start": 31396.72, "end": 31397.51, "probability": 0.262 }, { "start": 31397.92, "end": 31398.6, "probability": 0.6878 }, { "start": 31398.68, "end": 31399.5, "probability": 0.8183 }, { "start": 31399.74, "end": 31400.36, "probability": 0.9464 }, { "start": 31400.5, "end": 31400.84, "probability": 0.7932 }, { "start": 31402.66, "end": 31403.56, "probability": 0.7469 }, { "start": 31404.24, "end": 31405.54, "probability": 0.7928 }, { "start": 31406.76, "end": 31410.4, "probability": 0.989 }, { "start": 31410.4, "end": 31414.12, "probability": 0.8081 }, { "start": 31415.14, "end": 31419.86, "probability": 0.9264 }, { "start": 31420.38, "end": 31424.2, "probability": 0.9861 }, { "start": 31424.68, "end": 31429.78, "probability": 0.9482 }, { "start": 31430.62, "end": 31434.4, "probability": 0.9814 }, { "start": 31434.48, "end": 31435.86, "probability": 0.8284 }, { "start": 31435.9, "end": 31439.56, "probability": 0.9556 }, { "start": 31440.08, "end": 31442.78, "probability": 0.9274 }, { "start": 31443.74, "end": 31447.76, "probability": 0.9922 }, { "start": 31447.76, "end": 31452.4, "probability": 0.8842 }, { "start": 31453.64, "end": 31459.56, "probability": 0.9803 }, { "start": 31460.14, "end": 31463.7, "probability": 0.988 }, { "start": 31464.86, "end": 31470.64, "probability": 0.9914 }, { "start": 31471.26, "end": 31473.74, "probability": 0.7365 }, { "start": 31474.78, "end": 31475.46, "probability": 0.7535 }, { "start": 31476.86, "end": 31478.72, "probability": 0.999 }, { "start": 31479.84, "end": 31482.42, "probability": 0.9218 }, { "start": 31483.5, "end": 31484.82, "probability": 0.9561 }, { "start": 31485.64, "end": 31489.3, "probability": 0.8768 }, { "start": 31489.82, "end": 31491.9, "probability": 0.9963 }, { "start": 31492.8, "end": 31495.93, "probability": 0.9971 }, { "start": 31495.94, "end": 31501.48, "probability": 0.9937 }, { "start": 31502.88, "end": 31504.66, "probability": 0.0635 }, { "start": 31504.8, "end": 31505.76, "probability": 0.0509 }, { "start": 31505.76, "end": 31506.9, "probability": 0.4353 }, { "start": 31509.19, "end": 31515.26, "probability": 0.9691 }, { "start": 31515.32, "end": 31520.04, "probability": 0.9686 }, { "start": 31520.38, "end": 31521.92, "probability": 0.6657 }, { "start": 31522.36, "end": 31524.56, "probability": 0.9264 }, { "start": 31524.66, "end": 31528.74, "probability": 0.9692 }, { "start": 31529.06, "end": 31533.06, "probability": 0.9848 }, { "start": 31533.72, "end": 31534.62, "probability": 0.4859 }, { "start": 31535.0, "end": 31536.12, "probability": 0.856 }, { "start": 31536.4, "end": 31540.78, "probability": 0.969 }, { "start": 31540.88, "end": 31541.98, "probability": 0.782 }, { "start": 31541.98, "end": 31542.72, "probability": 0.2474 }, { "start": 31544.05, "end": 31546.68, "probability": 0.1182 }, { "start": 31546.82, "end": 31549.48, "probability": 0.2241 }, { "start": 31550.6, "end": 31550.68, "probability": 0.0279 }, { "start": 31550.68, "end": 31550.68, "probability": 0.0256 }, { "start": 31550.68, "end": 31550.68, "probability": 0.0333 }, { "start": 31550.68, "end": 31550.96, "probability": 0.4461 }, { "start": 31552.0, "end": 31554.94, "probability": 0.26 }, { "start": 31555.14, "end": 31557.8, "probability": 0.6256 }, { "start": 31558.08, "end": 31559.48, "probability": 0.7191 }, { "start": 31571.02, "end": 31573.12, "probability": 0.6862 }, { "start": 31574.84, "end": 31576.6, "probability": 0.9513 }, { "start": 31578.16, "end": 31578.92, "probability": 0.9583 }, { "start": 31579.8, "end": 31580.68, "probability": 0.9427 }, { "start": 31581.4, "end": 31582.58, "probability": 0.9944 }, { "start": 31583.16, "end": 31584.32, "probability": 0.9114 }, { "start": 31585.44, "end": 31587.96, "probability": 0.9872 }, { "start": 31588.68, "end": 31589.84, "probability": 0.9368 }, { "start": 31591.2, "end": 31596.62, "probability": 0.8773 }, { "start": 31597.28, "end": 31603.98, "probability": 0.9984 }, { "start": 31604.68, "end": 31605.66, "probability": 0.9867 }, { "start": 31607.24, "end": 31609.56, "probability": 0.8675 }, { "start": 31611.52, "end": 31612.78, "probability": 0.8833 }, { "start": 31613.42, "end": 31615.72, "probability": 0.8376 }, { "start": 31616.24, "end": 31617.88, "probability": 0.9793 }, { "start": 31618.62, "end": 31622.76, "probability": 0.9718 }, { "start": 31623.34, "end": 31625.74, "probability": 0.9727 }, { "start": 31626.22, "end": 31628.04, "probability": 0.8799 }, { "start": 31628.74, "end": 31629.8, "probability": 0.9199 }, { "start": 31629.84, "end": 31630.86, "probability": 0.8925 }, { "start": 31631.24, "end": 31632.9, "probability": 0.9869 }, { "start": 31634.32, "end": 31639.77, "probability": 0.9208 }, { "start": 31640.0, "end": 31640.78, "probability": 0.6481 }, { "start": 31640.9, "end": 31646.24, "probability": 0.9982 }, { "start": 31646.64, "end": 31647.68, "probability": 0.7109 }, { "start": 31648.22, "end": 31649.38, "probability": 0.8604 }, { "start": 31649.76, "end": 31651.52, "probability": 0.6634 }, { "start": 31652.88, "end": 31654.92, "probability": 0.9046 }, { "start": 31655.48, "end": 31659.54, "probability": 0.9388 }, { "start": 31660.78, "end": 31664.54, "probability": 0.9359 }, { "start": 31665.9, "end": 31669.74, "probability": 0.9679 }, { "start": 31670.82, "end": 31674.72, "probability": 0.8237 }, { "start": 31674.98, "end": 31675.84, "probability": 0.6176 }, { "start": 31676.74, "end": 31678.88, "probability": 0.9651 }, { "start": 31679.4, "end": 31681.98, "probability": 0.9073 }, { "start": 31682.84, "end": 31684.0, "probability": 0.9668 }, { "start": 31684.92, "end": 31686.14, "probability": 0.9312 }, { "start": 31686.9, "end": 31690.08, "probability": 0.9734 }, { "start": 31690.46, "end": 31691.52, "probability": 0.8795 }, { "start": 31691.9, "end": 31694.38, "probability": 0.9559 }, { "start": 31694.78, "end": 31697.4, "probability": 0.915 }, { "start": 31697.68, "end": 31698.3, "probability": 0.4757 }, { "start": 31699.72, "end": 31701.62, "probability": 0.7708 }, { "start": 31702.2, "end": 31704.04, "probability": 0.9951 }, { "start": 31704.48, "end": 31704.86, "probability": 0.7373 }, { "start": 31705.02, "end": 31706.24, "probability": 0.7592 }, { "start": 31706.5, "end": 31708.46, "probability": 0.4118 }, { "start": 31708.76, "end": 31709.46, "probability": 0.979 }, { "start": 31709.82, "end": 31712.2, "probability": 0.9421 }, { "start": 31712.48, "end": 31714.8, "probability": 0.9335 }, { "start": 31714.8, "end": 31718.08, "probability": 0.9931 }, { "start": 31719.28, "end": 31721.56, "probability": 0.8558 }, { "start": 31722.68, "end": 31724.48, "probability": 0.9552 }, { "start": 31725.14, "end": 31726.1, "probability": 0.9231 }, { "start": 31727.16, "end": 31729.96, "probability": 0.9395 }, { "start": 31730.58, "end": 31732.86, "probability": 0.9632 }, { "start": 31734.32, "end": 31736.54, "probability": 0.9783 }, { "start": 31737.2, "end": 31739.0, "probability": 0.9588 }, { "start": 31741.38, "end": 31741.9, "probability": 0.9519 }, { "start": 31743.24, "end": 31744.88, "probability": 0.9808 }, { "start": 31745.2, "end": 31746.76, "probability": 0.9531 }, { "start": 31747.5, "end": 31748.94, "probability": 0.8064 }, { "start": 31749.64, "end": 31751.1, "probability": 0.7787 }, { "start": 31751.62, "end": 31752.88, "probability": 0.8298 }, { "start": 31753.68, "end": 31757.76, "probability": 0.998 }, { "start": 31758.14, "end": 31761.52, "probability": 0.9982 }, { "start": 31762.6, "end": 31762.98, "probability": 0.2305 }, { "start": 31763.14, "end": 31764.58, "probability": 0.936 }, { "start": 31764.98, "end": 31769.96, "probability": 0.9761 }, { "start": 31771.26, "end": 31771.6, "probability": 0.6971 }, { "start": 31771.82, "end": 31772.86, "probability": 0.9424 }, { "start": 31773.24, "end": 31776.02, "probability": 0.9237 }, { "start": 31776.6, "end": 31779.42, "probability": 0.937 }, { "start": 31780.08, "end": 31783.72, "probability": 0.9968 }, { "start": 31785.32, "end": 31785.92, "probability": 0.739 }, { "start": 31787.02, "end": 31790.21, "probability": 0.908 }, { "start": 31790.86, "end": 31792.52, "probability": 0.6294 }, { "start": 31793.1, "end": 31794.14, "probability": 0.9234 }, { "start": 31794.58, "end": 31795.5, "probability": 0.5851 }, { "start": 31795.56, "end": 31796.52, "probability": 0.6848 }, { "start": 31796.94, "end": 31798.6, "probability": 0.699 }, { "start": 31798.72, "end": 31799.32, "probability": 0.4946 }, { "start": 31799.36, "end": 31801.54, "probability": 0.8224 }, { "start": 31802.0, "end": 31803.3, "probability": 0.9703 }, { "start": 31803.44, "end": 31804.48, "probability": 0.952 }, { "start": 31805.02, "end": 31805.72, "probability": 0.7083 }, { "start": 31805.86, "end": 31808.5, "probability": 0.9741 }, { "start": 31809.18, "end": 31809.64, "probability": 0.6692 }, { "start": 31810.12, "end": 31810.82, "probability": 0.6783 }, { "start": 31811.32, "end": 31812.84, "probability": 0.8741 }, { "start": 31813.98, "end": 31815.68, "probability": 0.7899 }, { "start": 31815.98, "end": 31816.86, "probability": 0.5948 }, { "start": 31817.24, "end": 31818.86, "probability": 0.8002 }, { "start": 31819.18, "end": 31821.74, "probability": 0.9792 }, { "start": 31821.82, "end": 31822.24, "probability": 0.8077 }, { "start": 31823.2, "end": 31825.4, "probability": 0.7878 }, { "start": 31826.22, "end": 31828.14, "probability": 0.9777 }, { "start": 31829.4, "end": 31829.72, "probability": 0.5111 }, { "start": 31830.86, "end": 31831.76, "probability": 0.9447 }, { "start": 31832.88, "end": 31834.34, "probability": 0.7572 }, { "start": 31834.42, "end": 31836.34, "probability": 0.8358 }, { "start": 31836.78, "end": 31837.74, "probability": 0.9783 }, { "start": 31838.32, "end": 31841.84, "probability": 0.8574 }, { "start": 31842.64, "end": 31846.64, "probability": 0.9881 }, { "start": 31847.08, "end": 31848.62, "probability": 0.9907 }, { "start": 31849.36, "end": 31849.56, "probability": 0.8801 }, { "start": 31850.52, "end": 31852.02, "probability": 0.9937 }, { "start": 31852.58, "end": 31853.42, "probability": 0.8353 }, { "start": 31854.04, "end": 31856.1, "probability": 0.9344 }, { "start": 31856.1, "end": 31858.34, "probability": 0.8139 }, { "start": 31859.34, "end": 31860.7, "probability": 0.9051 }, { "start": 31861.82, "end": 31864.64, "probability": 0.9743 }, { "start": 31866.06, "end": 31870.2, "probability": 0.9313 }, { "start": 31870.5, "end": 31871.56, "probability": 0.6605 }, { "start": 31871.92, "end": 31872.56, "probability": 0.6089 }, { "start": 31873.84, "end": 31876.92, "probability": 0.9987 }, { "start": 31877.86, "end": 31879.86, "probability": 0.9983 }, { "start": 31882.0, "end": 31882.88, "probability": 0.9473 }, { "start": 31882.94, "end": 31884.22, "probability": 0.9548 }, { "start": 31884.72, "end": 31887.96, "probability": 0.9688 }, { "start": 31888.44, "end": 31891.78, "probability": 0.8848 }, { "start": 31892.88, "end": 31894.6, "probability": 0.973 }, { "start": 31895.24, "end": 31896.12, "probability": 0.8427 }, { "start": 31896.22, "end": 31900.16, "probability": 0.9987 }, { "start": 31900.16, "end": 31904.16, "probability": 0.9977 }, { "start": 31904.9, "end": 31906.28, "probability": 0.6628 }, { "start": 31906.84, "end": 31907.86, "probability": 0.9755 }, { "start": 31909.06, "end": 31910.54, "probability": 0.7658 }, { "start": 31911.94, "end": 31914.54, "probability": 0.9795 }, { "start": 31915.34, "end": 31917.76, "probability": 0.9888 }, { "start": 31918.34, "end": 31919.38, "probability": 0.807 }, { "start": 31920.36, "end": 31923.5, "probability": 0.9473 }, { "start": 31925.0, "end": 31925.93, "probability": 0.9963 }, { "start": 31926.82, "end": 31927.88, "probability": 0.8076 }, { "start": 31929.42, "end": 31930.26, "probability": 0.9957 }, { "start": 31932.5, "end": 31935.18, "probability": 0.9988 }, { "start": 31935.96, "end": 31937.46, "probability": 0.7646 }, { "start": 31938.64, "end": 31940.08, "probability": 0.9972 }, { "start": 31945.26, "end": 31945.9, "probability": 0.6144 }, { "start": 31946.0, "end": 31947.0, "probability": 0.9808 }, { "start": 31947.74, "end": 31950.68, "probability": 0.7387 }, { "start": 31951.4, "end": 31954.31, "probability": 0.6126 }, { "start": 31955.48, "end": 31957.6, "probability": 0.9597 }, { "start": 31980.62, "end": 31982.36, "probability": 0.7548 }, { "start": 31984.44, "end": 31986.86, "probability": 0.8618 }, { "start": 31988.18, "end": 31995.6, "probability": 0.9966 }, { "start": 31995.6, "end": 32000.98, "probability": 0.9934 }, { "start": 32002.02, "end": 32004.9, "probability": 0.9995 }, { "start": 32005.02, "end": 32007.26, "probability": 0.7502 }, { "start": 32007.38, "end": 32008.49, "probability": 0.97 }, { "start": 32009.62, "end": 32010.1, "probability": 0.8548 }, { "start": 32011.74, "end": 32013.08, "probability": 0.4301 }, { "start": 32013.7, "end": 32014.02, "probability": 0.8901 }, { "start": 32015.16, "end": 32019.98, "probability": 0.9793 }, { "start": 32022.44, "end": 32024.08, "probability": 0.8863 }, { "start": 32024.68, "end": 32025.28, "probability": 0.7054 }, { "start": 32027.73, "end": 32033.54, "probability": 0.9218 }, { "start": 32033.68, "end": 32034.16, "probability": 0.7345 }, { "start": 32034.26, "end": 32034.8, "probability": 0.3944 }, { "start": 32034.82, "end": 32036.62, "probability": 0.5322 }, { "start": 32037.62, "end": 32039.62, "probability": 0.8379 }, { "start": 32040.32, "end": 32041.06, "probability": 0.4329 }, { "start": 32041.38, "end": 32041.6, "probability": 0.1076 }, { "start": 32041.6, "end": 32048.32, "probability": 0.9748 }, { "start": 32048.98, "end": 32051.1, "probability": 0.7461 }, { "start": 32051.82, "end": 32056.16, "probability": 0.9937 }, { "start": 32056.16, "end": 32061.4, "probability": 0.9989 }, { "start": 32061.5, "end": 32062.02, "probability": 0.7247 }, { "start": 32072.38, "end": 32074.72, "probability": 0.8092 }, { "start": 32075.08, "end": 32075.6, "probability": 0.7628 }, { "start": 32075.76, "end": 32079.12, "probability": 0.8267 }, { "start": 32079.28, "end": 32080.32, "probability": 0.605 }, { "start": 32080.62, "end": 32081.9, "probability": 0.9886 }, { "start": 32093.4, "end": 32095.32, "probability": 0.2092 }, { "start": 32096.52, "end": 32096.96, "probability": 0.8031 }, { "start": 32097.32, "end": 32099.5, "probability": 0.559 }, { "start": 32099.58, "end": 32103.0, "probability": 0.9983 }, { "start": 32103.74, "end": 32105.5, "probability": 0.9956 }, { "start": 32105.58, "end": 32108.56, "probability": 0.9778 }, { "start": 32109.12, "end": 32111.16, "probability": 0.8799 }, { "start": 32111.92, "end": 32117.14, "probability": 0.9594 }, { "start": 32117.72, "end": 32119.24, "probability": 0.9826 }, { "start": 32120.4, "end": 32125.88, "probability": 0.9963 }, { "start": 32126.32, "end": 32128.0, "probability": 0.6625 }, { "start": 32128.54, "end": 32132.28, "probability": 0.9024 }, { "start": 32133.18, "end": 32136.04, "probability": 0.9758 }, { "start": 32136.04, "end": 32139.68, "probability": 0.9948 }, { "start": 32140.22, "end": 32143.52, "probability": 0.9945 }, { "start": 32144.38, "end": 32148.98, "probability": 0.9103 }, { "start": 32149.8, "end": 32149.98, "probability": 0.1119 }, { "start": 32150.74, "end": 32153.28, "probability": 0.4591 }, { "start": 32154.0, "end": 32156.84, "probability": 0.8242 }, { "start": 32157.36, "end": 32158.9, "probability": 0.6385 }, { "start": 32159.52, "end": 32162.68, "probability": 0.9874 }, { "start": 32163.06, "end": 32166.08, "probability": 0.9751 }, { "start": 32166.9, "end": 32170.68, "probability": 0.986 }, { "start": 32171.12, "end": 32175.34, "probability": 0.9955 }, { "start": 32176.04, "end": 32177.46, "probability": 0.7372 }, { "start": 32177.96, "end": 32181.72, "probability": 0.991 }, { "start": 32182.04, "end": 32182.9, "probability": 0.9758 }, { "start": 32183.16, "end": 32185.8, "probability": 0.9001 }, { "start": 32186.58, "end": 32191.96, "probability": 0.9979 }, { "start": 32192.44, "end": 32192.72, "probability": 0.7206 }, { "start": 32193.66, "end": 32197.0, "probability": 0.9638 }, { "start": 32197.96, "end": 32198.5, "probability": 0.9431 }, { "start": 32199.22, "end": 32202.26, "probability": 0.9756 }, { "start": 32202.8, "end": 32205.66, "probability": 0.9773 }, { "start": 32205.66, "end": 32208.7, "probability": 0.9994 }, { "start": 32209.26, "end": 32213.44, "probability": 0.9954 }, { "start": 32213.96, "end": 32215.9, "probability": 0.9819 }, { "start": 32216.64, "end": 32219.28, "probability": 0.978 }, { "start": 32219.82, "end": 32221.06, "probability": 0.8588 }, { "start": 32221.6, "end": 32224.04, "probability": 0.9797 }, { "start": 32224.58, "end": 32229.16, "probability": 0.9932 }, { "start": 32230.54, "end": 32233.78, "probability": 0.9919 }, { "start": 32233.78, "end": 32237.86, "probability": 0.9985 }, { "start": 32238.7, "end": 32242.8, "probability": 0.992 }, { "start": 32243.18, "end": 32248.24, "probability": 0.9911 }, { "start": 32248.72, "end": 32251.32, "probability": 0.868 }, { "start": 32251.32, "end": 32253.26, "probability": 0.9902 }, { "start": 32253.56, "end": 32255.06, "probability": 0.9503 }, { "start": 32255.28, "end": 32256.0, "probability": 0.7641 }, { "start": 32257.58, "end": 32258.2, "probability": 0.8544 }, { "start": 32259.68, "end": 32263.5, "probability": 0.8501 }, { "start": 32263.96, "end": 32266.06, "probability": 0.1824 }, { "start": 32266.8, "end": 32268.2, "probability": 0.0224 }, { "start": 32284.12, "end": 32284.66, "probability": 0.1378 }, { "start": 32285.3, "end": 32286.72, "probability": 0.0587 }, { "start": 32287.6, "end": 32289.98, "probability": 0.3515 }, { "start": 32290.06, "end": 32290.06, "probability": 0.1358 }, { "start": 32290.06, "end": 32290.68, "probability": 0.261 }, { "start": 32292.42, "end": 32293.26, "probability": 0.0447 }, { "start": 32322.62, "end": 32328.98, "probability": 0.7162 }, { "start": 32330.04, "end": 32331.56, "probability": 0.884 }, { "start": 32332.4, "end": 32334.56, "probability": 0.9937 }, { "start": 32335.72, "end": 32339.82, "probability": 0.9949 }, { "start": 32340.46, "end": 32343.68, "probability": 0.9944 }, { "start": 32345.3, "end": 32347.1, "probability": 0.9681 }, { "start": 32347.88, "end": 32351.0, "probability": 0.9805 }, { "start": 32351.18, "end": 32352.06, "probability": 0.8338 }, { "start": 32352.6, "end": 32356.96, "probability": 0.9953 }, { "start": 32357.2, "end": 32362.38, "probability": 0.9189 }, { "start": 32362.66, "end": 32362.9, "probability": 0.5518 }, { "start": 32364.04, "end": 32372.46, "probability": 0.8912 }, { "start": 32373.42, "end": 32377.48, "probability": 0.9945 }, { "start": 32378.04, "end": 32378.54, "probability": 0.8308 }, { "start": 32380.02, "end": 32382.11, "probability": 0.0175 }, { "start": 32384.96, "end": 32384.96, "probability": 0.0035 }, { "start": 32394.46, "end": 32395.98, "probability": 0.0328 }, { "start": 32396.0, "end": 32396.58, "probability": 0.0516 }, { "start": 32397.0, "end": 32397.0, "probability": 0.0741 }, { "start": 32443.68, "end": 32447.14, "probability": 0.5521 }, { "start": 32447.84, "end": 32450.02, "probability": 0.8662 }, { "start": 32451.24, "end": 32453.15, "probability": 0.7361 }, { "start": 32453.9, "end": 32454.55, "probability": 0.3416 }, { "start": 32455.46, "end": 32457.98, "probability": 0.0383 }, { "start": 32458.16, "end": 32459.88, "probability": 0.8175 }, { "start": 32459.88, "end": 32460.78, "probability": 0.873 }, { "start": 32461.8, "end": 32465.94, "probability": 0.9631 }, { "start": 32472.76, "end": 32474.1, "probability": 0.2859 }, { "start": 32474.44, "end": 32476.56, "probability": 0.3057 }, { "start": 32477.64, "end": 32482.04, "probability": 0.9775 }, { "start": 32482.64, "end": 32483.24, "probability": 0.9235 }, { "start": 32486.47, "end": 32488.56, "probability": 0.1424 }, { "start": 32488.56, "end": 32489.8, "probability": 0.8249 }, { "start": 32492.02, "end": 32494.52, "probability": 0.9082 }, { "start": 32499.62, "end": 32502.18, "probability": 0.7567 }, { "start": 32503.04, "end": 32503.98, "probability": 0.8439 }, { "start": 32510.54, "end": 32512.6, "probability": 0.5558 }, { "start": 32513.04, "end": 32514.48, "probability": 0.1885 }, { "start": 32514.6, "end": 32516.9, "probability": 0.9155 }, { "start": 32519.16, "end": 32519.94, "probability": 0.242 }, { "start": 32521.22, "end": 32521.66, "probability": 0.9749 }, { "start": 32522.68, "end": 32523.8, "probability": 0.6632 }, { "start": 32529.48, "end": 32530.76, "probability": 0.1054 }, { "start": 32536.58, "end": 32540.32, "probability": 0.4231 }, { "start": 32541.44, "end": 32542.46, "probability": 0.7028 }, { "start": 32542.6, "end": 32545.58, "probability": 0.3901 }, { "start": 32546.52, "end": 32547.22, "probability": 0.7747 }, { "start": 32547.64, "end": 32549.76, "probability": 0.9331 }, { "start": 32550.9, "end": 32553.64, "probability": 0.9893 }, { "start": 32554.18, "end": 32556.98, "probability": 0.916 }, { "start": 32558.84, "end": 32560.28, "probability": 0.9985 }, { "start": 32564.22, "end": 32567.7, "probability": 0.7721 }, { "start": 32567.76, "end": 32571.06, "probability": 0.8932 }, { "start": 32571.6, "end": 32574.52, "probability": 