diff --git "a/119080/metadata.json" "b/119080/metadata.json" new file mode 100644--- /dev/null +++ "b/119080/metadata.json" @@ -0,0 +1,92682 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "119080", + "quality_score": 0.8292, + "per_segment_quality_scores": [ + { + "start": 45.1, + "end": 49.0, + "probability": 0.0215 + }, + { + "start": 50.88, + "end": 54.68, + "probability": 0.0564 + }, + { + "start": 54.68, + "end": 57.98, + "probability": 0.0134 + }, + { + "start": 57.98, + "end": 58.72, + "probability": 0.253 + }, + { + "start": 58.72, + "end": 58.86, + "probability": 0.0264 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.62, + "end": 128.44, + "probability": 0.0956 + }, + { + "start": 128.44, + "end": 128.44, + "probability": 0.0751 + }, + { + "start": 128.44, + "end": 131.26, + "probability": 0.5412 + }, + { + "start": 131.26, + "end": 136.96, + "probability": 0.9644 + }, + { + "start": 137.86, + "end": 141.24, + "probability": 0.8912 + }, + { + "start": 141.98, + "end": 146.22, + "probability": 0.8393 + }, + { + "start": 147.46, + "end": 153.06, + "probability": 0.9935 + }, + { + "start": 153.74, + "end": 157.16, + "probability": 0.9954 + }, + { + "start": 157.86, + "end": 159.46, + "probability": 0.7401 + }, + { + "start": 159.66, + "end": 159.66, + "probability": 0.3761 + }, + { + "start": 159.66, + "end": 160.06, + "probability": 0.3033 + }, + { + "start": 160.14, + "end": 160.76, + "probability": 0.9655 + }, + { + "start": 160.82, + "end": 162.5, + "probability": 0.9922 + }, + { + "start": 162.84, + "end": 163.1, + "probability": 0.8117 + }, + { + "start": 163.34, + "end": 166.68, + "probability": 0.8537 + }, + { + "start": 166.88, + "end": 169.04, + "probability": 0.9462 + }, + { + "start": 169.42, + "end": 169.76, + "probability": 0.2441 + }, + { + "start": 169.76, + "end": 171.42, + "probability": 0.9883 + }, + { + "start": 171.42, + "end": 171.96, + "probability": 0.5997 + }, + { + "start": 172.36, + "end": 173.18, + "probability": 0.7675 + }, + { + "start": 174.26, + "end": 176.98, + "probability": 0.6988 + }, + { + "start": 177.3, + "end": 177.78, + "probability": 0.8395 + }, + { + "start": 177.8, + "end": 179.06, + "probability": 0.9329 + }, + { + "start": 179.3, + "end": 180.22, + "probability": 0.9131 + }, + { + "start": 180.26, + "end": 180.72, + "probability": 0.9066 + }, + { + "start": 180.88, + "end": 181.54, + "probability": 0.8561 + }, + { + "start": 181.7, + "end": 182.5, + "probability": 0.6233 + }, + { + "start": 183.24, + "end": 184.56, + "probability": 0.7441 + }, + { + "start": 185.9, + "end": 186.14, + "probability": 0.775 + }, + { + "start": 186.76, + "end": 186.76, + "probability": 0.4521 + }, + { + "start": 186.78, + "end": 188.52, + "probability": 0.9878 + }, + { + "start": 188.66, + "end": 190.38, + "probability": 0.8877 + }, + { + "start": 190.92, + "end": 190.92, + "probability": 0.1413 + }, + { + "start": 191.04, + "end": 191.12, + "probability": 0.3557 + }, + { + "start": 191.12, + "end": 191.74, + "probability": 0.787 + }, + { + "start": 191.94, + "end": 192.74, + "probability": 0.8537 + }, + { + "start": 193.14, + "end": 194.48, + "probability": 0.7991 + }, + { + "start": 194.58, + "end": 194.76, + "probability": 0.7101 + }, + { + "start": 196.72, + "end": 198.16, + "probability": 0.6189 + }, + { + "start": 198.26, + "end": 198.62, + "probability": 0.4971 + }, + { + "start": 198.78, + "end": 199.8, + "probability": 0.834 + }, + { + "start": 199.96, + "end": 200.9, + "probability": 0.7414 + }, + { + "start": 201.02, + "end": 202.62, + "probability": 0.9475 + }, + { + "start": 202.98, + "end": 208.0, + "probability": 0.9879 + }, + { + "start": 208.14, + "end": 208.94, + "probability": 0.6275 + }, + { + "start": 209.78, + "end": 219.62, + "probability": 0.9901 + }, + { + "start": 219.62, + "end": 224.72, + "probability": 0.9915 + }, + { + "start": 225.56, + "end": 228.09, + "probability": 0.8531 + }, + { + "start": 229.5, + "end": 232.88, + "probability": 0.8792 + }, + { + "start": 233.56, + "end": 234.56, + "probability": 0.8934 + }, + { + "start": 234.72, + "end": 236.68, + "probability": 0.9656 + }, + { + "start": 236.76, + "end": 238.44, + "probability": 0.959 + }, + { + "start": 239.66, + "end": 240.9, + "probability": 0.9288 + }, + { + "start": 240.98, + "end": 242.66, + "probability": 0.6642 + }, + { + "start": 242.82, + "end": 245.72, + "probability": 0.9519 + }, + { + "start": 247.26, + "end": 247.76, + "probability": 0.7459 + }, + { + "start": 247.76, + "end": 247.9, + "probability": 0.9217 + }, + { + "start": 248.04, + "end": 249.52, + "probability": 0.5242 + }, + { + "start": 249.6, + "end": 256.2, + "probability": 0.9633 + }, + { + "start": 256.2, + "end": 260.04, + "probability": 0.9951 + }, + { + "start": 260.04, + "end": 264.84, + "probability": 0.9982 + }, + { + "start": 264.92, + "end": 268.0, + "probability": 0.9216 + }, + { + "start": 269.32, + "end": 275.78, + "probability": 0.969 + }, + { + "start": 275.98, + "end": 279.92, + "probability": 0.8729 + }, + { + "start": 280.04, + "end": 283.68, + "probability": 0.98 + }, + { + "start": 284.26, + "end": 288.34, + "probability": 0.9717 + }, + { + "start": 291.02, + "end": 293.96, + "probability": 0.782 + }, + { + "start": 294.52, + "end": 295.24, + "probability": 0.6667 + }, + { + "start": 295.92, + "end": 298.54, + "probability": 0.8891 + }, + { + "start": 298.76, + "end": 300.02, + "probability": 0.9239 + }, + { + "start": 300.18, + "end": 301.88, + "probability": 0.998 + }, + { + "start": 301.98, + "end": 304.28, + "probability": 0.9078 + }, + { + "start": 304.76, + "end": 311.84, + "probability": 0.9854 + }, + { + "start": 311.96, + "end": 313.91, + "probability": 0.9368 + }, + { + "start": 314.84, + "end": 316.08, + "probability": 0.9418 + }, + { + "start": 316.26, + "end": 319.26, + "probability": 0.9926 + }, + { + "start": 319.78, + "end": 321.3, + "probability": 0.5583 + }, + { + "start": 321.48, + "end": 323.18, + "probability": 0.7752 + }, + { + "start": 324.0, + "end": 325.32, + "probability": 0.8931 + }, + { + "start": 325.44, + "end": 331.1, + "probability": 0.986 + }, + { + "start": 331.74, + "end": 332.64, + "probability": 0.9799 + }, + { + "start": 333.88, + "end": 334.74, + "probability": 0.6318 + }, + { + "start": 334.86, + "end": 336.7, + "probability": 0.7183 + }, + { + "start": 336.7, + "end": 336.96, + "probability": 0.5019 + }, + { + "start": 337.16, + "end": 340.34, + "probability": 0.9298 + }, + { + "start": 340.88, + "end": 342.48, + "probability": 0.8142 + }, + { + "start": 343.24, + "end": 348.86, + "probability": 0.9884 + }, + { + "start": 349.02, + "end": 349.72, + "probability": 0.6654 + }, + { + "start": 351.17, + "end": 353.99, + "probability": 0.8161 + }, + { + "start": 355.66, + "end": 359.22, + "probability": 0.832 + }, + { + "start": 359.88, + "end": 362.96, + "probability": 0.9541 + }, + { + "start": 363.1, + "end": 365.84, + "probability": 0.9427 + }, + { + "start": 366.3, + "end": 368.22, + "probability": 0.8629 + }, + { + "start": 368.34, + "end": 372.52, + "probability": 0.9561 + }, + { + "start": 372.94, + "end": 374.52, + "probability": 0.766 + }, + { + "start": 375.04, + "end": 377.46, + "probability": 0.9761 + }, + { + "start": 377.74, + "end": 381.72, + "probability": 0.9792 + }, + { + "start": 381.78, + "end": 385.26, + "probability": 0.9712 + }, + { + "start": 385.44, + "end": 390.82, + "probability": 0.7285 + }, + { + "start": 390.9, + "end": 392.32, + "probability": 0.9744 + }, + { + "start": 392.44, + "end": 394.18, + "probability": 0.9885 + }, + { + "start": 394.96, + "end": 402.56, + "probability": 0.9939 + }, + { + "start": 402.72, + "end": 405.62, + "probability": 0.9976 + }, + { + "start": 406.14, + "end": 406.86, + "probability": 0.951 + }, + { + "start": 407.5, + "end": 408.26, + "probability": 0.9221 + }, + { + "start": 408.36, + "end": 410.13, + "probability": 0.9973 + }, + { + "start": 411.22, + "end": 414.06, + "probability": 0.9983 + }, + { + "start": 414.14, + "end": 416.82, + "probability": 0.9967 + }, + { + "start": 416.88, + "end": 420.94, + "probability": 0.999 + }, + { + "start": 421.5, + "end": 424.9, + "probability": 0.9972 + }, + { + "start": 424.96, + "end": 425.58, + "probability": 0.5872 + }, + { + "start": 425.88, + "end": 426.12, + "probability": 0.8987 + }, + { + "start": 426.18, + "end": 427.76, + "probability": 0.9878 + }, + { + "start": 427.94, + "end": 429.52, + "probability": 0.9439 + }, + { + "start": 430.74, + "end": 433.42, + "probability": 0.7215 + }, + { + "start": 433.42, + "end": 437.43, + "probability": 0.8121 + }, + { + "start": 438.26, + "end": 439.48, + "probability": 0.8745 + }, + { + "start": 439.58, + "end": 442.12, + "probability": 0.9976 + }, + { + "start": 442.18, + "end": 445.42, + "probability": 0.9067 + }, + { + "start": 445.5, + "end": 448.51, + "probability": 0.9858 + }, + { + "start": 449.32, + "end": 450.96, + "probability": 0.7941 + }, + { + "start": 451.06, + "end": 458.36, + "probability": 0.9629 + }, + { + "start": 458.46, + "end": 461.86, + "probability": 0.4767 + }, + { + "start": 462.06, + "end": 462.66, + "probability": 0.7222 + }, + { + "start": 462.82, + "end": 463.34, + "probability": 0.7737 + }, + { + "start": 464.18, + "end": 464.76, + "probability": 0.7685 + }, + { + "start": 464.9, + "end": 465.18, + "probability": 0.911 + }, + { + "start": 465.36, + "end": 466.7, + "probability": 0.8525 + }, + { + "start": 467.0, + "end": 469.0, + "probability": 0.9161 + }, + { + "start": 469.56, + "end": 472.4, + "probability": 0.9075 + }, + { + "start": 472.52, + "end": 475.66, + "probability": 0.9707 + }, + { + "start": 475.7, + "end": 477.88, + "probability": 0.9604 + }, + { + "start": 477.96, + "end": 480.1, + "probability": 0.9629 + }, + { + "start": 482.24, + "end": 483.96, + "probability": 0.9152 + }, + { + "start": 484.04, + "end": 487.8, + "probability": 0.8857 + }, + { + "start": 488.32, + "end": 490.12, + "probability": 0.8841 + }, + { + "start": 490.96, + "end": 493.04, + "probability": 0.8113 + }, + { + "start": 495.15, + "end": 497.0, + "probability": 0.7227 + }, + { + "start": 497.14, + "end": 497.82, + "probability": 0.7388 + }, + { + "start": 497.92, + "end": 499.94, + "probability": 0.9417 + }, + { + "start": 499.94, + "end": 502.32, + "probability": 0.7286 + }, + { + "start": 502.62, + "end": 504.8, + "probability": 0.9414 + }, + { + "start": 504.92, + "end": 506.08, + "probability": 0.7541 + }, + { + "start": 507.47, + "end": 510.6, + "probability": 0.9982 + }, + { + "start": 510.72, + "end": 512.62, + "probability": 0.9108 + }, + { + "start": 512.82, + "end": 515.68, + "probability": 0.9985 + }, + { + "start": 516.14, + "end": 520.38, + "probability": 0.936 + }, + { + "start": 520.9, + "end": 525.14, + "probability": 0.9966 + }, + { + "start": 525.32, + "end": 529.14, + "probability": 0.9976 + }, + { + "start": 530.4, + "end": 536.14, + "probability": 0.9897 + }, + { + "start": 536.16, + "end": 541.94, + "probability": 0.8789 + }, + { + "start": 542.4, + "end": 544.16, + "probability": 0.95 + }, + { + "start": 544.34, + "end": 547.68, + "probability": 0.9202 + }, + { + "start": 548.88, + "end": 549.22, + "probability": 0.0488 + }, + { + "start": 549.22, + "end": 549.78, + "probability": 0.6643 + }, + { + "start": 549.94, + "end": 551.24, + "probability": 0.6803 + }, + { + "start": 551.38, + "end": 552.84, + "probability": 0.9606 + }, + { + "start": 552.98, + "end": 553.08, + "probability": 0.9305 + }, + { + "start": 553.2, + "end": 555.24, + "probability": 0.9038 + }, + { + "start": 556.2, + "end": 559.94, + "probability": 0.9907 + }, + { + "start": 560.02, + "end": 561.0, + "probability": 0.7769 + }, + { + "start": 561.16, + "end": 562.36, + "probability": 0.8918 + }, + { + "start": 563.24, + "end": 565.6, + "probability": 0.9389 + }, + { + "start": 565.8, + "end": 569.58, + "probability": 0.9872 + }, + { + "start": 569.68, + "end": 572.58, + "probability": 0.9997 + }, + { + "start": 574.2, + "end": 578.16, + "probability": 0.9689 + }, + { + "start": 579.19, + "end": 583.6, + "probability": 0.9707 + }, + { + "start": 584.18, + "end": 586.4, + "probability": 0.9989 + }, + { + "start": 587.52, + "end": 590.52, + "probability": 0.9984 + }, + { + "start": 591.0, + "end": 597.7, + "probability": 0.9952 + }, + { + "start": 600.26, + "end": 602.82, + "probability": 0.9979 + }, + { + "start": 603.14, + "end": 606.9, + "probability": 0.8352 + }, + { + "start": 607.02, + "end": 610.18, + "probability": 0.9984 + }, + { + "start": 611.2, + "end": 613.72, + "probability": 0.9953 + }, + { + "start": 613.82, + "end": 614.04, + "probability": 0.8396 + }, + { + "start": 614.14, + "end": 617.9, + "probability": 0.9806 + }, + { + "start": 619.06, + "end": 623.38, + "probability": 0.9818 + }, + { + "start": 624.12, + "end": 626.56, + "probability": 0.993 + }, + { + "start": 626.74, + "end": 633.0, + "probability": 0.9321 + }, + { + "start": 634.06, + "end": 637.18, + "probability": 0.9794 + }, + { + "start": 637.3, + "end": 639.64, + "probability": 0.856 + }, + { + "start": 639.7, + "end": 642.1, + "probability": 0.9972 + }, + { + "start": 642.26, + "end": 643.9, + "probability": 0.9966 + }, + { + "start": 645.18, + "end": 646.06, + "probability": 0.7849 + }, + { + "start": 646.2, + "end": 647.66, + "probability": 0.673 + }, + { + "start": 647.8, + "end": 649.48, + "probability": 0.9872 + }, + { + "start": 649.64, + "end": 651.54, + "probability": 0.9252 + }, + { + "start": 652.22, + "end": 657.26, + "probability": 0.9868 + }, + { + "start": 657.3, + "end": 657.7, + "probability": 0.6097 + }, + { + "start": 658.28, + "end": 661.28, + "probability": 0.998 + }, + { + "start": 661.34, + "end": 665.12, + "probability": 0.9962 + }, + { + "start": 666.76, + "end": 670.92, + "probability": 0.9946 + }, + { + "start": 671.6, + "end": 673.38, + "probability": 0.9146 + }, + { + "start": 674.1, + "end": 675.02, + "probability": 0.9152 + }, + { + "start": 675.08, + "end": 675.48, + "probability": 0.7119 + }, + { + "start": 676.61, + "end": 680.08, + "probability": 0.9984 + }, + { + "start": 680.74, + "end": 681.96, + "probability": 0.9966 + }, + { + "start": 682.48, + "end": 689.46, + "probability": 0.9543 + }, + { + "start": 689.72, + "end": 694.16, + "probability": 0.9958 + }, + { + "start": 694.16, + "end": 698.76, + "probability": 0.999 + }, + { + "start": 699.6, + "end": 707.61, + "probability": 0.9951 + }, + { + "start": 708.22, + "end": 714.04, + "probability": 0.9893 + }, + { + "start": 714.24, + "end": 718.46, + "probability": 0.8283 + }, + { + "start": 719.26, + "end": 727.74, + "probability": 0.991 + }, + { + "start": 727.94, + "end": 731.82, + "probability": 0.9953 + }, + { + "start": 732.42, + "end": 733.66, + "probability": 0.9346 + }, + { + "start": 733.74, + "end": 737.71, + "probability": 0.984 + }, + { + "start": 738.88, + "end": 742.84, + "probability": 0.9983 + }, + { + "start": 742.94, + "end": 743.22, + "probability": 0.5202 + }, + { + "start": 743.44, + "end": 746.02, + "probability": 0.9628 + }, + { + "start": 