0.9213 }, { "start": 32575.42, "end": 32576.4, "probability": 0.4492 }, { "start": 32578.0, "end": 32578.46, "probability": 0.5006 }, { "start": 32579.24, "end": 32580.64, "probability": 0.6783 }, { "start": 32581.42, "end": 32581.96, "probability": 0.7586 }, { "start": 32582.78, "end": 32583.56, "probability": 0.8219 }, { "start": 32584.46, "end": 32586.52, "probability": 0.8568 }, { "start": 32590.1, "end": 32590.92, "probability": 0.9025 }, { "start": 32591.82, "end": 32592.64, "probability": 0.6575 }, { "start": 32595.18, "end": 32596.5, "probability": 0.9889 }, { "start": 32597.1, "end": 32598.28, "probability": 0.904 }, { "start": 32601.56, "end": 32602.22, "probability": 0.6775 }, { "start": 32602.94, "end": 32604.12, "probability": 0.5033 }, { "start": 32607.58, "end": 32608.16, "probability": 0.9629 }, { "start": 32609.28, "end": 32610.04, "probability": 0.9128 }, { "start": 32610.64, "end": 32612.6, "probability": 0.9443 }, { "start": 32613.69, "end": 32615.94, "probability": 0.9905 }, { "start": 32616.98, "end": 32619.3, "probability": 0.9818 }, { "start": 32620.1, "end": 32622.12, "probability": 0.9826 }, { "start": 32622.92, "end": 32623.48, "probability": 0.9948 }, { "start": 32624.1, "end": 32624.92, "probability": 0.9713 }, { "start": 32625.84, "end": 32626.28, "probability": 0.9891 }, { "start": 32626.94, "end": 32627.76, "probability": 0.75 }, { "start": 32628.7, "end": 32629.02, "probability": 0.7764 }, { "start": 32629.88, "end": 32631.5, "probability": 0.5882 }, { "start": 32632.84, "end": 32633.16, "probability": 0.9491 }, { "start": 32633.78, "end": 32634.58, "probability": 0.8613 }, { "start": 32635.66, "end": 32636.18, "probability": 0.9834 }, { "start": 32637.0, "end": 32638.08, "probability": 0.8745 }, { "start": 32641.34, "end": 32641.88, "probability": 0.9281 }, { "start": 32642.84, "end": 32643.7, "probability": 0.9744 }, { "start": 32644.46, "end": 32645.0, "probability": 0.9575 }, { "start": 32645.62, "end": 32646.4, "probability": 0.8132 }, { "start": 32651.18, "end": 32651.7, "probability": 0.8223 }, { "start": 32652.56, "end": 32653.92, "probability": 0.9692 }, { "start": 32655.08, "end": 32657.14, "probability": 0.9769 }, { "start": 32658.16, "end": 32660.26, "probability": 0.9364 }, { "start": 32661.64, "end": 32662.36, "probability": 0.9663 }, { "start": 32663.14, "end": 32664.34, "probability": 0.7076 }, { "start": 32665.24, "end": 32665.72, "probability": 0.9909 }, { "start": 32666.54, "end": 32667.28, "probability": 0.9816 }, { "start": 32668.44, "end": 32670.56, "probability": 0.9834 }, { "start": 32671.32, "end": 32671.68, "probability": 0.9232 }, { "start": 32672.46, "end": 32673.28, "probability": 0.9855 }, { "start": 32675.18, "end": 32675.68, "probability": 0.9974 }, { "start": 32676.42, "end": 32676.7, "probability": 0.6856 }, { "start": 32678.0, "end": 32678.54, "probability": 0.734 }, { "start": 32680.96, "end": 32682.06, "probability": 0.792 }, { "start": 32683.9, "end": 32684.4, "probability": 0.9858 }, { "start": 32685.28, "end": 32686.14, "probability": 0.8767 }, { "start": 32688.32, "end": 32690.58, "probability": 0.7069 }, { "start": 32693.42, "end": 32694.0, "probability": 0.9521 }, { "start": 32694.6, "end": 32695.54, "probability": 0.768 }, { "start": 32696.32, "end": 32696.78, "probability": 0.8938 }, { "start": 32699.54, "end": 32700.44, "probability": 0.7219 }, { "start": 32702.1, "end": 32702.9, "probability": 0.8777 }, { "start": 32703.44, "end": 32704.54, "probability": 0.6941 }, { "start": 32708.54, "end": 32709.02, "probability": 0.8825 }, { "start": 32710.46, "end": 32711.62, "probability": 0.8551 }, { "start": 32712.48, "end": 32712.98, "probability": 0.9814 }, { "start": 32713.66, "end": 32714.54, "probability": 0.9543 }, { "start": 32715.28, "end": 32715.82, "probability": 0.9694 }, { "start": 32716.72, "end": 32717.98, "probability": 0.8127 }, { "start": 32718.96, "end": 32719.48, "probability": 0.9867 }, { "start": 32720.16, "end": 32721.5, "probability": 0.9614 }, { "start": 32722.46, "end": 32722.84, "probability": 0.9948 }, { "start": 32723.74, "end": 32724.68, "probability": 0.9689 }, { "start": 32727.04, "end": 32728.0, "probability": 0.6604 }, { "start": 32729.22, "end": 32729.78, "probability": 0.8896 }, { "start": 32730.68, "end": 32731.7, "probability": 0.4377 }, { "start": 32732.74, "end": 32733.24, "probability": 0.9946 }, { "start": 32733.86, "end": 32735.1, "probability": 0.8178 }, { "start": 32736.26, "end": 32738.94, "probability": 0.9526 }, { "start": 32740.18, "end": 32740.74, "probability": 0.9974 }, { "start": 32741.34, "end": 32742.52, "probability": 0.9455 }, { "start": 32744.2, "end": 32744.96, "probability": 0.9817 }, { "start": 32745.9, "end": 32747.22, "probability": 0.7621 }, { "start": 32748.2, "end": 32750.42, "probability": 0.7568 }, { "start": 32751.4, "end": 32751.86, "probability": 0.6846 }, { "start": 32753.86, "end": 32755.1, "probability": 0.7196 }, { "start": 32756.06, "end": 32756.5, "probability": 0.9598 }, { "start": 32757.1, "end": 32758.08, "probability": 0.6358 }, { "start": 32759.44, "end": 32761.68, "probability": 0.9561 }, { "start": 32762.42, "end": 32763.36, "probability": 0.9805 }, { "start": 32764.5, "end": 32765.36, "probability": 0.8585 }, { "start": 32766.78, "end": 32770.58, "probability": 0.6471 }, { "start": 32772.1, "end": 32772.64, "probability": 0.9867 }, { "start": 32775.66, "end": 32776.84, "probability": 0.5138 }, { "start": 32777.92, "end": 32778.4, "probability": 0.944 }, { "start": 32779.12, "end": 32779.84, "probability": 0.7811 }, { "start": 32781.7, "end": 32782.64, "probability": 0.978 }, { "start": 32784.34, "end": 32785.32, "probability": 0.9773 }, { "start": 32786.84, "end": 32787.32, "probability": 0.995 }, { "start": 32788.18, "end": 32789.7, "probability": 0.8991 }, { "start": 32792.0, "end": 32792.54, "probability": 0.9938 }, { "start": 32793.4, "end": 32794.32, "probability": 0.8277 }, { "start": 32797.62, "end": 32798.08, "probability": 0.9797 }, { "start": 32799.24, "end": 32800.1, "probability": 0.9658 }, { "start": 32800.98, "end": 32801.42, "probability": 0.9971 }, { "start": 32801.96, "end": 32802.62, "probability": 0.8751 }, { "start": 32804.62, "end": 32805.34, "probability": 0.7243 }, { "start": 32808.4, "end": 32808.96, "probability": 0.9172 }, { "start": 32809.72, "end": 32810.42, "probability": 0.8682 }, { "start": 32812.6, "end": 32813.14, "probability": 0.9852 }, { "start": 32814.28, "end": 32815.54, "probability": 0.6123 }, { "start": 32816.24, "end": 32816.74, "probability": 0.9844 }, { "start": 32817.36, "end": 32818.14, "probability": 0.9595 }, { "start": 32818.92, "end": 32819.34, "probability": 0.964 }, { "start": 32819.92, "end": 32821.14, "probability": 0.9434 }, { "start": 32822.5, "end": 32822.92, "probability": 0.9854 }, { "start": 32823.62, "end": 32824.54, "probability": 0.9386 }, { "start": 32825.94, "end": 32826.36, "probability": 0.9971 }, { "start": 32827.2, "end": 32828.18, "probability": 0.8968 }, { "start": 32829.36, "end": 32829.74, "probability": 0.9954 }, { "start": 32830.62, "end": 32831.58, "probability": 0.9597 }, { "start": 32836.0, "end": 32836.52, "probability": 0.7367 }, { "start": 32837.8, "end": 32838.72, "probability": 0.6643 }, { "start": 32841.76, "end": 32843.86, "probability": 0.8101 }, { "start": 32846.76, "end": 32849.16, "probability": 0.9707 }, { "start": 32849.9, "end": 32850.34, "probability": 0.9655 }, { "start": 32850.94, "end": 32851.92, "probability": 0.8097 }, { "start": 32853.18, "end": 32853.68, "probability": 0.994 }, { "start": 32854.36, "end": 32855.2, "probability": 0.7518 }, { "start": 32857.7, "end": 32859.56, "probability": 0.7419 }, { "start": 32863.9, "end": 32865.26, "probability": 0.7483 }, { "start": 32866.52, "end": 32867.48, "probability": 0.8928 }, { "start": 32868.32, "end": 32869.32, "probability": 0.4019 }, { "start": 32874.62, "end": 32878.24, "probability": 0.9663 }, { "start": 32879.42, "end": 32881.56, "probability": 0.9512 }, { "start": 32882.5, "end": 32882.92, "probability": 0.9648 }, { "start": 32883.56, "end": 32884.24, "probability": 0.9312 }, { "start": 32885.46, "end": 32885.96, "probability": 0.9811 }, { "start": 32886.62, "end": 32887.48, "probability": 0.8944 }, { "start": 32888.96, "end": 32889.36, "probability": 0.994 }, { "start": 32891.04, "end": 32892.3, "probability": 0.356 }, { "start": 32897.26, "end": 32898.14, "probability": 0.8408 }, { "start": 32900.38, "end": 32901.4, "probability": 0.7556 }, { "start": 32902.76, "end": 32903.2, "probability": 0.9551 }, { "start": 32903.96, "end": 32905.02, "probability": 0.8726 }, { "start": 32906.4, "end": 32906.84, "probability": 0.9531 }, { "start": 32907.9, "end": 32909.28, "probability": 0.9429 }, { "start": 32913.5, "end": 32914.0, "probability": 0.7892 }, { "start": 32915.34, "end": 32916.14, "probability": 0.5935 }, { "start": 32916.98, "end": 32917.46, "probability": 0.9644 }, { "start": 32918.04, "end": 32919.02, "probability": 0.8333 }, { "start": 32919.76, "end": 32921.72, "probability": 0.9032 }, { "start": 32924.04, "end": 32924.54, "probability": 0.9941 }, { "start": 32925.36, "end": 32926.18, "probability": 0.731 }, { "start": 32927.72, "end": 32929.62, "probability": 0.9151 }, { "start": 32931.22, "end": 32931.68, "probability": 0.9924 }, { "start": 32932.5, "end": 32933.5, "probability": 0.4252 }, { "start": 32934.82, "end": 32935.28, "probability": 0.974 }, { "start": 32935.9, "end": 32937.0, "probability": 0.8946 }, { "start": 32938.18, "end": 32938.7, "probability": 0.7042 }, { "start": 32939.3, "end": 32940.42, "probability": 0.4755 }, { "start": 32942.1, "end": 32942.52, "probability": 0.9126 }, { "start": 32943.38, "end": 32944.22, "probability": 0.8719 }, { "start": 32946.32, "end": 32951.16, "probability": 0.8613 }, { "start": 32952.08, "end": 32952.42, "probability": 0.958 }, { "start": 32953.5, "end": 32954.09, "probability": 0.4942 }, { "start": 32956.78, "end": 32957.3, "probability": 0.9875 }, { "start": 32959.6, "end": 32960.64, "probability": 0.9704 }, { "start": 32962.08, "end": 32962.62, "probability": 0.9888 }, { "start": 32963.44, "end": 32967.18, "probability": 0.8535 }, { "start": 32970.58, "end": 32971.66, "probability": 0.8517 }, { "start": 32972.7, "end": 32974.56, "probability": 0.8525 }, { "start": 32976.9, "end": 32977.48, "probability": 0.9888 }, { "start": 32978.1, "end": 32979.2, "probability": 0.8645 }, { "start": 32980.4, "end": 32980.84, "probability": 0.9865 }, { "start": 32981.54, "end": 32981.92, "probability": 0.9127 }, { "start": 32984.46, "end": 32986.26, "probability": 0.8158 }, { "start": 32987.88, "end": 32991.7, "probability": 0.9161 }, { "start": 32993.94, "end": 32995.48, "probability": 0.0621 }, { "start": 33000.34, "end": 33001.36, "probability": 0.2672 }, { "start": 33002.44, "end": 33004.94, "probability": 0.7875 }, { "start": 33005.96, "end": 33006.98, "probability": 0.7975 }, { "start": 33008.3, "end": 33010.5, "probability": 0.9499 }, { "start": 33011.48, "end": 33014.1, "probability": 0.9697 }, { "start": 33015.0, "end": 33017.6, "probability": 0.9364 }, { "start": 33021.4, "end": 33023.56, "probability": 0.6894 }, { "start": 33024.78, "end": 33025.5, "probability": 0.6344 }, { "start": 33027.06, "end": 33027.58, "probability": 0.9442 }, { "start": 33028.26, "end": 33029.3, "probability": 0.8293 }, { "start": 33033.76, "end": 33034.74, "probability": 0.9606 }, { "start": 33035.86, "end": 33037.38, "probability": 0.8698 }, { "start": 33039.04, "end": 33039.92, "probability": 0.9494 }, { "start": 33040.72, "end": 33042.0, "probability": 0.8721 }, { "start": 33042.74, "end": 33043.24, "probability": 0.9364 }, { "start": 33043.9, "end": 33044.86, "probability": 0.9044 }, { "start": 33045.38, "end": 33045.74, "probability": 0.8496 }, { "start": 33046.38, "end": 33047.32, "probability": 0.8256 }, { "start": 33049.38, "end": 33049.9, "probability": 0.7786 }, { "start": 33050.76, "end": 33051.6, "probability": 0.4222 }, { "start": 33052.68, "end": 33053.26, "probability": 0.9486 }, { "start": 33053.92, "end": 33055.04, "probability": 0.8139 }, { "start": 33055.96, "end": 33057.98, "probability": 0.8749 }, { "start": 33059.34, "end": 33061.34, "probability": 0.861 }, { "start": 33062.0, "end": 33062.34, "probability": 0.9762 }, { "start": 33063.26, "end": 33064.62, "probability": 0.8924 }, { "start": 33065.4, "end": 33065.86, "probability": 0.9699 }, { "start": 33066.46, "end": 33067.44, "probability": 0.8994 }, { "start": 33068.12, "end": 33069.98, "probability": 0.726 }, { "start": 33071.68, "end": 33073.16, "probability": 0.7338 }, { "start": 33073.98, "end": 33075.12, "probability": 0.5714 }, { "start": 33078.88, "end": 33079.32, "probability": 0.7037 }, { "start": 33085.2, "end": 33087.74, "probability": 0.9943 }, { "start": 33088.7, "end": 33089.68, "probability": 0.5287 }, { "start": 33091.04, "end": 33091.58, "probability": 0.8823 }, { "start": 33093.2, "end": 33094.2, "probability": 0.6126 }, { "start": 33095.88, "end": 33098.94, "probability": 0.9266 }, { "start": 33100.44, "end": 33101.26, "probability": 0.9331 }, { "start": 33102.6, "end": 33103.36, "probability": 0.9473 }, { "start": 33104.04, "end": 33104.84, "probability": 0.9766 }, { "start": 33105.42, "end": 33106.14, "probability": 0.6322 }, { "start": 33107.7, "end": 33110.18, "probability": 0.7674 }, { "start": 33110.32, "end": 33112.14, "probability": 0.8157 }, { "start": 33112.88, "end": 33113.66, "probability": 0.9828 }, { "start": 33115.12, "end": 33115.98, "probability": 0.7236 }, { "start": 33116.96, "end": 33119.98, "probability": 0.9038 }, { "start": 33121.24, "end": 33122.24, "probability": 0.7957 }, { "start": 33122.9, "end": 33124.12, "probability": 0.3615 }, { "start": 33124.98, "end": 33125.96, "probability": 0.9907 }, { "start": 33127.68, "end": 33130.66, "probability": 0.9314 }, { "start": 33131.72, "end": 33133.84, "probability": 0.9141 }, { "start": 33135.38, "end": 33135.88, "probability": 0.9427 }, { "start": 33137.06, "end": 33138.4, "probability": 0.9087 }, { "start": 33139.96, "end": 33141.06, "probability": 0.9975 }, { "start": 33141.8, "end": 33143.4, "probability": 0.8044 }, { "start": 33144.58, "end": 33145.56, "probability": 0.9103 }, { "start": 33146.65, "end": 33152.16, "probability": 0.958 }, { "start": 33153.08, "end": 33153.76, "probability": 0.5233 }, { "start": 33154.9, "end": 33156.2, "probability": 0.7108 }, { "start": 33156.28, "end": 33157.26, "probability": 0.8508 }, { "start": 33175.82, "end": 33178.28, "probability": 0.0732 }, { "start": 33179.0, "end": 33179.5, "probability": 0.0587 }, { "start": 33216.84, "end": 33216.9, "probability": 0.0934 }, { "start": 33217.62, "end": 33217.72, "probability": 0.0508 }, { "start": 33268.73, "end": 33272.8, "probability": 0.0606 }, { "start": 33273.58, "end": 33275.44, "probability": 0.8632 }, { "start": 33275.58, "end": 33276.22, "probability": 0.656 }, { "start": 33282.7, "end": 33283.24, "probability": 0.5035 }, { "start": 33283.24, "end": 33283.86, "probability": 0.4759 }, { "start": 33285.08, "end": 33290.88, "probability": 0.9702 }, { "start": 33291.54, "end": 33293.68, "probability": 0.9383 }, { "start": 33293.76, "end": 33294.0, "probability": 0.6735 }, { "start": 33295.8, "end": 33296.64, "probability": 0.7574 }, { "start": 33296.88, "end": 33298.86, "probability": 0.5707 }, { "start": 33299.68, "end": 33304.12, "probability": 0.8064 }, { "start": 33304.64, "end": 33307.74, "probability": 0.981 }, { "start": 33308.28, "end": 33309.58, "probability": 0.9697 }, { "start": 33312.36, "end": 33315.48, "probability": 0.9108 }, { "start": 33315.66, "end": 33316.78, "probability": 0.5257 }, { "start": 33317.72, "end": 33322.32, "probability": 0.6419 }, { "start": 33322.32, "end": 33324.55, "probability": 0.9679 }, { "start": 33327.08, "end": 33328.9, "probability": 0.0132 }, { "start": 33331.1, "end": 33331.2, "probability": 0.0175 }, { "start": 33334.66, "end": 33335.54, "probability": 0.151 }, { "start": 33338.88, "end": 33339.84, "probability": 0.5068 }, { "start": 33341.04, "end": 33341.44, "probability": 0.8933 }, { "start": 33342.46, "end": 33343.56, "probability": 0.7605 }, { "start": 33344.66, "end": 33345.14, "probability": 0.9702 }, { "start": 33345.86, "end": 33346.95, "probability": 0.5581 }, { "start": 33347.76, "end": 33348.1, "probability": 0.9893 }, { "start": 33348.94, "end": 33349.58, "probability": 0.9401 }, { "start": 33350.83, "end": 33351.74, "probability": 0.981 }, { "start": 33352.9, "end": 33353.34, "probability": 0.9666 }, { "start": 33354.08, "end": 33355.62, "probability": 0.034 }, { "start": 33355.62, "end": 33356.96, "probability": 0.2684 }, { "start": 33356.96, "end": 33356.96, "probability": 0.0484 }, { "start": 33356.96, "end": 33358.66, "probability": 0.3955 }, { "start": 33358.66, "end": 33359.57, "probability": 0.8657 }, { "start": 33360.74, "end": 33361.56, "probability": 0.4589 }, { "start": 33361.7, "end": 33368.01, "probability": 0.9144 }, { "start": 33368.54, "end": 33370.42, "probability": 0.8518 }, { "start": 33371.04, "end": 33372.12, "probability": 0.594 }, { "start": 33372.44, "end": 33374.76, "probability": 0.848 }, { "start": 33374.82, "end": 33378.64, "probability": 0.9755 }, { "start": 33379.28, "end": 33380.6, "probability": 0.3765 }, { "start": 33381.84, "end": 33383.34, "probability": 0.0213 }, { "start": 33384.42, "end": 33386.26, "probability": 0.1638 }, { "start": 33387.32, "end": 33388.12, "probability": 0.0497 }, { "start": 33391.74, "end": 33395.86, "probability": 0.6668 }, { "start": 33395.96, "end": 33397.3, "probability": 0.6705 }, { "start": 33397.96, "end": 33402.62, "probability": 0.9523 }, { "start": 33403.28, "end": 33405.5, "probability": 0.2439 }, { "start": 33405.7, "end": 33409.42, "probability": 0.7985 }, { "start": 33410.22, "end": 33411.56, "probability": 0.8241 }, { "start": 33412.32, "end": 33415.66, "probability": 0.9167 }, { "start": 33416.48, "end": 33418.26, "probability": 0.7653 }, { "start": 33418.36, "end": 33418.92, "probability": 0.5392 }, { "start": 33418.92, "end": 33419.32, "probability": 0.7164 }, { "start": 33419.42, "end": 33420.46, "probability": 0.1613 }, { "start": 33420.62, "end": 33425.1, "probability": 0.1719 }, { "start": 33425.52, "end": 33425.62, "probability": 0.0097 }, { "start": 33425.62, "end": 33426.26, "probability": 0.4906 }, { "start": 33427.0, "end": 33427.78, "probability": 0.7494 }, { "start": 33429.46, "end": 33430.86, "probability": 0.4954 }, { "start": 33432.3, "end": 33433.06, "probability": 0.7292 }, { "start": 33434.16, "end": 33436.1, "probability": 0.6249 }, { "start": 33437.52, "end": 33439.68, "probability": 0.8877 }, { "start": 33440.64, "end": 33442.84, "probability": 0.9562 }, { "start": 33448.14, "end": 33456.56, "probability": 0.628 }, { "start": 33456.92, "end": 33459.12, "probability": 0.5052 }, { "start": 33459.26, "end": 33460.2, "probability": 0.6682 }, { "start": 33460.38, "end": 33460.68, "probability": 0.8751 }, { "start": 33460.74, "end": 33461.86, "probability": 0.9415 }, { "start": 33462.06, "end": 33463.74, "probability": 0.9907 }, { "start": 33463.78, "end": 33464.54, "probability": 0.8796 }, { "start": 33464.98, "end": 33467.74, "probability": 0.9688 }, { "start": 33468.42, "end": 33474.62, "probability": 0.9655 }, { "start": 33475.96, "end": 33477.74, "probability": 0.6947 }, { "start": 33478.06, "end": 33482.66, "probability": 0.1177 }, { "start": 33482.66, "end": 33483.12, "probability": 0.0141 }, { "start": 33483.12, "end": 33483.89, "probability": 0.0293 }, { "start": 33484.54, "end": 33484.6, "probability": 0.3336 }, { "start": 33484.6, "end": 33487.46, "probability": 0.0307 }, { "start": 33488.6, "end": 33488.66, "probability": 0.145 }, { "start": 33488.66, "end": 33489.92, "probability": 0.191 }, { "start": 33490.5, "end": 33493.1, "probability": 0.601 }, { "start": 33493.84, "end": 33494.18, "probability": 0.9622 }, { "start": 33494.96, "end": 33495.62, "probability": 0.6099 }, { "start": 33497.36, "end": 33499.92, "probability": 0.6712 }, { "start": 33500.78, "end": 33501.22, "probability": 0.8722 }, { "start": 33501.94, "end": 33503.0, "probability": 0.7485 }, { "start": 33503.96, "end": 33504.12, "probability": 0.4901 }, { "start": 33505.14, "end": 33505.92, "probability": 0.5288 }, { "start": 33508.04, "end": 33511.05, "probability": 0.2326 }, { "start": 33516.86, "end": 33517.8, "probability": 0.7337 }, { "start": 33518.46, "end": 33518.8, "probability": 0.6041 }, { "start": 33519.82, "end": 33520.8, "probability": 0.9337 }, { "start": 33521.62, "end": 33523.44, "probability": 0.8538 }, { "start": 33524.64, "end": 33526.92, "probability": 0.493 }, { "start": 33528.3, "end": 33529.26, "probability": 0.8636 }, { "start": 33530.18, "end": 33531.06, "probability": 0.9393 }, { "start": 33532.26, "end": 33533.26, "probability": 0.9788 }, { "start": 33533.98, "end": 33534.84, "probability": 0.8976 }, { "start": 33535.42, "end": 33537.3, "probability": 0.9676 }, { "start": 33538.46, "end": 33538.86, "probability": 0.8488 }, { "start": 33539.54, "end": 33540.24, "probability": 0.8717 }, { "start": 33540.8, "end": 33542.72, "probability": 0.705 }, { "start": 33543.26, "end": 33543.26, "probability": 0.1483 }, { "start": 33543.26, "end": 33543.68, "probability": 0.1825 }, { "start": 33544.18, "end": 33544.44, "probability": 0.4955 }, { "start": 33545.04, "end": 33548.82, "probability": 0.6072 }, { "start": 33548.84, "end": 33550.6, "probability": 0.7603 }, { "start": 33550.68, "end": 33551.52, "probability": 0.7563 }, { "start": 33551.52, "end": 33552.2, "probability": 0.6058 }, { "start": 33552.86, "end": 33555.98, "probability": 0.9304 }, { "start": 33557.12, "end": 33558.9, "probability": 0.7608 }, { "start": 33558.98, "end": 33559.16, "probability": 0.6873 }, { "start": 33560.0, "end": 33560.74, "probability": 0.2258 }, { "start": 33562.66, "end": 33567.44, "probability": 0.6535 }, { "start": 33576.4, "end": 33578.2, "probability": 0.5321 }, { "start": 33579.0, "end": 33579.64, "probability": 0.8056 }, { "start": 33580.62, "end": 33582.38, "probability": 0.7212 }, { "start": 33583.94, "end": 33584.32, "probability": 0.9583 }, { "start": 33585.94, "end": 33586.92, "probability": 0.8836 }, { "start": 33588.2, "end": 33590.38, "probability": 0.8387 }, { "start": 33591.6, "end": 33593.94, "probability": 0.9689 }, { "start": 33594.72, "end": 33595.18, "probability": 0.9782 }, { "start": 33595.98, "end": 33596.74, "probability": 0.9437 }, { "start": 33597.3, "end": 33597.74, "probability": 0.9807 }, { "start": 33598.7, "end": 33600.03, "probability": 0.548 }, { "start": 33601.04, "end": 33601.48, "probability": 0.9673 }, { "start": 33602.14, "end": 33603.1, "probability": 0.8662 }, { "start": 33603.72, "end": 33604.64, "probability": 0.9902 }, { "start": 33605.2, "end": 33605.88, "probability": 0.909 }, { "start": 33606.9, "end": 33607.44, "probability": 0.9554 }, { "start": 33607.96, "end": 33609.1, "probability": 0.7152 }, { "start": 33614.94, "end": 33618.74, "probability": 0.54 }, { "start": 33619.02, "end": 33621.24, "probability": 0.0341 }, { "start": 33622.1, "end": 33624.45, "probability": 0.121 }, { "start": 33625.42, "end": 33628.36, "probability": 0.6559 }, { "start": 33629.72, "end": 33633.92, "probability": 0.8907 }, { "start": 33635.44, "end": 33636.37, "probability": 0.2799 }, { "start": 33638.14, "end": 33638.48, "probability": 0.8146 }, { "start": 33639.18, "end": 33640.4, "probability": 0.8401 }, { "start": 33641.7, "end": 33644.46, "probability": 0.7399 }, { "start": 33644.74, "end": 33646.72, "probability": 0.7074 }, { "start": 33648.3, "end": 33648.74, "probability": 0.9495 }, { "start": 33649.38, "end": 33650.5, "probability": 0.8068 }, { "start": 33652.88, "end": 33653.28, "probability": 0.9937 }, { "start": 33654.26, "end": 33655.1, "probability": 0.7632 }, { "start": 33655.62, "end": 33656.3, "probability": 0.9034 }, { "start": 33657.44, "end": 33657.86, "probability": 0.7427 }, { "start": 33659.32, "end": 33659.68, "probability": 0.7043 }, { "start": 33660.54, "end": 33661.26, "probability": 0.7439 }, { "start": 33662.4, "end": 33662.78, "probability": 0.9956 }, { "start": 33663.44, "end": 33664.52, "probability": 0.7649 }, { "start": 33666.34, "end": 33666.7, "probability": 0.7932 }, { "start": 33667.42, "end": 33668.46, "probability": 0.9691 }, { "start": 33670.0, "end": 33670.5, "probability": 0.9878 }, { "start": 33671.18, "end": 33671.84, "probability": 0.9583 }, { "start": 33672.66, "end": 33673.02, "probability": 0.9648 }, { "start": 33673.92, "end": 33674.64, "probability": 0.9885 }, { "start": 33675.42, "end": 33675.74, "probability": 0.9463 }, { "start": 33676.88, "end": 33678.02, "probability": 0.898 }, { "start": 33679.52, "end": 33685.06, "probability": 0.3564 }, { "start": 33685.26, "end": 33687.72, "probability": 0.9341 }, { "start": 33687.88, "end": 33692.56, "probability": 0.9632 }, { "start": 33696.22, "end": 33699.82, "probability": 0.8618 }, { "start": 33699.94, "end": 33700.84, "probability": 0.9868 }, { "start": 33701.7, "end": 33704.7, "probability": 0.9405 }, { "start": 33707.3, "end": 33708.31, "probability": 0.2175 }, { "start": 33709.82, "end": 33715.48, "probability": 0.7324 }, { "start": 33715.54, "end": 33718.66, "probability": 0.7478 }, { "start": 33727.66, "end": 33729.34, "probability": 0.6442 }, { "start": 33729.96, "end": 33737.98, "probability": 0.217 }, { "start": 33739.58, "end": 33741.36, "probability": 0.7908 }, { "start": 33742.52, "end": 33743.38, "probability": 0.6208 }, { "start": 33744.86, "end": 33745.8, "probability": 0.5578 }, { "start": 33746.73, "end": 33747.84, "probability": 0.399 }, { "start": 33749.54, "end": 33750.02, "probability": 0.0145 }, { "start": 33755.72, "end": 33756.92, "probability": 0.0807 }, { "start": 33757.52, "end": 33757.92, "probability": 0.8002 }, { "start": 33758.72, "end": 33759.54, "probability": 0.7392 }, { "start": 33760.14, "end": 33762.66, "probability": 0.8988 }, { "start": 33763.64, "end": 33765.78, "probability": 0.9508 }, { "start": 33766.76, "end": 33769.14, "probability": 0.9374 }, { "start": 33771.1, "end": 33771.54, "probability": 0.986 }, { "start": 33772.46, "end": 33773.6, "probability": 0.9817 }, { "start": 33774.36, "end": 33776.52, "probability": 0.938 }, { "start": 33780.74, "end": 33781.96, "probability": 0.0164 }, { "start": 33784.5, "end": 33787.44, "probability": 0.5979 }, { "start": 33788.18, "end": 33788.48, "probability": 0.8548 }, { "start": 33789.24, "end": 33790.24, "probability": 0.7034 }, { "start": 33791.82, "end": 33794.12, "probability": 0.8072 }, { "start": 33794.94, "end": 33797.7, "probability": 0.8311 }, { "start": 33798.84, "end": 33801.16, "probability": 0.7477 }, { "start": 33805.76, "end": 33808.16, "probability": 0.6549 }, { "start": 33810.0, "end": 33811.26, "probability": 0.586 }, { "start": 33815.5, "end": 33817.14, "probability": 0.736 }, { "start": 33818.18, "end": 33819.94, "probability": 0.7249 }, { "start": 33820.88, "end": 33823.14, "probability": 0.9219 }, { "start": 33824.66, "end": 33826.7, "probability": 0.958 }, { "start": 33831.54, "end": 33834.04, "probability": 0.6641 }, { "start": 33835.18, "end": 33835.56, "probability": 0.7467 }, { "start": 33836.6, "end": 33837.72, "probability": 0.8129 }, { "start": 33839.32, "end": 33841.02, "probability": 0.8442 }, { "start": 33842.68, "end": 33843.18, "probability": 0.9333 }, { "start": 33843.82, "end": 33844.9, "probability": 0.9801 }, { "start": 33845.42, "end": 33846.24, "probability": 0.9131 }, { "start": 33847.62, "end": 33848.68, "probability": 0.6226 }, { "start": 33849.8, "end": 33850.24, "probability": 0.9831 }, { "start": 33851.66, "end": 33852.6, "probability": 0.8041 }, { "start": 33853.48, "end": 33853.94, "probability": 0.9818 }, { "start": 33854.72, "end": 33855.64, "probability": 0.9649 }, { "start": 33857.28, "end": 33857.74, "probability": 0.9939 }, { "start": 33859.16, "end": 33859.98, "probability": 0.8339 }, { "start": 33860.82, "end": 33861.3, "probability": 0.9929 }, { "start": 33862.04, "end": 33862.44, "probability": 0.7329 }, { "start": 33867.08, "end": 33870.14, "probability": 0.5164 }, { "start": 33870.34, "end": 33870.82, "probability": 0.4547 }, { "start": 33870.82, "end": 33871.36, "probability": 0.0878 }, { "start": 33872.35, "end": 33873.44, "probability": 0.1045 }, { "start": 33873.52, "end": 33875.44, "probability": 0.6046 }, { "start": 33876.4, "end": 33877.88, "probability": 0.7261 }, { "start": 33877.88, "end": 33878.32, "probability": 0.7355 }, { "start": 33879.34, "end": 33880.68, "probability": 0.0119 }, { "start": 33881.42, "end": 33882.34, "probability": 0.4221 }, { "start": 33883.26, "end": 33883.7, "probability": 0.9787 }, { "start": 33885.78, "end": 33886.82, "probability": 0.4621 }, { "start": 33887.76, "end": 33888.1, "probability": 0.5628 }, { "start": 33889.22, "end": 33890.06, "probability": 0.4858 }, { "start": 33891.68, "end": 33892.08, "probability": 0.9295 }, { "start": 33893.48, "end": 33894.56, "probability": 0.9193 }, { "start": 33896.22, "end": 33898.96, "probability": 0.9551 }, { "start": 33899.92, "end": 33900.46, "probability": 0.9756 }, { "start": 33901.32, "end": 33902.14, "probability": 0.4793 }, { "start": 33902.94, "end": 33903.34, "probability": 0.9817 }, { "start": 33905.14, "end": 33906.26, "probability": 0.9706 }, { "start": 33907.06, "end": 33912.52, "probability": 0.9007 }, { "start": 33913.08, "end": 33913.92, "probability": 0.9844 }, { "start": 33914.9, "end": 33916.1, "probability": 0.7455 }, { "start": 33918.02, "end": 33918.52, "probability": 0.7742 }, { "start": 33919.98, "end": 33920.92, "probability": 0.7471 }, { "start": 33921.82, "end": 33923.94, "probability": 0.8925 }, { "start": 33932.66, "end": 33934.3, "probability": 0.6511 }, { "start": 33934.98, "end": 33935.86, "probability": 0.7371 }, { "start": 33937.22, "end": 33939.76, "probability": 0.9027 }, { "start": 33940.64, "end": 33945.2, "probability": 0.7029 }, { "start": 33948.84, "end": 33949.94, "probability": 0.5164 }, { "start": 33950.58, "end": 33951.5, "probability": 0.9041 }, { "start": 33953.02, "end": 33955.22, "probability": 0.9337 }, { "start": 33957.48, "end": 33958.02, "probability": 0.9845 }, { "start": 33959.06, "end": 33961.36, "probability": 0.743 }, { "start": 33962.24, "end": 33963.98, "probability": 0.7988 }, { "start": 33964.54, "end": 33967.84, "probability": 0.9229 }, { "start": 33968.76, "end": 33969.44, "probability": 0.9917 }, { "start": 33970.14, "end": 33971.0, "probability": 0.9289 }, { "start": 33971.86, "end": 33974.52, "probability": 0.8846 }, { "start": 33975.04, "end": 33982.9, "probability": 0.7686 }, { "start": 33983.8, "end": 33989.68, "probability": 0.8752 }, { "start": 33990.28, "end": 33995.02, "probability": 0.4682 }, { "start": 33996.34, "end": 33997.26, "probability": 0.6889 }, { "start": 33998.1, "end": 34000.7, "probability": 0.9344 }, { "start": 34002.14, "end": 34004.44, "probability": 0.5439 }, { "start": 34008.2, "end": 34008.6, "probability": 0.4483 }, { "start": 34012.68, "end": 34013.46, "probability": 0.2329 }, { "start": 34022.06, "end": 34026.4, "probability": 0.4935 }, { "start": 34027.1, "end": 34029.36, "probability": 0.6923 }, { "start": 34029.44, "end": 34029.72, "probability": 0.803 }, { "start": 34029.8, "end": 34030.32, "probability": 0.7632 }, { "start": 34030.5, "end": 34031.68, "probability": 0.5682 }, { "start": 34032.2, "end": 34033.96, "probability": 0.7179 }, { "start": 34034.02, "end": 34035.08, "probability": 0.7726 }, { "start": 34035.8, "end": 34037.84, "probability": 0.1926 }, { "start": 34038.66, "end": 34042.88, "probability": 0.3248 }, { "start": 34044.0, "end": 34044.52, "probability": 0.7526 }, { "start": 34046.0, "end": 34046.72, "probability": 0.8126 }, { "start": 34047.72, "end": 34048.2, "probability": 0.4153 }, { "start": 34049.76, "end": 34051.5, "probability": 0.9075 }, { "start": 34053.73, "end": 34056.82, "probability": 0.803 }, { "start": 34058.74, "end": 34059.76, "probability": 0.9901 }, { "start": 34061.2, "end": 34066.02, "probability": 0.7168 }, { "start": 34066.88, "end": 34067.5, "probability": 0.981 }, { "start": 34069.22, "end": 34073.3, "probability": 0.7657 }, { "start": 34074.46, "end": 34075.44, "probability": 0.415 }, { "start": 34076.42, "end": 34078.78, "probability": 0.8484 }, { "start": 34079.99, "end": 34089.52, "probability": 0.7312 }, { "start": 34090.1, "end": 34090.8, "probability": 0.9842 }, { "start": 34091.32, "end": 34093.9, "probability": 0.7533 }, { "start": 34094.62, "end": 34095.8, "probability": 0.5116 }, { "start": 34096.56, "end": 34097.34, "probability": 0.9572 }, { "start": 34098.26, "end": 34099.72, "probability": 0.9174 }, { "start": 34100.64, "end": 34103.82, "probability": 0.6116 }, { "start": 34103.94, "end": 34106.9, "probability": 0.5419 }, { "start": 34106.94, "end": 34108.28, "probability": 0.7767 }, { "start": 34108.38, "end": 34111.38, "probability": 0.9966 }, { "start": 34111.62, "end": 34114.66, "probability": 0.8634 }, { "start": 34114.78, "end": 34115.1, "probability": 0.4281 }, { "start": 34115.5, "end": 34119.02, "probability": 0.9688 }, { "start": 34122.14, "end": 34127.12, "probability": 0.8882 }, { "start": 34128.7, "end": 34131.92, "probability": 0.1918 }, { "start": 34132.7, "end": 34132.7, "probability": 0.0537 }, { "start": 34132.7, "end": 34135.42, "probability": 0.9552 }, { "start": 34136.64, "end": 34137.92, "probability": 0.3717 }, { "start": 34138.34, "end": 34141.18, "probability": 0.8686 }, { "start": 34142.58, "end": 34142.86, "probability": 0.0076 }, { "start": 34143.54, "end": 34147.0, "probability": 0.6586 }, { "start": 34150.6, "end": 34155.54, "probability": 0.7588 }, { "start": 34156.22, "end": 34157.24, "probability": 0.9497 }, { "start": 34158.26, "end": 34160.12, "probability": 0.9252 }, { "start": 34161.46, "end": 34161.9, "probability": 0.9635 }, { "start": 34164.66, "end": 34165.12, "probability": 0.5913 }, { "start": 34169.08, "end": 34169.62, "probability": 0.75 }, { "start": 34172.98, "end": 34179.48, "probability": 0.5111 }, { "start": 34182.36, "end": 34185.1, "probability": 0.5388 }, { "start": 34188.6, "end": 34192.18, "probability": 0.8484 }, { "start": 34193.56, "end": 34197.08, "probability": 0.8167 }, { "start": 34198.92, "end": 34198.92, "probability": 0.0684 }, { "start": 34198.92, "end": 34200.92, "probability": 0.0683 }, { "start": 34200.96, "end": 34203.46, "probability": 0.2004 }, { "start": 34204.1, "end": 34207.62, "probability": 0.4852 }, { "start": 34208.54, "end": 34209.4, "probability": 0.7755 }, { "start": 34212.16, "end": 34214.44, "probability": 0.5712 }, { "start": 34215.24, "end": 34220.1, "probability": 0.9655 }, { "start": 34220.74, "end": 34221.82, "probability": 0.8109 }, { "start": 34222.42, "end": 34225.8, "probability": 0.9814 }, { "start": 34226.3, "end": 34227.06, "probability": 0.7335 }, { "start": 34227.58, "end": 34228.82, "probability": 0.5616 }, { "start": 34228.96, "end": 34229.88, "probability": 0.8344 }, { "start": 34230.5, "end": 34232.72, "probability": 0.1921 }, { "start": 34233.22, "end": 34234.58, "probability": 0.3975 }, { "start": 34235.06, "end": 34235.76, "probability": 0.1351 }, { "start": 34236.42, "end": 34237.44, "probability": 0.5039 }, { "start": 34238.26, "end": 34239.48, "probability": 0.5198 }, { "start": 34243.16, "end": 34248.52, "probability": 0.543 }, { "start": 34248.52, "end": 34249.31, "probability": 0.0721 }, { "start": 34249.6, "end": 34250.0, "probability": 0.682 }, { "start": 34251.38, "end": 34253.7, "probability": 0.0901 }, { "start": 34254.3, "end": 34257.48, "probability": 0.6753 }, { "start": 34257.62, "end": 34261.1, "probability": 0.663 }, { "start": 34261.88, "end": 34263.24, "probability": 0.4138 }, { "start": 34263.34, "end": 34263.38, "probability": 0.2304 }, { "start": 34263.38, "end": 34263.38, "probability": 0.7595 }, { "start": 34263.38, "end": 34263.84, "probability": 0.3427 }, { "start": 34264.54, "end": 34265.7, "probability": 0.0902 }, { "start": 34265.7, "end": 34267.28, "probability": 0.6883 }, { "start": 34267.82, "end": 34269.02, "probability": 0.2113 }, { "start": 34271.06, "end": 34271.06, "probability": 0.0075 }, { "start": 34280.14, "end": 34280.54, "probability": 0.2548 }, { "start": 34283.48, "end": 34284.82, "probability": 0.0964 }, { "start": 34289.4, "end": 34290.22, "probability": 0.2494 }, { "start": 34290.88, "end": 34290.9, "probability": 0.2509 }, { "start": 34291.1, "end": 34295.06, "probability": 0.6735 }, { "start": 34295.78, "end": 34298.24, "probability": 0.9841 }, { "start": 34299.64, "end": 34302.36, "probability": 0.7937 }, { "start": 34302.4, "end": 34302.88, "probability": 0.3666 }, { "start": 34304.0, "end": 34306.29, "probability": 0.7006 }, { "start": 34307.4, "end": 34308.66, "probability": 0.0188 }, { "start": 34308.96, "end": 34310.8, "probability": 0.5855 }, { "start": 34310.8, "end": 34313.18, "probability": 0.5033 }, { "start": 34313.54, "end": 34313.72, "probability": 0.4348 }, { "start": 34313.88, "end": 34314.2, "probability": 0.7176 }, { "start": 34314.2, "end": 34316.5, "probability": 0.5944 }, { "start": 34316.5, "end": 34317.56, "probability": 0.2957 }, { "start": 34322.93, "end": 34326.32, "probability": 0.7904 }, { "start": 34326.68, "end": 34327.72, "probability": 0.5837 }, { "start": 34327.8, "end": 34328.68, "probability": 0.7523 }, { "start": 34328.8, "end": 34329.96, "probability": 0.8763 }, { "start": 34333.16, "end": 34336.32, "probability": 0.8468 }, { "start": 34337.28, "end": 34339.26, "probability": 0.7085 }, { "start": 34339.78, "end": 34341.02, "probability": 0.3088 }, { "start": 34341.24, "end": 34342.8, "probability": 0.8707 }, { "start": 34343.4, "end": 34349.3, "probability": 0.495 }, { "start": 34349.56, "end": 34351.48, "probability": 0.409 }, { "start": 34352.26, "end": 34355.54, "probability": 0.9069 }, { "start": 34356.08, "end": 34359.06, "probability": 0.6893 }, { "start": 34359.24, "end": 34361.46, "probability": 0.9069 }, { "start": 34362.46, "end": 34363.18, "probability": 0.6518 }, { "start": 34363.24, "end": 34366.28, "probability": 0.7837 }, { "start": 34367.36, "end": 34371.56, "probability": 0.7171 }, { "start": 34372.0, "end": 34373.44, "probability": 0.6907 }, { "start": 34373.48, "end": 34373.98, "probability": 0.9266 }, { "start": 34387.78, "end": 34390.46, "probability": 0.6621 }, { "start": 34390.78, "end": 34392.1, "probability": 0.8757 }, { "start": 34393.28, "end": 34397.79, "probability": 0.9902 }, { "start": 34398.64, "end": 34398.98, "probability": 0.9996 }, { "start": 34399.98, "end": 34406.26, "probability": 0.9816 }, { "start": 34408.28, "end": 34411.12, "probability": 0.978 }, { "start": 34413.0, "end": 34414.42, "probability": 0.8749 }, { "start": 34414.46, "end": 34418.8, "probability": 0.9557 }, { "start": 34420.04, "end": 34421.52, "probability": 0.9464 }, { "start": 34423.46, "end": 34428.6, "probability": 0.8483 }, { "start": 34431.22, "end": 34435.88, "probability": 0.9846 }, { "start": 34436.94, "end": 34442.7, "probability": 0.9244 }, { "start": 34442.86, "end": 34444.06, "probability": 0.9905 }, { "start": 34444.76, "end": 34445.78, "probability": 0.7408 }, { "start": 34447.08, "end": 34449.78, "probability": 0.9933 }, { "start": 34449.9, "end": 34453.26, "probability": 0.9484 }, { "start": 34454.3, "end": 34456.12, "probability": 0.9706 }, { "start": 34457.24, "end": 34458.02, "probability": 0.7158 }, { "start": 34459.1, "end": 34460.9, "probability": 0.9426 }, { "start": 34461.5, "end": 34464.4, "probability": 0.9573 }, { "start": 34466.56, "end": 34466.76, "probability": 0.3632 }, { "start": 34466.84, "end": 34467.84, "probability": 0.7301 }, { "start": 34467.9, "end": 34469.12, "probability": 0.5194 }, { "start": 34469.28, "end": 34469.6, "probability": 0.6794 }, { "start": 34470.84, "end": 34472.1, "probability": 0.8794 }, { "start": 34473.5, "end": 34476.16, "probability": 0.9126 }, { "start": 34477.14, "end": 34480.94, "probability": 0.9648 }, { "start": 34482.38, "end": 34485.6, "probability": 0.9231 }, { "start": 34487.24, "end": 34489.46, "probability": 0.8015 }, { "start": 34490.5, "end": 34492.64, "probability": 0.8018 }, { "start": 34493.24, "end": 34495.41, "probability": 0.888 }, { "start": 34497.12, "end": 34497.28, "probability": 0.7114 }, { "start": 34497.42, "end": 34501.84, "probability": 0.9779 }, { "start": 34502.16, "end": 34504.96, "probability": 0.4918 }, { "start": 34505.68, "end": 34508.08, "probability": 0.9651 }, { "start": 34509.12, "end": 34514.1, "probability": 0.9112 }, { "start": 34516.24, "end": 34517.5, "probability": 0.995 }, { "start": 34519.1, "end": 34520.82, "probability": 0.582 }, { "start": 34522.24, "end": 34523.6, "probability": 0.564 }, { "start": 34523.62, "end": 34528.28, "probability": 0.978 }, { "start": 34529.0, "end": 34533.32, "probability": 0.9746 }, { "start": 34533.46, "end": 34533.62, "probability": 0.2356 }, { "start": 34533.62, "end": 34534.46, "probability": 0.8167 }, { "start": 34534.54, "end": 34535.51, "probability": 0.6695 }, { "start": 34536.96, "end": 34538.72, "probability": 0.6761 }, { "start": 34539.94, "end": 34541.5, "probability": 0.9202 }, { "start": 34542.5, "end": 34543.92, "probability": 0.866 }, { "start": 34544.54, "end": 34548.58, "probability": 0.7701 }, { "start": 34549.72, "end": 34553.24, "probability": 0.7717 }, { "start": 34554.16, "end": 34557.24, "probability": 0.9417 }, { "start": 34558.12, "end": 34558.84, "probability": 0.9571 }, { "start": 34559.52, "end": 34563.44, "probability": 0.8875 }, { "start": 34564.16, "end": 34565.02, "probability": 0.6309 }, { "start": 34566.3, "end": 34569.54, "probability": 0.529 }, { "start": 34570.6, "end": 34575.14, "probability": 0.9932 }, { "start": 34575.66, "end": 34580.0, "probability": 0.995 }, { "start": 34580.28, "end": 34581.94, "probability": 0.9668 }, { "start": 34582.66, "end": 34584.52, "probability": 0.9047 }, { "start": 34585.0, "end": 34589.76, "probability": 0.9819 }, { "start": 34590.82, "end": 34592.9, "probability": 0.9806 }, { "start": 34594.0, "end": 34596.02, "probability": 0.9902 }, { "start": 34596.7, "end": 34601.32, "probability": 0.9854 }, { "start": 34604.34, "end": 34605.0, "probability": 0.6159 }, { "start": 34605.22, "end": 