746.1, + "end": 747.78, + "probability": 0.8722 + }, + { + "start": 748.26, + "end": 750.0, + "probability": 0.9203 + }, + { + "start": 750.62, + "end": 755.28, + "probability": 0.9857 + }, + { + "start": 755.28, + "end": 758.54, + "probability": 0.9513 + }, + { + "start": 758.54, + "end": 760.22, + "probability": 0.8521 + }, + { + "start": 760.46, + "end": 761.04, + "probability": 0.8391 + }, + { + "start": 761.6, + "end": 763.52, + "probability": 0.7503 + }, + { + "start": 764.12, + "end": 768.86, + "probability": 0.9883 + }, + { + "start": 769.32, + "end": 770.06, + "probability": 0.8404 + }, + { + "start": 770.12, + "end": 773.3, + "probability": 0.9906 + }, + { + "start": 773.3, + "end": 775.98, + "probability": 0.8826 + }, + { + "start": 776.06, + "end": 777.36, + "probability": 0.5992 + }, + { + "start": 777.56, + "end": 779.12, + "probability": 0.9968 + }, + { + "start": 779.74, + "end": 781.1, + "probability": 0.9963 + }, + { + "start": 781.44, + "end": 784.44, + "probability": 0.8238 + }, + { + "start": 785.04, + "end": 785.16, + "probability": 0.1718 + }, + { + "start": 785.7, + "end": 790.38, + "probability": 0.0834 + }, + { + "start": 791.84, + "end": 792.16, + "probability": 0.09 + }, + { + "start": 792.16, + "end": 792.16, + "probability": 0.1772 + }, + { + "start": 792.16, + "end": 793.84, + "probability": 0.544 + }, + { + "start": 794.36, + "end": 797.28, + "probability": 0.9938 + }, + { + "start": 797.66, + "end": 800.96, + "probability": 0.9987 + }, + { + "start": 801.46, + "end": 803.28, + "probability": 0.4998 + }, + { + "start": 803.44, + "end": 803.52, + "probability": 0.0098 + }, + { + "start": 803.52, + "end": 803.84, + "probability": 0.0893 + }, + { + "start": 803.84, + "end": 804.24, + "probability": 0.4919 + }, + { + "start": 804.26, + "end": 805.3, + "probability": 0.9377 + }, + { + "start": 805.56, + "end": 808.12, + "probability": 0.9038 + }, + { + "start": 808.7, + "end": 809.46, + "probability": 0.758 + }, + { + "start": 809.54, + "end": 810.92, + "probability": 0.6701 + }, + { + "start": 810.96, + "end": 815.32, + "probability": 0.9502 + }, + { + "start": 815.32, + "end": 820.28, + "probability": 0.9904 + }, + { + "start": 820.66, + "end": 820.82, + "probability": 0.2533 + }, + { + "start": 820.82, + "end": 826.04, + "probability": 0.9647 + }, + { + "start": 826.5, + "end": 829.88, + "probability": 0.9961 + }, + { + "start": 830.0, + "end": 830.52, + "probability": 0.5753 + }, + { + "start": 830.76, + "end": 831.48, + "probability": 0.1577 + }, + { + "start": 832.46, + "end": 835.82, + "probability": 0.0507 + }, + { + "start": 847.52, + "end": 849.34, + "probability": 0.9287 + }, + { + "start": 850.37, + "end": 850.64, + "probability": 0.7742 + }, + { + "start": 854.48, + "end": 855.58, + "probability": 0.1239 + }, + { + "start": 855.58, + "end": 860.16, + "probability": 0.0338 + }, + { + "start": 861.92, + "end": 862.98, + "probability": 0.1235 + }, + { + "start": 862.98, + "end": 864.58, + "probability": 0.2775 + }, + { + "start": 864.64, + "end": 864.88, + "probability": 0.06 + }, + { + "start": 864.88, + "end": 864.9, + "probability": 0.0745 + }, + { + "start": 864.9, + "end": 867.12, + "probability": 0.0202 + }, + { + "start": 867.6, + "end": 868.32, + "probability": 0.1573 + }, + { + "start": 869.04, + "end": 869.88, + "probability": 0.0438 + }, + { + "start": 872.92, + "end": 876.25, + "probability": 0.0696 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 934.0, + "end": 934.0, + "probability": 0.0 + }, + { + "start": 935.55, + "end": 936.62, + "probability": 0.0285 + }, + { + "start": 936.62, + "end": 938.5, + "probability": 0.0619 + }, + { + "start": 940.35, + "end": 941.5, + "probability": 0.0995 + }, + { + "start": 941.7, + "end": 947.42, + "probability": 0.0292 + }, + { + "start": 949.14, + "end": 952.48, + "probability": 0.0321 + }, + { + "start": 953.25, + "end": 954.18, + "probability": 0.2705 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.0, + "end": 1062.0, + "probability": 0.0 + }, + { + "start": 1062.55, + "end": 1064.1, + "probability": 0.0751 + }, + { + "start": 1064.1, + "end": 1065.28, + "probability": 0.0445 + }, + { + "start": 1065.4, + "end": 1065.92, + "probability": 0.0108 + }, + { + "start": 1067.76, + "end": 1069.28, + "probability": 0.0883 + }, + { + "start": 1069.84, + "end": 1069.94, + "probability": 0.0043 + }, + { + "start": 1070.56, + "end": 1074.67, + "probability": 0.0407 + }, + { + "start": 1076.82, + "end": 1080.22, + "probability": 0.1462 + }, + { + "start": 1082.75, + "end": 1083.6, + "probability": 0.0937 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1195.0, + "end": 1195.0, + "probability": 0.0 + }, + { + "start": 1196.44, + "end": 1210.8, + "probability": 0.0681 + }, + { + "start": 1211.6, + "end": 1217.78, + "probability": 0.0182 + }, + { + "start": 1217.78, + "end": 1221.64, + "probability": 0.0998 + }, + { + "start": 1221.64, + "end": 1222.7, + "probability": 0.1528 + }, + { + "start": 1222.7, + "end": 1224.48, + "probability": 0.2969 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.0, + "end": 1316.0, + "probability": 0.0 + }, + { + "start": 1316.1, + "end": 1316.56, + "probability": 0.408 + }, + { + "start": 1317.04, + "end": 1318.42, + "probability": 0.9207 + }, + { + "start": 1318.56, + "end": 1323.64, + "probability": 0.7509 + }, + { + "start": 1323.68, + "end": 1324.3, + "probability": 0.7837 + }, + { + "start": 1324.44, + "end": 1329.1, + "probability": 0.9863 + }, + { + "start": 1329.14, + "end": 1333.56, + "probability": 0.9544 + }, + { + "start": 1333.68, + "end": 1334.82, + "probability": 0.7113 + }, + { + "start": 1335.02, + "end": 1338.78, + "probability": 0.9963 + }, + { + "start": 1339.34, + "end": 1344.06, + "probability": 0.9574 + }, + { + "start": 1344.2, + "end": 1345.56, + "probability": 0.9645 + }, + { + "start": 1345.74, + "end": 1352.74, + "probability": 0.9268 + }, + { + "start": 1352.88, + "end": 1355.64, + "probability": 0.9613 + }, + { + "start": 1357.62, + "end": 1360.62, + "probability": 0.9787 + }, + { + "start": 1360.62, + "end": 1360.84, + "probability": 0.8445 + }, + { + "start": 1360.92, + "end": 1364.84, + "probability": 0.9935 + }, + { + "start": 1364.96, + "end": 1367.7, + "probability": 0.9695 + }, + { + "start": 1368.28, + "end": 1374.3, + "probability": 0.9971 + }, + { + "start": 1374.3, + "end": 1374.46, + "probability": 0.027 + }, + { + "start": 1374.46, + "end": 1374.48, + "probability": 0.3144 + }, + { + "start": 1374.48, + "end": 1376.88, + "probability": 0.8367 + }, + { + "start": 1376.96, + "end": 1380.82, + "probability": 0.9888 + }, + { + "start": 1381.02, + "end": 1382.94, + "probability": 0.7429 + }, + { + "start": 1383.58, + "end": 1387.76, + "probability": 0.0231 + }, + { + "start": 1387.76, + "end": 1387.76, + "probability": 0.0381 + }, + { + "start": 1387.76, + "end": 1388.2, + "probability": 0.1272 + }, + { + "start": 1388.96, + "end": 1388.96, + "probability": 0.0506 + }, + { + "start": 1388.96, + "end": 1393.36, + "probability": 0.9003 + }, + { + "start": 1396.64, + "end": 1397.24, + "probability": 0.0758 + }, + { + "start": 1397.24, + "end": 1397.24, + "probability": 0.1246 + }, + { + "start": 1397.24, + "end": 1398.7, + "probability": 0.1236 + }, + { + "start": 1399.04, + "end": 1399.96, + "probability": 0.7172 + }, + { + "start": 1400.06, + "end": 1400.3, + "probability": 0.3528 + }, + { + "start": 1400.38, + "end": 1401.08, + "probability": 0.7929 + }, + { + "start": 1401.14, + "end": 1401.44, + "probability": 0.8336 + }, + { + "start": 1401.68, + "end": 1403.34, + "probability": 0.9058 + }, + { + "start": 1403.58, + "end": 1404.86, + "probability": 0.8156 + }, + { + "start": 1405.44, + "end": 1406.4, + "probability": 0.7498 + }, + { + "start": 1406.52, + "end": 1407.68, + "probability": 0.9764 + }, + { + "start": 1407.86, + "end": 1408.98, + "probability": 0.8152 + }, + { + "start": 1409.04, + "end": 1412.56, + "probability": 0.9869 + }, + { + "start": 1412.66, + "end": 1414.14, + "probability": 0.96 + }, + { + "start": 1414.52, + "end": 1415.83, + "probability": 0.9237 + }, + { + "start": 1416.78, + "end": 1420.08, + "probability": 0.9819 + }, + { + "start": 1420.08, + "end": 1423.16, + "probability": 0.9985 + }, + { + "start": 1423.28, + "end": 1424.38, + "probability": 0.965 + }, + { + "start": 1425.12, + "end": 1428.58, + "probability": 0.9945 + }, + { + "start": 1429.4, + "end": 1434.62, + "probability": 0.9775 + }, + { + "start": 1435.83, + "end": 1438.5, + "probability": 0.4551 + }, + { + "start": 1438.7, + "end": 1445.04, + "probability": 0.6292 + }, + { + "start": 1445.6, + "end": 1446.3, + "probability": 0.1302 + }, + { + "start": 1446.34, + "end": 1446.88, + "probability": 0.0387 + }, + { + "start": 1446.88, + "end": 1448.24, + "probability": 0.0699 + }, + { + "start": 1448.24, + "end": 1448.24, + "probability": 0.0686 + }, + { + "start": 1448.24, + "end": 1448.84, + "probability": 0.0474 + }, + { + "start": 1448.84, + "end": 1448.84, + "probability": 0.0942 + }, + { + "start": 1448.84, + "end": 1451.22, + "probability": 0.9583 + }, + { + "start": 1451.38, + "end": 1453.06, + "probability": 0.8033 + }, + { + "start": 1453.58, + "end": 1455.54, + "probability": 0.9894 + }, + { + "start": 1455.94, + "end": 1458.82, + "probability": 0.9005 + }, + { + "start": 1459.24, + "end": 1461.58, + "probability": 0.9963 + }, + { + "start": 1461.58, + "end": 1464.28, + "probability": 0.9976 + }, + { + "start": 1464.68, + "end": 1466.8, + "probability": 0.9969 + }, + { + "start": 1467.24, + "end": 1469.74, + "probability": 0.9655 + }, + { + "start": 1469.84, + "end": 1472.18, + "probability": 0.998 + }, + { + "start": 1472.38, + "end": 1474.62, + "probability": 0.9956 + }, + { + "start": 1474.96, + "end": 1477.22, + "probability": 0.9219 + }, + { + "start": 1477.32, + "end": 1479.68, + "probability": 0.9973 + }, + { + "start": 1480.0, + "end": 1482.46, + "probability": 0.9891 + }, + { + "start": 1483.0, + "end": 1486.58, + "probability": 0.103 + }, + { + "start": 1486.58, + "end": 1488.12, + "probability": 0.9325 + }, + { + "start": 1489.04, + "end": 1491.72, + "probability": 0.9051 + }, + { + "start": 1491.76, + "end": 1492.28, + "probability": 0.7101 + }, + { + "start": 1492.54, + "end": 1494.1, + "probability": 0.7056 + }, + { + "start": 1494.16, + "end": 1496.26, + "probability": 0.9731 + }, + { + "start": 1496.26, + "end": 1499.68, + "probability": 0.8879 + }, + { + "start": 1500.1, + "end": 1501.48, + "probability": 0.6571 + }, + { + "start": 1503.24, + "end": 1507.6, + "probability": 0.8659 + }, + { + "start": 1507.66, + "end": 1509.66, + "probability": 0.9409 + }, + { + "start": 1509.78, + "end": 1510.54, + "probability": 0.5834 + }, + { + "start": 1510.54, + "end": 1511.38, + "probability": 0.7693 + }, + { + "start": 1511.46, + "end": 1511.98, + "probability": 0.8062 + }, + { + "start": 1511.98, + "end": 1513.28, + "probability": 0.7475 + }, + { + "start": 1513.46, + "end": 1515.44, + "probability": 0.7819 + }, + { + "start": 1516.06, + "end": 1519.18, + "probability": 0.9955 + }, + { + "start": 1519.45, + "end": 1522.82, + "probability": 0.9966 + }, + { + "start": 1523.04, + "end": 1527.04, + "probability": 0.995 + }, + { + "start": 1527.2, + "end": 1530.18, + "probability": 0.9788 + }, + { + "start": 1531.4, + "end": 1534.9, + "probability": 0.9771 + }, + { + "start": 1535.52, + "end": 1537.1, + "probability": 0.7743 + }, + { + "start": 1537.3, + "end": 1540.56, + "probability": 0.9797 + }, + { + "start": 1541.24, + "end": 1543.1, + "probability": 0.9688 + }, + { + "start": 1543.2, + "end": 1546.08, + "probability": 0.9974 + }, + { + "start": 1546.54, + "end": 1548.46, + "probability": 0.6635 + }, + { + "start": 1549.14, + "end": 1551.72, + "probability": 0.9709 + }, + { + "start": 1551.72, + "end": 1556.36, + "probability": 0.9721 + }, + { + "start": 1558.02, + "end": 1558.64, + "probability": 0.2728 + }, + { + "start": 1559.04, + "end": 1560.1, + "probability": 0.9697 + }, + { + "start": 1560.16, + "end": 1561.24, + "probability": 0.9277 + }, + { + "start": 1561.4, + "end": 1566.84, + "probability": 0.9824 + }, + { + "start": 1567.1, + "end": 1569.32, + "probability": 0.9918 + }, + { + "start": 1570.08, + "end": 1574.27, + "probability": 0.9775 + }, + { + "start": 1574.52, + "end": 1575.08, + "probability": 0.6926 + }, + { + "start": 1575.54, + "end": 1575.54, + "probability": 0.0554 + }, + { + "start": 1575.54, + "end": 1576.6, + "probability": 0.5667 + }, + { + "start": 1576.74, + "end": 1577.26, + "probability": 0.7455 + }, + { + "start": 1577.28, + "end": 1577.32, + "probability": 0.2095 + }, + { + "start": 1577.32, + "end": 1580.76, + "probability": 0.9618 + }, + { + "start": 1581.24, + "end": 1585.4, + "probability": 0.9523 + }, + { + "start": 1586.76, + "end": 1590.08, + "probability": 0.9988 + }, + { + "start": 1590.72, + "end": 1593.26, + "probability": 0.9924 + }, + { + "start": 1593.64, + "end": 1597.76, + "probability": 0.8889 + }, + { + "start": 1598.66, + "end": 1599.92, + "probability": 0.9159 + }, + { + "start": 1600.58, + "end": 1605.8, + "probability": 0.9757 + }, + { + "start": 1606.42, + "end": 1608.02, + "probability": 0.9993 + }, + { + "start": 1608.6, + "end": 1609.02, + "probability": 0.7531 + }, + { + "start": 1609.04, + "end": 1609.88, + "probability": 0.9177 + }, + { + "start": 1609.98, + "end": 1610.74, + "probability": 0.7122 + }, + { + "start": 1610.78, + "end": 1612.16, + "probability": 0.9994 + }, + { + "start": 1612.52, + "end": 1613.3, + "probability": 0.598 + }, + { + "start": 1613.68, + "end": 1616.06, + "probability": 0.936 + }, + { + "start": 1619.4, + "end": 1621.54, + "probability": 0.3595 + }, + { + "start": 1621.54, + "end": 1622.54, + "probability": 0.029 + }, + { + "start": 1622.82, + "end": 1623.76, + "probability": 0.7008 + }, + { + "start": 1623.84, + "end": 1625.44, + "probability": 0.3406 + }, + { + "start": 1625.44, + "end": 1631.5, + "probability": 0.0428 + }, + { + "start": 1632.34, + "end": 1633.36, + "probability": 0.0228 + }, + { + "start": 1633.36, + "end": 1633.92, + "probability": 0.3092 + }, + { + "start": 1633.92, + "end": 1633.92, + "probability": 0.2062 + }, + { + "start": 1633.92, + "end": 1634.2, + "probability": 0.0084 + }, + { + "start": 1635.5, + "end": 1637.08, + "probability": 0.8271 + }, + { + "start": 1637.22, + "end": 1640.78, + "probability": 0.7642 + }, + { + "start": 1640.94, + "end": 1643.0, + "probability": 0.979 + }, + { + "start": 1643.56, + "end": 1645.98, + "probability": 0.8833 + }, + { + "start": 1646.08, + "end": 1649.32, + "probability": 0.7939 + }, + { + "start": 1649.4, + "end": 1651.67, + "probability": 0.7913 + }, + { + "start": 1652.0, + "end": 1653.8, + "probability": 0.6172 + }, + { + "start": 1653.89, + "end": 1655.3, + "probability": 0.0354 + }, + { + "start": 1655.3, + "end": 1659.38, + "probability": 0.885 + }, + { + "start": 1659.4, + "end": 1662.74, + "probability": 0.5247 + }, + { + "start": 1662.74, + "end": 1664.08, + "probability": 0.6944 + }, + { + "start": 1664.82, + "end": 