34605.64, "probability": 0.9419 }, { "start": 34607.12, "end": 34607.44, "probability": 0.7178 }, { "start": 34612.98, "end": 34613.48, "probability": 0.733 }, { "start": 34616.62, "end": 34619.96, "probability": 0.885 }, { "start": 34641.6, "end": 34644.6, "probability": 0.8666 }, { "start": 34645.68, "end": 34647.8, "probability": 0.8711 }, { "start": 34647.84, "end": 34650.4, "probability": 0.9612 }, { "start": 34650.52, "end": 34655.5, "probability": 0.4672 }, { "start": 34655.62, "end": 34658.64, "probability": 0.9056 }, { "start": 34659.24, "end": 34661.38, "probability": 0.6696 }, { "start": 34661.46, "end": 34663.12, "probability": 0.9861 }, { "start": 34663.68, "end": 34666.72, "probability": 0.9939 }, { "start": 34667.3, "end": 34669.8, "probability": 0.9955 }, { "start": 34670.52, "end": 34672.8, "probability": 0.9033 }, { "start": 34673.58, "end": 34674.62, "probability": 0.6257 }, { "start": 34675.3, "end": 34678.06, "probability": 0.77 }, { "start": 34678.76, "end": 34681.98, "probability": 0.9614 }, { "start": 34682.54, "end": 34685.58, "probability": 0.9793 }, { "start": 34688.5, "end": 34689.32, "probability": 0.7775 }, { "start": 34697.04, "end": 34699.66, "probability": 0.8987 }, { "start": 34699.98, "end": 34701.24, "probability": 0.4689 }, { "start": 34701.44, "end": 34703.38, "probability": 0.8269 }, { "start": 34704.14, "end": 34705.74, "probability": 0.9617 }, { "start": 34705.94, "end": 34708.18, "probability": 0.9743 }, { "start": 34708.36, "end": 34709.32, "probability": 0.8107 }, { "start": 34710.46, "end": 34710.96, "probability": 0.8775 }, { "start": 34723.86, "end": 34725.28, "probability": 0.5662 }, { "start": 34726.06, "end": 34729.52, "probability": 0.0595 }, { "start": 34729.52, "end": 34729.52, "probability": 0.1224 }, { "start": 34729.52, "end": 34730.68, "probability": 0.1358 }, { "start": 34730.68, "end": 34730.68, "probability": 0.0806 }, { "start": 34733.32, "end": 34733.42, "probability": 0.0693 }, { "start": 34752.44, "end": 34754.64, "probability": 0.7182 }, { "start": 34755.4, "end": 34759.24, "probability": 0.8186 }, { "start": 34760.82, "end": 34766.22, "probability": 0.7366 }, { "start": 34768.22, "end": 34768.96, "probability": 0.6631 }, { "start": 34769.08, "end": 34769.54, "probability": 0.8581 }, { "start": 34770.71, "end": 34774.2, "probability": 0.7959 }, { "start": 34775.02, "end": 34778.66, "probability": 0.8532 }, { "start": 34779.44, "end": 34783.64, "probability": 0.747 }, { "start": 34784.28, "end": 34785.2, "probability": 0.8862 }, { "start": 34785.26, "end": 34785.68, "probability": 0.8007 }, { "start": 34785.74, "end": 34786.26, "probability": 0.915 }, { "start": 34786.32, "end": 34788.56, "probability": 0.9204 }, { "start": 34788.64, "end": 34789.12, "probability": 0.8345 }, { "start": 34790.42, "end": 34791.28, "probability": 0.6888 }, { "start": 34791.34, "end": 34792.72, "probability": 0.8543 }, { "start": 34792.82, "end": 34793.88, "probability": 0.7704 }, { "start": 34794.06, "end": 34795.62, "probability": 0.9779 }, { "start": 34796.28, "end": 34797.3, "probability": 0.8251 }, { "start": 34797.42, "end": 34803.14, "probability": 0.9866 }, { "start": 34803.54, "end": 34804.98, "probability": 0.6206 }, { "start": 34805.82, "end": 34809.3, "probability": 0.9495 }, { "start": 34809.36, "end": 34812.1, "probability": 0.5813 }, { "start": 34812.84, "end": 34821.16, "probability": 0.992 }, { "start": 34821.76, "end": 34822.54, "probability": 0.8268 }, { "start": 34823.72, "end": 34825.38, "probability": 0.9719 }, { "start": 34826.02, "end": 34829.06, "probability": 0.9081 }, { "start": 34830.02, "end": 34833.04, "probability": 0.9861 }, { "start": 34834.5, "end": 34838.3, "probability": 0.9769 }, { "start": 34838.3, "end": 34840.78, "probability": 0.9708 }, { "start": 34841.48, "end": 34843.46, "probability": 0.6805 }, { "start": 34844.12, "end": 34845.26, "probability": 0.7477 }, { "start": 34845.98, "end": 34849.16, "probability": 0.9932 }, { "start": 34849.38, "end": 34850.26, "probability": 0.8174 }, { "start": 34850.6, "end": 34853.3, "probability": 0.995 }, { "start": 34853.88, "end": 34858.06, "probability": 0.9986 }, { "start": 34859.09, "end": 34862.47, "probability": 0.8452 }, { "start": 34863.46, "end": 34865.64, "probability": 0.7151 }, { "start": 34866.42, "end": 34867.26, "probability": 0.9534 }, { "start": 34867.8, "end": 34869.44, "probability": 0.9894 }, { "start": 34870.14, "end": 34871.28, "probability": 0.9277 }, { "start": 34871.38, "end": 34873.96, "probability": 0.9852 }, { "start": 34874.1, "end": 34876.4, "probability": 0.2984 }, { "start": 34876.46, "end": 34877.2, "probability": 0.8724 }, { "start": 34877.92, "end": 34880.66, "probability": 0.992 }, { "start": 34880.84, "end": 34883.16, "probability": 0.9852 }, { "start": 34883.4, "end": 34883.96, "probability": 0.8795 }, { "start": 34884.28, "end": 34885.4, "probability": 0.9579 }, { "start": 34885.66, "end": 34890.32, "probability": 0.9384 }, { "start": 34890.78, "end": 34891.54, "probability": 0.5306 }, { "start": 34891.72, "end": 34892.92, "probability": 0.7261 }, { "start": 34893.48, "end": 34894.84, "probability": 0.8866 }, { "start": 34895.52, "end": 34897.7, "probability": 0.958 }, { "start": 34897.72, "end": 34901.68, "probability": 0.9946 }, { "start": 34902.62, "end": 34905.89, "probability": 0.8126 }, { "start": 34906.68, "end": 34911.24, "probability": 0.9878 }, { "start": 34912.06, "end": 34917.26, "probability": 0.9928 }, { "start": 34917.98, "end": 34918.0, "probability": 0.1555 }, { "start": 34918.0, "end": 34918.84, "probability": 0.8604 }, { "start": 34919.66, "end": 34920.4, "probability": 0.5704 }, { "start": 34920.76, "end": 34922.28, "probability": 0.9863 }, { "start": 34922.32, "end": 34927.44, "probability": 0.9766 }, { "start": 34927.58, "end": 34927.7, "probability": 0.7751 }, { "start": 34927.7, "end": 34929.04, "probability": 0.6539 }, { "start": 34929.5, "end": 34930.92, "probability": 0.7821 }, { "start": 34931.14, "end": 34934.02, "probability": 0.9973 }, { "start": 34934.69, "end": 34937.14, "probability": 0.8956 }, { "start": 34937.32, "end": 34940.22, "probability": 0.9325 }, { "start": 34940.4, "end": 34940.72, "probability": 0.7728 }, { "start": 34941.08, "end": 34942.62, "probability": 0.7905 }, { "start": 34943.02, "end": 34944.9, "probability": 0.9082 }, { "start": 34945.1, "end": 34948.42, "probability": 0.9877 }, { "start": 34950.06, "end": 34951.06, "probability": 0.793 }, { "start": 34951.08, "end": 34955.0, "probability": 0.2586 }, { "start": 34955.3, "end": 34956.8, "probability": 0.497 }, { "start": 34956.96, "end": 34959.26, "probability": 0.6392 }, { "start": 34960.14, "end": 34960.94, "probability": 0.822 }, { "start": 34962.72, "end": 34963.31, "probability": 0.938 }, { "start": 34963.42, "end": 34964.42, "probability": 0.9602 }, { "start": 34965.04, "end": 34969.94, "probability": 0.6671 }, { "start": 34970.96, "end": 34970.98, "probability": 0.0245 }, { "start": 34970.98, "end": 34970.98, "probability": 0.0852 }, { "start": 34970.98, "end": 34972.86, "probability": 0.6915 }, { "start": 34973.46, "end": 34973.8, "probability": 0.811 }, { "start": 34974.36, "end": 34975.84, "probability": 0.7515 }, { "start": 34976.32, "end": 34979.0, "probability": 0.8533 }, { "start": 34979.04, "end": 34979.18, "probability": 0.7792 }, { "start": 34981.64, "end": 34983.26, "probability": 0.1237 }, { "start": 34983.82, "end": 34986.48, "probability": 0.1388 }, { "start": 34989.36, "end": 34993.6, "probability": 0.0275 }, { "start": 34993.6, "end": 34995.06, "probability": 0.1568 }, { "start": 34995.32, "end": 34997.0, "probability": 0.0145 }, { "start": 34997.42, "end": 35001.18, "probability": 0.0953 }, { "start": 35002.02, "end": 35006.18, "probability": 0.1672 }, { "start": 35037.56, "end": 35041.96, "probability": 0.8492 }, { "start": 35042.58, "end": 35045.04, "probability": 0.9749 }, { "start": 35045.98, "end": 35048.18, "probability": 0.9946 }, { "start": 35048.78, "end": 35050.58, "probability": 0.8769 }, { "start": 35051.54, "end": 35055.84, "probability": 0.9888 }, { "start": 35055.84, "end": 35060.3, "probability": 0.9986 }, { "start": 35061.32, "end": 35063.28, "probability": 0.998 }, { "start": 35063.6, "end": 35065.82, "probability": 0.9773 }, { "start": 35066.82, "end": 35069.76, "probability": 0.9302 }, { "start": 35070.42, "end": 35073.54, "probability": 0.7845 }, { "start": 35074.52, "end": 35080.06, "probability": 0.9951 }, { "start": 35080.74, "end": 35083.54, "probability": 0.9934 }, { "start": 35084.14, "end": 35086.94, "probability": 0.9929 }, { "start": 35087.54, "end": 35090.08, "probability": 0.984 }, { "start": 35090.98, "end": 35093.64, "probability": 0.9944 }, { "start": 35094.62, "end": 35098.52, "probability": 0.9812 }, { "start": 35099.16, "end": 35099.28, "probability": 0.9785 }, { "start": 35099.92, "end": 35102.22, "probability": 0.9642 }, { "start": 35102.98, "end": 35107.82, "probability": 0.9845 }, { "start": 35108.6, "end": 35111.14, "probability": 0.9937 }, { "start": 35112.1, "end": 35115.16, "probability": 0.9353 }, { "start": 35115.16, "end": 35119.84, "probability": 0.6031 }, { "start": 35120.58, "end": 35123.76, "probability": 0.8791 }, { "start": 35126.9, "end": 35131.56, "probability": 0.9935 }, { "start": 35132.82, "end": 35137.02, "probability": 0.9968 }, { "start": 35137.78, "end": 35141.32, "probability": 0.9913 }, { "start": 35142.08, "end": 35144.9, "probability": 0.9011 }, { "start": 35145.54, "end": 35147.98, "probability": 0.9777 }, { "start": 35149.22, "end": 35153.42, "probability": 0.9765 }, { "start": 35153.42, "end": 35157.08, "probability": 0.9888 }, { "start": 35157.96, "end": 35159.44, "probability": 0.9965 }, { "start": 35160.0, "end": 35162.02, "probability": 0.998 }, { "start": 35162.28, "end": 35164.82, "probability": 0.9336 }, { "start": 35164.94, "end": 35167.66, "probability": 0.9855 }, { "start": 35168.26, "end": 35171.9, "probability": 0.9721 }, { "start": 35172.78, "end": 35178.52, "probability": 0.9568 }, { "start": 35179.28, "end": 35184.34, "probability": 0.9962 }, { "start": 35184.52, "end": 35185.74, "probability": 0.5031 }, { "start": 35185.84, "end": 35188.98, "probability": 0.8766 }, { "start": 35189.6, "end": 35194.54, "probability": 0.9939 }, { "start": 35195.64, "end": 35196.54, "probability": 0.1106 }, { "start": 35196.58, "end": 35199.36, "probability": 0.9815 }, { "start": 35200.4, "end": 35204.84, "probability": 0.9962 }, { "start": 35205.36, "end": 35208.0, "probability": 0.9963 }, { "start": 35208.76, "end": 35212.96, "probability": 0.9962 }, { "start": 35213.12, "end": 35214.38, "probability": 0.6678 }, { "start": 35215.2, "end": 35218.52, "probability": 0.8621 }, { "start": 35219.3, "end": 35225.5, "probability": 0.9966 }, { "start": 35225.98, "end": 35227.28, "probability": 0.992 }, { "start": 35228.14, "end": 35228.84, "probability": 0.9507 }, { "start": 35228.94, "end": 35232.4, "probability": 0.9954 }, { "start": 35233.06, "end": 35235.62, "probability": 0.9255 }, { "start": 35235.86, "end": 35241.52, "probability": 0.9793 }, { "start": 35242.7, "end": 35251.1, "probability": 0.8156 }, { "start": 35251.9, "end": 35253.44, "probability": 0.6792 }, { "start": 35253.58, "end": 35259.6, "probability": 0.9742 }, { "start": 35260.36, "end": 35264.64, "probability": 0.9916 }, { "start": 35265.8, "end": 35267.82, "probability": 0.9847 }, { "start": 35268.4, "end": 35272.2, "probability": 0.7728 }, { "start": 35272.88, "end": 35276.94, "probability": 0.9927 }, { "start": 35277.58, "end": 35281.16, "probability": 0.9846 }, { "start": 35282.0, "end": 35284.54, "probability": 0.9895 }, { "start": 35285.22, "end": 35289.3, "probability": 0.9829 }, { "start": 35290.08, "end": 35294.04, "probability": 0.7079 }, { "start": 35294.08, "end": 35295.5, "probability": 0.6648 }, { "start": 35296.12, "end": 35298.42, "probability": 0.9857 }, { "start": 35300.51, "end": 35306.68, "probability": 0.9839 }, { "start": 35307.5, "end": 35308.82, "probability": 0.9579 }, { "start": 35309.36, "end": 35311.6, "probability": 0.8681 }, { "start": 35312.02, "end": 35316.32, "probability": 0.9895 }, { "start": 35317.3, "end": 35321.8, "probability": 0.978 }, { "start": 35322.38, "end": 35323.69, "probability": 0.9972 }, { "start": 35324.06, "end": 35324.54, "probability": 0.5002 }, { "start": 35325.28, "end": 35329.58, "probability": 0.9883 }, { "start": 35329.74, "end": 35334.24, "probability": 0.9641 }, { "start": 35334.24, "end": 35336.8, "probability": 0.9963 }, { "start": 35337.96, "end": 35341.7, "probability": 0.798 }, { "start": 35342.72, "end": 35343.18, "probability": 0.3355 }, { "start": 35343.28, "end": 35349.12, "probability": 0.9915 }, { "start": 35349.5, "end": 35350.46, "probability": 0.8981 }, { "start": 35351.0, "end": 35356.16, "probability": 0.9895 }, { "start": 35356.44, "end": 35357.02, "probability": 0.7166 }, { "start": 35358.26, "end": 35358.6, "probability": 0.6378 }, { "start": 35358.76, "end": 35359.64, "probability": 0.9168 }, { "start": 35382.1, "end": 35382.14, "probability": 0.5703 }, { "start": 35382.14, "end": 35383.68, "probability": 0.6401 }, { "start": 35384.0, "end": 35385.62, "probability": 0.6671 }, { "start": 35386.58, "end": 35389.98, "probability": 0.7791 }, { "start": 35390.04, "end": 35390.36, "probability": 0.8765 }, { "start": 35422.04, "end": 35422.14, "probability": 0.7851 }, { "start": 35425.14, "end": 35427.84, "probability": 0.732 }, { "start": 35428.86, "end": 35429.68, "probability": 0.8228 }, { "start": 35429.72, "end": 35431.08, "probability": 0.8538 }, { "start": 35431.32, "end": 35433.44, "probability": 0.9941 }, { "start": 35433.61, "end": 35435.85, "probability": 0.9581 }, { "start": 35436.34, "end": 35437.96, "probability": 0.9279 }, { "start": 35438.14, "end": 35440.01, "probability": 0.6664 }, { "start": 35440.66, "end": 35441.6, "probability": 0.8812 }, { "start": 35443.22, "end": 35444.34, "probability": 0.6005 }, { "start": 35444.54, "end": 35446.52, "probability": 0.8848 }, { "start": 35446.66, "end": 35448.8, "probability": 0.9678 }, { "start": 35449.8, "end": 35455.6, "probability": 0.959 }, { "start": 35457.66, "end": 35461.6, "probability": 0.9957 }, { "start": 35462.28, "end": 35464.38, "probability": 0.9409 }, { "start": 35464.48, "end": 35465.74, "probability": 0.7741 }, { "start": 35466.0, "end": 35466.66, "probability": 0.8356 }, { "start": 35467.64, "end": 35468.88, "probability": 0.7744 }, { "start": 35469.92, "end": 35472.47, "probability": 0.9917 }, { "start": 35472.92, "end": 35476.24, "probability": 0.8807 }, { "start": 35476.58, "end": 35480.66, "probability": 0.9045 }, { "start": 35481.58, "end": 35484.74, "probability": 0.9988 }, { "start": 35485.52, "end": 35489.76, "probability": 0.8987 }, { "start": 35491.02, "end": 35493.02, "probability": 0.9985 }, { "start": 35494.1, "end": 35497.44, "probability": 0.9933 }, { "start": 35498.4, "end": 35501.33, "probability": 0.8548 }, { "start": 35501.72, "end": 35505.34, "probability": 0.988 }, { "start": 35505.9, "end": 35506.68, "probability": 0.7338 }, { "start": 35506.82, "end": 35510.04, "probability": 0.9813 }, { "start": 35510.74, "end": 35511.56, "probability": 0.6542 }, { "start": 35511.7, "end": 35512.88, "probability": 0.8293 }, { "start": 35512.98, "end": 35513.16, "probability": 0.8964 }, { "start": 35513.48, "end": 35513.98, "probability": 0.6297 }, { "start": 35514.1, "end": 35515.56, "probability": 0.9836 }, { "start": 35516.38, "end": 35518.28, "probability": 0.9863 }, { "start": 35518.84, "end": 35521.5, "probability": 0.6444 }, { "start": 35522.54, "end": 35524.98, "probability": 0.7417 }, { "start": 35525.04, "end": 35526.8, "probability": 0.8918 }, { "start": 35526.96, "end": 35529.92, "probability": 0.9899 }, { "start": 35530.42, "end": 35532.16, "probability": 0.9938 }, { "start": 35533.58, "end": 35536.31, "probability": 0.8206 }, { "start": 35536.54, "end": 35540.56, "probability": 0.9927 }, { "start": 35541.6, "end": 35544.62, "probability": 0.948 }, { "start": 35544.74, "end": 35552.3, "probability": 0.8737 }, { "start": 35552.44, "end": 35552.94, "probability": 0.9448 }, { "start": 35552.98, "end": 35554.0, "probability": 0.7482 }, { "start": 35554.04, "end": 35555.28, "probability": 0.9976 }, { "start": 35555.54, "end": 35556.4, "probability": 0.8077 }, { "start": 35556.46, "end": 35558.74, "probability": 0.9909 }, { "start": 35558.74, "end": 35561.76, "probability": 0.9988 }, { "start": 35563.06, "end": 35564.7, "probability": 0.6523 }, { "start": 35565.36, "end": 35567.6, "probability": 0.7806 }, { "start": 35569.52, "end": 35570.72, "probability": 0.9339 }, { "start": 35571.38, "end": 35573.7, "probability": 0.9639 }, { "start": 35575.26, "end": 35580.24, "probability": 0.8447 }, { "start": 35581.16, "end": 35584.16, "probability": 0.9451 }, { "start": 35584.96, "end": 35588.44, "probability": 0.9953 }, { "start": 35588.56, "end": 35590.08, "probability": 0.9251 }, { "start": 35590.58, "end": 35591.78, "probability": 0.958 }, { "start": 35592.52, "end": 35594.86, "probability": 0.8823 }, { "start": 35595.46, "end": 35600.7, "probability": 0.9807 }, { "start": 35601.64, "end": 35602.46, "probability": 0.6274 }, { "start": 35602.54, "end": 35603.38, "probability": 0.844 }, { "start": 35604.04, "end": 35605.62, "probability": 0.9825 }, { "start": 35605.86, "end": 35608.0, "probability": 0.998 }, { "start": 35608.62, "end": 35610.8, "probability": 0.9487 }, { "start": 35611.96, "end": 35619.62, "probability": 0.9945 }, { "start": 35620.46, "end": 35625.0, "probability": 0.7029 }, { "start": 35625.12, "end": 35625.98, "probability": 0.7787 }, { "start": 35626.1, "end": 35627.42, "probability": 0.9288 }, { "start": 35627.96, "end": 35631.96, "probability": 0.8594 }, { "start": 35632.0, "end": 35633.86, "probability": 0.7864 }, { "start": 35634.62, "end": 35634.74, "probability": 0.5716 }, { "start": 35634.82, "end": 35636.5, "probability": 0.6492 }, { "start": 35636.6, "end": 35637.96, "probability": 0.9935 }, { "start": 35638.02, "end": 35639.42, "probability": 0.8804 }, { "start": 35639.78, "end": 35641.22, "probability": 0.788 }, { "start": 35641.3, "end": 35643.14, "probability": 0.9215 }, { "start": 35643.7, "end": 35644.92, "probability": 0.8721 }, { "start": 35645.74, "end": 35649.26, "probability": 0.9831 }, { "start": 35649.4, "end": 35650.68, "probability": 0.705 }, { "start": 35650.8, "end": 35651.54, "probability": 0.1981 }, { "start": 35651.96, "end": 35653.08, "probability": 0.7704 }, { "start": 35654.36, "end": 35654.72, "probability": 0.3669 }, { "start": 35654.72, "end": 35655.76, "probability": 0.6916 }, { "start": 35655.84, "end": 35656.88, "probability": 0.9433 }, { "start": 35680.58, "end": 35683.86, "probability": 0.5542 }, { "start": 35685.62, "end": 35688.9, "probability": 0.557 }, { "start": 35689.26, "end": 35690.96, "probability": 0.9502 }, { "start": 35690.96, "end": 35694.42, "probability": 0.8969 }, { "start": 35694.48, "end": 35697.02, "probability": 0.5623 }, { "start": 35697.02, "end": 35699.61, "probability": 0.8269 }, { "start": 35700.08, "end": 35701.0, "probability": 0.5111 }, { "start": 35701.42, "end": 35701.94, "probability": 0.5266 }, { "start": 35703.5, "end": 35704.3, "probability": 0.7212 }, { "start": 35704.3, "end": 35706.45, "probability": 0.9913 }, { "start": 35706.96, "end": 35707.36, "probability": 0.7816 }, { "start": 35708.68, "end": 35710.38, "probability": 0.993 }, { "start": 35713.3, "end": 35713.44, "probability": 0.5411 }, { "start": 35713.44, "end": 35716.04, "probability": 0.9436 }, { "start": 35716.3, "end": 35717.57, "probability": 0.8544 }, { "start": 35719.1, "end": 35720.16, "probability": 0.9404 }, { "start": 35720.5, "end": 35720.98, "probability": 0.8884 }, { "start": 35721.04, "end": 35722.36, "probability": 0.9496 }, { "start": 35722.54, "end": 35723.0, "probability": 0.5777 }, { "start": 35723.38, "end": 35723.78, "probability": 0.8486 }, { "start": 35725.02, "end": 35726.76, "probability": 0.9861 }, { "start": 35727.0, "end": 35727.56, "probability": 0.8814 }, { "start": 35727.78, "end": 35730.06, "probability": 0.9517 }, { "start": 35731.26, "end": 35732.42, "probability": 0.7414 }, { "start": 35733.38, "end": 35735.14, "probability": 0.9188 }, { "start": 35735.36, "end": 35736.38, "probability": 0.639 }, { "start": 35736.64, "end": 35737.04, "probability": 0.6614 }, { "start": 35737.42, "end": 35737.76, "probability": 0.7234 }, { "start": 35737.82, "end": 35742.1, "probability": 0.9297 }, { "start": 35742.38, "end": 35742.74, "probability": 0.7198 }, { "start": 35743.54, "end": 35747.76, "probability": 0.9866 }, { "start": 35748.22, "end": 35751.72, "probability": 0.9427 }, { "start": 35754.3, "end": 35755.56, "probability": 0.9893 }, { "start": 35755.64, "end": 35757.71, "probability": 0.8084 }, { "start": 35758.18, "end": 35760.48, "probability": 0.9968 }, { "start": 35760.56, "end": 35761.4, "probability": 0.9804 }, { "start": 35763.16, "end": 35765.52, "probability": 0.9681 }, { "start": 35765.62, "end": 35767.2, "probability": 0.9861 }, { "start": 35768.04, "end": 35769.5, "probability": 0.9344 }, { "start": 35769.74, "end": 35771.44, "probability": 0.9923 }, { "start": 35771.44, "end": 35773.8, "probability": 0.9978 }, { "start": 35774.96, "end": 35778.38, "probability": 0.8203 }, { "start": 35778.56, "end": 35780.0, "probability": 0.5813 }, { "start": 35781.28, "end": 35784.3, "probability": 0.9971 }, { "start": 35784.38, "end": 35785.94, "probability": 0.9956 }, { "start": 35786.54, "end": 35787.36, "probability": 0.3826 }, { "start": 35788.02, "end": 35790.5, "probability": 0.9636 }, { "start": 35791.64, "end": 35792.82, "probability": 0.9844 }, { "start": 35793.52, "end": 35795.68, "probability": 0.7955 }, { "start": 35798.48, "end": 35801.28, "probability": 0.8805 }, { "start": 35801.5, "end": 35803.4, "probability": 0.979 }, { "start": 35805.02, "end": 35808.15, "probability": 0.995 }, { "start": 35809.52, "end": 35811.44, "probability": 0.9688 }, { "start": 35812.58, "end": 35813.32, "probability": 0.788 }, { "start": 35813.94, "end": 35815.04, "probability": 0.9736 }, { "start": 35815.74, "end": 35816.77, "probability": 0.9757 }, { "start": 35817.58, "end": 35818.06, "probability": 0.7723 }, { "start": 35818.88, "end": 35819.44, "probability": 0.742 }, { "start": 35821.34, "end": 35821.44, "probability": 0.6742 }, { "start": 35821.52, "end": 35823.0, "probability": 0.9727 }, { "start": 35823.08, "end": 35824.84, "probability": 0.9695 }, { "start": 35825.52, "end": 35826.78, "probability": 0.6801 }, { "start": 35827.16, "end": 35832.16, "probability": 0.9946 }, { "start": 35834.78, "end": 35837.84, "probability": 0.8538 }, { "start": 35837.98, "end": 35839.64, "probability": 0.8562 }, { "start": 35839.96, "end": 35840.58, "probability": 0.6715 }, { "start": 35840.6, "end": 35843.02, "probability": 0.9899 }, { "start": 35843.12, "end": 35845.9, "probability": 0.99 }, { "start": 35846.94, "end": 35847.94, "probability": 0.2529 }, { "start": 35848.28, "end": 35848.38, "probability": 0.7122 }, { "start": 35848.78, "end": 35850.24, "probability": 0.7766 }, { "start": 35850.3, "end": 35851.88, "probability": 0.9603 }, { "start": 35852.24, "end": 35852.64, "probability": 0.8999 }, { "start": 35852.7, "end": 35853.35, "probability": 0.1708 }, { "start": 35854.04, "end": 35854.64, "probability": 0.056 }, { "start": 35855.56, "end": 35855.9, "probability": 0.0641 }, { "start": 35857.89, "end": 35858.94, "probability": 0.0973 }, { "start": 35858.94, "end": 35859.04, "probability": 0.0286 }, { "start": 35859.04, "end": 35859.3, "probability": 0.4905 }, { "start": 35859.46, "end": 35861.8, "probability": 0.8931 }, { "start": 35862.32, "end": 35863.78, "probability": 0.9189 }, { "start": 35864.3, "end": 35866.56, "probability": 0.8578 }, { "start": 35867.54, "end": 35868.22, "probability": 0.7029 }, { "start": 35868.24, "end": 35869.18, "probability": 0.2764 }, { "start": 35869.3, "end": 35870.56, "probability": 0.6421 }, { "start": 35870.64, "end": 35871.16, "probability": 0.3598 }, { "start": 35871.22, "end": 35873.22, "probability": 0.75 }, { "start": 35873.24, "end": 35875.22, "probability": 0.7333 }, { "start": 35875.42, "end": 35878.44, "probability": 0.9235 }, { "start": 35879.78, "end": 35883.46, "probability": 0.9623 }, { "start": 35883.48, "end": 35884.14, "probability": 0.9438 }, { "start": 35884.64, "end": 35886.18, "probability": 0.8796 }, { "start": 35887.24, "end": 35889.66, "probability": 0.9934 }, { "start": 35890.7, "end": 35891.74, "probability": 0.5281 }, { "start": 35892.6, "end": 35895.89, "probability": 0.9246 }, { "start": 35896.86, "end": 35900.16, "probability": 0.7113 }, { "start": 35901.06, "end": 35903.46, "probability": 0.8643 }, { "start": 35904.24, "end": 35908.42, "probability": 0.9891 }, { "start": 35908.66, "end": 35913.08, "probability": 0.9924 }, { "start": 35913.16, "end": 35918.42, "probability": 0.9703 }, { "start": 35918.46, "end": 35919.16, "probability": 0.9736 }, { "start": 35919.48, "end": 35920.76, "probability": 0.7308 }, { "start": 35921.16, "end": 35922.0, "probability": 0.6781 }, { "start": 35922.12, "end": 35924.74, "probability": 0.6098 }, { "start": 35924.88, "end": 35927.64, "probability": 0.9635 }, { "start": 35928.38, "end": 35930.16, "probability": 0.9648 }, { "start": 35931.48, "end": 35932.02, "probability": 0.7711 }, { "start": 35932.72, "end": 35934.36, "probability": 0.8384 }, { "start": 35936.1, "end": 35938.42, "probability": 0.9375 }, { "start": 35939.52, "end": 35941.38, "probability": 0.9821 }, { "start": 35941.52, "end": 35945.38, "probability": 0.8032 }, { "start": 35947.54, "end": 35948.1, "probability": 0.6585 }, { "start": 35949.14, "end": 35952.46, "probability": 0.9619 }, { "start": 35952.64, "end": 35953.43, "probability": 0.8929 }, { "start": 35954.22, "end": 35957.62, "probability": 0.9131 }, { "start": 35958.5, "end": 35962.76, "probability": 0.9192 }, { "start": 35963.32, "end": 35963.8, "probability": 0.9517 }, { "start": 35963.9, "end": 35966.62, "probability": 0.6178 }, { "start": 35966.7, "end": 35969.18, "probability": 0.9264 }, { "start": 35969.74, "end": 35970.38, "probability": 0.886 }, { "start": 35971.44, "end": 35973.22, "probability": 0.9621 }, { "start": 35974.42, "end": 35976.08, "probability": 0.846 }, { "start": 35976.44, "end": 35978.64, "probability": 0.9517 }, { "start": 35979.38, "end": 35984.28, "probability": 0.9939 }, { "start": 35985.1, "end": 35985.18, "probability": 0.5391 }, { "start": 35985.24, "end": 35986.44, "probability": 0.9265 }, { "start": 35986.52, "end": 35987.42, "probability": 0.8714 }, { "start": 35987.44, "end": 35988.56, "probability": 0.802 }, { "start": 35989.08, "end": 35990.9, "probability": 0.9357 }, { "start": 35991.44, "end": 35996.14, "probability": 0.8787 }, { "start": 35997.12, "end": 36001.06, "probability": 0.5683 }, { "start": 36001.12, "end": 36001.64, "probability": 0.7547 }, { "start": 36002.32, "end": 36004.7, "probability": 0.9952 }, { "start": 36004.82, "end": 36005.04, "probability": 0.7859 }, { "start": 36005.12, "end": 36006.14, "probability": 0.987 }, { "start": 36006.56, "end": 36007.02, "probability": 0.8726 }, { "start": 36007.12, "end": 36007.5, "probability": 0.5445 }, { "start": 36007.74, "end": 36008.45, "probability": 0.8691 }, { "start": 36010.3, "end": 36013.84, "probability": 0.9875 }, { "start": 36014.48, "end": 36017.36, "probability": 0.9948 }, { "start": 36017.92, "end": 36020.92, "probability": 0.9949 }, { "start": 36021.5, "end": 36022.19, "probability": 0.9367 }, { "start": 36023.2, "end": 36023.68, "probability": 0.3345 }, { "start": 36023.7, "end": 36025.42, "probability": 0.6333 }, { "start": 36025.54, "end": 36028.92, "probability": 0.9584 }, { "start": 36029.16, "end": 36029.84, "probability": 0.8517 }, { "start": 36031.04, "end": 36031.5, "probability": 0.92 }, { "start": 36032.4, "end": 36034.12, "probability": 0.9872 }, { "start": 36034.44, "end": 36037.8, "probability": 0.9958 }, { "start": 36038.64, "end": 36040.74, "probability": 0.9744 }, { "start": 36040.9, "end": 36044.42, "probability": 0.9405 }, { "start": 36044.96, "end": 36046.86, "probability": 0.5362 }, { "start": 36047.52, "end": 36048.54, "probability": 0.6476 }, { "start": 36048.74, "end": 36051.88, "probability": 0.9418 }, { "start": 36052.11, "end": 36053.88, "probability": 0.9313 }, { "start": 36053.92, "end": 36055.44, "probability": 0.9924 }, { "start": 36059.14, "end": 36059.52, "probability": 0.4456 }, { "start": 36061.1, "end": 36064.64, "probability": 0.4996 }, { "start": 36065.1, "end": 36065.26, "probability": 0.0737 }, { "start": 36065.26, "end": 36066.34, "probability": 0.5363 }, { "start": 36066.34, "end": 36066.86, "probability": 0.6699 }, { "start": 36067.76, "end": 36072.84, "probability": 0.9639 }, { "start": 36073.24, "end": 36075.04, "probability": 0.9434 }, { "start": 36075.58, "end": 36080.12, "probability": 0.9884 }, { "start": 36080.92, "end": 36081.66, "probability": 0.9727 }, { "start": 36082.82, "end": 36083.72, "probability": 0.6574 }, { "start": 36085.08, "end": 36089.22, "probability": 0.8966 }, { "start": 36089.88, "end": 36090.98, "probability": 0.8379 }, { "start": 36091.1, "end": 36094.1, "probability": 0.8652 }, { "start": 36094.9, "end": 36095.96, "probability": 0.9276 }, { "start": 36096.36, "end": 36096.64, "probability": 0.2296 }, { "start": 36096.72, "end": 36099.38, "probability": 0.9945 }, { "start": 36099.88, "end": 36100.08, "probability": 0.5042 }, { "start": 36100.14, "end": 36100.55, "probability": 0.8906 }, { "start": 36100.98, "end": 36102.76, "probability": 0.9375 }, { "start": 36102.86, "end": 36104.92, "probability": 0.968 }, { "start": 36105.3, "end": 36106.86, "probability": 0.7326 }, { "start": 36107.02, "end": 36110.98, "probability": 0.9949 }, { "start": 36111.06, "end": 36111.52, "probability": 0.656 }, { "start": 36112.3, "end": 36114.16, "probability": 0.9962 }, { "start": 36114.68, "end": 36116.04, "probability": 0.9938 }, { "start": 36116.54, "end": 36117.4, "probability": 0.972 }, { "start": 36118.32, "end": 36122.14, "probability": 0.9688 }, { "start": 36122.14, "end": 36123.7, "probability": 0.9932 }, { "start": 36123.94, "end": 36124.52, "probability": 0.6705 }, { "start": 36124.62, "end": 36126.62, "probability": 0.9587 }, { "start": 36126.76, "end": 36130.24, "probability": 0.966 }, { "start": 36130.58, "end": 36131.12, "probability": 0.95 }, { "start": 36131.52, "end": 36133.94, "probability": 0.7915 }, { "start": 36135.14, "end": 36136.1, "probability": 0.8466 }, { "start": 36136.48, "end": 36136.82, "probability": 0.8822 }, { "start": 36137.76, "end": 36138.22, "probability": 0.6721 }, { "start": 36138.28, "end": 36142.19, "probability": 0.8855 }, { "start": 36150.66, "end": 36152.82, "probability": 0.717 }, { "start": 36153.74, "end": 36155.7, "probability": 0.9929 }, { "start": 36155.76, "end": 36159.01, "probability": 0.8763 }, { "start": 36160.38, "end": 36163.48, "probability": 0.9965 }, { "start": 36164.48, "end": 36165.06, "probability": 0.9584 }, { "start": 36165.9, "end": 36168.66, "probability": 0.9445 }, { "start": 36169.6, "end": 36171.46, "probability": 0.9796 }, { "start": 36172.14, "end": 36173.62, "probability": 0.9921 }, { "start": 36173.62, "end": 36176.68, "probability": 0.9612 }, { "start": 36177.26, "end": 36178.86, "probability": 0.6817 }, { "start": 36179.72, "end": 36180.16, "probability": 0.7741 }, { "start": 36181.08, "end": 36183.12, "probability": 0.9108 }, { "start": 36183.74, "end": 36184.63, "probability": 0.8099 }, { "start": 36185.04, "end": 36189.26, "probability": 0.9463 }, { "start": 36189.72, "end": 36191.44, "probability": 0.7567 }, { "start": 36191.88, "end": 36193.9, "probability": 0.9089 }, { "start": 36194.0, "end": 36194.92, "probability": 0.8412 }, { "start": 36195.86, "end": 36197.18, "probability": 0.7839 }, { "start": 36198.04, "end": 36198.96, "probability": 0.9303 }, { "start": 36199.84, "end": 36204.12, "probability": 0.5933 }, { "start": 36205.48, "end": 36206.4, "probability": 0.7663 }, { "start": 36207.58, "end": 36210.96, "probability": 0.9417 }, { "start": 36211.04, "end": 36212.74, "probability": 0.991 }, { "start": 36213.5, "end": 36218.42, "probability": 0.9927 }, { "start": 36218.52, "end": 36221.24, "probability": 0.9832 }, { "start": 36221.74, "end": 36226.86, "probability": 0.9163 }, { "start": 36228.3, "end": 36230.58, "probability": 0.5339 }, { "start": 36231.14, "end": 36232.22, "probability": 0.587 }, { "start": 36232.74, "end": 36233.92, "probability": 0.8992 }, { "start": 36234.22, "end": 36234.74, "probability": 0.933 }, { "start": 36235.06, "end": 36235.88, "probability": 0.9394 }, { "start": 36236.0, "end": 36236.64, "probability": 0.9901 }, { "start": 36237.6, "end": 36239.78, "probability": 0.9749 }, { "start": 36240.58, "end": 36242.34, "probability": 0.8749 }, { "start": 36243.2, "end": 36243.68, "probability": 0.5861 }, { "start": 36244.3, "end": 36247.34, "probability": 0.9261 }, { "start": 36248.08, "end": 36249.42, "probability": 0.9226 }, { "start": 36249.6, "end": 36250.38, "probability": 0.9681 }, { "start": 36250.7, "end": 36251.6, "probability": 0.9706 }, { "start": 36251.98, "end": 36253.52, "probability": 0.7415 }, { "start": 36253.58, "end": 36254.2, "probability": 0.6726 }, { "start": 36254.2, "end": 36254.86, "probability": 0.7759 }, { "start": 36255.24, "end": 36258.1, "probability": 0.7659 }, { "start": 36260.24, "end": 36261.62, "probability": 0.9095 }, { "start": 36261.8, "end": 36267.92, "probability": 0.988 }, { "start": 36268.62, "end": 36269.2, "probability": 0.3248 }, { "start": 36269.98, "end": 36272.16, "probability": 0.9895 }, { "start": 36273.06, "end": 36273.78, "probability": 0.8314 }, { "start": 36274.4, "end": 36277.74, "probability": 0.9987 }, { "start": 36278.38, "end": 36279.72, "probability": 0.9165 }, { "start": 36279.9, "end": 36280.96, "probability": 0.9222 }, { "start": 36281.18, "end": 36286.78, "probability": 0.8266 }, { "start": 36286.98, "end": 36288.88, "probability": 0.8772 }, { "start": 36289.66, "end": 36291.3, "probability": 0.8651 }, { "start": 36292.14, "end": 36293.74, "probability": 0.999 }, { "start": 36294.36, "end": 36298.4, "probability": 0.9869 }, { "start": 36298.4, "end": 36303.76, "probability": 0.9984 }, { "start": 36304.5, "end": 36306.04, "probability": 0.7167 }, { "start": 36306.54, "end": 36308.04, "probability": 0.9968 }, { "start": 36308.68, "end": 36309.68, "probability": 0.8873 }, { "start": 36310.26, "end": 36311.3, "probability": 0.9009 }, { "start": 36312.12, "end": 36314.86, "probability": 0.891 }, { "start": 36315.62, "end": 36316.68, "probability": 0.529 }, { "start": 36317.16, "end": 36318.76, "probability": 0.9729 }, { "start": 36319.04, "end": 36321.86, "probability": 0.8716 }, { "start": 36322.56, "end": 36323.53, "probability": 0.9714 }, { "start": 36324.28, "end": 36330.68, "probability": 0.9319 }, { "start": 36331.62, "end": 36331.84, "probability": 0.1516 }, { "start": 36332.5, "end": 36332.72, "probability": 0.9243 }, { "start": 36333.24, "end": 36335.52, "probability": 0.9211 }, { "start": 36335.58, "end": 36336.26, "probability": 0.8538 }, { "start": 36336.68, "end": 36339.0, "probability": 0.9746 }, { "start": 36339.24, "end": 36340.36, "probability": 0.9141 }, { "start": 36342.04, "end": 36345.83, "probability": 0.8933 }, { "start": 36346.98, "end": 36348.04, "probability": 0.9293 }, { "start": 36349.52, "end": 36351.5, "probability": 0.6305 }, { "start": 36352.74, "end": 36354.15, "probability": 0.748 }, { "start": 36356.2, "end": 36358.62, "probability": 0.8799 }, { "start": 36358.88, "end": 36360.74, "probability": 0.979 }, { "start": 36360.98, "end": 36361.58, "probability": 0.9821 }, { "start": 36361.98, "end": 36362.58, "probability": 0.9632 }, { "start": 36364.36, "end": 36366.9, "probability": 0.9438 }, { "start": 36366.92, "end": 36370.12, "probability": 0.9866 }, { "start": 36370.68, "end": 36371.66, "probability": 0.9899 }, { "start": 36371.76, "end": 36376.28, "probability": 0.9761 }, { "start": 36376.48, "end": 36377.16, "probability": 0.9365 }, { "start": 36377.72, "end": 36379.8, "probability": 0.9685 }, { "start": 36380.08, "end": 36383.4, "probability": 0.98 }, { "start": 36384.16, "end": 36386.84, "probability": 0.9314 }, { "start": 36388.04, "end": 36390.2, "probability": 0.9456 }, { "start": 36390.62, "end": 36391.78, "probability": 0.8057 }, { "start": 36392.52, "end": 36395.06, "probability": 0.9956 }, { "start": 36395.72, "end": 36396.4, "probability": 0.8972 }, { "start": 36397.14, "end": 36402.12, "probability": 0.9956 }, { "start": 36402.22, "end": 36404.9, "probability": 0.9938 }, { "start": 36405.46, "end": 36406.96, "probability": 0.9958 }, { "start": 36407.54, "end": 36409.08, "probability": 0.998 }, { "start": 36411.72, "end": 36412.32, "probability": 0.9277 }, { "start": 36412.62, "end": 36414.14, "probability": 0.9614 }, { "start": 36414.3, "end": 36416.46, "probability": 0.9772 }, { "start": 36417.12, "end": 36417.94, "probability": 0.9631 }, { "start": 36418.06, "end": 36418.8, "probability": 0.9647 }, { "start": 36419.18, "end": 36420.38, "probability": 0.0873 }, { "start": 36420.72, "end": 36422.24, "probability": 0.5565 }, { "start": 36423.04, "end": 36425.15, "probability": 0.6237 }, { "start": 36425.66, "end": 36427.42, "probability": 0.6809 }, { "start": 36427.86, "end": 36429.18, "probability": 0.5855 }, { "start": 36429.18, "end": 36429.38, "probability": 0.5188 }, { "start": 36429.58, "end": 36430.02, "probability": 0.514 }, { "start": 36430.58, "end": 36430.7, "probability": 0.2139 }, { "start": 36430.7, "end": 36432.08, "probability": 0.7062 }, { "start": 36432.52, "end": 36433.54, "probability": 0.9832 }, { "start": 36433.84, "end": 36435.26, "probability": 0.9055 }, { "start": 36435.52, "end": 36436.38, "probability": 0.7308 }, { "start": 36436.6, "end": 36437.36, "probability": 0.3269 }, { "start": 36437.88, "end": 36439.32, "probability": 0.4882 }, { "start": 36439.34, "end": 36440.64, "probability": 0.8087 }, { "start": 36441.52, "end": 36443.78, "probability": 0.984 }, { "start": 36449.5, "end": 36449.84, "probability": 0.7707 }, { "start": 36452.48, "end": 36454.42, "probability": 0.7668 }, { "start": 36469.38, "end": 36470.26, "probability": 0.2656 }, { "start": 36470.26, "end": 36470.28, "probability": 0.2413 }, { "start": 36471.76, "end": 36472.92, "probability": 0.6984 }, { "start": 36473.88, "end": 36477.82, "probability": 0.594 }, { "start": 36478.66, "end": 36482.76, "probability": 0.8824 }, { "start": 36482.9, "end": 36483.72, "probability": 0.9601 }, { "start": 36485.04, "end": 36488.96, "probability": 0.9676 }, { "start": 36489.52, "end": 36491.28, "probability": 0.975 }, { "start": 36492.3, "end": 36493.06, "probability": 0.954 }, { "start": 36493.58, "end": 36496.7, "probability": 0.9792 }, { "start": 36497.16, "end": 36499.0, "probability": 0.9946 }, { "start": 36499.5, "end": 36500.42, "probability": 0.9875 }, { "start": 36500.76, "end": 36501.8, "probability": 0.8722 }, { "start": 36502.3, "end": 36505.2, "probability": 0.9253 }, { "start": 36505.74, "end": 36507.15, "probability": 0.9906 }, { "start": 36507.5, "end": 36510.28, "probability": 0.98 }, { "start": 36513.5, "end": 36519.84, "probability": 0.6936 }, { "start": 36519.84, "end": 36525.14, "probability": 0.9982 }, { "start": 36525.78, "end": 36528.34, "probability": 0.409 }, { "start": 36528.56, "end": 36530.44, "probability": 0.7717 }, { "start": 36530.56, "end": 36531.06, "probability": 0.895 }, { "start": 36532.04, "end": 36535.16, "probability": 0.9569 }, { "start": 36539.16, "end": 36541.36, "probability": 0.7544 }, { "start": 36542.84, "end": 36547.7, "probability": 0.9799 }, { "start": 36549.6, "end": 36556.22, "probability": 0.9453 }, { "start": 36557.28, "end": 36558.24, "probability": 0.9552 }, { "start": 36560.36, "end": 36561.64, "probability": 0.9974 }, { "start": 36563.02, "end": 36565.32, "probability": 0.9274 }, { "start": 36565.54, "end": 36566.62, "probability": 0.8945 }, { "start": 36567.38, "end": 36568.46, "probability": 0.6587 }, { "start": 36569.02, "end": 36569.98, "probability": 0.8343 }, { "start": 36570.84, "end": 36573.72, "probability": 0.9945 }, { "start": 36574.16, "end": 36574.6, "probability": 0.9909 }, { "start": 36577.12, "end": 36578.9, "probability": 0.8233 }, { "start": 36581.36, "end": 36583.32, "probability": 0.5793 }, { "start": 36584.16, "end": 36584.42, "probability": 0.6991 }, { "start": 36585.14, "end": 36586.94, "probability": 0.529 }, { "start": 36587.66, "end": 36588.18, "probability": 0.7985 }, { "start": 36589.2, "end": 36590.16, "probability": 0.9892 }, { "start": 36591.26, "end": 36591.96, "probability": 0.9467 }, { "start": 36592.86, "end": 36597.72, "probability": 0.9316 }, { "start": 36598.08, "end": 36600.12, "probability": 0.985 }, { "start": 36600.64, "end": 36601.44, "probability": 0.8444 }, { "start": 36602.36, "end": 36604.9, "probability": 0.8612 }, { "start": 36606.34, "end": 36608.86, "probability": 0.786 }, { "start": 36609.98, "end": 36613.08, "probability": 0.9757 }, { "start": 36613.76, "end": 36613.88, "probability": 0.5449 }, { "start": 36614.14, "end": 36615.63, "probability": 0.9966 }, { "start": 36617.33, "end": 36618.7, "probability": 0.968 }, { "start": 36618.7, "end": 36619.1, "probability": 0.8956 }, { "start": 36619.38, "end": 36620.36, "probability": 0.9792 }, { "start": 36623.28, "end": 36626.64, "probability": 0.9438 }, { "start": 36628.62, "end": 36632.68, "probability": 0.8368 }, { "start": 36633.1, "end": 36633.84, "probability": 0.5605 }, { "start": 36635.26, "end": 36636.7, "probability": 0.9367 }, { "start": 36637.6, "end": 36640.92, "probability": 0.9435 }, { "start": 36640.92, "end": 36644.38, "probability": 0.9894 }, { "start": 36646.04, "end": 36646.98, "probability": 0.991 }, { "start": 36649.62, "end": 36651.06, "probability": 0.8776 }, { "start": 36652.7, "end": 36654.74, "probability": 0.9514 }, { "start": 36656.58, "end": 36658.22, "probability": 0.8824 }, { "start": 36658.92, "end": 36660.0, "probability": 0.7893 }, { "start": 36660.3, "end": 36661.76, "probability": 0.9443 }, { "start": 36661.8, "end": 36662.28, "probability": 0.8905 }, { "start": 36662.58, "end": 36662.86, "probability": 0.4866 }, { "start": 36663.02, "end": 36663.86, "probability": 0.947 }, { "start": 36666.62, "end": 36668.51, "probability": 0.8181 }, { "start": 36669.44, "end": 36672.76, "probability": 0.9923 }, { "start": 36673.0, "end": 36673.62, "probability": 0.7508 }, { "start": 36674.34, "end": 36674.78, "probability": 0.9303 }, { "start": 36674.86, "end": 36676.62, "probability": 0.9883 }, { "start": 36678.38, "end": 36679.36, "probability": 0.9766 }, { "start": 36679.44, "end": 36680.96, "probability": 0.9902 }, { "start": 36681.98, "end": 36685.48, "probability": 0.9834 }, { "start": 36685.62, "end": 36686.59, "probability": 0.7673 }, { "start": 36687.32, "end": 36688.34, "probability": 0.7108 }, { "start": 36690.16, "end": 36691.43, "probability": 0.7746 }, { "start": 36692.66, "end": 36695.96, "probability": 0.9797 }, { "start": 36695.96, "end": 36700.58, "probability": 0.9633 }, { "start": 36702.72, "end": 36704.89, "probability": 0.9989 }, { "start": 36706.14, "end": 36708.92, "probability": 0.9768 }, { "start": 36708.94, "end": 36710.98, "probability": 0.7926 }, { "start": 36712.1, "end": 36716.1, "probability": 0.9824 }, { "start": 36717.96, "end": 36718.86, "probability": 0.9995 }, { "start": 36720.94, "end": 36722.18, "probability": 0.9983 }, { "start": 36722.72, "end": 36725.64, "probability": 0.7916 }, { "start": 36726.88, "end": 36727.68, "probability": 0.7665 }, { "start": 36728.28, "end": 36729.92, "probability": 0.741 }, { "start": 36730.8, "end": 36731.53, "probability": 0.7095 }, { "start": 36731.7, "end": 36733.34, "probability": 0.8597 }, { "start": 36733.62, "end": 36734.94, "probability": 0.7604 }, { "start": 36735.1, "end": 36735.68, "probability": 0.5306 }, { "start": 36736.58, "end": 36738.98, "probability": 0.7945 }, { "start": 36740.64, "end": 36741.34, "probability": 0.3293 }, { "start": 36743.24, "end": 36744.04, "probability": 0.7495 }, { "start": 36746.6, "end": 36750.5, "probability": 0.9878 }, { "start": 36751.62, "end": 36751.9, "probability": 0.7167 }, { "start": 36753.14, "end": 36755.25, "probability": 0.6719 }, { "start": 36756.54, "end": 36759.46, "probability": 0.9866 }, { "start": 36760.08, "end": 36760.46, "probability": 0.761 }, { "start": 36761.74, "end": 36762.14, "probability": 0.8076 }, { "start": 36762.84, "end": 36763.88, "probability": 0.8832 }, { "start": 36764.52, "end": 36765.18, "probability": 0.9481 }, { "start": 36765.76, "end": 36767.72, "probability": 0.8364 }, { "start": 36767.92, "end": 36768.46, "probability": 0.8583 }, { "start": 36768.46, "end": 36769.14, "probability": 0.8945 }, { "start": 36769.78, "end": 36770.52, "probability": 0.9526 }, { "start": 36771.34, "end": 36772.86, "probability": 0.752 }, { "start": 36773.62, "end": 36775.58, "probability": 0.8179 }, { "start": 36775.68, "end": 36779.18, "probability": 0.7543 }, { "start": 36779.56, "end": 36781.0, "probability": 0.9827 }, { "start": 36781.42, "end": 36785.18, "probability": 0.8143 }, { "start": 36785.9, "end": 36787.12, "probability": 0.9622 }, { "start": 36788.08, "end": 36789.84, "probability": 0.9669 }, { "start": 36790.08, "end": 36792.16, "probability": 0.8108 }, { "start": 36792.28, "end": 36794.56, "probability": 0.983 }, { "start": 36794.94, "end": 36797.14, "probability": 0.5096 }, { "start": 36797.6, "end": 36798.76, "probability": 0.6932 }, { "start": 36799.6, "end": 36800.18, "probability": 0.8229 }, { "start": 36800.3, "end": 36801.05, "probability": 0.9438 }, { "start": 36801.2, "end": 36801.56, "probability": 0.9272 }, { "start": 36801.66, "end": 36801.96, "probability": 0.4998 }, { "start": 36802.24, "end": 36804.5, "probability": 0.9979 }, { "start": 36804.5, "end": 36808.32, "probability": 0.9261 }, { "start": 36808.56, "end": 36808.78, "probability": 0.7527 }, { "start": 36809.88, "end": 36810.36, "probability": 0.6255 }, { "start": 36810.42, "end": 36812.6, "probability": 0.9015 }, { "start": 36830.18, "end": 36831.3, "probability": 0.5726 }, { "start": 36832.3, "end": 36834.12, "probability": 0.6514 }, { "start": 36835.2, "end": 36835.58, "probability": 0.4889 }, { "start": 36835.78, "end": 36839.12, "probability": 0.9805 }, { "start": 36839.16, "end": 36841.28, "probability": 0.7588 }, { "start": 36841.96, "end": 36846.08, "probability": 0.958 }, { "start": 36846.24, "end": 36851.84, "probability": 0.8557 }, { "start": 36851.88, "end": 36852.92, "probability": 0.7874 }, { "start": 36853.42, "end": 36856.93, "probability": 0.9458 }, { "start": 36858.86, "end": 36861.54, "probability": 0.9639 }, { "start": 36862.72, "end": 36866.78, "probability": 0.9456 }, { "start": 36867.14, "end": 36868.36, "probability": 0.9041 }, { "start": 36869.06, "end": 36876.5, "probability": 0.9934 }, { "start": 36876.5, "end": 36881.88, "probability": 0.9788 }, { "start": 36883.04, "end": 36886.24, "probability": 0.9951 }, { "start": 36888.82, "end": 36891.8, "probability": 0.7968 }, { "start": 36891.8, "end": 36893.16, "probability": 0.8239 }, { "start": 36893.94, "end": 36900.88, "probability": 0.9246 }, { "start": 36901.6, "end": 36902.26, "probability": 0.8956 }, { "start": 36902.78, "end": 36904.04, "probability": 0.8458 }, { "start": 36904.56, "end": 36907.34, "probability": 0.9979 }, { "start": 36907.92, "end": 36913.9, "probability": 0.5421 }, { "start": 36914.76, "end": 36918.7, "probability": 0.8811 }, { "start": 36921.08, "end": 36922.24, "probability": 0.9123 }, { "start": 36922.72, "end": 36922.74, "probability": 0.7899 }, { "start": 36922.82, "end": 36926.38, "probability": 0.9905 }, { "start": 36926.88, "end": 36928.46, "probability": 0.6297 }, { "start": 36929.24, "end": 36930.84, "probability": 0.7376 }, { "start": 36930.98, "end": 36931.96, "probability": 0.7367 }, { "start": 36932.02, "end": 36934.48, "probability": 0.8735 }, { "start": 36934.58, "end": 36934.98, "probability": 0.77 }, { "start": 36935.02, "end": 36936.28, "probability": 0.9203 }, { "start": 36936.36, "end": 36936.9, "probability": 0.918 }, { "start": 36936.96, "end": 36937.42, "probability": 0.8641 }, { "start": 36938.52, "end": 36940.58, "probability": 0.8472 }, { "start": 36941.08, "end": 36943.04, "probability": 0.9424 }, { "start": 36943.08, "end": 36945.94, "probability": 0.743 }, { "start": 36946.76, "end": 36947.54, "probability": 0.838 }, { "start": 36947.86, "end": 36948.84, "probability": 0.9712 }, { "start": 36948.9, "end": 36952.84, "probability": 0.9578 }, { "start": 36952.84, "end": 36957.35, "probability": 0.9971 }, { "start": 36959.48, "end": 36963.44, "probability": 0.9436 }, { "start": 36963.44, "end": 36968.38, "probability": 0.999 }, { "start": 36969.12, "end": 36973.06, "probability": 0.9958 }, { "start": 36973.66, "end": 36975.7, "probability": 0.9832 }, { "start": 36975.8, "end": 36978.36, "probability": 0.2155 }, { "start": 36978.98, "end": 36982.88, "probability": 0.7947 }, { "start": 36983.62, "end": 36984.84, "probability": 0.8685 }, { "start": 36985.3, "end": 36986.42, "probability": 0.8774 }, { "start": 36987.26, "end": 36988.6, "probability": 0.9414 }, { "start": 36989.44, "end": 36989.76, "probability": 0.378 }, { "start": 36989.84, "end": 36990.76, "probability": 0.8927 }, { "start": 36991.08, "end": 36994.14, "probability": 0.9385 }, { "start": 36994.58, "end": 36999.42, "probability": 0.988 }, { "start": 37000.02, "end": 37001.92, "probability": 0.9592 }, { "start": 37002.82, "end": 37003.72, "probability": 0.8515 }, { "start": 37004.24, "end": 37006.12, "probability": 0.9384 }, { "start": 37006.86, "end": 37006.86, "probability": 0.3889 }, { "start": 37006.96, "end": 37007.2, "probability": 0.734 }, { "start": 37007.3, "end": 37007.88, "probability": 0.7827 }, { "start": 37007.94, "end": 37008.98, "probability": 0.5545 }, { "start": 37009.1, "end": 37009.2, "probability": 0.5393 }, { "start": 37009.6, "end": 37011.28, "probability": 0.8431 }, { "start": 37011.84, "end": 37013.9, "probability": 0.7999 }, { "start": 37014.68, "end": 37018.04, "probability": 0.9927 }, { "start": 37019.0, "end": 37021.06, "probability": 0.5528 }, { "start": 37021.66, "end": 37023.3, "probability": 0.9031 }, { "start": 37023.44, "end": 37025.62, "probability": 0.9867 }, { "start": 37025.7, "end": 37025.96, "probability": 0.6402 }, { "start": 37026.0, "end": 37026.68, "probability": 0.8227 }, { "start": 37027.56, "end": 37029.6, "probability": 0.8309 }, { "start": 37030.46, "end": 37030.9, "probability": 0.8493 }, { "start": 37030.94, "end": 37031.82, "probability": 0.932 }, { "start": 37032.08, "end": 37032.54, "probability": 0.5444 }, { "start": 37032.92, "end": 37035.22, "probability": 0.9943 }, { "start": 37035.84, "end": 37036.6, "probability": 0.9601 }, { "start": 37036.88, "end": 37039.03, "probability": 0.3694 }, { "start": 37039.38, "end": 37043.96, "probability": 0.9141 }, { "start": 37044.08, "end": 37045.06, "probability": 0.5986 }, { "start": 37045.1, "end": 37046.88, "probability": 0.7051 }, { "start": 37047.36, "end": 37049.26, "probability": 0.4724 }, { "start": 37049.62, "end": 37054.82, "probability": 0.962 }, { "start": 37055.46, "end": 37056.16, "probability": 0.6525 }, { "start": 37056.26, "end": 37061.2, "probability": 0.991 }, { "start": 37061.92, "end": 37064.92, "probability": 0.951 }, { "start": 37064.94, "end": 37068.78, "probability": 0.9996 }, { "start": 37068.78, "end": 37072.38, "probability": 0.9993 }, { "start": 37072.54, "end": 37074.84, "probability": 0.9922 }, { "start": 37075.18, "end": 37075.3, "probability": 0.3952 }, { "start": 37075.32, "end": 37082.48, "probability": 0.9866 }, { "start": 37082.7, "end": 37085.26, "probability": 0.9079 }, { "start": 37086.92, "end": 37087.26, "probability": 0.9342 }, { "start": 37087.7, "end": 37092.72, "probability": 0.9954 }, { "start": 37093.36, "end": 37094.0, "probability": 0.498 }, { "start": 37094.56, "end": 37095.52, "probability": 0.2256 }, { "start": 37097.64, "end": 37103.8, "probability": 0.8523 }, { "start": 37104.06, "end": 37104.5, "probability": 0.8317 }, { "start": 37105.3, "end": 37107.4, "probability": 0.9897 }, { "start": 37107.76, "end": 37109.9, "probability": 0.9983 }, { "start": 37109.98, "end": 37111.27, "probability": 0.3707 }, { "start": 37111.62, "end": 37114.9, "probability": 0.9819 }, { "start": 37114.92, "end": 37115.56, "probability": 0.7253 }, { "start": 37116.82, "end": 37122.62, "probability": 0.9091 }, { "start": 37123.46, "end": 37126.94, "probability": 0.9038 }, { "start": 37127.54, "end": 37128.06, "probability": 0.2794 }, { "start": 37128.26, "end": 37128.44, "probability": 0.2527 }, { "start": 37128.44, "end": 37133.32, "probability": 0.9834 }, { "start": 37133.32, "end": 37138.62, "probability": 0.9756 }, { "start": 37139.44, "end": 37141.76, "probability": 0.8492 }, { "start": 37142.32, "end": 37144.3, "probability": 0.8018 }, { "start": 37144.78, "end": 37146.66, "probability": 0.9632 }, { "start": 37147.42, "end": 37147.88, "probability": 0.8135 }, { "start": 37147.94, "end": 37150.16, "probability": 0.9629 }, { "start": 37151.08, "end": 37151.52, "probability": 0.9261 }, { "start": 37151.82, "end": 37152.68, "probability": 0.7431 }, { "start": 37153.1, "end": 37158.12, "probability": 0.9788 }, { "start": 37158.36, "end": 37159.08, "probability": 0.9557 }, { "start": 37159.94, "end": 37161.72, "probability": 0.7321 }, { "start": 37161.82, "end": 37163.42, "probability": 0.7414 }, { "start": 37163.82, "end": 37165.3, "probability": 0.9495 }, { "start": 37165.68, "end": 37169.96, "probability": 0.9884 }, { "start": 37170.78, "end": 37174.0, "probability": 0.9973 }, { "start": 37174.62, "end": 37176.68, "probability": 0.774 }, { "start": 37177.7, "end": 37180.58, "probability": 0.8124 }, { "start": 37180.86, "end": 37183.4, "probability": 0.9112 }, { "start": 37183.78, "end": 37186.04, "probability": 0.9924 }, { "start": 37186.18, "end": 37186.88, "probability": 0.8637 }, { "start": 37187.32, "end": 37188.76, "probability": 0.9849 }, { "start": 37189.24, "end": 37190.16, "probability": 0.7456 }, { "start": 37190.62, "end": 37190.7, "probability": 0.4736 }, { "start": 37190.7, "end": 37191.72, "probability": 0.9827 }, { "start": 37191.78, "end": 37192.84, "probability": 0.8713 }, { "start": 37193.34, "end": 37194.48, "probability": 0.9352 }, { "start": 37194.7, "end": 37196.06, "probability": 0.9022 }, { "start": 37197.64, "end": 37198.16, "probability": 0.6135 }, { "start": 37198.22, "end": 37199.02, "probability": 0.8042 }, { "start": 37199.46, "end": 37202.48, "probability": 0.9666 }, { "start": 37203.08, "end": 37204.24, "probability": 0.9806 }, { "start": 37204.34, "end": 37204.72, "probability": 0.9062 }, { "start": 37204.82, "end": 37206.36, "probability": 0.8574 }, { "start": 37207.22, "end": 37207.98, "probability": 0.7963 }, { "start": 37208.68, "end": 37210.02, "probability": 0.9097 }, { "start": 37210.3, "end": 37212.2, "probability": 0.9955 }, { "start": 37212.8, "end": 37215.3, "probability": 0.8682 }, { "start": 37215.92, "end": 37216.46, "probability": 0.8624 }, { "start": 37217.48, "end": 37218.36, "probability": 0.7893 }, { "start": 37219.08, "end": 37221.26, "probability": 0.8309 }, { "start": 37221.54, "end": 37223.46, "probability": 0.9937 }, { "start": 37223.6, "end": 37229.14, "probability": 0.9963 }, { "start": 37229.14, "end": 37238.7, "probability": 0.9944 }, { "start": 37239.76, "end": 37242.14, "probability": 0.8081 }, { "start": 37242.74, "end": 37245.74, "probability": 0.8388 }, { "start": 37246.44, "end": 37250.56, "probability": 0.9547 }, { "start": 37251.32, "end": 37253.02, "probability": 0.8829 }, { "start": 37253.1, "end": 37256.16, "probability": 0.9963 }, { "start": 37256.56, "end": 37259.06, "probability": 0.9684 }, { "start": 37260.1, "end": 37262.88, "probability": 0.9193 }, { "start": 37262.92, "end": 37263.14, "probability": 0.675 }, { "start": 37263.22, "end": 37267.7, "probability": 0.9127 }, { "start": 37267.92, "end": 37272.2, "probability": 0.9037 }, { "start": 37273.3, "end": 37277.98, "probability": 0.8802 }, { "start": 37278.36, "end": 37279.3, "probability": 0.6182 }, { "start": 37279.58, "end": 37280.36, "probability": 0.7888 }, { "start": 37281.04, "end": 37285.6, "probability": 0.9126 }, { "start": 37286.1, "end": 37288.18, "probability": 0.9839 }, { "start": 37289.16, "end": 37290.22, "probability": 0.9137 }, { "start": 37292.72, "end": 37292.92, "probability": 0.2302 }, { "start": 37292.92, "end": 37296.54, "probability": 0.9836 }, { "start": 37297.0, "end": 37298.36, "probability": 0.7222 }, { "start": 37298.6, "end": 37300.24, "probability": 0.965 }, { "start": 37300.76, "end": 37305.1, "probability": 0.9222 }, { "start": 37306.18, "end": 37306.92, "probability": 0.6836 }, { "start": 37307.02, "end": 37309.12, "probability": 0.9168 }, { "start": 37309.18, "end": 37310.08, "probability": 0.7987 }, { "start": 37310.12, "end": 37310.98, "probability": 0.958 }, { "start": 37311.1, "end": 37311.62, "probability": 0.8382 }, { "start": 37311.8, "end": 37312.56, "probability": 0.7599 }, { "start": 37313.4, "end": 37318.36, "probability": 0.991 }, { "start": 37318.82, "end": 37320.82, "probability": 0.9937 }, { "start": 37321.28, "end": 37325.44, "probability": 0.9595 }, { "start": 37326.82, "end": 37327.66, "probability": 0.6969 }, { "start": 37328.5, "end": 37333.46, "probability": 0.9688 }, { "start": 37334.1, "end": 37339.8, "probability": 0.9937 }, { "start": 37340.18, "end": 37341.84, "probability": 0.9767 }, { "start": 37341.9, "end": 37346.06, "probability": 0.9957 }, { "start": 37346.36, "end": 37348.4, "probability": 0.9849 }, { "start": 37348.76, "end": 37354.18, "probability": 0.9835 }, { "start": 37354.56, "end": 37355.44, "probability": 0.9764 }, { "start": 37355.7, "end": 37356.26, "probability": 0.7523 }, { "start": 37357.24, "end": 37360.98, "probability": 0.9899 }, { "start": 37361.8, "end": 37363.34, "probability": 0.7084 }, { "start": 37364.06, "end": 37364.86, "probability": 0.7206 }, { "start": 37365.26, "end": 37366.1, "probability": 0.7978 }, { "start": 37366.26, "end": 37368.36, "probability": 0.9767 }, { "start": 37369.02, "end": 37371.42, "probability": 0.983 }, { "start": 37371.42, "end": 37375.14, "probability": 0.9928 }, { "start": 37375.22, "end": 37377.64, "probability": 0.966 }, { "start": 37378.96, "end": 37382.26, "probability": 0.9229 }, { "start": 37382.7, "end": 37385.7, "probability": 0.9914 }, { "start": 37387.58, "end": 37388.86, "probability": 0.9979 }, { "start": 37395.72, "end": 37395.8, "probability": 0.127 }, { "start": 37395.8, "end": 37395.8, "probability": 0.1285 }, { "start": 37395.8, "end": 37396.48, "probability": 0.051 }, { "start": 37397.22, "end": 37399.81, "probability": 0.6113 }, { "start": 37400.42, "end": 37400.68, "probability": 0.3379 }, { "start": 37401.9, "end": 37402.1, "probability": 0.227 }, { "start": 37402.1, "end": 37402.32, "probability": 0.6209 }, { "start": 37402.64, "end": 37405.02, "probability": 0.8022 }, { "start": 37405.2, "end": 37406.16, "probability": 0.5659 }, { "start": 37406.28, "end": 37407.64, "probability": 0.9954 }, { "start": 37407.82, "end": 37408.38, "probability": 0.7864 }, { "start": 37412.02, "end": 37412.54, "probability": 0.5712 }, { "start": 37413.14, "end": 37415.62, "probability": 0.8644 }, { "start": 37416.44, "end": 37419.7, "probability": 0.6195 }, { "start": 37419.86, "end": 37422.44, "probability": 0.6296 }, { "start": 37423.02, "end": 37423.56, "probability": 0.6254 }, { "start": 37423.6, "end": 37425.34, "probability": 0.8561 }, { "start": 37425.42, "end": 37427.22, "probability": 0.7538 }, { "start": 37427.34, "end": 37430.62, "probability": 0.7098 }, { "start": 37431.58, "end": 37432.8, "probability": 0.6351 }, { "start": 37446.0, "end": 37446.62, "probability": 0.3111 }, { "start": 37446.62, "end": 37452.3, "probability": 0.6687 }, { "start": 37455.56, "end": 37457.0, "probability": 0.7048 }, { "start": 37458.54, "end": 37459.6, "probability": 0.5745 }, { "start": 37460.02, "end": 37460.88, "probability": 0.4575 }, { "start": 37463.08, "end": 37463.82, "probability": 0.7961 }, { "start": 37466.48, "end": 37470.68, "probability": 0.936 }, { "start": 37470.88, "end": 37471.92, "probability": 0.9878 }, { "start": 37472.68, "end": 37478.18, "probability": 0.9373 }, { "start": 37478.72, "end": 37480.4, "probability": 0.6658 }, { "start": 37483.56, "end": 37484.0, "probability": 0.5363 }, { "start": 37484.7, "end": 37487.06, "probability": 0.7832 }, { "start": 37487.6, "end": 37494.18, "probability": 0.9074 }, { "start": 37494.6, "end": 37495.28, "probability": 0.7149 }, { "start": 37496.0, "end": 37498.02, "probability": 0.492 }, { "start": 37498.04, "end": 37502.4, "probability": 0.7996 }, { "start": 37503.94, "end": 37504.42, "probability": 0.8951 }, { "start": 37504.94, "end": 37509.44, "probability": 0.8077 }, { "start": 37509.48, "end": 37517.04, "probability": 0.9649 }, { "start": 37517.12, "end": 37521.94, "probability": 0.8683 }, { "start": 37523.66, "end": 37525.66, "probability": 0.9335 }, { "start": 37527.16, "end": 37530.86, "probability": 0.9206 }, { "start": 37531.38, "end": 37532.52, "probability": 0.9507 }, { "start": 37532.78, "end": 37535.66, "probability": 0.8962 }, { "start": 37536.86, "end": 37539.72, "probability": 0.7285 }, { "start": 37540.76, "end": 37542.1, "probability": 0.9731 }, { "start": 37542.62, "end": 37545.3, "probability": 0.9601 }, { "start": 37546.18, "end": 37549.42, "probability": 0.9594 }, { "start": 37550.58, "end": 37551.46, "probability": 0.2816 }, { "start": 37552.16, "end": 37558.04, "probability": 0.9858 }, { "start": 37558.68, "end": 37559.28, "probability": 0.9285 }, { "start": 37560.74, "end": 37562.04, "probability": 0.9082 }, { "start": 37563.34, "end": 37564.54, "probability": 0.7544 }, { "start": 37564.64, "end": 37565.38, "probability": 0.6929 }, { "start": 37565.38, "end": 37566.16, "probability": 0.6966 }, { "start": 37566.72, "end": 37567.67, "probability": 0.4554 }, { "start": 37568.76, "end": 37569.46, "probability": 0.5901 }, { "start": 37569.64, "end": 37574.54, "probability": 0.9524 }, { "start": 37574.6, "end": 37578.24, "probability": 0.995 }, { "start": 37578.88, "end": 37581.2, "probability": 0.9443 }, { "start": 37581.72, "end": 37583.82, "probability": 0.654 }, { "start": 37583.96, "end": 37584.8, "probability": 0.662 }, { "start": 37585.36, "end": 37585.98, "probability": 0.9355 }, { "start": 37586.7, "end": 37589.28, "probability": 0.6221 }, { "start": 37589.86, "end": 37592.18, "probability": 0.6463 }, { "start": 37593.27, "end": 37595.62, "probability": 0.653 }, { "start": 37595.96, "end": 37598.96, "probability": 0.9053 }, { "start": 37600.14, "end": 37601.46, "probability": 0.5465 }, { "start": 37602.2, "end": 37606.98, "probability": 0.6951 }, { "start": 37607.22, "end": 37609.61, "probability": 0.8567 }, { "start": 37610.42, "end": 37611.6, "probability": 0.9112 }, { "start": 37611.9, "end": 37613.3, "probability": 0.7071 }, { "start": 37613.36, "end": 37614.38, "probability": 0.7671 }, { "start": 37614.94, "end": 37617.36, "probability": 0.2873 }, { "start": 37617.96, "end": 37618.56, "probability": 0.6171 }, { "start": 37618.7, "end": 37619.88, "probability": 0.9706 }, { "start": 37620.28, "end": 37621.16, "probability": 