1668.46, + "probability": 0.0997 + }, + { + "start": 1669.3, + "end": 1671.16, + "probability": 0.1466 + }, + { + "start": 1671.72, + "end": 1673.1, + "probability": 0.0416 + }, + { + "start": 1673.1, + "end": 1674.12, + "probability": 0.3754 + }, + { + "start": 1674.12, + "end": 1674.96, + "probability": 0.0908 + }, + { + "start": 1674.96, + "end": 1676.54, + "probability": 0.6721 + }, + { + "start": 1676.8, + "end": 1681.46, + "probability": 0.8711 + }, + { + "start": 1682.16, + "end": 1683.62, + "probability": 0.7407 + }, + { + "start": 1683.7, + "end": 1684.7, + "probability": 0.7044 + }, + { + "start": 1684.76, + "end": 1685.6, + "probability": 0.6816 + }, + { + "start": 1685.68, + "end": 1685.94, + "probability": 0.9142 + }, + { + "start": 1694.18, + "end": 1697.16, + "probability": 0.8111 + }, + { + "start": 1697.76, + "end": 1698.28, + "probability": 0.3735 + }, + { + "start": 1698.38, + "end": 1699.5, + "probability": 0.896 + }, + { + "start": 1699.6, + "end": 1699.97, + "probability": 0.8513 + }, + { + "start": 1700.22, + "end": 1701.8, + "probability": 0.9856 + }, + { + "start": 1702.38, + "end": 1708.02, + "probability": 0.7722 + }, + { + "start": 1708.02, + "end": 1708.43, + "probability": 0.8149 + }, + { + "start": 1709.04, + "end": 1711.24, + "probability": 0.9627 + }, + { + "start": 1711.58, + "end": 1712.3, + "probability": 0.5873 + }, + { + "start": 1712.34, + "end": 1713.12, + "probability": 0.8319 + }, + { + "start": 1714.12, + "end": 1714.36, + "probability": 0.1096 + }, + { + "start": 1714.84, + "end": 1715.4, + "probability": 0.6527 + }, + { + "start": 1715.4, + "end": 1716.96, + "probability": 0.3578 + }, + { + "start": 1717.1, + "end": 1721.98, + "probability": 0.8825 + }, + { + "start": 1722.18, + "end": 1729.54, + "probability": 0.9942 + }, + { + "start": 1729.76, + "end": 1732.84, + "probability": 0.9972 + }, + { + "start": 1733.04, + "end": 1733.7, + "probability": 0.9098 + }, + { + "start": 1733.9, + "end": 1737.32, + "probability": 0.9644 + }, + { + "start": 1738.1, + "end": 1745.76, + "probability": 0.9955 + }, + { + "start": 1745.8, + "end": 1746.26, + "probability": 0.574 + }, + { + "start": 1746.62, + "end": 1747.98, + "probability": 0.8696 + }, + { + "start": 1748.1, + "end": 1754.32, + "probability": 0.9895 + }, + { + "start": 1754.52, + "end": 1756.6, + "probability": 0.9937 + }, + { + "start": 1756.76, + "end": 1758.1, + "probability": 0.7862 + }, + { + "start": 1758.6, + "end": 1760.52, + "probability": 0.8703 + }, + { + "start": 1760.66, + "end": 1761.1, + "probability": 0.8321 + }, + { + "start": 1761.36, + "end": 1766.32, + "probability": 0.974 + }, + { + "start": 1766.98, + "end": 1773.14, + "probability": 0.933 + }, + { + "start": 1773.3, + "end": 1775.66, + "probability": 0.6903 + }, + { + "start": 1775.82, + "end": 1776.38, + "probability": 0.349 + }, + { + "start": 1776.5, + "end": 1778.08, + "probability": 0.9451 + }, + { + "start": 1778.32, + "end": 1780.5, + "probability": 0.9603 + }, + { + "start": 1780.5, + "end": 1783.13, + "probability": 0.991 + }, + { + "start": 1783.98, + "end": 1785.5, + "probability": 0.9266 + }, + { + "start": 1786.26, + "end": 1788.0, + "probability": 0.8691 + }, + { + "start": 1789.26, + "end": 1793.54, + "probability": 0.9819 + }, + { + "start": 1793.7, + "end": 1795.84, + "probability": 0.8657 + }, + { + "start": 1796.26, + "end": 1797.84, + "probability": 0.9748 + }, + { + "start": 1798.02, + "end": 1798.2, + "probability": 0.5245 + }, + { + "start": 1798.3, + "end": 1798.66, + "probability": 0.8835 + }, + { + "start": 1798.72, + "end": 1800.82, + "probability": 0.9185 + }, + { + "start": 1801.36, + "end": 1802.82, + "probability": 0.9972 + }, + { + "start": 1803.38, + "end": 1808.46, + "probability": 0.9471 + }, + { + "start": 1808.96, + "end": 1811.18, + "probability": 0.869 + }, + { + "start": 1811.78, + "end": 1813.26, + "probability": 0.9722 + }, + { + "start": 1815.94, + "end": 1822.36, + "probability": 0.6852 + }, + { + "start": 1822.6, + "end": 1824.74, + "probability": 0.9097 + }, + { + "start": 1824.96, + "end": 1829.48, + "probability": 0.9936 + }, + { + "start": 1829.48, + "end": 1834.86, + "probability": 0.9789 + }, + { + "start": 1835.86, + "end": 1837.66, + "probability": 0.5056 + }, + { + "start": 1838.2, + "end": 1839.22, + "probability": 0.4473 + }, + { + "start": 1839.52, + "end": 1840.3, + "probability": 0.9178 + }, + { + "start": 1840.42, + "end": 1843.88, + "probability": 0.9462 + }, + { + "start": 1844.5, + "end": 1846.84, + "probability": 0.9891 + }, + { + "start": 1846.92, + "end": 1848.58, + "probability": 0.9495 + }, + { + "start": 1849.46, + "end": 1859.2, + "probability": 0.9742 + }, + { + "start": 1859.88, + "end": 1862.26, + "probability": 0.9372 + }, + { + "start": 1862.3, + "end": 1864.18, + "probability": 0.9209 + }, + { + "start": 1864.82, + "end": 1867.06, + "probability": 0.9987 + }, + { + "start": 1867.14, + "end": 1870.44, + "probability": 0.9977 + }, + { + "start": 1870.6, + "end": 1871.18, + "probability": 0.9875 + }, + { + "start": 1871.88, + "end": 1873.15, + "probability": 0.9639 + }, + { + "start": 1873.38, + "end": 1873.76, + "probability": 0.6234 + }, + { + "start": 1873.94, + "end": 1877.56, + "probability": 0.8077 + }, + { + "start": 1878.1, + "end": 1878.82, + "probability": 0.5969 + }, + { + "start": 1879.02, + "end": 1879.06, + "probability": 0.3961 + }, + { + "start": 1879.06, + "end": 1880.54, + "probability": 0.8917 + }, + { + "start": 1880.64, + "end": 1883.74, + "probability": 0.895 + }, + { + "start": 1884.0, + "end": 1885.4, + "probability": 0.998 + }, + { + "start": 1885.98, + "end": 1888.86, + "probability": 0.9681 + }, + { + "start": 1889.58, + "end": 1890.98, + "probability": 0.8033 + }, + { + "start": 1891.84, + "end": 1893.46, + "probability": 0.3749 + }, + { + "start": 1893.9, + "end": 1895.62, + "probability": 0.9521 + }, + { + "start": 1895.76, + "end": 1896.68, + "probability": 0.9969 + }, + { + "start": 1897.2, + "end": 1898.22, + "probability": 0.991 + }, + { + "start": 1912.28, + "end": 1913.86, + "probability": 0.5037 + }, + { + "start": 1920.26, + "end": 1921.42, + "probability": 0.64 + }, + { + "start": 1921.88, + "end": 1923.08, + "probability": 0.7587 + }, + { + "start": 1923.32, + "end": 1930.1, + "probability": 0.9622 + }, + { + "start": 1930.74, + "end": 1934.68, + "probability": 0.9955 + }, + { + "start": 1934.68, + "end": 1938.7, + "probability": 0.9954 + }, + { + "start": 1940.16, + "end": 1945.26, + "probability": 0.9995 + }, + { + "start": 1946.08, + "end": 1951.62, + "probability": 0.9956 + }, + { + "start": 1951.68, + "end": 1957.5, + "probability": 0.9972 + }, + { + "start": 1958.2, + "end": 1962.86, + "probability": 0.9931 + }, + { + "start": 1963.9, + "end": 1966.78, + "probability": 0.8767 + }, + { + "start": 1966.78, + "end": 1969.46, + "probability": 0.9976 + }, + { + "start": 1971.22, + "end": 1971.24, + "probability": 0.3479 + }, + { + "start": 1971.24, + "end": 1977.56, + "probability": 0.9974 + }, + { + "start": 1978.38, + "end": 1978.82, + "probability": 0.8861 + }, + { + "start": 1979.58, + "end": 1982.76, + "probability": 0.9987 + }, + { + "start": 1983.36, + "end": 1987.26, + "probability": 0.9666 + }, + { + "start": 1988.12, + "end": 1991.92, + "probability": 0.9867 + }, + { + "start": 1991.92, + "end": 1995.84, + "probability": 0.9695 + }, + { + "start": 1996.28, + "end": 1998.88, + "probability": 0.985 + }, + { + "start": 1999.54, + "end": 2004.42, + "probability": 0.9961 + }, + { + "start": 2005.2, + "end": 2008.72, + "probability": 0.9937 + }, + { + "start": 2009.36, + "end": 2010.21, + "probability": 0.6997 + }, + { + "start": 2010.64, + "end": 2011.9, + "probability": 0.96 + }, + { + "start": 2012.22, + "end": 2013.48, + "probability": 0.996 + }, + { + "start": 2014.1, + "end": 2017.14, + "probability": 0.9859 + }, + { + "start": 2017.78, + "end": 2020.04, + "probability": 0.9225 + }, + { + "start": 2021.18, + "end": 2021.5, + "probability": 0.3885 + }, + { + "start": 2022.1, + "end": 2024.88, + "probability": 0.9927 + }, + { + "start": 2025.25, + "end": 2028.82, + "probability": 0.8715 + }, + { + "start": 2029.36, + "end": 2030.96, + "probability": 0.937 + }, + { + "start": 2031.5, + "end": 2033.84, + "probability": 0.9713 + }, + { + "start": 2034.5, + "end": 2036.96, + "probability": 0.9704 + }, + { + "start": 2037.38, + "end": 2040.02, + "probability": 0.9939 + }, + { + "start": 2040.44, + "end": 2042.64, + "probability": 0.9994 + }, + { + "start": 2043.0, + "end": 2045.2, + "probability": 0.9922 + }, + { + "start": 2045.44, + "end": 2045.9, + "probability": 0.8436 + }, + { + "start": 2046.44, + "end": 2050.52, + "probability": 0.9742 + }, + { + "start": 2052.0, + "end": 2053.08, + "probability": 0.5963 + }, + { + "start": 2054.98, + "end": 2057.5, + "probability": 0.6859 + }, + { + "start": 2058.82, + "end": 2062.62, + "probability": 0.9754 + }, + { + "start": 2063.46, + "end": 2064.72, + "probability": 0.9396 + }, + { + "start": 2064.94, + "end": 2068.06, + "probability": 0.9895 + }, + { + "start": 2068.98, + "end": 2072.8, + "probability": 0.988 + }, + { + "start": 2073.36, + "end": 2074.34, + "probability": 0.7108 + }, + { + "start": 2075.56, + "end": 2078.1, + "probability": 0.9636 + }, + { + "start": 2079.0, + "end": 2081.76, + "probability": 0.9816 + }, + { + "start": 2082.72, + "end": 2086.14, + "probability": 0.995 + }, + { + "start": 2087.22, + "end": 2089.16, + "probability": 0.9987 + }, + { + "start": 2089.68, + "end": 2091.82, + "probability": 0.832 + }, + { + "start": 2092.5, + "end": 2095.84, + "probability": 0.9668 + }, + { + "start": 2096.82, + "end": 2100.48, + "probability": 0.9974 + }, + { + "start": 2101.66, + "end": 2102.1, + "probability": 0.8839 + }, + { + "start": 2102.26, + "end": 2107.08, + "probability": 0.9866 + }, + { + "start": 2107.08, + "end": 2111.36, + "probability": 0.993 + }, + { + "start": 2111.36, + "end": 2115.92, + "probability": 0.9959 + }, + { + "start": 2116.96, + "end": 2122.52, + "probability": 0.9871 + }, + { + "start": 2123.54, + "end": 2127.24, + "probability": 0.9947 + }, + { + "start": 2127.24, + "end": 2131.48, + "probability": 0.9718 + }, + { + "start": 2132.42, + "end": 2134.52, + "probability": 0.9823 + }, + { + "start": 2135.1, + "end": 2139.54, + "probability": 0.9176 + }, + { + "start": 2140.12, + "end": 2142.64, + "probability": 0.9924 + }, + { + "start": 2143.42, + "end": 2147.18, + "probability": 0.9844 + }, + { + "start": 2147.74, + "end": 2148.8, + "probability": 0.9994 + }, + { + "start": 2150.12, + "end": 2151.28, + "probability": 0.9698 + }, + { + "start": 2151.88, + "end": 2154.06, + "probability": 0.9499 + }, + { + "start": 2154.7, + "end": 2156.52, + "probability": 0.9811 + }, + { + "start": 2156.74, + "end": 2156.84, + "probability": 0.8965 + }, + { + "start": 2157.32, + "end": 2160.96, + "probability": 0.972 + }, + { + "start": 2168.44, + "end": 2171.56, + "probability": 0.9823 + }, + { + "start": 2171.56, + "end": 2175.6, + "probability": 0.9858 + }, + { + "start": 2176.52, + "end": 2181.52, + "probability": 0.9972 + }, + { + "start": 2182.08, + "end": 2185.22, + "probability": 0.9983 + }, + { + "start": 2185.92, + "end": 2187.6, + "probability": 0.6951 + }, + { + "start": 2188.12, + "end": 2191.14, + "probability": 0.9941 + }, + { + "start": 2191.22, + "end": 2193.04, + "probability": 0.7295 + }, + { + "start": 2193.18, + "end": 2194.9, + "probability": 0.9621 + }, + { + "start": 2195.48, + "end": 2199.34, + "probability": 0.9935 + }, + { + "start": 2199.34, + "end": 2202.56, + "probability": 0.9997 + }, + { + "start": 2203.08, + "end": 2206.86, + "probability": 0.9897 + }, + { + "start": 2207.0, + "end": 2210.56, + "probability": 0.9972 + }, + { + "start": 2212.34, + "end": 2213.58, + "probability": 0.8842 + }, + { + "start": 2214.66, + "end": 2216.22, + "probability": 0.9729 + }, + { + "start": 2216.58, + "end": 2220.02, + "probability": 0.9908 + }, + { + "start": 2220.96, + "end": 2224.66, + "probability": 0.9927 + }, + { + "start": 2224.88, + "end": 2228.96, + "probability": 0.9963 + }, + { + "start": 2228.96, + "end": 2233.18, + "probability": 0.9992 + }, + { + "start": 2234.84, + "end": 2237.36, + "probability": 0.996 + }, + { + "start": 2238.52, + "end": 2240.38, + "probability": 0.9482 + }, + { + "start": 2241.32, + "end": 2246.72, + "probability": 0.9871 + }, + { + "start": 2247.2, + "end": 2250.5, + "probability": 0.989 + }, + { + "start": 2250.94, + "end": 2252.63, + "probability": 0.9976 + }, + { + "start": 2253.54, + "end": 2257.02, + "probability": 0.9587 + }, + { + "start": 2287.34, + "end": 2290.04, + "probability": 0.9917 + }, + { + "start": 2290.44, + "end": 2292.42, + "probability": 0.9075 + }, + { + "start": 2292.9, + "end": 2294.76, + "probability": 0.8975 + }, + { + "start": 2295.22, + "end": 2298.54, + "probability": 0.9946 + }, + { + "start": 2298.54, + "end": 2302.2, + "probability": 0.9978 + }, + { + "start": 2303.0, + "end": 2306.8, + "probability": 0.9957 + }, + { + "start": 2307.8, + "end": 2309.24, + "probability": 0.938 + }, + { + "start": 2310.0, + "end": 2313.34, + "probability": 0.978 + }, + { + "start": 2314.02, + "end": 2318.84, + "probability": 0.9399 + }, + { + "start": 2319.44, + "end": 2320.62, + "probability": 0.9087 + }, + { + "start": 2321.02, + "end": 2323.2, + "probability": 0.9818 + }, + { + "start": 2324.26, + "end": 2325.4, + "probability": 0.8423 + }, + { + "start": 2325.98, + "end": 2327.58, + "probability": 0.8831 + }, + { + "start": 2328.1, + "end": 2332.84, + "probability": 0.981 + }, + { + "start": 2333.58, + "end": 2336.08, + "probability": 0.8555 + }, + { + "start": 2336.36, + "end": 2340.5, + "probability": 0.9927 + }, + { + "start": 2341.18, + "end": 2347.0, + "probability": 0.9971 + }, + { + "start": 2347.48, + "end": 2352.36, + "probability": 0.998 + }, + { + "start": 2353.1, + "end": 2355.7, + "probability": 0.9949 + }, + { + "start": 2357.02, + "end": 2360.76, + "probability": 0.9927 + }, + { + "start": 2361.22, + "end": 2362.5, + "probability": 0.7327 + }, + { + "start": 2362.92, + "end": 2366.38, + "probability": 0.996 + }, + { + "start": 2366.94, + "end": 2372.06, + "probability": 0.9581 + }, + { + "start": 2372.6, + "end": 2377.06, + "probability": 0.9956 + }, + { + "start": 2377.52, + "end": 2380.6, + "probability": 0.9315 + }, + { + "start": 2381.76, + "end": 2382.98, + "probability": 0.827 + }, + { + "start": 2383.58, + "end": 2387.54, + "probability": 0.9946 + }, + { + "start": 2388.0, + "end": 2391.22, + "probability": 0.9903 + }, + { + "start": 2394.52, + "end": 2396.2, + "probability": 0.7306 + }, + { + "start": 2396.98, + "end": 2400.08, + "probability": 0.9888 + }, + { + "start": 2400.64, + "end": 2403.66, + "probability": 0.9478 + }, + { + "start": 2404.08, + "end": 2407.26, + "probability": 0.9489 + }, + { + "start": 2407.82, + "end": 2411.62, + "probability": 0.9974 + }, + { + "start": 2412.02, + "end": 2414.52, + "probability": 0.9724 + }, + { + "start": 2415.0, + "end": 2416.14, + "probability": 0.9144 + }, + { + "start": 2416.6, + "end": 2420.48, + "probability": 0.9845 + }, + { + "start": 2420.48, + "end": 2424.3, + "probability": 0.9958 + }, + { + "start": 2426.02, + "end": 2429.34, + "probability": 0.9935 + }, + { + "start": 2429.54, + "end": 2430.12, + "probability": 0.4105 + }, + { + "start": 2430.64, + "end": 2430.94, + "probability": 0.4763 + }, + { + "start": 2431.02, + "end": 2434.56, + "probability": 0.9906 + }, + { + "start": 2434.56, + "end": 2438.36, + "probability": 0.9974 + }, + { + "start": 2438.9, + "end": 2439.96, + "probability": 0.8273 + }, + { + "start": 2440.02, + "end": 2442.88, + "probability": 0.9603 + }, + { + "start": 2443.24, + "end": 2443.74, + "probability": 0.3376 + }, + { + "start": 2443.84, + "end": 2446.13, + "probability": 0.9808 + }, + { + "start": 2446.7, + "end": 2450.24, + "probability": 0.9909 + }, + { + "start": 2450.24, + "end": 2454.26, + "probability": 0.9868 + }, + { + "start": 2454.74, + "end": 2455.98, + "probability": 0.9819 + }, + { + "start": 2456.04, + "end": 2460.04, + "probability": 0.9741 + }, + { + "start": 2460.04, + "end": 2464.16, + "probability": 0.9973 + }, + { + "start": 2464.82, + "end": 2466.66, + "probability": 0.923 + }, + { + "start": 2466.84, + "end": 2470.42, + "probability": 0.9945 + }, + { + "start": 2470.48, + "end": 2473.94, + "probability": 0.9991 + }, + { + "start": 2474.82, + "end": 2479.18, + "probability": 0.9904 + }, + { + "start": 2479.18, + "end": 2485.54, + "probability": 0.9962 + }, + { + "start": 2486.08, + "end": 2490.56, + "probability": 0.8543 + }, + { + "start": 2491.0, + "end": 2494.38, + "probability": 0.993 + }, + { + "start": 2495.08, + "end": 2498.32, + "probability": 0.998 + }, + { + "start": 2498.32, + "end": 2502.88, + "probability": 0.9877 + }, + { + "start": 2503.32, + "end": 2505.5, + "probability": 0.9643 + }, + { + "start": 2505.7, + "end": 2506.34, + "probability": 0.7802 + }, + { + "start": 2506.82, + "end": 2508.96, + "probability": 0.9182 + }, + { + "start": 2509.16, + "end": 2509.62, + "probability": 0.4043 + }, + { + "start": 2509.94, + "end": 2512.94, + "probability": 0.9797 + }, + { + "start": 2512.98, + "end": 2515.32, + "probability": 0.9961 + }, + { + "start": 2515.86, + "end": 2517.0, + "probability": 0.9965 + }, + { + "start": 2518.94, + "end": 2520.74, + "probability": 0.9696 + }, + { + "start": 2526.86, + "end": 2526.86, + "probability": 0.2227 + }, + { + "start": 2526.86, + "end": 2527.54, + "probability": 0.6435 + }, + { + "start": 2527.64, + "end": 2528.24, + "probability": 0.6018 + }, + { + "start": 2528.52, + "end": 2529.82, + "probability": 0.9327 + }, + { + "start": 2529.9, + "end": 2531.22, + "probability": 0.9651 + }, + { + "start": 2531.98, + "end": 2533.34, + "probability": 0.5983 + }, + { + "start": 2534.1, + "end": 2534.92, + "probability": 0.8222 + }, + { + "start": 2535.2, + "end": 2540.76, + "probability": 0.8451 + }, + { + "start": 2541.36, + "end": 2545.56, + "probability": 0.6722 + }, + { + "start": 2545.58, + "end": 2545.9, + "probability": 0.6695 + }, + { + "start": 2545.98, + "end": 2548.78, + "probability": 0.9834 + }, + { + "start": 2549.18, + "end": 2550.18, + "probability": 0.9863 + }, + { + "start": 2550.38, + "end": 2550.66, + "probability": 0.5201 + }, + { + "start": 2551.84, + "end": 2551.96, + "probability": 0.2205 + }, + { + "start": 2552.58, + "end": 2557.22, + "probability": 0.8543 + }, + { + "start": 2557.74, + "end": 2561.91, + "probability": 0.9929 + }, + { + "start": 2562.62, + "end": 2567.4, + "probability": 0.9922 + }, + { + "start": 2567.86, + "end": 2568.62, + "probability": 0.6474 + }, + { + "start": 2569.06, + "end": 2573.6, + "probability": 0.9003 + }, + { + "start": 2573.6, + "end": 2578.58, + "probability": 0.9937 + }, + { + "start": 2579.16, + "end": 2583.74, + "probability": 0.9914 + }, + { + "start": 2584.54, + "end": 2589.12, + "probability": 0.9912 + }, + { + "start": 2589.12, + "end": 2592.96, + "probability": 0.9542 + }, + { + "start": 2593.32, + "end": 2594.12, + "probability": 0.8976 + }, + { + "start": 2594.22, + "end": 2594.92, + "probability": 0.8429 + }, + { + "start": 2595.06, + "end": 2595.74, + "probability": 0.9232 + }, + { + "start": 2595.98, + "end": 2596.6, + "probability": 0.3759 + }, + { + "start": 2597.0, + "end": 2600.0, + "probability": 0.9438 + }, + { + "start": 2600.48, + "end": 2603.04, + "probability": 0.887 + }, + { + "start": 2603.46, + "end": 2607.34, + "probability": 0.9646 + }, + { + "start": 2607.34, + "end": 2609.68, + "probability": 0.7507 + }, + { + "start": 2610.04, + "end": 2610.52, + "probability": 0.6935 + }, + { + "start": 2610.96, + "end": 2614.52, + "probability": 0.9149 + }, + { + "start": 2614.88, + "end": 2616.44, + "probability": 0.7015 + }, + { + "start": 2616.48, + "end": 2620.54, + "probability": 0.8983 + }, + { + "start": 2621.54, + "end": 2624.14, + "probability": 0.9989 + }, + { + "start": 2624.6, + "end": 2624.74, + "probability": 0.6634 + }, + { + "start": 2624.86, + "end": 2625.6, + "probability": 0.7334 + }, + { + "start": 2626.04, + "end": 2630.3, + "probability": 0.7487 + }, + { + "start": 2630.74, + "end": 2634.7, + "probability": 0.5433 + }, + { + "start": 2636.77, + "end": 2637.8, + "probability": 0.5836 + }, + { + "start": 2637.8, + "end": 2640.74, + "probability": 0.8219 + }, + { + "start": 2640.74, + "end": 2641.2, + "probability": 0.473 + }, + { + "start": 2641.76, + "end": 2644.5, + "probability": 0.7297 + }, + { + "start": 2644.84, + "end": 2647.84, + "probability": 0.9876 + }, + { + "start": 2647.84, + "end": 2651.58, + "probability": 0.8659 + }, + { + "start": 2652.06, + "end": 2653.92, + "probability": 0.9834 + }, + { + "start": 2654.28, + "end": 2655.06, + "probability": 0.8013 + }, + { + "start": 2655.58, + "end": 2658.42, + "probability": 0.9647 + }, + { + "start": 2658.6, + "end": 2659.04, + "probability": 0.7764 + }, + { + "start": 2659.48, + "end": 2660.22, + "probability": 0.7162 + }, + { + "start": 2660.3, + "end": 2663.88, + "probability": 0.9718 + }, + { + "start": 2704.1, + "end": 2706.44, + "probability": 0.6997 + }, + { + "start": 2707.5, + "end": 2708.38, + "probability": 0.6672 + }, + { + "start": 2708.52, + "end": 2711.38, + "probability": 0.9471 + }, + { + "start": 2712.74, + "end": 2715.9, + "probability": 0.9871 + }, + { + "start": 2715.9, + "end": 2721.78, + "probability": 0.9791 + }, + { + "start": 2722.9, + "end": 2723.72, + "probability": 0.436 + }, + { + "start": 2723.88, + "end": 2725.52, + "probability": 0.8861 + }, + { + "start": 2726.26, + "end": 2727.36, + "probability": 0.8265 + }, + { + "start": 2727.36, + "end": 2727.8, + "probability": 0.1614 + }, + { + "start": 2727.8, + "end": 2728.54, + "probability": 0.804 + }, + { + "start": 2729.24, + "end": 2731.48, + "probability": 0.4589 + }, + { + "start": 2733.6, + "end": 2733.84, + "probability": 0.6742 + }, + { + "start": 2733.96, + "end": 2734.7, + "probability": 0.7381 + }, + { + "start": 2735.0, + "end": 2736.4, + "probability": 0.9922 + }, + { + "start": 2736.76, + "end": 2737.5, + "probability": 0.9244 + }, + { + "start": 2738.4, + "end": 2739.24, + "probability": 0.7538 + }, + { + "start": 2739.34, + "end": 2739.9, + "probability": 0.6 + }, + { + "start": 2740.26, + "end": 2742.52, + "probability": 0.5092 + }, + { + "start": 2743.9, + "end": 2749.78, + "probability": 0.9925 + }, + { + "start": 2750.82, + "end": 2755.8, + "probability": 0.9829 + }, + { + "start": 2755.86, + "end": 2757.84, + "probability": 0.958 + }, + { + "start": 2758.38, + "end": 2764.24, + "probability": 0.7983 + }, + { + "start": 2764.66, + "end": 2766.9, + "probability": 0.89 + }, + { + "start": 2768.22, + "end": 2768.76, + "probability": 0.8159 + }, + { + "start": 2768.92, + "end": 2771.8, + "probability": 0.9811 + }, + { + "start": 2772.92, + "end": 2773.68, + "probability": 0.7407 + }, + { + "start": 2774.62, + "end": 2776.48, + "probability": 0.8188 + }, + { + "start": 2776.52, + "end": 2780.54, + "probability": 0.9868 + }, + { + "start": 2781.66, + "end": 2784.88, + "probability": 0.9873 + }, + { + "start": 2786.14, + "end": 2787.62, + "probability": 0.9446 + }, + { + "start": 2789.42, + "end": 2792.36, + "probability": 0.936 + }, + { + "start": 2794.38, + "end": 2795.36, + "probability": 0.9843 + }, + { + "start": 2796.32, + "end": 2800.18, + "probability": 0.9976 + }, + { + "start": 2801.08, + "end": 2802.08, + "probability": 0.9902 + }, + { + "start": 2802.92, + "end": 2803.72, + "probability": 0.8572 + }, + { + "start": 2804.26, + "end": 2810.16, + "probability": 0.966 + }, + { + "start": 2810.28, + "end": 2812.74, + "probability": 0.8053 + }, + { + "start": 2813.26, + "end": 2815.86, + "probability": 0.7598 + }, + { + "start": 2816.98, + "end": 2823.02, + "probability": 0.95 + }, + { + "start": 2823.6, + "end": 2825.26, + "probability": 0.9862 + }, + { + "start": 2827.86, + "end": 2830.98, + "probability": 0.976 + }, + { + "start": 2831.82, + "end": 2833.06, + "probability": 0.9751 + }, + { + "start": 2833.8, + "end": 2837.38, + "probability": 0.9964 + }, + { + "start": 2838.18, + "end": 2840.24, + "probability": 0.9898 + }, + { + "start": 2841.32, + "end": 2843.9, + "probability": 0.7832 + }, + { + "start": 2844.42, + "end": 2844.93, + "probability": 0.6661 + }, + { + "start": 2846.7, + "end": 2850.68, + "probability": 0.9292 + }, + { + "start": 2851.54, + "end": 2852.52, + "probability": 0.7398 + }, + { + "start": 2852.7, + "end": 2857.26, + "probability": 0.9715 + }, + { + "start": 2857.66, + "end": 2859.04, + "probability": 0.9765 + }, + { + "start": 2859.68, + "end": 2860.45, + "probability": 0.8672 + }, + { + "start": 2861.34, + "end": 2863.16, + "probability": 0.9913 + }, + { + "start": 2863.34, + "end": 2864.6, + "probability": 0.9839 + }, + { + "start": 2865.32, + "end": 2866.54, + "probability": 0.9678 + }, + { + "start": 2867.26, + "end": 2870.58, + "probability": 0.9251 + }, + { + "start": 2871.1, + "end": 2873.58, + "probability": 0.8881 + }, + { + "start": 2874.36, + "end": 2875.44, + "probability": 0.7906 + }, + { + "start": 2876.32, + "end": 2879.44, + "probability": 0.9623 + }, + { + "start": 2880.56, + "end": 2882.6, + "probability": 0.7515 + }, + { + "start": 2883.38, + "end": 2884.82, + "probability": 0.9568 + }, + { + "start": 2885.92, + "end": 2887.26, + "probability": 0.6794 + }, + { + "start": 2887.34, + "end": 2890.72, + "probability": 0.9924 + }, + { + "start": 2891.14, + "end": 2892.78, + "probability": 0.9092 + }, + { + "start": 2893.6, + "end": 2897.52, + "probability": 0.9222 + }, + { + "start": 2898.26, + "end": 2900.86, + "probability": 0.9917 + }, + { + "start": 2900.94, + "end": 2904.68, + "probability": 0.8335 + }, + { + "start": 2905.4, + "end": 2910.22, + "probability": 0.9954 + }, + { + "start": 2910.8, + "end": 2914.48, + "probability": 0.9929 + }, + { + "start": 2914.52, + "end": 2915.74, + "probability": 0.7977 + }, + { + "start": 2919.16, + "end": 2921.68, + "probability": 0.8389 + }, + { + "start": 2922.78, + "end": 2925.48, + "probability": 0.9812 + }, + { + "start": 2926.08, + "end": 2927.84, + "probability": 0.9418 + }, + { + "start": 2928.44, + "end": 2931.48, + "probability": 0.9492 + }, + { + "start": 2932.32, + "end": 2935.18, + "probability": 0.8717 + }, + { + "start": 2936.2, + "end": 2936.62, + "probability": 0.6274 + }, + { + "start": 2937.2, + "end": 2942.14, + "probability": 0.9807 + }, + { + "start": 2942.14, + "end": 2949.52, + "probability": 0.9938 + }, + { + "start": 2950.0, + "end": 2950.7, + "probability": 0.9347 + }, + { + "start": 2952.66, + "end": 2958.24, + "probability": 0.7617 + }, + { + "start": 2958.24, + "end": 2964.44, + "probability": 0.9832 + }, + { + "start": 2964.98, + "end": 2967.0, + "probability": 0.9879 + }, + { + "start": 2967.96, + "end": 2970.06, + "probability": 0.9829 + }, + { + "start": 2970.8, + "end": 2972.56, + "probability": 0.7824 + }, + { + "start": 2973.12, + "end": 2976.82, + "probability": 0.9685 + }, + { + "start": 2977.34, + "end": 2978.42, + "probability": 0.7522 + }, + { + "start": 2978.5, + "end": 2981.08, + "probability": 0.8716 + }, + { + "start": 2981.54, + "end": 2983.12, + "probability": 0.6838 + }, + { + "start": 2997.86, + "end": 3001.4, + "probability": 0.6194 + }, + { + "start": 3002.34, + "end": 3003.0, + "probability": 0.9407 + }, + { + "start": 3003.66, + "end": 3006.9, + "probability": 0.9661 + }, + { + "start": 3007.3, + "end": 3008.3, + "probability": 0.9915 + }, + { + "start": 3008.42, + "end": 3009.22, + "probability": 0.9865 + }, + { + "start": 3009.84, + "end": 3011.24, + "probability": 0.7007 + }, + { + "start": 3012.68, + "end": 3014.76, + "probability": 0.9801 + }, + { + "start": 3015.24, + "end": 3017.94, + "probability": 0.921 + }, + { + "start": 3018.02, + "end": 3018.42, + "probability": 0.7632 + }, + { + "start": 3018.76, + "end": 3020.36, + "probability": 0.6373 + }, + { + "start": 3020.46, + "end": 3020.84, + "probability": 0.1303 + }, + { + "start": 3020.9, + "end": 3024.88, + "probability": 0.7081 + }, + { + "start": 3024.98, + "end": 3027.72, + "probability": 0.347 + }, + { + "start": 3027.94, + "end": 3030.36, + "probability": 0.7746 + }, + { + "start": 3040.54, + "end": 3043.08, + "probability": 0.577 + }, + { + "start": 3043.6, + "end": 3044.76, + "probability": 0.6863 + }, + { + "start": 3045.56, + "end": 3047.46, + "probability": 0.799 + }, + { + "start": 3047.94, + "end": 3051.3, + "probability": 0.8491 + }, + { + "start": 3051.38, + "end": 3052.64, + "probability": 0.977 + }, + { + "start": 3053.1, + "end": 3056.56, + "probability": 0.9543 + }, + { + "start": 3056.62, + "end": 3059.94, + "probability": 0.9376 + }, + { + "start": 3060.36, + "end": 3061.36, + "probability": 0.5962 + }, + { + "start": 3061.4, + "end": 3061.96, + "probability": 0.8093 + }, + { + "start": 3062.72, + "end": 3068.62, + "probability": 0.9308 + }, + { + "start": 3068.76, + "end": 3076.72, + "probability": 0.8179 + }, + { + "start": 3076.8, + "end": 3078.26, + "probability": 0.9545 + }, + { + "start": 3078.98, + "end": 3080.4, + "probability": 0.9946 + }, + { + "start": 3081.76, + "end": 3086.62, + "probability": 0.9872 + }, + { + "start": 3086.74, + "end": 3087.46, + "probability": 0.4995 + }, + { + "start": 3087.86, + "end": 3088.1, + "probability": 0.8936 + }, + { + "start": 3088.12, + "end": 3088.46, + "probability": 0.954 + }, + { + "start": 3088.6, + "end": 3088.78, + "probability": 0.9247 + }, + { + "start": 3088.88, + "end": 3088.98, + "probability": 0.7546 + }, + { + "start": 3089.22, + "end": 3089.38, + "probability": 0.526 + }, + { + "start": 3089.5, + "end": 3089.84, + "probability": 0.6031 + }, + { + "start": 3089.94, + "end": 3090.02, + "probability": 0.081 + }, + { + "start": 3090.02, + "end": 3092.7, + "probability": 0.6923 + }, + { + "start": 3093.2, + "end": 3095.44, + "probability": 0.9668 + }, + { + "start": 3095.44, + "end": 3098.86, + "probability": 0.9722 + }, + { + "start": 3100.08, + "end": 3104.38, + "probability": 0.9885 + }, + { + "start": 3105.58, + "end": 3108.8, + "probability": 0.8541 + }, + { + "start": 