0.3233 }, { "start": 37621.62, "end": 37622.84, "probability": 0.701 }, { "start": 37623.86, "end": 37627.8, "probability": 0.8215 }, { "start": 37629.45, "end": 37630.92, "probability": 0.8235 }, { "start": 37631.58, "end": 37634.98, "probability": 0.9543 }, { "start": 37635.1, "end": 37635.45, "probability": 0.9002 }, { "start": 37636.18, "end": 37636.82, "probability": 0.7825 }, { "start": 37637.02, "end": 37641.28, "probability": 0.9798 }, { "start": 37641.34, "end": 37644.96, "probability": 0.9598 }, { "start": 37646.52, "end": 37648.36, "probability": 0.9928 }, { "start": 37648.36, "end": 37652.06, "probability": 0.8596 }, { "start": 37652.14, "end": 37654.74, "probability": 0.7888 }, { "start": 37655.28, "end": 37657.8, "probability": 0.9808 }, { "start": 37658.36, "end": 37660.04, "probability": 0.9381 }, { "start": 37660.28, "end": 37664.28, "probability": 0.9926 }, { "start": 37664.76, "end": 37667.46, "probability": 0.5523 }, { "start": 37667.82, "end": 37668.62, "probability": 0.6541 }, { "start": 37668.94, "end": 37670.08, "probability": 0.7788 }, { "start": 37670.52, "end": 37671.88, "probability": 0.7117 }, { "start": 37672.34, "end": 37675.76, "probability": 0.8901 }, { "start": 37675.94, "end": 37676.8, "probability": 0.6907 }, { "start": 37677.24, "end": 37679.72, "probability": 0.9871 }, { "start": 37679.88, "end": 37683.54, "probability": 0.5145 }, { "start": 37683.56, "end": 37687.76, "probability": 0.8611 }, { "start": 37688.18, "end": 37689.08, "probability": 0.5343 }, { "start": 37689.44, "end": 37692.3, "probability": 0.9895 }, { "start": 37692.34, "end": 37693.18, "probability": 0.5627 }, { "start": 37693.4, "end": 37697.3, "probability": 0.9803 }, { "start": 37697.34, "end": 37700.98, "probability": 0.9447 }, { "start": 37701.78, "end": 37703.34, "probability": 0.6684 }, { "start": 37703.9, "end": 37706.68, "probability": 0.8477 }, { "start": 37706.72, "end": 37707.44, "probability": 0.772 }, { "start": 37707.52, "end": 37708.03, "probability": 0.9537 }, { "start": 37708.36, "end": 37708.78, "probability": 0.7461 }, { "start": 37709.36, "end": 37710.62, "probability": 0.7034 }, { "start": 37710.74, "end": 37711.34, "probability": 0.4874 }, { "start": 37712.16, "end": 37714.52, "probability": 0.9661 }, { "start": 37714.54, "end": 37715.0, "probability": 0.5047 }, { "start": 37715.02, "end": 37715.82, "probability": 0.7904 }, { "start": 37716.24, "end": 37717.3, "probability": 0.9104 }, { "start": 37717.38, "end": 37718.06, "probability": 0.2903 }, { "start": 37718.18, "end": 37718.18, "probability": 0.0321 }, { "start": 37718.18, "end": 37718.32, "probability": 0.6841 }, { "start": 37718.92, "end": 37719.94, "probability": 0.7017 }, { "start": 37720.42, "end": 37725.82, "probability": 0.7964 }, { "start": 37725.84, "end": 37728.18, "probability": 0.9218 }, { "start": 37728.22, "end": 37729.24, "probability": 0.9199 }, { "start": 37729.26, "end": 37730.48, "probability": 0.9976 }, { "start": 37731.08, "end": 37732.02, "probability": 0.8408 }, { "start": 37732.58, "end": 37734.74, "probability": 0.8936 }, { "start": 37735.28, "end": 37737.04, "probability": 0.8351 }, { "start": 37737.4, "end": 37742.68, "probability": 0.6806 }, { "start": 37743.0, "end": 37745.02, "probability": 0.7769 }, { "start": 37745.46, "end": 37747.2, "probability": 0.4173 }, { "start": 37747.62, "end": 37748.9, "probability": 0.9347 }, { "start": 37749.08, "end": 37749.22, "probability": 0.7586 }, { "start": 37749.22, "end": 37749.96, "probability": 0.7922 }, { "start": 37750.6, "end": 37751.63, "probability": 0.791 }, { "start": 37753.78, "end": 37758.62, "probability": 0.9733 }, { "start": 37759.16, "end": 37762.48, "probability": 0.9204 }, { "start": 37762.66, "end": 37764.21, "probability": 0.9771 }, { "start": 37771.69, "end": 37771.81, "probability": 0.0118 }, { "start": 37777.88, "end": 37779.56, "probability": 0.0002 }, { "start": 37779.56, "end": 37779.8, "probability": 0.0571 }, { "start": 37780.8, "end": 37783.66, "probability": 0.1034 }, { "start": 37783.68, "end": 37785.84, "probability": 0.9219 }, { "start": 37785.9, "end": 37787.84, "probability": 0.8211 }, { "start": 37789.02, "end": 37790.52, "probability": 0.638 }, { "start": 37790.52, "end": 37793.02, "probability": 0.7182 }, { "start": 37795.2, "end": 37796.74, "probability": 0.932 }, { "start": 37796.8, "end": 37800.54, "probability": 0.8097 }, { "start": 37801.06, "end": 37802.48, "probability": 0.9023 }, { "start": 37802.8, "end": 37806.6, "probability": 0.9836 }, { "start": 37806.78, "end": 37808.32, "probability": 0.9805 }, { "start": 37808.54, "end": 37808.62, "probability": 0.3236 }, { "start": 37808.74, "end": 37810.29, "probability": 0.816 }, { "start": 37810.65, "end": 37812.27, "probability": 0.7338 }, { "start": 37812.53, "end": 37813.13, "probability": 0.8751 }, { "start": 37813.33, "end": 37814.17, "probability": 0.6491 }, { "start": 37817.51, "end": 37821.21, "probability": 0.737 }, { "start": 37821.79, "end": 37822.83, "probability": 0.7888 }, { "start": 37824.25, "end": 37826.21, "probability": 0.8371 }, { "start": 37827.49, "end": 37828.65, "probability": 0.9795 }, { "start": 37832.19, "end": 37834.33, "probability": 0.8296 }, { "start": 37839.71, "end": 37842.71, "probability": 0.8033 }, { "start": 37843.03, "end": 37844.17, "probability": 0.3457 }, { "start": 37844.21, "end": 37844.85, "probability": 0.8295 }, { "start": 37845.07, "end": 37845.33, "probability": 0.8641 }, { "start": 37845.91, "end": 37847.19, "probability": 0.7479 }, { "start": 37849.07, "end": 37852.87, "probability": 0.6411 }, { "start": 37854.07, "end": 37854.35, "probability": 0.8672 }, { "start": 37880.69, "end": 37880.69, "probability": 0.0535 }, { "start": 37880.69, "end": 37880.81, "probability": 0.1999 }, { "start": 37880.81, "end": 37880.81, "probability": 0.4303 }, { "start": 37880.81, "end": 37881.37, "probability": 0.8486 }, { "start": 37926.27, "end": 37930.49, "probability": 0.6899 }, { "start": 37934.89, "end": 37934.97, "probability": 0.1209 }, { "start": 37935.3, "end": 37935.3, "probability": 0.327 }, { "start": 37935.3, "end": 37935.86, "probability": 0.028 }, { "start": 37936.44, "end": 37939.68, "probability": 0.8895 }, { "start": 37940.64, "end": 37945.24, "probability": 0.9769 }, { "start": 37946.62, "end": 37951.38, "probability": 0.8317 }, { "start": 37951.9, "end": 37953.74, "probability": 0.9974 }, { "start": 37954.28, "end": 37956.46, "probability": 0.8468 }, { "start": 37957.08, "end": 37959.3, "probability": 0.8813 }, { "start": 37960.0, "end": 37965.36, "probability": 0.9886 }, { "start": 37965.36, "end": 37971.79, "probability": 0.995 }, { "start": 37972.78, "end": 37972.78, "probability": 0.1493 }, { "start": 37972.78, "end": 37977.58, "probability": 0.9499 }, { "start": 37977.58, "end": 37984.76, "probability": 0.9936 }, { "start": 37984.76, "end": 37990.42, "probability": 0.9963 }, { "start": 37991.18, "end": 37997.62, "probability": 0.9799 }, { "start": 37998.3, "end": 38004.4, "probability": 0.9516 }, { "start": 38005.1, "end": 38011.04, "probability": 0.9824 }, { "start": 38011.64, "end": 38015.4, "probability": 0.8398 }, { "start": 38016.62, "end": 38021.26, "probability": 0.9877 }, { "start": 38021.62, "end": 38024.28, "probability": 0.9971 }, { "start": 38024.78, "end": 38029.26, "probability": 0.9978 }, { "start": 38029.26, "end": 38035.24, "probability": 0.9937 }, { "start": 38035.34, "end": 38038.74, "probability": 0.9502 }, { "start": 38039.32, "end": 38044.32, "probability": 0.9971 }, { "start": 38044.32, "end": 38048.74, "probability": 0.9979 }, { "start": 38049.8, "end": 38052.72, "probability": 0.9888 }, { "start": 38053.38, "end": 38054.43, "probability": 0.6889 }, { "start": 38055.52, "end": 38059.8, "probability": 0.9764 }, { "start": 38060.38, "end": 38064.62, "probability": 0.9939 }, { "start": 38064.62, "end": 38069.3, "probability": 0.9949 }, { "start": 38069.76, "end": 38074.94, "probability": 0.9709 }, { "start": 38075.18, "end": 38075.28, "probability": 0.8301 }, { "start": 38075.78, "end": 38076.54, "probability": 0.6955 }, { "start": 38077.04, "end": 38083.02, "probability": 0.9941 }, { "start": 38083.02, "end": 38087.94, "probability": 0.8402 }, { "start": 38088.32, "end": 38090.7, "probability": 0.9783 }, { "start": 38091.1, "end": 38092.56, "probability": 0.5815 }, { "start": 38092.72, "end": 38098.86, "probability": 0.9722 }, { "start": 38099.28, "end": 38104.2, "probability": 0.946 }, { "start": 38104.2, "end": 38109.38, "probability": 0.9883 }, { "start": 38109.94, "end": 38111.4, "probability": 0.9508 }, { "start": 38111.96, "end": 38115.94, "probability": 0.9667 }, { "start": 38116.46, "end": 38117.09, "probability": 0.9922 }, { "start": 38117.82, "end": 38122.48, "probability": 0.998 }, { "start": 38123.08, "end": 38123.68, "probability": 0.8885 }, { "start": 38123.86, "end": 38124.28, "probability": 0.6565 }, { "start": 38124.44, "end": 38130.36, "probability": 0.9589 }, { "start": 38130.92, "end": 38132.64, "probability": 0.9921 }, { "start": 38133.22, "end": 38134.24, "probability": 0.7758 }, { "start": 38134.62, "end": 38137.96, "probability": 0.9851 }, { "start": 38138.82, "end": 38142.24, "probability": 0.9955 }, { "start": 38142.98, "end": 38144.88, "probability": 0.6569 }, { "start": 38147.26, "end": 38154.0, "probability": 0.9824 }, { "start": 38154.68, "end": 38157.06, "probability": 0.9972 }, { "start": 38157.6, "end": 38160.86, "probability": 0.9838 }, { "start": 38161.22, "end": 38163.44, "probability": 0.999 }, { "start": 38164.2, "end": 38167.86, "probability": 0.9761 }, { "start": 38168.4, "end": 38172.88, "probability": 0.9404 }, { "start": 38172.98, "end": 38176.78, "probability": 0.9757 }, { "start": 38177.32, "end": 38179.36, "probability": 0.9882 }, { "start": 38179.9, "end": 38183.58, "probability": 0.9898 }, { "start": 38183.86, "end": 38185.0, "probability": 0.8962 }, { "start": 38185.4, "end": 38189.16, "probability": 0.9894 }, { "start": 38189.56, "end": 38191.98, "probability": 0.8621 }, { "start": 38192.4, "end": 38194.68, "probability": 0.9979 }, { "start": 38194.9, "end": 38197.88, "probability": 0.9897 }, { "start": 38198.72, "end": 38202.94, "probability": 0.9945 }, { "start": 38202.94, "end": 38209.26, "probability": 0.9932 }, { "start": 38209.34, "end": 38210.22, "probability": 0.9141 }, { "start": 38210.36, "end": 38215.16, "probability": 0.9904 }, { "start": 38215.16, "end": 38222.82, "probability": 0.9973 }, { "start": 38222.88, "end": 38227.84, "probability": 0.9912 }, { "start": 38228.48, "end": 38232.78, "probability": 0.9987 }, { "start": 38233.58, "end": 38236.38, "probability": 0.9941 }, { "start": 38237.0, "end": 38240.32, "probability": 0.9965 }, { "start": 38240.38, "end": 38244.62, "probability": 0.9329 }, { "start": 38245.38, "end": 38246.94, "probability": 0.9419 }, { "start": 38247.02, "end": 38248.16, "probability": 0.73 }, { "start": 38248.34, "end": 38249.68, "probability": 0.8756 }, { "start": 38249.86, "end": 38256.04, "probability": 0.9931 }, { "start": 38256.54, "end": 38258.98, "probability": 0.9961 }, { "start": 38259.7, "end": 38265.62, "probability": 0.9976 }, { "start": 38266.14, "end": 38268.92, "probability": 0.9907 }, { "start": 38269.48, "end": 38272.28, "probability": 0.9912 }, { "start": 38272.8, "end": 38276.18, "probability": 0.9941 }, { "start": 38276.2, "end": 38280.34, "probability": 0.9985 }, { "start": 38280.9, "end": 38286.56, "probability": 0.9854 }, { "start": 38286.58, "end": 38291.06, "probability": 0.9531 }, { "start": 38291.52, "end": 38293.78, "probability": 0.9954 }, { "start": 38294.36, "end": 38295.88, "probability": 0.9133 }, { "start": 38296.06, "end": 38296.96, "probability": 0.6811 }, { "start": 38297.34, "end": 38300.48, "probability": 0.9936 }, { "start": 38300.92, "end": 38301.76, "probability": 0.5858 }, { "start": 38302.3, "end": 38304.34, "probability": 0.9835 }, { "start": 38304.46, "end": 38307.06, "probability": 0.9612 }, { "start": 38307.58, "end": 38313.54, "probability": 0.998 }, { "start": 38313.62, "end": 38315.02, "probability": 0.8484 }, { "start": 38316.02, "end": 38319.0, "probability": 0.9795 }, { "start": 38319.52, "end": 38320.32, "probability": 0.6591 }, { "start": 38320.42, "end": 38326.26, "probability": 0.9863 }, { "start": 38326.8, "end": 38328.46, "probability": 0.9933 }, { "start": 38329.02, "end": 38330.08, "probability": 0.8156 }, { "start": 38330.42, "end": 38334.08, "probability": 0.9937 }, { "start": 38334.1, "end": 38338.94, "probability": 0.9963 }, { "start": 38339.3, "end": 38341.12, "probability": 0.9178 }, { "start": 38341.26, "end": 38341.52, "probability": 0.8716 }, { "start": 38343.1, "end": 38343.68, "probability": 0.6686 }, { "start": 38343.94, "end": 38345.84, "probability": 0.8425 }, { "start": 38372.9, "end": 38373.78, "probability": 0.643 }, { "start": 38374.06, "end": 38374.76, "probability": 0.775 }, { "start": 38374.86, "end": 38377.7, "probability": 0.803 }, { "start": 38377.7, "end": 38381.78, "probability": 0.6662 }, { "start": 38383.06, "end": 38385.14, "probability": 0.987 }, { "start": 38385.82, "end": 38388.14, "probability": 0.9715 }, { "start": 38388.88, "end": 38390.16, "probability": 0.9493 }, { "start": 38390.24, "end": 38392.06, "probability": 0.9897 }, { "start": 38392.28, "end": 38393.64, "probability": 0.7648 }, { "start": 38395.2, "end": 38399.54, "probability": 0.953 }, { "start": 38399.76, "end": 38400.64, "probability": 0.8519 }, { "start": 38401.2, "end": 38403.2, "probability": 0.9771 }, { "start": 38405.1, "end": 38406.1, "probability": 0.6392 }, { "start": 38406.78, "end": 38409.82, "probability": 0.6945 }, { "start": 38410.42, "end": 38411.11, "probability": 0.3725 }, { "start": 38411.48, "end": 38412.5, "probability": 0.679 }, { "start": 38412.6, "end": 38414.58, "probability": 0.8434 }, { "start": 38414.66, "end": 38415.94, "probability": 0.7988 }, { "start": 38417.84, "end": 38422.34, "probability": 0.8964 }, { "start": 38422.48, "end": 38424.88, "probability": 0.9912 }, { "start": 38425.88, "end": 38429.24, "probability": 0.9722 }, { "start": 38429.78, "end": 38431.14, "probability": 0.199 }, { "start": 38431.26, "end": 38432.96, "probability": 0.1554 }, { "start": 38433.46, "end": 38434.14, "probability": 0.8292 }, { "start": 38434.38, "end": 38434.96, "probability": 0.0644 }, { "start": 38435.32, "end": 38436.14, "probability": 0.6553 }, { "start": 38436.2, "end": 38437.26, "probability": 0.858 }, { "start": 38437.72, "end": 38439.24, "probability": 0.7884 }, { "start": 38439.34, "end": 38441.12, "probability": 0.915 }, { "start": 38441.56, "end": 38442.7, "probability": 0.9475 }, { "start": 38449.04, "end": 38449.66, "probability": 0.3851 }, { "start": 38450.68, "end": 38451.94, "probability": 0.6255 }, { "start": 38452.14, "end": 38453.4, "probability": 0.7555 }, { "start": 38454.7, "end": 38458.86, "probability": 0.9964 }, { "start": 38459.46, "end": 38463.22, "probability": 0.9941 }, { "start": 38464.06, "end": 38467.7, "probability": 0.9023 }, { "start": 38468.42, "end": 38471.66, "probability": 0.9254 }, { "start": 38472.18, "end": 38476.18, "probability": 0.9736 }, { "start": 38476.18, "end": 38478.86, "probability": 0.98 }, { "start": 38479.78, "end": 38483.16, "probability": 0.9899 }, { "start": 38483.16, "end": 38487.42, "probability": 0.998 }, { "start": 38488.14, "end": 38490.13, "probability": 0.7417 }, { "start": 38490.62, "end": 38493.32, "probability": 0.9778 }, { "start": 38493.4, "end": 38495.36, "probability": 0.9922 }, { "start": 38495.8, "end": 38496.8, "probability": 0.8366 }, { "start": 38497.54, "end": 38501.32, "probability": 0.9757 }, { "start": 38501.32, "end": 38504.78, "probability": 0.9974 }, { "start": 38505.32, "end": 38507.04, "probability": 0.9554 }, { "start": 38507.62, "end": 38511.22, "probability": 0.9301 }, { "start": 38512.0, "end": 38514.98, "probability": 0.9725 }, { "start": 38514.98, "end": 38519.42, "probability": 0.9942 }, { "start": 38519.9, "end": 38522.1, "probability": 0.9474 }, { "start": 38523.02, "end": 38525.14, "probability": 0.999 }, { "start": 38525.74, "end": 38529.26, "probability": 0.9922 }, { "start": 38529.52, "end": 38530.02, "probability": 0.5483 }, { "start": 38530.08, "end": 38531.34, "probability": 0.9351 }, { "start": 38531.9, "end": 38534.02, "probability": 0.6235 }, { "start": 38540.26, "end": 38540.42, "probability": 0.267 }, { "start": 38541.64, "end": 38542.7, "probability": 0.7411 }, { "start": 38543.84, "end": 38545.84, "probability": 0.8988 }, { "start": 38547.74, "end": 38550.42, "probability": 0.8988 }, { "start": 38551.52, "end": 38552.26, "probability": 0.949 }, { "start": 38553.36, "end": 38555.34, "probability": 0.8682 }, { "start": 38556.04, "end": 38557.84, "probability": 0.8407 }, { "start": 38559.32, "end": 38560.34, "probability": 0.8839 }, { "start": 38560.46, "end": 38561.4, "probability": 0.9427 }, { "start": 38561.48, "end": 38563.11, "probability": 0.9785 }, { "start": 38563.78, "end": 38567.28, "probability": 0.98 }, { "start": 38568.04, "end": 38570.34, "probability": 0.9477 }, { "start": 38571.1, "end": 38573.5, "probability": 0.9915 }, { "start": 38574.2, "end": 38577.22, "probability": 0.9978 }, { "start": 38577.22, "end": 38580.78, "probability": 0.8077 }, { "start": 38581.36, "end": 38584.34, "probability": 0.7995 }, { "start": 38584.46, "end": 38586.74, "probability": 0.9954 }, { "start": 38587.42, "end": 38589.84, "probability": 0.5413 }, { "start": 38590.02, "end": 38591.32, "probability": 0.8523 }, { "start": 38593.5, "end": 38595.28, "probability": 0.9908 }, { "start": 38595.74, "end": 38597.88, "probability": 0.9423 }, { "start": 38598.44, "end": 38603.06, "probability": 0.9716 }, { "start": 38603.6, "end": 38607.54, "probability": 0.9823 }, { "start": 38607.82, "end": 38609.88, "probability": 0.8512 }, { "start": 38610.68, "end": 38616.7, "probability": 0.9915 }, { "start": 38617.2, "end": 38618.38, "probability": 0.5987 }, { "start": 38618.72, "end": 38619.72, "probability": 0.9875 }, { "start": 38619.84, "end": 38623.4, "probability": 0.783 }, { "start": 38624.36, "end": 38624.76, "probability": 0.3583 }, { "start": 38624.76, "end": 38624.94, "probability": 0.6209 }, { "start": 38625.02, "end": 38626.34, "probability": 0.5345 }, { "start": 38626.56, "end": 38632.72, "probability": 0.8724 }, { "start": 38633.04, "end": 38634.78, "probability": 0.998 }, { "start": 38635.18, "end": 38636.3, "probability": 0.6276 }, { "start": 38636.64, "end": 38637.56, "probability": 0.9456 }, { "start": 38639.26, "end": 38640.0, "probability": 0.574 }, { "start": 38640.18, "end": 38640.56, "probability": 0.4406 }, { "start": 38640.9, "end": 38643.82, "probability": 0.7404 }, { "start": 38643.96, "end": 38646.58, "probability": 0.6299 }, { "start": 38646.62, "end": 38650.52, "probability": 0.9241 }, { "start": 38651.0, "end": 38651.51, "probability": 0.6282 }, { "start": 38652.02, "end": 38652.56, "probability": 0.6935 }, { "start": 38652.62, "end": 38653.86, "probability": 0.8872 }, { "start": 38655.02, "end": 38656.78, "probability": 0.8778 }, { "start": 38657.84, "end": 38662.82, "probability": 0.8581 }, { "start": 38663.5, "end": 38666.4, "probability": 0.9902 }, { "start": 38668.68, "end": 38672.76, "probability": 0.4581 }, { "start": 38676.4, "end": 38677.4, "probability": 0.1206 }, { "start": 38678.66, "end": 38681.18, "probability": 0.8287 }, { "start": 38681.48, "end": 38683.38, "probability": 0.8436 }, { "start": 38684.0, "end": 38684.9, "probability": 0.8452 }, { "start": 38692.09, "end": 38694.6, "probability": 0.8588 }, { "start": 38694.86, "end": 38695.36, "probability": 0.8162 }, { "start": 38696.16, "end": 38698.24, "probability": 0.0667 }, { "start": 38699.0, "end": 38701.7, "probability": 0.0941 }, { "start": 38702.1, "end": 38704.02, "probability": 0.8051 }, { "start": 38704.1, "end": 38704.82, "probability": 0.7033 }, { "start": 38705.24, "end": 38706.66, "probability": 0.9656 }, { "start": 38708.44, "end": 38712.74, "probability": 0.0088 }, { "start": 38712.88, "end": 38713.24, "probability": 0.283 }, { "start": 38713.54, "end": 38716.56, "probability": 0.7936 }, { "start": 38719.44, "end": 38724.86, "probability": 0.2953 }, { "start": 38727.16, "end": 38728.84, "probability": 0.0826 }, { "start": 38728.92, "end": 38728.98, "probability": 0.0132 }, { "start": 38728.98, "end": 38729.88, "probability": 0.7301 }, { "start": 38729.98, "end": 38732.02, "probability": 0.7717 }, { "start": 38732.6, "end": 38736.3, "probability": 0.1183 }, { "start": 38739.94, "end": 38740.6, "probability": 0.6884 }, { "start": 38742.56, "end": 38743.69, "probability": 0.0433 }, { "start": 38756.5, "end": 38757.82, "probability": 0.0692 }, { "start": 38758.18, "end": 38761.16, "probability": 0.1273 }, { "start": 38761.4, "end": 38762.76, "probability": 0.0611 }, { "start": 38762.76, "end": 38764.67, "probability": 0.1135 }, { "start": 38765.98, "end": 38766.93, "probability": 0.2603 }, { "start": 38767.68, "end": 38768.82, "probability": 0.2711 }, { "start": 38768.92, "end": 38769.58, "probability": 0.2046 }, { "start": 38769.94, "end": 38771.24, "probability": 0.6193 }, { "start": 