3108.98, + "end": 3113.38, + "probability": 0.9736 + }, + { + "start": 3114.02, + "end": 3115.11, + "probability": 0.9268 + }, + { + "start": 3116.46, + "end": 3118.24, + "probability": 0.9619 + }, + { + "start": 3119.36, + "end": 3122.76, + "probability": 0.9983 + }, + { + "start": 3123.26, + "end": 3124.96, + "probability": 0.9942 + }, + { + "start": 3125.54, + "end": 3126.0, + "probability": 0.9888 + }, + { + "start": 3127.0, + "end": 3130.08, + "probability": 0.9905 + }, + { + "start": 3131.9, + "end": 3134.04, + "probability": 0.9961 + }, + { + "start": 3134.32, + "end": 3135.72, + "probability": 0.9023 + }, + { + "start": 3135.72, + "end": 3138.32, + "probability": 0.921 + }, + { + "start": 3139.04, + "end": 3142.44, + "probability": 0.9842 + }, + { + "start": 3143.28, + "end": 3145.44, + "probability": 0.7931 + }, + { + "start": 3146.0, + "end": 3148.54, + "probability": 0.9917 + }, + { + "start": 3149.12, + "end": 3152.84, + "probability": 0.9578 + }, + { + "start": 3153.8, + "end": 3155.64, + "probability": 0.8339 + }, + { + "start": 3155.7, + "end": 3157.14, + "probability": 0.9872 + }, + { + "start": 3158.7, + "end": 3160.92, + "probability": 0.9682 + }, + { + "start": 3161.56, + "end": 3162.52, + "probability": 0.9037 + }, + { + "start": 3163.08, + "end": 3163.98, + "probability": 0.9844 + }, + { + "start": 3164.14, + "end": 3166.12, + "probability": 0.6887 + }, + { + "start": 3167.82, + "end": 3171.56, + "probability": 0.8694 + }, + { + "start": 3171.7, + "end": 3172.12, + "probability": 0.9028 + }, + { + "start": 3173.43, + "end": 3180.22, + "probability": 0.9972 + }, + { + "start": 3180.82, + "end": 3182.14, + "probability": 0.6854 + }, + { + "start": 3182.54, + "end": 3185.02, + "probability": 0.9355 + }, + { + "start": 3185.7, + "end": 3188.02, + "probability": 0.9937 + }, + { + "start": 3188.02, + "end": 3190.58, + "probability": 0.9906 + }, + { + "start": 3191.14, + "end": 3193.51, + "probability": 0.9976 + }, + { + "start": 3194.1, + "end": 3196.2, + "probability": 0.9271 + }, + { + "start": 3196.76, + "end": 3198.12, + "probability": 0.7803 + }, + { + "start": 3198.18, + "end": 3198.82, + "probability": 0.7636 + }, + { + "start": 3199.04, + "end": 3201.82, + "probability": 0.9447 + }, + { + "start": 3201.86, + "end": 3202.62, + "probability": 0.8936 + }, + { + "start": 3202.62, + "end": 3203.66, + "probability": 0.925 + }, + { + "start": 3203.74, + "end": 3205.02, + "probability": 0.9982 + }, + { + "start": 3205.2, + "end": 3206.16, + "probability": 0.9878 + }, + { + "start": 3207.16, + "end": 3210.86, + "probability": 0.9973 + }, + { + "start": 3210.98, + "end": 3212.34, + "probability": 0.9793 + }, + { + "start": 3212.46, + "end": 3215.82, + "probability": 0.9922 + }, + { + "start": 3216.32, + "end": 3217.64, + "probability": 0.911 + }, + { + "start": 3218.8, + "end": 3220.4, + "probability": 0.8319 + }, + { + "start": 3220.48, + "end": 3222.38, + "probability": 0.9958 + }, + { + "start": 3222.52, + "end": 3222.88, + "probability": 0.9157 + }, + { + "start": 3223.26, + "end": 3223.98, + "probability": 0.6535 + }, + { + "start": 3224.38, + "end": 3227.18, + "probability": 0.8925 + }, + { + "start": 3227.24, + "end": 3227.72, + "probability": 0.6056 + }, + { + "start": 3228.78, + "end": 3234.9, + "probability": 0.8132 + }, + { + "start": 3236.9, + "end": 3238.02, + "probability": 0.7633 + }, + { + "start": 3241.64, + "end": 3243.66, + "probability": 0.9454 + }, + { + "start": 3244.2, + "end": 3244.96, + "probability": 0.9744 + }, + { + "start": 3247.46, + "end": 3247.96, + "probability": 0.2618 + }, + { + "start": 3257.46, + "end": 3258.5, + "probability": 0.7358 + }, + { + "start": 3259.42, + "end": 3261.18, + "probability": 0.7926 + }, + { + "start": 3262.78, + "end": 3263.12, + "probability": 0.8239 + }, + { + "start": 3264.12, + "end": 3267.68, + "probability": 0.8598 + }, + { + "start": 3268.48, + "end": 3269.5, + "probability": 0.8972 + }, + { + "start": 3270.06, + "end": 3272.88, + "probability": 0.9245 + }, + { + "start": 3273.92, + "end": 3275.44, + "probability": 0.9967 + }, + { + "start": 3276.04, + "end": 3280.76, + "probability": 0.954 + }, + { + "start": 3280.86, + "end": 3286.46, + "probability": 0.9746 + }, + { + "start": 3287.8, + "end": 3290.48, + "probability": 0.9082 + }, + { + "start": 3291.2, + "end": 3294.22, + "probability": 0.9858 + }, + { + "start": 3294.72, + "end": 3297.98, + "probability": 0.9731 + }, + { + "start": 3299.2, + "end": 3302.24, + "probability": 0.7158 + }, + { + "start": 3303.62, + "end": 3304.98, + "probability": 0.2862 + }, + { + "start": 3305.04, + "end": 3312.06, + "probability": 0.1094 + }, + { + "start": 3312.06, + "end": 3312.64, + "probability": 0.0861 + }, + { + "start": 3313.66, + "end": 3316.72, + "probability": 0.7014 + }, + { + "start": 3317.12, + "end": 3317.99, + "probability": 0.936 + }, + { + "start": 3318.34, + "end": 3320.68, + "probability": 0.8337 + }, + { + "start": 3320.68, + "end": 3322.82, + "probability": 0.839 + }, + { + "start": 3323.36, + "end": 3324.4, + "probability": 0.7424 + }, + { + "start": 3324.5, + "end": 3329.18, + "probability": 0.9326 + }, + { + "start": 3329.84, + "end": 3332.18, + "probability": 0.8726 + }, + { + "start": 3332.22, + "end": 3335.78, + "probability": 0.9062 + }, + { + "start": 3335.78, + "end": 3340.92, + "probability": 0.9976 + }, + { + "start": 3342.28, + "end": 3344.06, + "probability": 0.7444 + }, + { + "start": 3344.68, + "end": 3347.68, + "probability": 0.9963 + }, + { + "start": 3347.72, + "end": 3351.3, + "probability": 0.7507 + }, + { + "start": 3352.06, + "end": 3354.26, + "probability": 0.9873 + }, + { + "start": 3355.14, + "end": 3355.46, + "probability": 0.8999 + }, + { + "start": 3356.14, + "end": 3356.9, + "probability": 0.9254 + }, + { + "start": 3357.46, + "end": 3359.96, + "probability": 0.9294 + }, + { + "start": 3360.64, + "end": 3361.98, + "probability": 0.8664 + }, + { + "start": 3362.46, + "end": 3363.72, + "probability": 0.9896 + }, + { + "start": 3364.14, + "end": 3365.48, + "probability": 0.9064 + }, + { + "start": 3365.78, + "end": 3366.44, + "probability": 0.8419 + }, + { + "start": 3366.96, + "end": 3368.7, + "probability": 0.7769 + }, + { + "start": 3368.7, + "end": 3372.52, + "probability": 0.9862 + }, + { + "start": 3373.32, + "end": 3377.16, + "probability": 0.9932 + }, + { + "start": 3377.16, + "end": 3381.6, + "probability": 0.9847 + }, + { + "start": 3382.5, + "end": 3385.78, + "probability": 0.8753 + }, + { + "start": 3386.5, + "end": 3386.98, + "probability": 0.7385 + }, + { + "start": 3387.7, + "end": 3391.71, + "probability": 0.9766 + }, + { + "start": 3391.88, + "end": 3395.76, + "probability": 0.9546 + }, + { + "start": 3395.98, + "end": 3400.84, + "probability": 0.98 + }, + { + "start": 3401.12, + "end": 3401.56, + "probability": 0.7592 + }, + { + "start": 3402.76, + "end": 3405.46, + "probability": 0.8991 + }, + { + "start": 3406.46, + "end": 3410.1, + "probability": 0.8806 + }, + { + "start": 3410.68, + "end": 3411.2, + "probability": 0.9717 + }, + { + "start": 3412.0, + "end": 3412.52, + "probability": 0.7709 + }, + { + "start": 3413.0, + "end": 3414.04, + "probability": 0.6329 + }, + { + "start": 3414.3, + "end": 3416.88, + "probability": 0.8907 + }, + { + "start": 3430.26, + "end": 3431.34, + "probability": 0.6668 + }, + { + "start": 3432.76, + "end": 3435.62, + "probability": 0.8922 + }, + { + "start": 3438.7, + "end": 3442.04, + "probability": 0.9979 + }, + { + "start": 3442.2, + "end": 3443.44, + "probability": 0.8441 + }, + { + "start": 3444.62, + "end": 3446.4, + "probability": 0.9736 + }, + { + "start": 3447.16, + "end": 3450.7, + "probability": 0.9937 + }, + { + "start": 3451.24, + "end": 3454.02, + "probability": 0.9875 + }, + { + "start": 3455.26, + "end": 3456.9, + "probability": 0.2346 + }, + { + "start": 3457.42, + "end": 3460.39, + "probability": 0.4663 + }, + { + "start": 3462.14, + "end": 3467.6, + "probability": 0.9073 + }, + { + "start": 3468.34, + "end": 3469.8, + "probability": 0.8087 + }, + { + "start": 3471.28, + "end": 3476.92, + "probability": 0.9628 + }, + { + "start": 3477.1, + "end": 3479.14, + "probability": 0.8003 + }, + { + "start": 3479.34, + "end": 3480.2, + "probability": 0.8592 + }, + { + "start": 3481.08, + "end": 3484.1, + "probability": 0.9448 + }, + { + "start": 3485.2, + "end": 3492.62, + "probability": 0.9775 + }, + { + "start": 3492.9, + "end": 3493.6, + "probability": 0.8101 + }, + { + "start": 3493.78, + "end": 3496.42, + "probability": 0.8569 + }, + { + "start": 3497.74, + "end": 3504.1, + "probability": 0.7764 + }, + { + "start": 3504.66, + "end": 3506.2, + "probability": 0.9455 + }, + { + "start": 3506.78, + "end": 3510.46, + "probability": 0.9944 + }, + { + "start": 3511.42, + "end": 3516.7, + "probability": 0.9767 + }, + { + "start": 3516.98, + "end": 3518.16, + "probability": 0.2171 + }, + { + "start": 3518.32, + "end": 3518.92, + "probability": 0.853 + }, + { + "start": 3520.66, + "end": 3524.3, + "probability": 0.9871 + }, + { + "start": 3524.4, + "end": 3524.92, + "probability": 0.9854 + }, + { + "start": 3526.24, + "end": 3528.56, + "probability": 0.9883 + }, + { + "start": 3528.82, + "end": 3530.46, + "probability": 0.9557 + }, + { + "start": 3531.52, + "end": 3537.06, + "probability": 0.8572 + }, + { + "start": 3538.44, + "end": 3543.42, + "probability": 0.9531 + }, + { + "start": 3544.94, + "end": 3549.42, + "probability": 0.9841 + }, + { + "start": 3550.56, + "end": 3552.62, + "probability": 0.9912 + }, + { + "start": 3553.74, + "end": 3555.22, + "probability": 0.7737 + }, + { + "start": 3555.78, + "end": 3558.68, + "probability": 0.7405 + }, + { + "start": 3559.58, + "end": 3561.06, + "probability": 0.8621 + }, + { + "start": 3563.7, + "end": 3567.62, + "probability": 0.9915 + }, + { + "start": 3570.52, + "end": 3574.79, + "probability": 0.7599 + }, + { + "start": 3577.64, + "end": 3578.9, + "probability": 0.985 + }, + { + "start": 3579.2, + "end": 3580.96, + "probability": 0.998 + }, + { + "start": 3581.7, + "end": 3584.89, + "probability": 0.9577 + }, + { + "start": 3587.24, + "end": 3588.08, + "probability": 0.4318 + }, + { + "start": 3590.5, + "end": 3591.14, + "probability": 0.6012 + }, + { + "start": 3592.56, + "end": 3595.9, + "probability": 0.9703 + }, + { + "start": 3595.9, + "end": 3602.84, + "probability": 0.9542 + }, + { + "start": 3603.64, + "end": 3606.34, + "probability": 0.9026 + }, + { + "start": 3606.9, + "end": 3607.76, + "probability": 0.9664 + }, + { + "start": 3608.34, + "end": 3609.2, + "probability": 0.6741 + }, + { + "start": 3609.78, + "end": 3610.18, + "probability": 0.7938 + }, + { + "start": 3610.74, + "end": 3613.06, + "probability": 0.9839 + }, + { + "start": 3613.42, + "end": 3614.96, + "probability": 0.9769 + }, + { + "start": 3615.04, + "end": 3621.74, + "probability": 0.9775 + }, + { + "start": 3621.82, + "end": 3622.24, + "probability": 0.7535 + }, + { + "start": 3622.46, + "end": 3623.98, + "probability": 0.4794 + }, + { + "start": 3624.86, + "end": 3627.94, + "probability": 0.9788 + }, + { + "start": 3628.1, + "end": 3628.52, + "probability": 0.8813 + }, + { + "start": 3628.98, + "end": 3631.62, + "probability": 0.7513 + }, + { + "start": 3631.68, + "end": 3632.6, + "probability": 0.6653 + }, + { + "start": 3632.7, + "end": 3633.7, + "probability": 0.9076 + }, + { + "start": 3634.1, + "end": 3637.14, + "probability": 0.982 + }, + { + "start": 3640.17, + "end": 3644.34, + "probability": 0.1434 + }, + { + "start": 3644.34, + "end": 3645.38, + "probability": 0.4598 + }, + { + "start": 3645.7, + "end": 3647.06, + "probability": 0.6932 + }, + { + "start": 3647.94, + "end": 3649.08, + "probability": 0.444 + }, + { + "start": 3649.08, + "end": 3650.56, + "probability": 0.4022 + }, + { + "start": 3656.5, + "end": 3659.88, + "probability": 0.7606 + }, + { + "start": 3660.52, + "end": 3661.72, + "probability": 0.8794 + }, + { + "start": 3663.93, + "end": 3669.55, + "probability": 0.9712 + }, + { + "start": 3671.6, + "end": 3675.62, + "probability": 0.9782 + }, + { + "start": 3676.8, + "end": 3680.48, + "probability": 0.9952 + }, + { + "start": 3680.48, + "end": 3684.86, + "probability": 0.9991 + }, + { + "start": 3685.5, + "end": 3687.64, + "probability": 0.8021 + }, + { + "start": 3688.6, + "end": 3689.7, + "probability": 0.8006 + }, + { + "start": 3691.39, + "end": 3697.04, + "probability": 0.9646 + }, + { + "start": 3698.08, + "end": 3699.66, + "probability": 0.508 + }, + { + "start": 3701.24, + "end": 3703.68, + "probability": 0.878 + }, + { + "start": 3704.6, + "end": 3708.26, + "probability": 0.9899 + }, + { + "start": 3709.64, + "end": 3715.92, + "probability": 0.5498 + }, + { + "start": 3716.78, + "end": 3719.72, + "probability": 0.5007 + }, + { + "start": 3719.94, + "end": 3720.6, + "probability": 0.9584 + }, + { + "start": 3722.24, + "end": 3724.26, + "probability": 0.7377 + }, + { + "start": 3724.48, + "end": 3725.8, + "probability": 0.6892 + }, + { + "start": 3726.2, + "end": 3728.7, + "probability": 0.8575 + }, + { + "start": 3729.36, + "end": 3730.04, + "probability": 0.5952 + }, + { + "start": 3730.12, + "end": 3732.02, + "probability": 0.9553 + }, + { + "start": 3732.52, + "end": 3732.52, + "probability": 0.4092 + }, + { + "start": 3732.52, + "end": 3733.12, + "probability": 0.5578 + }, + { + "start": 3733.2, + "end": 3734.26, + "probability": 0.9589 + }, + { + "start": 3735.08, + "end": 3737.7, + "probability": 0.958 + }, + { + "start": 3738.8, + "end": 3741.44, + "probability": 0.9604 + }, + { + "start": 3741.98, + "end": 3747.8, + "probability": 0.9771 + }, + { + "start": 3747.8, + "end": 3751.9, + "probability": 0.9883 + }, + { + "start": 3753.5, + "end": 3756.24, + "probability": 0.9869 + }, + { + "start": 3756.24, + "end": 3761.04, + "probability": 0.9423 + }, + { + "start": 3761.2, + "end": 3762.74, + "probability": 0.8795 + }, + { + "start": 3762.86, + "end": 3764.38, + "probability": 0.9056 + }, + { + "start": 3765.32, + "end": 3767.22, + "probability": 0.9556 + }, + { + "start": 3767.38, + "end": 3768.18, + "probability": 0.865 + }, + { + "start": 3768.3, + "end": 3769.46, + "probability": 0.9736 + }, + { + "start": 3770.48, + "end": 3772.16, + "probability": 0.8343 + }, + { + "start": 3773.42, + "end": 3775.84, + "probability": 0.9754 + }, + { + "start": 3775.94, + "end": 3776.76, + "probability": 0.9436 + }, + { + "start": 3776.84, + "end": 3777.7, + "probability": 0.9055 + }, + { + "start": 3777.76, + "end": 3781.38, + "probability": 0.9474 + }, + { + "start": 3781.78, + "end": 3783.36, + "probability": 0.807 + }, + { + "start": 3783.9, + "end": 3789.54, + "probability": 0.8634 + }, + { + "start": 3790.22, + "end": 3793.88, + "probability": 0.9583 + }, + { + "start": 3794.45, + "end": 3798.78, + "probability": 0.8452 + }, + { + "start": 3799.24, + "end": 3800.9, + "probability": 0.9689 + }, + { + "start": 3801.98, + "end": 3803.7, + "probability": 0.6654 + }, + { + "start": 3803.7, + "end": 3804.12, + "probability": 0.9717 + }, + { + "start": 3804.4, + "end": 3806.3, + "probability": 0.9082 + }, + { + "start": 3806.3, + "end": 3809.0, + "probability": 0.8901 + }, + { + "start": 3809.12, + "end": 3809.48, + "probability": 0.5653 + }, + { + "start": 3809.5, + "end": 3811.8, + "probability": 0.9697 + }, + { + "start": 3812.4, + "end": 3814.04, + "probability": 0.7861 + }, + { + "start": 3814.2, + "end": 3818.14, + "probability": 0.9964 + }, + { + "start": 3818.14, + "end": 3821.04, + "probability": 0.9803 + }, + { + "start": 3822.0, + "end": 3822.2, + "probability": 0.4396 + }, + { + "start": 3822.28, + "end": 3824.42, + "probability": 0.9979 + }, + { + "start": 3824.42, + "end": 3826.5, + "probability": 0.9677 + }, + { + "start": 3827.08, + "end": 3828.1, + "probability": 0.926 + }, + { + "start": 3828.7, + "end": 3829.86, + "probability": 0.7575 + }, + { + "start": 3830.02, + "end": 3830.64, + "probability": 0.8917 + }, + { + "start": 3830.68, + "end": 3832.72, + "probability": 0.9896 + }, + { + "start": 3834.22, + "end": 3836.24, + "probability": 0.9837 + }, + { + "start": 3836.24, + "end": 3839.28, + "probability": 0.9913 + }, + { + "start": 3839.92, + "end": 3843.5, + "probability": 0.9757 + }, + { + "start": 3843.6, + "end": 3844.16, + "probability": 0.8941 + }, + { + "start": 3844.26, + "end": 3844.86, + "probability": 0.9784 + }, + { + "start": 3844.94, + "end": 3845.58, + "probability": 0.9675 + }, + { + "start": 3846.2, + "end": 3847.14, + "probability": 0.9189 + }, + { + "start": 3847.28, + "end": 3848.32, + "probability": 0.9193 + }, + { + "start": 3848.46, + "end": 3849.72, + "probability": 0.9863 + }, + { + "start": 3850.2, + "end": 3851.46, + "probability": 0.9401 + }, + { + "start": 3851.52, + "end": 3851.94, + "probability": 0.9726 + }, + { + "start": 3852.14, + "end": 3853.98, + "probability": 0.9918 + }, + { + "start": 3853.98, + "end": 3857.2, + "probability": 0.9839 + }, + { + "start": 3858.26, + "end": 3858.6, + "probability": 0.5266 + }, + { + "start": 3858.72, + "end": 3861.52, + "probability": 0.9941 + }, + { + "start": 3861.87, + "end": 3864.66, + "probability": 0.96 + }, + { + "start": 3865.36, + "end": 3868.78, + "probability": 0.9842 + }, + { + "start": 3870.26, + "end": 3873.36, + "probability": 0.9976 + }, + { + "start": 3873.42, + "end": 3873.7, + "probability": 0.6642 + }, + { + "start": 3873.82, + "end": 3876.52, + "probability": 0.8247 + }, + { + "start": 3877.08, + "end": 3879.36, + "probability": 0.8582 + }, + { + "start": 3879.98, + "end": 3882.14, + "probability": 0.9894 + }, + { + "start": 3882.14, + "end": 3886.02, + "probability": 0.9993 + }, + { + "start": 3886.66, + "end": 3890.6, + "probability": 0.9595 + }, + { + "start": 3891.08, + "end": 3894.94, + "probability": 0.9887 + }, + { + "start": 3895.82, + "end": 3897.6, + "probability": 0.9417 + }, + { + "start": 3897.6, + "end": 3899.9, + "probability": 0.9648 + }, + { + "start": 3900.42, + "end": 3901.86, + "probability": 0.8018 + }, + { + "start": 3902.68, + "end": 3903.52, + "probability": 0.9349 + }, + { + "start": 3904.08, + "end": 3909.06, + "probability": 0.9823 + }, + { + "start": 3909.64, + "end": 3913.12, + "probability": 0.9984 + }, + { + "start": 3913.9, + "end": 3917.02, + "probability": 0.9899 + }, + { + "start": 3917.86, + "end": 3922.8, + "probability": 0.9781 + }, + { + "start": 3923.34, + "end": 3925.62, + "probability": 0.7289 + }, + { + "start": 3925.68, + "end": 3927.98, + "probability": 0.9904 + }, + { + "start": 3928.12, + "end": 3928.6, + "probability": 0.8147 + }, + { + "start": 3928.66, + "end": 3929.82, + "probability": 0.6375 + }, + { + "start": 3929.84, + "end": 3931.26, + "probability": 0.7853 + }, + { + "start": 3931.4, + "end": 3932.28, + "probability": 0.7707 + }, + { + "start": 3933.4, + "end": 3936.12, + "probability": 0.9386 + }, + { + "start": 3936.12, + "end": 3940.43, + "probability": 0.9893 + }, + { + "start": 3940.52, + "end": 3943.76, + "probability": 0.8872 + }, + { + "start": 3944.0, + "end": 3948.86, + "probability": 0.9897 + }, + { + "start": 3948.96, + "end": 3952.82, + "probability": 0.7748 + }, + { + "start": 3953.66, + "end": 3953.68, + "probability": 0.06 + }, + { + "start": 3953.68, + "end": 3953.68, + "probability": 0.115 + }, + { + "start": 3953.68, + "end": 3957.94, + "probability": 0.9023 + }, + { + "start": 3958.0, + "end": 3958.98, + "probability": 0.9675 + }, + { + "start": 3960.38, + "end": 3967.16, + "probability": 0.9928 + }, + { + "start": 3967.72, + "end": 3970.84, + "probability": 0.9927 + }, + { + "start": 3970.92, + "end": 3971.24, + "probability": 0.7004 + }, + { + "start": 3971.52, + "end": 3972.76, + "probability": 0.8786 + }, + { + "start": 3973.92, + "end": 3975.58, + "probability": 0.2521 + }, + { + "start": 3976.64, + "end": 3977.06, + "probability": 0.0689 + }, + { + "start": 3977.06, + "end": 3981.76, + "probability": 0.8273 + }, + { + "start": 3982.28, + "end": 3983.82, + "probability": 0.8364 + }, + { + "start": 3983.9, + "end": 3989.18, + "probability": 0.9838 + }, + { + "start": 3989.94, + "end": 3992.19, + "probability": 0.9917 + }, + { + "start": 3993.7, + "end": 3998.0, + "probability": 0.9556 + }, + { + "start": 3998.48, + "end": 4000.58, + "probability": 0.967 + }, + { + "start": 4002.86, + "end": 4004.72, + "probability": 0.9952 + }, + { + "start": 4005.32, + "end": 4008.74, + "probability": 0.9933 + }, + { + "start": 4009.88, + "end": 4018.8, + "probability": 0.8611 + }, + { + "start": 4019.3, + "end": 4022.62, + "probability": 0.9946 + }, + { + "start": 4023.22, + "end": 4029.94, + "probability": 0.9702 + }, + { + "start": 4029.94, + "end": 4032.46, + "probability": 0.7344 + }, + { + "start": 4034.32, + "end": 4039.76, + "probability": 0.8256 + }, + { + "start": 4039.76, + "end": 4040.18, + "probability": 0.6512 + }, + { + "start": 4040.5, + "end": 4040.5, + "probability": 0.1112 + }, + { + "start": 4040.5, + "end": 4041.71, + "probability": 0.1896 + }, + { + "start": 4042.92, + "end": 4043.9, + "probability": 0.0177 + }, + { + "start": 4044.06, + "end": 4044.82, + "probability": 0.2141 + }, + { + "start": 4045.74, + "end": 4050.38, + "probability": 0.4899 + }, + { + "start": 4050.72, + "end": 4050.72, + "probability": 0.0483 + }, + { + "start": 4050.72, + "end": 4053.96, + "probability": 0.8535 + }, + { + "start": 4054.5, + "end": 4055.24, + "probability": 0.6416 + }, + { + "start": 4055.24, + "end": 4056.82, + "probability": 0.5698 + }, + { + "start": 4057.18, + "end": 4057.48, + "probability": 0.1015 + }, + { + "start": 4057.82, + "end": 4059.66, + "probability": 0.8112 + }, + { + "start": 4060.24, + "end": 4062.22, + "probability": 0.9824 + }, + { + "start": 4062.52, + "end": 4064.93, + "probability": 0.8794 + }, + { + "start": 4065.71, + "end": 4067.28, + "probability": 0.9588 + }, + { + "start": 4067.28, + "end": 4068.08, + "probability": 0.8622 + }, + { + "start": 4068.18, + "end": 4068.88, + "probability": 0.9813 + }, + { + "start": 4069.38, + "end": 4071.84, + "probability": 0.9932 + }, + { + "start": 4072.58, + "end": 4076.3, + "probability": 0.9815 + }, + { + "start": 4076.8, + "end": 4077.68, + "probability": 0.0485 + }, + { + "start": 4077.84, + "end": 4079.26, + "probability": 0.2174 + }, + { + "start": 4079.54, + "end": 4080.95, + "probability": 0.2921 + }, + { + "start": 4081.28, + "end": 4083.28, + "probability": 0.1742 + }, + { + "start": 4083.94, + "end": 4084.49, + "probability": 0.0292 + }, + { + "start": 4086.12, + "end": 4089.72, + "probability": 0.764 + }, + { + "start": 4089.8, + "end": 4091.8, + "probability": 0.842 + }, + { + "start": 4092.62, + "end": 4094.96, + "probability": 0.9104 + }, + { + "start": 4096.41, + "end": 4099.78, + "probability": 0.7873 + }, + { + "start": 4100.42, + "end": 4102.54, + "probability": 0.8281 + }, + { + "start": 4102.68, + "end": 4103.64, + "probability": 0.6702 + }, + { + "start": 4103.7, + "end": 4106.46, + "probability": 0.9282 + }, + { + "start": 4106.96, + "end": 4108.95, + "probability": 0.9067 + }, + { + "start": 4111.26, + "end": 4111.48, + "probability": 0.0716 + }, + { + "start": 4114.1, + "end": 4114.22, + "probability": 0.1322 + }, + { + "start": 4134.48, + "end": 4141.4, + "probability": 0.5051 + }, + { + "start": 4141.4, + "end": 4142.22, + "probability": 0.5225 + }, + { + "start": 4156.54, + "end": 4157.32, + "probability": 0.0531 + }, + { + "start": 4159.92, + "end": 4160.18, + "probability": 0.0763 + }, + { + "start": 4160.18, + "end": 4163.06, + "probability": 0.2752 + }, + { + "start": 4163.06, + "end": 4165.8, + "probability": 0.9756 + }, + { + "start": 4166.7, + "end": 4167.2, + "probability": 0.0071 + }, + { + "start": 4167.2, + "end": 4168.74, + "probability": 0.7653 + }, + { + "start": 4168.8, + "end": 4169.04, + "probability": 0.032 + }, + { + "start": 4169.04, + "end": 4169.48, + "probability": 0.1009 + }, + { + "start": 4169.72, + "end": 4173.34, + "probability": 0.7285 + }, + { + "start": 4173.98, + "end": 4174.4, + "probability": 0.4029 + }, + { + "start": 4176.84, + "end": 4179.38, + "probability": 0.3128 + }, + { + "start": 4179.76, + "end": 4181.14, + "probability": 0.7955 + }, + { + "start": 4181.26, + "end": 4181.34, + "probability": 0.035 + }, + { + "start": 4181.34, + "end": 4182.99, + "probability": 0.3654 + }, + { + "start": 4185.98, + "end": 4188.0, + "probability": 0.0367 + }, + { + "start": 4189.32, + "end": 4189.32, + "probability": 0.0882 + }, + { + "start": 4189.82, + "end": 4191.66, + "probability": 0.4481 + }, + { + "start": 4191.66, + "end": 4194.34, + "probability": 0.3427 + }, + { + "start": 4195.54, + "end": 4197.44, + "probability": 0.0539 + }, + { + "start": 4197.44, + "end": 4199.86, + "probability": 0.2171 + }, + { + "start": 4200.46, + "end": 4202.48, + "probability": 0.4829 + }, + { + "start": 4202.6, + "end": 4205.86, + "probability": 0.8312 + }, + { + "start": 4206.44, + "end": 4206.44, + "probability": 0.2172 + }, + { + "start": 4206.44, + "end": 4206.44, + "probability": 0.0385 + }, + { + "start": 4206.44, + "end": 4207.6, + "probability": 0.1629 + }, + { + "start": 4207.6, + "end": 4208.6, + "probability": 0.5309 + }, + { + "start": 4208.72, + "end": 4210.8, + "probability": 0.7372 + }, + { + "start": 4214.02, + "end": 4215.56, + "probability": 0.5624 + }, + { + "start": 4216.26, + "end": 4216.26, + "probability": 0.0712 + }, + { + "start": 4216.26, + "end": 4218.98, + "probability": 0.6151 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.14, + "end": 4219.4, + "probability": 0.4156 + }, + { + "start": 4219.4, + "end": 4222.22, + "probability": 0.8706 + }, + { + "start": 4222.9, + "end": 4223.26, + "probability": 0.6381 + }, + { + "start": 4223.92, + "end": 4224.12, + "probability": 0.2885 + }, + { + "start": 4236.22, + "end": 4243.64, + "probability": 0.1792 + }, + { + "start": 4243.66, + "end": 4245.06, + "probability": 0.2634 + }, + { + "start": 4245.06, + "end": 4246.18, + "probability": 0.0435 + }, + { + "start": 4246.3, + "end": 4249.4, + "probability": 0.366 + }, + { + "start": 4250.52, + "end": 4252.82, + "probability": 0.1573 + }, + { + "start": 4252.88, + "end": 4253.25, + "probability": 0.8633 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4354.0, + "end": 4354.0, + "probability": 0.0 + }, + { + "start": 4355.68, + "end": 4359.12, + "probability": 0.6895 + }, + { + "start": 4360.56, + "end": 4361.7, + "probability": 0.7725 + }, + { + "start": 4362.98, + "end": 4366.86, + "probability": 0.7112 + }, + { + "start": 4368.8, + "end": 4372.38, + "probability": 0.9898 + }, + { + "start": 4373.84, + "end": 4373.9, + "probability": 0.012 + }, + { + "start": 4376.16, + "end": 4377.12, + "probability": 0.3333 + }, + { + "start": 4378.46, + "end": 4380.2, + "probability": 0.9956 + }, + { + "start": 4381.62, + "end": 4382.76, + "probability": 0.8035 + }, + { + "start": 4383.22, + "end": 4384.45, + "probability": 0.9867 + }, + { + "start": 4384.74, + "end": 4385.23, + "probability": 0.7839 + }, + { + "start": 4387.08, + "end": 4396.16, + "probability": 0.9946 + }, + { + "start": 4396.8, + "end": 4398.0, + "probability": 0.914 + }, + { + "start": 4399.44, + "end": 4404.32, + "probability": 0.9982 + }, + { + "start": 4405.6, + "end": 4407.42, + "probability": 0.999 + }, + { + "start": 4409.22, + "end": 4415.24, + "probability": 0.9707 + }, + { + "start": 4418.18, + "end": 4418.94, + "probability": 0.6944 + }, + { + "start": 4423.64, + "end": 4424.38, + "probability": 0.4885 + }, + { + "start": 4425.04, + "end": 4426.6, + "probability": 0.9995 + }, + { + "start": 4427.4, + "end": 4429.3, + "probability": 0.9911 + }, + { + "start": 4430.72, + "end": 4432.56, + "probability": 0.9603 + }, + { + "start": 4433.74, + "end": 4438.56, + "probability": 0.9961 + }, + { + "start": 4439.92, + "end": 4441.9, + "probability": 0.9727 + }, + { + "start": 4442.66, + "end": 4443.72, + "probability": 0.9281 + }, + { + "start": 4444.4, + "end": 4445.52, + "probability": 0.9711 + }, + { + "start": 4446.36, + "end": 4447.18, + "probability": 0.7525 + }, + { + "start": 4455.31, + "end": 4457.26, + "probability": 0.9976 + }, + { + "start": 4458.4, + "end": 4462.12, + "probability": 0.8112 + }, + { + "start": 4464.25, + "end": 4471.0, + "probability": 0.9708 + }, + { + "start": 4473.2, + "end": 4474.06, + "probability": 0.7273 + }, + { + "start": 4474.48, + "end": 4475.94, + "probability": 0.8682 + }, + { + "start": 4477.06, + "end": 4481.88, + "probability": 0.9893 + }, + { + "start": 4482.78, + "end": 4483.8, + "probability": 0.7175 + }, + { + "start": 4485.6, + "end": 4488.32, + "probability": 0.5821 + }, + { + "start": 4489.76, + "end": 4492.26, + "probability": 0.9011 + }, + { + "start": 4494.12, + "end": 4499.85, + "probability": 0.9819 + }, + { + "start": 4500.68, + "end": 4503.38, + "probability": 0.9199 + }, + { + "start": 4503.96, + "end": 4504.73, + "probability": 0.7114 + }, + { + "start": 4505.6, + "end": 4508.76, + "probability": 0.9674 + }, + { + "start": 4509.82, + "end": 4510.98, + "probability": 0.6817 + }, + { + "start": 4511.46, + "end": 4514.1, + "probability": 0.9879 + }, + { + "start": 4514.56, + "end": 4516.06, + "probability": 0.9853 + }, + { + "start": 4517.82, + "end": 4519.92, + "probability": 0.8306 + }, + { + "start": 4522.12, + "end": 4524.78, + "probability": 0.9917 + }, + { + "start": 4525.42, + "end": 4527.36, + "probability": 0.7011 + }, + { + "start": 4528.44, + "end": 4533.4, + "probability": 0.9976 + }, + { + "start": 4534.78, + "end": 4538.5, + "probability": 0.8941 + }, + { + "start": 4538.5, + "end": 4543.14, + "probability": 0.994 + }, + { + "start": 4543.64, + "end": 4543.9, + "probability": 0.9619 + }, + { + "start": 4544.3, + "end": 4546.42, + "probability": 0.9985 + }, + { + "start": 4546.56, + "end": 4548.67, + "probability": 0.9819 + }, + { + "start": 4551.86, + "end": 4555.3, + "probability": 0.9624 + }, + { + "start": 4556.84, + "end": 4559.62, + "probability": 0.9708 + }, + { + "start": 4560.46, + "end": 4561.98, + "probability": 0.8724 + }, + { + "start": 4563.28, + "end": 4565.22, + "probability": 0.9265 + }, + { + "start": 4566.1, + "end": 4566.3, + "probability": 0.4913 + }, + { + "start": 4566.6, + "end": 4568.1, + "probability": 0.9695 + }, + { + "start": 4568.18, + "end": 4569.78, + "probability": 0.9027 + }, + { + "start": 4571.6, + "end": 4573.12, + "probability": 0.9524 + }, + { + "start": 4573.6, + "end": 4575.74, + "probability": 0.8043 + }, + { + "start": 4577.04, + "end": 4581.58, + "probability": 0.9942 + }, + { + "start": 4583.18, + "end": 4585.94, + "probability": 0.9277 + }, + { + "start": 4586.74, + "end": 4590.44, + "probability": 0.9414 + }, + { + "start": 4591.1, + "end": 4596.86, + "probability": 0.9802 + }, + { + "start": 4597.7, + "end": 4598.84, + "probability": 0.9893 + }, + { + "start": 4600.0, + "end": 4601.44, + "probability": 0.9954 + }, + { + "start": 4602.78, + "end": 4607.16, + "probability": 0.7861 + }, + { + "start": 4608.84, + "end": 4610.26, + "probability": 0.6376 + }, + { + "start": 4610.92, + "end": 4614.46, + "probability": 0.9825 + }, + { + "start": 4614.52, + "end": 4615.47, + "probability": 0.9517 + }, + { + "start": 4615.64, + "end": 4616.92, + "probability": 0.9933 + }, + { + "start": 4618.18, + "end": 4621.38, + "probability": 0.9189 + }, + { + "start": 4623.22, + "end": 4624.57, + "probability": 0.9968 + }, + { + "start": 4628.8, + "end": 4633.04, + "probability": 0.9576 + }, + { + "start": 4633.92, + "end": 4636.54, + "probability": 0.9552 + }, + { + "start": 4639.7, + "end": 4645.22, + "probability": 0.9602 + }, + { + "start": 4645.94, + "end": 4647.92, + "probability": 0.9985 + }, + { + "start": 4648.36, + "end": 4652.0, + "probability": 0.9974 + }, + { + "start": 4652.42, + "end": 4653.9, + "probability": 0.9824 + }, + { + "start": 4654.3, + "end": 4658.88, + "probability": 0.9995 + }, + { + "start": 4660.22, + "end": 4663.84, + "probability": 0.9556 + }, + { + "start": 4665.56, + "end": 4667.52, + "probability": 0.9761 + }, + { + "start": 4671.12, + "end": 4673.08, + "probability": 0.8122 + }, + { + "start": 4673.6, + "end": 4674.92, + "probability": 0.9061 + }, + { + "start": 4675.06, + "end": 4677.54, + "probability": 0.9826 + }, + { + "start": 4678.24, + "end": 4681.3, + "probability": 0.9957 + }, + { + "start": 4681.3, + "end": 4689.38, + "probability": 0.9963 + }, + { + "start": 4690.58, + "end": 4692.52, + "probability": 0.9993 + }, + { + "start": 4694.42, + "end": 4696.18, + "probability": 0.8682 + }, + { + "start": 4696.92, + "end": 4700.44, + "probability": 0.9954 + }, + { + "start": 4702.88, + "end": 4705.98, + "probability": 0.9941 + }, + { + "start": 4706.04, + "end": 4707.48, + "probability": 0.9912 + }, + { + "start": 4708.4, + "end": 4709.84, + "probability": 0.9897 + }, + { + "start": 4710.32, + "end": 4715.58, + "probability": 0.988 + }, + { + "start": 4716.6, + "end": 4721.54, + "probability": 0.8555 + }, + { + "start": 4724.42, + "end": 4725.4, + "probability": 0.8197 + }, + { + "start": 4726.42, + "end": 4727.12, + "probability": 0.7217 + }, + { + "start": 4728.16, + "end": 4732.94, + "probability": 0.9943 + }, + { + "start": 4735.5, + "end": 4736.78, + "probability": 0.9556 + }, + { + "start": 4737.48, + "end": 4741.48, + "probability": 0.9691 + }, + { + "start": 4742.18, + "end": 4743.25, + "probability": 0.6889 + }, + { + "start": 4744.32, + "end": 4745.27, + "probability": 0.813 + }, + { + "start": 4746.54, + "end": 4750.86, + "probability": 0.8981 + }, + { + "start": 4753.36, + "end": 4754.76, + "probability": 0.9978 + }, + { + "start": 4754.84, + "end": 4755.99, + "probability": 0.9988 + }, + { + "start": 4757.16, + "end": 4759.64, + "probability": 0.8804 + }, + { + "start": 4760.62, + "end": 4764.16, + "probability": 0.9863 + }, + { + "start": 4765.92, + "end": 4767.65, + "probability": 0.5482 + }, + { + "start": 4768.78, + "end": 4771.6, + "probability": 0.9715 + }, + { + "start": 4772.06, + "end": 4772.26, + "probability": 0.4926 + }, + { + "start": 4773.04, + "end": 4774.59, + "probability": 0.9678 + }, + { + "start": 4775.32, + "end": 4776.64, + "probability": 0.9774 + }, + { + "start": 4777.62, + "end": 4779.02, + "probability": 0.9954 + }, + { + "start": 4782.88, + "end": 4783.72, + "probability": 0.781 + }, + { + "start": 4787.3, + "end": 4788.2, + "probability": 0.8156 + }, + { + "start": 4790.92, + "end": 4791.58, + "probability": 0.9094 + }, + { + "start": 4794.51, + "end": 4796.21, + "probability": 0.884 + }, + { + "start": 4797.65, + "end": 4798.42, + "probability": 0.7202 + }, + { + "start": 4799.47, + "end": 4800.21, + "probability": 0.9177 + }, + { + "start": 4801.39, + "end": 4802.04, + "probability": 0.9749 + }, + { + "start": 4804.0, + "end": 4806.9, + "probability": 0.9182 + }, + { + "start": 4807.25, + "end": 4808.48, + "probability": 0.9047 + }, + { + "start": 4809.27, + "end": 4810.38, + "probability": 0.7304 + }, + { + "start": 4810.99, + "end": 4814.14, + "probability": 0.9603 + }, + { + "start": 4815.93, + "end": 4822.17, + "probability": 0.9961 + }, + { + "start": 4822.91, + "end": 4826.67, + "probability": 0.9823 + }, + { + "start": 4828.99, + "end": 4829.43, + "probability": 0.7898 + }, + { + "start": 4830.53, + "end": 4835.05, + "probability": 0.9984 + }, + { + "start": 4837.11, + "end": 4838.45, + "probability": 0.8505 + }, + { + "start": 4842.17, + "end": 4843.49, + "probability": 0.9539 + }, + { + "start": 4844.47, + "end": 4846.05, + "probability": 0.7787 + }, + { + "start": 4846.63, + "end": 4848.21, + "probability": 0.9996 + }, + { + "start": 4849.49, + "end": 4851.07, + "probability": 0.9814 + }, + { + "start": 4851.67, + "end": 4855.15, + "probability": 0.9199 + }, + { + "start": 4855.77, + "end": 4858.67, + "probability": 0.9966 + }, + { + "start": 4860.42, + "end": 4864.7, + "probability": 0.8714 + }, + { + "start": 4866.33, + "end": 4867.85, + "probability": 0.8615 + }, + { + "start": 4867.97, + "end": 4868.55, + "probability": 0.7734 + }, + { + "start": 4869.03, + "end": 4870.27, + "probability": 0.9961 + }, + { + "start": 4871.93, + "end": 4877.07, + "probability": 0.9895 + }, + { + "start": 4877.41, + "end": 4878.46, + "probability": 0.9102 + }, + { + "start": 4879.89, + "end": 4882.01, + "probability": 0.9819 + }, + { + "start": 4883.63, + "end": 4886.13, + "probability": 0.991 + }, + { + "start": 4887.41, + "end": 4888.43, + "probability": 0.9785 + }, + { + "start": 4891.47, + "end": 4892.33, + "probability": 0.5277 + }, + { + "start": 4894.99, + "end": 4896.83, + "probability": 0.9718 + }, + { + "start": 4898.63, + "end": 4902.05, + "probability": 0.9934 + }, + { + "start": 4903.53, + "end": 4907.13, + "probability": 0.8794 + }, + { + "start": 4908.43, + "end": 4908.97, + "probability": 0.937 + }, + { + "start": 4912.03, + "end": 4914.09, + "probability": 0.9936 + }, + { + "start": 4914.27, + "end": 4916.99, + "probability": 0.9951 + }, + { + "start": 4917.75, + "end": 4919.51, + "probability": 0.9951 + }, + { + "start": 4920.19, + "end": 4922.59, + "probability": 0.998 + }, + { + "start": 4923.31, + "end": 4923.91, + "probability": 0.9658 + }, + { + "start": 4924.59, + "end": 4927.17, + "probability": 0.9473 + }, + { + "start": 4927.21, + "end": 4928.93, + "probability": 0.9419 + }, + { + "start": 4929.59, + "end": 4932.02, + "probability": 0.9531 + }, + { + "start": 4933.23, + "end": 4935.07, + "probability": 0.9937 + }, + { + "start": 4935.69, + "end": 4938.75, + "probability": 0.8271 + }, + { + "start": 4938.83, + "end": 4940.83, + "probability": 0.998 + }, + { + "start": 4941.39, + "end": 4944.67, + "probability": 0.9888 + }, + { + "start": 4944.75, + "end": 4946.45, + "probability": 0.9906 + }, + { + "start": 4948.25, + "end": 4951.07, + "probability": 0.3857 + }, + { + "start": 4951.13, + "end": 4952.31, + "probability": 0.9608 + }, + { + "start": 4952.35, + "end": 4958.75, + "probability": 0.9863 + }, + { + "start": 4962.17, + "end": 4964.93, + "probability": 0.9766 + }, + { + "start": 4965.31, + "end": 4967.33, + "probability": 0.9897 + }, + { + "start": 4968.23, + "end": 4970.37, + "probability": 0.9891 + }, + { + "start": 4970.95, + "end": 4971.81, + "probability": 0.6872 + }, + { + "start": 4973.09, + "end": 4975.99, + "probability": 0.7529 + }, + { + "start": 4976.11, + "end": 4977.21, + "probability": 0.9375 + }, + { + "start": 4978.89, + "end": 4982.31, + "probability": 0.8877 + }, + { + "start": 4982.35, + "end": 4983.6, + "probability": 0.9764 + }, + { + "start": 4983.77, + "end": 4984.01, + "probability": 0.9108 + }, + { + "start": 4984.87, + "end": 4986.55, + "probability": 0.9573 + }, + { + "start": 4987.61, + "end": 4988.13, + "probability": 0.9417 + }, + { + "start": 4990.83, + "end": 4992.31, + "probability": 0.7856 + }, + { + "start": 4993.19, + "end": 4993.77, + "probability": 0.6706 + }, + { + "start": 4994.55, + "end": 4997.71, + "probability": 0.7312 + }, + { + "start": 5011.21, + "end": 5012.21, + "probability": 0.7334 + }, + { + "start": 5022.51, + "end": 5024.47, + "probability": 0.5543 + }, + { + "start": 5028.29, + "end": 5032.49, + "probability": 0.9712 + }, + { + "start": 5033.65, + "end": 5035.11, + "probability": 0.7635 + }, + { + "start": 5036.67, + "end": 5041.09, + "probability": 0.9985 + }, + { + "start": 5042.27, + "end": 5044.75, + "probability": 0.656 + }, + { + "start": 5045.31, + "end": 5048.65, + "probability": 0.9971 + }, + { + "start": 5049.85, + "end": 5054.55, + "probability": 0.9386 + }, + { + "start": 5055.37, + "end": 5056.69, + "probability": 0.8621 + }, + { + "start": 5057.51, + "end": 5059.93, + "probability": 0.8633 + }, + { + "start": 5060.57, + "end": 5061.89, + "probability": 0.995 + }, + { + "start": 5062.49, + "end": 5064.01, + "probability": 0.5356 + }, + { + "start": 5064.69, + "end": 5065.71, + "probability": 0.632 + }, + { + "start": 5066.63, + "end": 5069.01, + "probability": 0.9924 + }, + { + "start": 5069.53, + "end": 5071.91, + "probability": 0.9931 + }, + { + "start": 5072.63, + "end": 5074.65, + "probability": 0.877 + }, + { + "start": 5075.63, + "end": 5077.35, + "probability": 0.9338 + }, + { + "start": 5077.99, + "end": 5079.37, + "probability": 0.8248 + }, + { + "start": 5079.87, + "end": 5082.93, + "probability": 0.9937 + }, + { + "start": 5084.55, + "end": 5089.67, + "probability": 0.8746 + }, + { + "start": 5090.29, + "end": 5092.17, + "probability": 0.8732 + }, + { + "start": 5093.13, + "end": 5095.53, + "probability": 0.9554 + }, + { + "start": 5095.68, + "end": 5099.55, + "probability": 0.9986 + }, + { + "start": 5100.29, + "end": 5103.63, + "probability": 0.9961 + }, + { + "start": 5103.63, + "end": 5108.53, + "probability": 0.9977 + }, + { + "start": 5109.59, + "end": 5114.75, + "probability": 0.9898 + }, + { + "start": 5115.39, + "end": 5117.47, + "probability": 0.8035 + }, + { + "start": 5118.03, + "end": 5119.37, + "probability": 0.8842 + }, + { + "start": 5119.81, + "end": 5124.59, + "probability": 0.9922 + }, + { + "start": 5125.45, + "end": 5128.33, + "probability": 0.7525 + }, + { + "start": 5129.09, + "end": 5133.01, + "probability": 0.9851 + }, + { + "start": 5133.63, + "end": 5134.29, + "probability": 0.866 + }, + { + "start": 5134.87, + "end": 5138.45, + "probability": 0.9966 + }, + { + "start": 5138.79, + "end": 5140.35, + "probability": 0.6688 + }, + { + "start": 5141.57, + "end": 5148.05, + "probability": 0.9682 + }, + { + "start": 5148.65, + "end": 5152.17, + "probability": 0.8916 + }, + { + "start": 5152.73, + "end": 5158.31, + "probability": 0.9916 + }, + { + "start": 5159.79, + "end": 5164.27, + "probability": 0.9818 + }, + { + "start": 5165.15, + "end": 5167.45, + "probability": 0.9911 + }, + { + "start": 5168.05, + "end": 5170.31, + "probability": 0.7733 + }, + { + "start": 5171.71, + "end": 5172.91, + "probability": 0.9644 + }, + { + "start": 5173.91, + "end": 5176.73, + "probability": 0.7927 + }, + { + "start": 5177.49, + "end": 5180.33, + "probability": 0.772 + }, + { + "start": 5181.13, + "end": 5185.03, + "probability": 0.9204 + }, + { + "start": 5185.03, + "end": 5189.87, + "probability": 0.9537 + }, + { + "start": 5190.63, + "end": 5193.46, + "probability": 0.7625 + }, + { + "start": 5193.95, + "end": 5197.99, + "probability": 0.9679 + }, + { + "start": 5198.91, + "end": 5202.8, + "probability": 0.9528 + }, + { + "start": 5202.93, + "end": 5209.21, + "probability": 0.9811 + }, + { + "start": 5209.93, + "end": 5213.67, + "probability": 0.9634 + }, + { + "start": 5214.25, + "end": 5214.95, + "probability": 0.7202 + }, + { + "start": 5215.87, + "end": 5219.03, + "probability": 0.8931 + }, + { + "start": 5219.07, + "end": 5221.71, + "probability": 0.9797 + }, + { + "start": 5222.37, + "end": 5224.49, + "probability": 0.6597 + }, + { + "start": 5225.45, + "end": 5227.65, + "probability": 0.7855 + }, + { + "start": 5228.49, + "end": 5232.63, + "probability": 0.9456 + }, + { + "start": 5233.53, + "end": 5236.87, + "probability": 0.9021 + }, + { + "start": 5237.77, + "end": 5238.85, + "probability": 0.8278 + }, + { + "start": 5239.69, + "end": 5243.45, + "probability": 0.9826 + }, + { + "start": 5244.37, + "end": 5247.43, + "probability": 0.7981 + }, + { + "start": 5248.23, + "end": 5249.87, + "probability": 0.9987 + }, + { + "start": 5250.57, + "end": 5252.61, + "probability": 0.6632 + }, + { + "start": 5253.57, + "end": 5255.59, + "probability": 0.5188 + }, + { + "start": 5256.49, + "end": 5257.89, + "probability": 0.9845 + }, + { + "start": 5258.09, + "end": 5258.93, + "probability": 0.7079 + }, + { + "start": 5259.67, + "end": 5261.29, + "probability": 0.7363 + }, + { + "start": 5262.15, + "end": 5263.41, + "probability": 0.9069 + }, + { + "start": 5264.33, + "end": 5267.81, + "probability": 0.9814 + }, + { + "start": 5268.41, + "end": 5271.51, + "probability": 0.9642 + }, + { + "start": 5272.37, + "end": 5273.29, + "probability": 0.9738 + }, + { + "start": 5273.73, + "end": 5274.29, + "probability": 0.9758 + }, + { + "start": 5274.73, + "end": 5278.69, + "probability": 0.9946 + }, + { + "start": 5279.45, + "end": 5282.97, + "probability": 0.9902 + }, + { + "start": 5283.99, + "end": 5289.25, + "probability": 0.6715 + }, + { + "start": 5289.63, + "end": 5294.51, + "probability": 0.8837 + }, + { + "start": 5294.59, + "end": 5295.59, + "probability": 0.7116 + }, + { + "start": 5295.65, + "end": 5296.78, + "probability": 0.9637 + }, + { + "start": 5297.73, + "end": 5299.65, + "probability": 0.8722 + }, + { + "start": 5308.35, + "end": 5309.71, + "probability": 0.6737 + }, + { + "start": 5310.27, + "end": 5312.37, + "probability": 0.8028 + }, + { + "start": 5313.45, + "end": 5315.95, + "probability": 0.9959 + }, + { + "start": 5318.27, + "end": 5319.73, + "probability": 0.9662 + }, + { + "start": 5321.87, + "end": 5323.05, + "probability": 0.9218 + }, + { + "start": 5325.69, + "end": 5328.03, + "probability": 0.7589 + }, + { + "start": 5328.79, + "end": 5330.93, + "probability": 0.9724 + }, + { + "start": 5332.07, + "end": 5334.53, + "probability": 0.9665 + }, + { + "start": 5335.61, + "end": 5337.51, + "probability": 0.8721 + }, + { + "start": 5338.71, + "end": 5340.51, + "probability": 0.838 + }, + { + "start": 5342.31, + "end": 5344.41, + "probability": 0.9906 + }, + { + "start": 5346.01, + "end": 