38771.3, "end": 38774.34, "probability": 0.5994 }, { "start": 38774.34, "end": 38777.38, "probability": 0.9103 }, { "start": 38780.36, "end": 38782.32, "probability": 0.7779 }, { "start": 38782.5, "end": 38784.64, "probability": 0.9614 }, { "start": 38784.94, "end": 38788.02, "probability": 0.9382 }, { "start": 38789.11, "end": 38796.64, "probability": 0.6747 }, { "start": 38796.86, "end": 38797.84, "probability": 0.8677 }, { "start": 38797.86, "end": 38799.14, "probability": 0.7039 }, { "start": 38799.14, "end": 38800.96, "probability": 0.9872 }, { "start": 38801.64, "end": 38802.72, "probability": 0.5631 }, { "start": 38803.2, "end": 38804.8, "probability": 0.5114 }, { "start": 38805.7, "end": 38807.66, "probability": 0.5224 }, { "start": 38807.78, "end": 38808.32, "probability": 0.5677 }, { "start": 38808.34, "end": 38812.22, "probability": 0.7188 }, { "start": 38812.34, "end": 38812.68, "probability": 0.6989 }, { "start": 38813.28, "end": 38815.6, "probability": 0.8584 }, { "start": 38815.6, "end": 38816.39, "probability": 0.4828 }, { "start": 38816.9, "end": 38817.56, "probability": 0.2501 }, { "start": 38819.12, "end": 38819.72, "probability": 0.0047 }, { "start": 38821.18, "end": 38821.68, "probability": 0.0424 }, { "start": 38821.86, "end": 38822.2, "probability": 0.2841 }, { "start": 38822.2, "end": 38822.34, "probability": 0.2204 }, { "start": 38822.34, "end": 38822.86, "probability": 0.4451 }, { "start": 38823.2, "end": 38823.74, "probability": 0.8453 }, { "start": 38824.16, "end": 38824.62, "probability": 0.5577 }, { "start": 38824.72, "end": 38825.16, "probability": 0.8113 }, { "start": 38825.6, "end": 38832.74, "probability": 0.972 }, { "start": 38833.54, "end": 38836.08, "probability": 0.6156 }, { "start": 38836.16, "end": 38840.54, "probability": 0.3088 }, { "start": 38841.36, "end": 38841.76, "probability": 0.5983 }, { "start": 38841.92, "end": 38842.78, "probability": 0.847 }, { "start": 38842.92, "end": 38847.76, "probability": 0.8661 }, { "start": 38847.82, "end": 38849.4, "probability": 0.9932 }, { "start": 38852.12, "end": 38853.86, "probability": 0.9158 }, { "start": 38856.14, "end": 38861.7, "probability": 0.7267 }, { "start": 38862.38, "end": 38864.98, "probability": 0.9628 }, { "start": 38866.12, "end": 38867.24, "probability": 0.9767 }, { "start": 38867.48, "end": 38867.98, "probability": 0.77 }, { "start": 38868.62, "end": 38869.12, "probability": 0.0751 }, { "start": 38869.14, "end": 38869.56, "probability": 0.4501 }, { "start": 38870.8, "end": 38871.44, "probability": 0.3343 }, { "start": 38871.44, "end": 38872.16, "probability": 0.1469 }, { "start": 38872.2, "end": 38876.34, "probability": 0.7018 }, { "start": 38876.7, "end": 38877.36, "probability": 0.1418 }, { "start": 38878.66, "end": 38880.64, "probability": 0.2148 }, { "start": 38880.76, "end": 38881.4, "probability": 0.2548 }, { "start": 38882.3, "end": 38885.08, "probability": 0.9878 }, { "start": 38885.08, "end": 38889.5, "probability": 0.952 }, { "start": 38890.14, "end": 38890.78, "probability": 0.7753 }, { "start": 38891.66, "end": 38894.44, "probability": 0.9375 }, { "start": 38898.82, "end": 38902.1, "probability": 0.762 }, { "start": 38902.4, "end": 38904.0, "probability": 0.8883 }, { "start": 38904.24, "end": 38904.7, "probability": 0.8718 }, { "start": 38905.18, "end": 38907.68, "probability": 0.1873 }, { "start": 38907.82, "end": 38909.04, "probability": 0.1011 }, { "start": 38909.82, "end": 38910.94, "probability": 0.3208 }, { "start": 38911.48, "end": 38915.44, "probability": 0.1188 }, { "start": 38915.44, "end": 38916.56, "probability": 0.6381 }, { "start": 38918.1, "end": 38920.12, "probability": 0.3186 }, { "start": 38921.16, "end": 38923.64, "probability": 0.3395 }, { "start": 38924.18, "end": 38924.32, "probability": 0.1159 }, { "start": 38925.78, "end": 38930.1, "probability": 0.9442 }, { "start": 38930.56, "end": 38930.74, "probability": 0.7545 }, { "start": 38931.96, "end": 38932.18, "probability": 0.5042 }, { "start": 38932.34, "end": 38935.88, "probability": 0.9925 }, { "start": 38947.88, "end": 38951.66, "probability": 0.8828 }, { "start": 38951.96, "end": 38953.9, "probability": 0.9707 }, { "start": 38954.52, "end": 38956.38, "probability": 0.8463 }, { "start": 38956.62, "end": 38960.68, "probability": 0.8499 }, { "start": 38961.16, "end": 38961.38, "probability": 0.0006 }, { "start": 38975.3, "end": 38976.12, "probability": 0.0884 }, { "start": 38976.12, "end": 38976.5, "probability": 0.6249 }, { "start": 38978.08, "end": 38981.44, "probability": 0.9785 }, { "start": 39005.8, "end": 39007.78, "probability": 0.6662 }, { "start": 39008.76, "end": 39012.12, "probability": 0.9836 }, { "start": 39012.82, "end": 39019.22, "probability": 0.9934 }, { "start": 39020.52, "end": 39023.68, "probability": 0.9546 }, { "start": 39024.68, "end": 39027.42, "probability": 0.9974 }, { "start": 39027.96, "end": 39032.02, "probability": 0.9456 }, { "start": 39032.98, "end": 39035.8, "probability": 0.9499 }, { "start": 39036.16, "end": 39038.68, "probability": 0.9702 }, { "start": 39039.96, "end": 39042.89, "probability": 0.9722 }, { "start": 39043.54, "end": 39047.22, "probability": 0.9467 }, { "start": 39047.88, "end": 39053.6, "probability": 0.9827 }, { "start": 39055.14, "end": 39059.63, "probability": 0.9986 }, { "start": 39060.36, "end": 39064.8, "probability": 0.9985 }, { "start": 39065.88, "end": 39067.92, "probability": 0.9946 }, { "start": 39068.52, "end": 39071.94, "probability": 0.9938 }, { "start": 39072.92, "end": 39074.76, "probability": 0.9629 }, { "start": 39075.78, "end": 39080.42, "probability": 0.942 }, { "start": 39080.42, "end": 39084.5, "probability": 0.9907 }, { "start": 39085.04, "end": 39086.56, "probability": 0.9409 }, { "start": 39087.4, "end": 39087.5, "probability": 0.8666 }, { "start": 39088.4, "end": 39090.0, "probability": 0.9609 }, { "start": 39090.74, "end": 39091.9, "probability": 0.8267 }, { "start": 39092.62, "end": 39096.58, "probability": 0.9661 }, { "start": 39096.58, "end": 39100.68, "probability": 0.9124 }, { "start": 39101.28, "end": 39105.22, "probability": 0.9604 }, { "start": 39105.74, "end": 39108.44, "probability": 0.9978 }, { "start": 39109.54, "end": 39111.62, "probability": 0.8403 }, { "start": 39112.82, "end": 39118.24, "probability": 0.9309 }, { "start": 39118.24, "end": 39122.28, "probability": 0.9905 }, { "start": 39122.86, "end": 39123.65, "probability": 0.9188 }, { "start": 39124.5, "end": 39130.68, "probability": 0.9888 }, { "start": 39131.12, "end": 39136.22, "probability": 0.9933 }, { "start": 39137.04, "end": 39139.88, "probability": 0.9995 }, { "start": 39140.56, "end": 39143.06, "probability": 0.9672 }, { "start": 39144.1, "end": 39146.62, "probability": 0.9977 }, { "start": 39147.14, "end": 39151.1, "probability": 0.9991 }, { "start": 39151.1, "end": 39155.8, "probability": 0.9993 }, { "start": 39156.8, "end": 39159.0, "probability": 0.8376 }, { "start": 39159.98, "end": 39163.28, "probability": 0.9957 }, { "start": 39163.28, "end": 39167.74, "probability": 0.992 }, { "start": 39168.24, "end": 39172.62, "probability": 0.9875 }, { "start": 39173.54, "end": 39177.18, "probability": 0.9911 }, { "start": 39177.18, "end": 39181.52, "probability": 0.9783 }, { "start": 39182.5, "end": 39185.68, "probability": 0.9954 }, { "start": 39185.72, "end": 39187.98, "probability": 0.9993 }, { "start": 39188.54, "end": 39189.86, "probability": 0.9512 }, { "start": 39190.72, "end": 39191.44, "probability": 0.8538 }, { "start": 39191.82, "end": 39194.54, "probability": 0.9922 }, { "start": 39195.44, "end": 39199.04, "probability": 0.9985 }, { "start": 39199.74, "end": 39201.62, "probability": 0.8474 }, { "start": 39202.14, "end": 39207.24, "probability": 0.9893 }, { "start": 39208.38, "end": 39212.5, "probability": 0.9709 }, { "start": 39212.5, "end": 39216.62, "probability": 0.9973 }, { "start": 39217.58, "end": 39221.28, "probability": 0.9735 }, { "start": 39226.45, "end": 39230.64, "probability": 0.9329 }, { "start": 39231.18, "end": 39233.94, "probability": 0.9902 }, { "start": 39236.76, "end": 39238.36, "probability": 0.8537 }, { "start": 39238.4, "end": 39240.49, "probability": 0.8995 }, { "start": 39242.54, "end": 39243.36, "probability": 0.9521 }, { "start": 39243.58, "end": 39246.28, "probability": 0.8299 }, { "start": 39247.0, "end": 39251.28, "probability": 0.999 }, { "start": 39251.68, "end": 39252.6, "probability": 0.6823 }, { "start": 39252.7, "end": 39253.1, "probability": 0.6856 }, { "start": 39253.38, "end": 39254.24, "probability": 0.5065 }, { "start": 39254.78, "end": 39256.12, "probability": 0.9362 }, { "start": 39264.42, "end": 39264.48, "probability": 0.034 }, { "start": 39264.48, "end": 39264.48, "probability": 0.1784 }, { "start": 39264.48, "end": 39265.0, "probability": 0.1458 }, { "start": 39265.1, "end": 39266.74, "probability": 0.0156 }, { "start": 39278.0, "end": 39279.88, "probability": 0.9925 }, { "start": 39285.26, "end": 39289.0, "probability": 0.8904 }, { "start": 39289.7, "end": 39293.28, "probability": 0.8158 }, { "start": 39293.28, "end": 39297.24, "probability": 0.9756 }, { "start": 39297.28, "end": 39299.01, "probability": 0.7446 }, { "start": 39299.96, "end": 39299.96, "probability": 0.2695 }, { "start": 39299.96, "end": 39300.56, "probability": 0.796 }, { "start": 39301.26, "end": 39302.52, "probability": 0.9598 }, { "start": 39303.24, "end": 39306.84, "probability": 0.871 }, { "start": 39307.66, "end": 39310.78, "probability": 0.9964 }, { "start": 39310.78, "end": 39314.5, "probability": 0.9951 }, { "start": 39315.72, "end": 39317.64, "probability": 0.9921 }, { "start": 39317.98, "end": 39320.24, "probability": 0.9839 }, { "start": 39320.82, "end": 39324.4, "probability": 0.8833 }, { "start": 39324.4, "end": 39329.08, "probability": 0.7603 }, { "start": 39329.24, "end": 39331.02, "probability": 0.9587 }, { "start": 39331.24, "end": 39334.56, "probability": 0.9793 }, { "start": 39334.64, "end": 39338.66, "probability": 0.9592 }, { "start": 39338.66, "end": 39342.24, "probability": 0.9939 }, { "start": 39343.4, "end": 39345.68, "probability": 0.9989 }, { "start": 39345.94, "end": 39349.18, "probability": 0.8743 }, { "start": 39349.76, "end": 39352.5, "probability": 0.9567 }, { "start": 39353.14, "end": 39353.66, "probability": 0.8545 }, { "start": 39353.72, "end": 39356.38, "probability": 0.9918 }, { "start": 39356.38, "end": 39358.88, "probability": 0.9995 }, { "start": 39359.96, "end": 39364.84, "probability": 0.9987 }, { "start": 39365.0, "end": 39365.56, "probability": 0.7832 }, { "start": 39366.14, "end": 39366.98, "probability": 0.7816 }, { "start": 39367.52, "end": 39369.9, "probability": 0.9741 }, { "start": 39370.72, "end": 39372.96, "probability": 0.9967 }, { "start": 39373.54, "end": 39376.14, "probability": 0.9991 }, { "start": 39376.14, "end": 39377.98, "probability": 0.9993 }, { "start": 39378.72, "end": 39379.92, "probability": 0.8215 }, { "start": 39380.44, "end": 39385.12, "probability": 0.9918 }, { "start": 39386.28, "end": 39388.22, "probability": 0.9836 }, { "start": 39388.88, "end": 39392.88, "probability": 0.9975 }, { "start": 39393.42, "end": 39395.4, "probability": 0.9973 }, { "start": 39395.98, "end": 39398.2, "probability": 0.9905 }, { "start": 39398.92, "end": 39401.42, "probability": 0.9941 }, { "start": 39402.04, "end": 39403.76, "probability": 0.9993 }, { "start": 39404.64, "end": 39407.8, "probability": 0.9874 }, { "start": 39408.46, "end": 39412.28, "probability": 0.9985 }, { "start": 39412.28, "end": 39416.4, "probability": 0.997 }, { "start": 39416.96, "end": 39419.68, "probability": 0.9858 }, { "start": 39421.68, "end": 39422.7, "probability": 0.7117 }, { "start": 39423.08, "end": 39423.82, "probability": 0.9268 }, { "start": 39424.7, "end": 39426.0, "probability": 0.6584 }, { "start": 39426.18, "end": 39428.06, "probability": 0.6653 }, { "start": 39429.2, "end": 39431.26, "probability": 0.631 }, { "start": 39431.88, "end": 39435.96, "probability": 0.9163 }, { "start": 39436.8, "end": 39438.1, "probability": 0.8251 }, { "start": 39451.76, "end": 39451.76, "probability": 0.4451 }, { "start": 39451.76, "end": 39452.92, "probability": 0.3246 }, { "start": 39453.5, "end": 39454.74, "probability": 0.6226 }, { "start": 39456.08, "end": 39459.64, "probability": 0.7968 }, { "start": 39460.8, "end": 39463.28, "probability": 0.9806 }, { "start": 39463.44, "end": 39469.58, "probability": 0.9814 }, { "start": 39471.6, "end": 39472.39, "probability": 0.9983 }, { "start": 39477.44, "end": 39479.06, "probability": 0.7979 }, { "start": 39479.36, "end": 39480.4, "probability": 0.2366 }, { "start": 39480.4, "end": 39482.06, "probability": 0.7078 }, { "start": 39482.68, "end": 39482.72, "probability": 0.5504 }, { "start": 39482.72, "end": 39485.6, "probability": 0.6194 }, { "start": 39486.08, "end": 39487.54, "probability": 0.8795 }, { "start": 39488.26, "end": 39493.71, "probability": 0.9582 }, { "start": 39495.04, "end": 39498.14, "probability": 0.3158 }, { "start": 39500.12, "end": 39503.24, "probability": 0.8962 }, { "start": 39504.44, "end": 39506.83, "probability": 0.9508 }, { "start": 39509.1, "end": 39510.76, "probability": 0.8388 }, { "start": 39510.94, "end": 39511.78, "probability": 0.7462 }, { "start": 39512.06, "end": 39515.02, "probability": 0.6747 }, { "start": 39517.18, "end": 39517.38, "probability": 0.646 }, { "start": 39524.2, "end": 39524.92, "probability": 0.3524 }, { "start": 39527.22, "end": 39527.56, "probability": 0.6449 }, { "start": 39528.78, "end": 39533.33, "probability": 0.8622 }, { "start": 39534.3, "end": 39537.82, "probability": 0.9909 }, { "start": 39557.44, "end": 39558.92, "probability": 0.6302 }, { "start": 39559.66, "end": 39563.38, "probability": 0.9207 }, { "start": 39564.36, "end": 39567.86, "probability": 0.8159 }, { "start": 39568.48, "end": 39568.78, "probability": 0.6729 }, { "start": 39569.56, "end": 39570.9, "probability": 0.7426 }, { "start": 39571.36, "end": 39575.64, "probability": 0.9712 }, { "start": 39576.84, "end": 39580.62, "probability": 0.8965 }, { "start": 39580.96, "end": 39587.4, "probability": 0.9971 }, { "start": 39587.8, "end": 39591.48, "probability": 0.9005 }, { "start": 39591.96, "end": 39595.7, "probability": 0.9366 }, { "start": 39597.76, "end": 39601.22, "probability": 0.9302 }, { "start": 39602.38, "end": 39606.58, "probability": 0.9822 }, { "start": 39606.58, "end": 39611.28, "probability": 0.998 }, { "start": 39612.2, "end": 39615.94, "probability": 0.9989 }, { "start": 39615.94, "end": 39620.82, "probability": 0.9984 }, { "start": 39620.82, "end": 39625.6, "probability": 0.9969 }, { "start": 39626.24, "end": 39626.7, "probability": 0.8575 }, { "start": 39626.78, "end": 39630.4, "probability": 0.9779 }, { "start": 39630.94, "end": 39635.24, "probability": 0.9822 }, { "start": 39635.24, "end": 39639.16, "probability": 0.9963 }, { "start": 39639.76, "end": 39642.82, "probability": 0.9991 }, { "start": 39643.34, "end": 39649.0, "probability": 0.9598 }, { "start": 39649.2, "end": 39650.2, "probability": 0.9983 }, { "start": 39650.78, "end": 39652.22, "probability": 0.9951 }, { "start": 39653.02, "end": 39655.44, "probability": 0.9748 }, { "start": 39655.54, "end": 39656.78, "probability": 0.9836 }, { "start": 39657.52, "end": 39658.88, "probability": 0.99 }, { "start": 39658.98, "end": 39660.16, "probability": 0.8871 }, { "start": 39660.64, "end": 39662.57, "probability": 0.9976 }, { "start": 39663.22, "end": 39666.42, "probability": 0.9309 }, { "start": 39666.88, "end": 39669.44, "probability": 0.9952 }, { "start": 39670.26, "end": 39671.56, "probability": 0.9298 }, { "start": 39672.38, "end": 39677.02, "probability": 0.9954 }, { "start": 39677.72, "end": 39681.56, "probability": 0.9851 }, { "start": 39682.22, "end": 39684.16, "probability": 0.8262 }, { "start": 39684.64, "end": 39686.06, "probability": 0.9982 }, { "start": 39689.32, "end": 39691.46, "probability": 0.7783 }, { "start": 39695.14, "end": 39696.36, "probability": 0.675 }, { "start": 39696.44, "end": 39697.58, "probability": 0.8795 }, { "start": 39698.22, "end": 39699.4, "probability": 0.9219 }, { "start": 39699.58, "end": 39704.28, "probability": 0.9668 }, { "start": 39704.52, "end": 39704.82, "probability": 0.7514 }, { "start": 39705.86, "end": 39706.48, "probability": 0.9278 }, { "start": 39706.56, "end": 39707.29, "probability": 0.9932 }, { "start": 39707.64, "end": 39708.62, "probability": 0.9863 }, { "start": 39708.72, "end": 39710.14, "probability": 0.9863 }, { "start": 39712.34, "end": 39712.84, "probability": 0.5988 }, { "start": 39712.96, "end": 39714.08, "probability": 0.9719 }, { "start": 39721.38, "end": 39722.82, "probability": 0.6747 }, { "start": 39723.34, "end": 39725.02, "probability": 0.7295 }, { "start": 39735.12, "end": 39736.64, "probability": 0.5073 }, { "start": 39737.84, "end": 39739.7, "probability": 0.8083 }, { "start": 39740.82, "end": 39744.06, "probability": 0.9897 }, { "start": 39745.1, "end": 39747.76, "probability": 0.9323 }, { "start": 39748.5, "end": 39752.28, "probability": 0.9926 }, { "start": 39753.3, "end": 39756.34, "probability": 0.9669 }, { "start": 39761.62, "end": 39763.74, "probability": 0.6434 }, { "start": 39764.52, "end": 39767.44, "probability": 0.9808 }, { "start": 39767.44, "end": 39770.16, "probability": 0.9968 }, { "start": 39771.4, "end": 39775.52, "probability": 0.9958 }, { "start": 39775.96, "end": 39776.5, "probability": 0.5171 }, { "start": 39776.96, "end": 39778.18, "probability": 0.9599 }, { "start": 39778.86, "end": 39780.68, "probability": 0.8934 }, { "start": 39781.2, "end": 39783.18, "probability": 0.9542 }, { "start": 39783.42, "end": 39784.08, "probability": 0.9339 }, { "start": 39784.38, "end": 39785.26, "probability": 0.9489 }, { "start": 39786.22, "end": 39789.1, "probability": 0.9861 }, { "start": 39789.1, "end": 39794.08, "probability": 0.9128 }, { "start": 39794.9, "end": 39798.74, "probability": 0.8321 }, { "start": 39799.7, "end": 39800.3, "probability": 0.8448 }, { "start": 39800.38, "end": 39805.22, "probability": 0.9852 }, { "start": 39805.22, "end": 39807.86, "probability": 0.8595 }, { "start": 39808.52, "end": 39811.76, "probability": 0.8843 }, { "start": 39812.6, "end": 39816.18, "probability": 0.984 }, { "start": 39816.28, "end": 39818.6, "probability": 0.8265 }, { "start": 39819.08, "end": 39821.6, "probability": 0.7938 }, { "start": 39821.66, "end": 39824.3, "probability": 0.7667 }, { "start": 39824.34, "end": 39824.56, "probability": 0.8219 }, { "start": 39825.44, "end": 39825.86, "probability": 0.5757 }, { "start": 39825.94, "end": 39828.94, "probability": 0.9417 }, { "start": 39828.96, "end": 39831.74, "probability": 0.9949 }, { "start": 39834.62, "end": 39834.96, "probability": 0.8448 }, { "start": 39835.26, "end": 39838.22, "probability": 0.9953 }, { "start": 39838.22, "end": 39841.16, "probability": 0.9797 }, { "start": 39841.9, "end": 39844.64, "probability": 0.9824 }, { "start": 39845.18, "end": 39852.48, "probability": 0.976 }, { "start": 39852.62, "end": 39853.76, "probability": 0.8766 }, { "start": 39855.64, "end": 39858.82, "probability": 0.7862 }, { "start": 39859.66, "end": 39860.12, "probability": 0.417 }, { "start": 39860.2, "end": 39864.38, "probability": 0.9217 }, { "start": 39865.04, "end": 39867.9, "probability": 0.9893 }, { "start": 39868.34, "end": 39869.5, "probability": 0.9514 }, { "start": 39870.28, "end": 39875.84, "probability": 0.89 }, { "start": 39876.36, "end": 39879.26, "probability": 0.9772 }, { "start": 39880.14, "end": 39882.13, "probability": 0.6026 }, { "start": 39883.52, "end": 39885.0, "probability": 0.7211 }, { "start": 39886.0, "end": 39891.16, "probability": 0.959 }, { "start": 39892.12, "end": 39892.6, "probability": 0.3647 }, { "start": 39892.7, "end": 39896.68, "probability": 0.9766 }, { "start": 39897.3, "end": 39901.42, "probability": 0.9886 }, { "start": 39901.42, "end": 39906.9, "probability": 0.9959 }, { "start": 39907.32, "end": 39909.94, "probability": 0.9932 }, { "start": 39911.14, "end": 39916.44, "probability": 0.9888 }, { "start": 39916.78, "end": 39919.46, "probability": 0.9806 }, { "start": 39919.56, "end": 39920.84, "probability": 0.998 }, { "start": 39921.36, "end": 39924.12, "probability": 0.9805 }, { "start": 39925.34, "end": 39930.3, "probability": 0.9978 }, { "start": 39930.3, "end": 39934.5, "probability": 0.9977 }, { "start": 39934.66, "end": 39936.5, "probability": 0.8606 }, { "start": 39937.16, "end": 39939.04, "probability": 0.9857 }, { "start": 39939.56, "end": 39940.8, "probability": 0.9028 }, { "start": 39941.08, "end": 39943.84, "probability": 0.9935 }, { "start": 39946.36, "end": 39946.96, "probability": 0.7344 }, { "start": 39947.12, "end": 39947.44, "probability": 0.6348 }, { "start": 39949.62, "end": 39950.48, "probability": 0.3407 }, { "start": 39950.6, "end": 39954.27, "probability": 0.8564 }, { "start": 39956.1, "end": 39958.04, "probability": 0.4473 } ], "segments_count": 13471, "words_count": 62028, "avg_words_per_segment": 4.6046, "avg_segment_duration": 1.9422, "avg_words_per_minute": 92.8311, "plenum_id": "102915", "duration": 40090.88, "title": null, "plenum_date": "2021-12-22" }