5348.81, + "probability": 0.9907 + }, + { + "start": 5349.01, + "end": 5350.31, + "probability": 0.9502 + }, + { + "start": 5351.85, + "end": 5352.85, + "probability": 0.9893 + }, + { + "start": 5354.95, + "end": 5358.05, + "probability": 0.756 + }, + { + "start": 5358.13, + "end": 5360.99, + "probability": 0.9987 + }, + { + "start": 5362.67, + "end": 5363.63, + "probability": 0.9563 + }, + { + "start": 5364.43, + "end": 5366.81, + "probability": 0.9478 + }, + { + "start": 5367.85, + "end": 5372.47, + "probability": 0.9893 + }, + { + "start": 5373.13, + "end": 5374.19, + "probability": 0.5156 + }, + { + "start": 5374.89, + "end": 5376.33, + "probability": 0.8577 + }, + { + "start": 5377.79, + "end": 5379.95, + "probability": 0.8829 + }, + { + "start": 5382.59, + "end": 5385.07, + "probability": 0.9069 + }, + { + "start": 5387.03, + "end": 5389.49, + "probability": 0.9954 + }, + { + "start": 5389.49, + "end": 5393.61, + "probability": 0.9595 + }, + { + "start": 5395.05, + "end": 5397.57, + "probability": 0.8853 + }, + { + "start": 5398.27, + "end": 5399.25, + "probability": 0.9858 + }, + { + "start": 5400.89, + "end": 5403.75, + "probability": 0.9956 + }, + { + "start": 5404.73, + "end": 5409.73, + "probability": 0.996 + }, + { + "start": 5410.55, + "end": 5414.09, + "probability": 0.9464 + }, + { + "start": 5414.19, + "end": 5416.79, + "probability": 0.9883 + }, + { + "start": 5419.79, + "end": 5421.69, + "probability": 0.9873 + }, + { + "start": 5422.75, + "end": 5429.51, + "probability": 0.9118 + }, + { + "start": 5429.93, + "end": 5432.79, + "probability": 0.9946 + }, + { + "start": 5433.49, + "end": 5435.67, + "probability": 0.5283 + }, + { + "start": 5436.29, + "end": 5436.47, + "probability": 0.8652 + }, + { + "start": 5439.21, + "end": 5445.51, + "probability": 0.9849 + }, + { + "start": 5446.53, + "end": 5448.67, + "probability": 0.9966 + }, + { + "start": 5449.77, + "end": 5453.87, + "probability": 0.9731 + }, + { + "start": 5454.63, + "end": 5455.51, + "probability": 0.8055 + }, + { + "start": 5456.65, + "end": 5459.89, + "probability": 0.9788 + }, + { + "start": 5461.25, + "end": 5463.43, + "probability": 0.9927 + }, + { + "start": 5463.59, + "end": 5468.37, + "probability": 0.9985 + }, + { + "start": 5468.51, + "end": 5469.37, + "probability": 0.747 + }, + { + "start": 5470.36, + "end": 5475.41, + "probability": 0.9839 + }, + { + "start": 5475.95, + "end": 5479.95, + "probability": 0.9963 + }, + { + "start": 5480.65, + "end": 5484.17, + "probability": 0.989 + }, + { + "start": 5484.17, + "end": 5489.31, + "probability": 0.9987 + }, + { + "start": 5489.95, + "end": 5491.59, + "probability": 0.991 + }, + { + "start": 5492.87, + "end": 5497.37, + "probability": 0.659 + }, + { + "start": 5498.09, + "end": 5501.75, + "probability": 0.4996 + }, + { + "start": 5503.07, + "end": 5503.77, + "probability": 0.789 + }, + { + "start": 5503.91, + "end": 5505.9, + "probability": 0.9804 + }, + { + "start": 5507.47, + "end": 5510.05, + "probability": 0.7601 + }, + { + "start": 5510.69, + "end": 5513.25, + "probability": 0.7876 + }, + { + "start": 5513.29, + "end": 5513.35, + "probability": 0.1293 + }, + { + "start": 5513.35, + "end": 5514.49, + "probability": 0.4818 + }, + { + "start": 5516.17, + "end": 5517.29, + "probability": 0.687 + }, + { + "start": 5520.01, + "end": 5524.94, + "probability": 0.7973 + }, + { + "start": 5526.91, + "end": 5528.63, + "probability": 0.9154 + }, + { + "start": 5529.55, + "end": 5532.37, + "probability": 0.505 + }, + { + "start": 5533.39, + "end": 5536.93, + "probability": 0.7904 + }, + { + "start": 5537.71, + "end": 5540.11, + "probability": 0.6033 + }, + { + "start": 5540.77, + "end": 5542.55, + "probability": 0.8757 + }, + { + "start": 5543.27, + "end": 5546.09, + "probability": 0.9141 + }, + { + "start": 5547.11, + "end": 5549.81, + "probability": 0.8644 + }, + { + "start": 5552.63, + "end": 5554.55, + "probability": 0.7286 + }, + { + "start": 5555.61, + "end": 5558.99, + "probability": 0.8087 + }, + { + "start": 5560.01, + "end": 5565.53, + "probability": 0.6709 + }, + { + "start": 5566.19, + "end": 5567.03, + "probability": 0.6856 + }, + { + "start": 5567.73, + "end": 5569.97, + "probability": 0.7393 + }, + { + "start": 5571.91, + "end": 5574.09, + "probability": 0.9312 + }, + { + "start": 5577.17, + "end": 5580.91, + "probability": 0.7681 + }, + { + "start": 5581.61, + "end": 5586.57, + "probability": 0.9155 + }, + { + "start": 5587.87, + "end": 5590.03, + "probability": 0.8433 + }, + { + "start": 5590.47, + "end": 5592.93, + "probability": 0.7245 + }, + { + "start": 5593.59, + "end": 5595.47, + "probability": 0.9034 + }, + { + "start": 5596.39, + "end": 5598.53, + "probability": 0.9226 + }, + { + "start": 5599.39, + "end": 5601.96, + "probability": 0.955 + }, + { + "start": 5602.51, + "end": 5602.95, + "probability": 0.8918 + }, + { + "start": 5603.71, + "end": 5604.67, + "probability": 0.9855 + }, + { + "start": 5605.35, + "end": 5607.75, + "probability": 0.9525 + }, + { + "start": 5610.25, + "end": 5610.95, + "probability": 0.779 + }, + { + "start": 5611.77, + "end": 5615.45, + "probability": 0.7533 + }, + { + "start": 5616.83, + "end": 5618.95, + "probability": 0.8671 + }, + { + "start": 5619.81, + "end": 5622.57, + "probability": 0.8381 + }, + { + "start": 5624.61, + "end": 5625.75, + "probability": 0.3443 + }, + { + "start": 5627.07, + "end": 5628.83, + "probability": 0.8863 + }, + { + "start": 5631.17, + "end": 5634.59, + "probability": 0.9152 + }, + { + "start": 5635.83, + "end": 5637.75, + "probability": 0.9357 + }, + { + "start": 5638.67, + "end": 5640.55, + "probability": 0.7839 + }, + { + "start": 5642.07, + "end": 5646.09, + "probability": 0.9564 + }, + { + "start": 5647.63, + "end": 5649.23, + "probability": 0.9452 + }, + { + "start": 5653.75, + "end": 5654.47, + "probability": 0.5189 + }, + { + "start": 5655.71, + "end": 5657.93, + "probability": 0.7016 + }, + { + "start": 5659.89, + "end": 5661.59, + "probability": 0.4025 + }, + { + "start": 5663.09, + "end": 5663.59, + "probability": 0.8512 + }, + { + "start": 5666.53, + "end": 5667.29, + "probability": 0.6661 + }, + { + "start": 5667.71, + "end": 5669.91, + "probability": 0.9509 + }, + { + "start": 5669.91, + "end": 5673.35, + "probability": 0.891 + }, + { + "start": 5673.81, + "end": 5675.55, + "probability": 0.8377 + }, + { + "start": 5676.67, + "end": 5679.89, + "probability": 0.7218 + }, + { + "start": 5680.49, + "end": 5682.49, + "probability": 0.8165 + }, + { + "start": 5683.13, + "end": 5686.83, + "probability": 0.983 + }, + { + "start": 5687.35, + "end": 5689.97, + "probability": 0.88 + }, + { + "start": 5690.99, + "end": 5692.99, + "probability": 0.7536 + }, + { + "start": 5693.65, + "end": 5696.17, + "probability": 0.7463 + }, + { + "start": 5697.19, + "end": 5697.65, + "probability": 0.9778 + }, + { + "start": 5698.43, + "end": 5698.87, + "probability": 0.3308 + }, + { + "start": 5703.71, + "end": 5704.33, + "probability": 0.4718 + }, + { + "start": 5705.97, + "end": 5707.47, + "probability": 0.7622 + }, + { + "start": 5708.31, + "end": 5714.01, + "probability": 0.8279 + }, + { + "start": 5715.39, + "end": 5717.95, + "probability": 0.9621 + }, + { + "start": 5718.87, + "end": 5723.61, + "probability": 0.7307 + }, + { + "start": 5724.79, + "end": 5726.41, + "probability": 0.954 + }, + { + "start": 5727.89, + "end": 5728.91, + "probability": 0.9941 + }, + { + "start": 5730.39, + "end": 5731.09, + "probability": 0.836 + }, + { + "start": 5734.1, + "end": 5736.71, + "probability": 0.9277 + }, + { + "start": 5737.95, + "end": 5739.53, + "probability": 0.9481 + }, + { + "start": 5740.52, + "end": 5748.57, + "probability": 0.805 + }, + { + "start": 5750.97, + "end": 5752.93, + "probability": 0.8412 + }, + { + "start": 5753.61, + "end": 5756.91, + "probability": 0.9598 + }, + { + "start": 5757.49, + "end": 5759.61, + "probability": 0.8536 + }, + { + "start": 5760.93, + "end": 5762.95, + "probability": 0.7445 + }, + { + "start": 5763.51, + "end": 5767.29, + "probability": 0.9562 + }, + { + "start": 5767.95, + "end": 5768.41, + "probability": 0.9953 + }, + { + "start": 5768.97, + "end": 5770.09, + "probability": 0.867 + }, + { + "start": 5770.73, + "end": 5773.37, + "probability": 0.9759 + }, + { + "start": 5774.01, + "end": 5775.39, + "probability": 0.8287 + }, + { + "start": 5776.35, + "end": 5778.57, + "probability": 0.8525 + }, + { + "start": 5779.57, + "end": 5779.89, + "probability": 0.9611 + }, + { + "start": 5781.03, + "end": 5781.87, + "probability": 0.8618 + }, + { + "start": 5782.57, + "end": 5784.47, + "probability": 0.891 + }, + { + "start": 5785.83, + "end": 5787.47, + "probability": 0.9314 + }, + { + "start": 5788.43, + "end": 5790.03, + "probability": 0.8261 + }, + { + "start": 5790.87, + "end": 5792.95, + "probability": 0.7771 + }, + { + "start": 5794.17, + "end": 5795.55, + "probability": 0.9154 + }, + { + "start": 5796.77, + "end": 5798.39, + "probability": 0.9888 + }, + { + "start": 5799.05, + "end": 5799.85, + "probability": 0.9643 + }, + { + "start": 5800.39, + "end": 5801.33, + "probability": 0.8599 + }, + { + "start": 5802.13, + "end": 5803.91, + "probability": 0.7798 + }, + { + "start": 5805.05, + "end": 5806.83, + "probability": 0.9535 + }, + { + "start": 5807.81, + "end": 5809.13, + "probability": 0.7183 + }, + { + "start": 5810.15, + "end": 5812.01, + "probability": 0.9633 + }, + { + "start": 5812.89, + "end": 5814.99, + "probability": 0.9277 + }, + { + "start": 5815.97, + "end": 5817.69, + "probability": 0.7027 + }, + { + "start": 5818.59, + "end": 5820.35, + "probability": 0.9329 + }, + { + "start": 5821.35, + "end": 5829.39, + "probability": 0.7089 + }, + { + "start": 5831.67, + "end": 5833.07, + "probability": 0.9381 + }, + { + "start": 5835.35, + "end": 5836.47, + "probability": 0.2791 + }, + { + "start": 5837.19, + "end": 5837.95, + "probability": 0.8897 + }, + { + "start": 5838.47, + "end": 5839.39, + "probability": 0.8966 + }, + { + "start": 5840.69, + "end": 5841.01, + "probability": 0.9507 + }, + { + "start": 5842.73, + "end": 5843.53, + "probability": 0.909 + }, + { + "start": 5844.71, + "end": 5845.65, + "probability": 0.9862 + }, + { + "start": 5846.61, + "end": 5847.39, + "probability": 0.9717 + }, + { + "start": 5848.61, + "end": 5850.21, + "probability": 0.9247 + }, + { + "start": 5851.51, + "end": 5853.03, + "probability": 0.9722 + }, + { + "start": 5855.46, + "end": 5858.71, + "probability": 0.8981 + }, + { + "start": 5860.39, + "end": 5861.15, + "probability": 0.9749 + }, + { + "start": 5861.75, + "end": 5862.75, + "probability": 0.5565 + }, + { + "start": 5865.51, + "end": 5868.73, + "probability": 0.7693 + }, + { + "start": 5872.89, + "end": 5877.15, + "probability": 0.6546 + }, + { + "start": 5877.83, + "end": 5881.03, + "probability": 0.9251 + }, + { + "start": 5881.63, + "end": 5882.27, + "probability": 0.5895 + }, + { + "start": 5882.81, + "end": 5883.67, + "probability": 0.962 + }, + { + "start": 5884.27, + "end": 5886.27, + "probability": 0.9644 + }, + { + "start": 5887.23, + "end": 5887.67, + "probability": 0.9964 + }, + { + "start": 5888.39, + "end": 5889.33, + "probability": 0.8824 + }, + { + "start": 5890.35, + "end": 5891.15, + "probability": 0.9839 + }, + { + "start": 5892.27, + "end": 5893.47, + "probability": 0.7753 + }, + { + "start": 5894.99, + "end": 5897.67, + "probability": 0.9466 + }, + { + "start": 5898.09, + "end": 5900.19, + "probability": 0.8334 + }, + { + "start": 5901.21, + "end": 5901.69, + "probability": 0.9572 + }, + { + "start": 5902.43, + "end": 5903.37, + "probability": 0.8859 + }, + { + "start": 5906.27, + "end": 5906.75, + "probability": 0.9881 + }, + { + "start": 5907.55, + "end": 5908.29, + "probability": 0.9689 + }, + { + "start": 5911.67, + "end": 5913.53, + "probability": 0.8214 + }, + { + "start": 5914.37, + "end": 5916.15, + "probability": 0.9785 + }, + { + "start": 5919.75, + "end": 5921.21, + "probability": 0.8906 + }, + { + "start": 5922.47, + "end": 5924.27, + "probability": 0.9738 + }, + { + "start": 5925.65, + "end": 5926.49, + "probability": 0.6801 + }, + { + "start": 5932.25, + "end": 5933.03, + "probability": 0.4179 + }, + { + "start": 5936.57, + "end": 5940.87, + "probability": 0.7411 + }, + { + "start": 5942.71, + "end": 5944.53, + "probability": 0.9106 + }, + { + "start": 5945.07, + "end": 5946.53, + "probability": 0.9814 + }, + { + "start": 5947.87, + "end": 5948.35, + "probability": 0.5889 + }, + { + "start": 5948.87, + "end": 5949.83, + "probability": 0.8926 + }, + { + "start": 5950.93, + "end": 5957.45, + "probability": 0.9322 + }, + { + "start": 5958.57, + "end": 5960.83, + "probability": 0.9177 + }, + { + "start": 5962.03, + "end": 5962.69, + "probability": 0.9908 + }, + { + "start": 5964.47, + "end": 5965.91, + "probability": 0.7707 + }, + { + "start": 5967.29, + "end": 5968.95, + "probability": 0.6964 + }, + { + "start": 5974.21, + "end": 5976.79, + "probability": 0.4966 + }, + { + "start": 5977.47, + "end": 5981.21, + "probability": 0.813 + }, + { + "start": 5981.21, + "end": 5983.71, + "probability": 0.7147 + }, + { + "start": 5985.1, + "end": 5986.5, + "probability": 0.6848 + }, + { + "start": 5987.69, + "end": 5990.45, + "probability": 0.8663 + }, + { + "start": 5991.35, + "end": 5993.81, + "probability": 0.6938 + }, + { + "start": 5995.09, + "end": 5995.57, + "probability": 0.7565 + }, + { + "start": 5996.59, + "end": 5998.37, + "probability": 0.5809 + }, + { + "start": 6000.41, + "end": 6003.29, + "probability": 0.9248 + }, + { + "start": 6004.97, + "end": 6007.37, + "probability": 0.85 + }, + { + "start": 6009.35, + "end": 6010.07, + "probability": 0.9897 + }, + { + "start": 6011.23, + "end": 6012.11, + "probability": 0.9427 + }, + { + "start": 6013.97, + "end": 6016.37, + "probability": 0.9767 + }, + { + "start": 6017.79, + "end": 6019.81, + "probability": 0.9556 + }, + { + "start": 6020.67, + "end": 6022.41, + "probability": 0.6329 + }, + { + "start": 6023.55, + "end": 6024.21, + "probability": 0.7126 + }, + { + "start": 6025.13, + "end": 6026.03, + "probability": 0.8753 + }, + { + "start": 6027.69, + "end": 6028.43, + "probability": 0.9771 + }, + { + "start": 6029.29, + "end": 6030.31, + "probability": 0.9828 + }, + { + "start": 6031.27, + "end": 6033.53, + "probability": 0.9194 + }, + { + "start": 6034.25, + "end": 6037.13, + "probability": 0.8248 + }, + { + "start": 6037.77, + "end": 6039.11, + "probability": 0.9376 + }, + { + "start": 6044.39, + "end": 6044.85, + "probability": 0.6826 + }, + { + "start": 6047.03, + "end": 6050.25, + "probability": 0.6458 + }, + { + "start": 6050.67, + "end": 6052.43, + "probability": 0.7738 + }, + { + "start": 6052.89, + "end": 6054.17, + "probability": 0.9026 + }, + { + "start": 6054.89, + "end": 6056.35, + "probability": 0.8436 + }, + { + "start": 6057.57, + "end": 6060.11, + "probability": 0.9856 + }, + { + "start": 6061.23, + "end": 6061.95, + "probability": 0.9847 + }, + { + "start": 6063.85, + "end": 6064.75, + "probability": 0.945 + }, + { + "start": 6065.57, + "end": 6067.41, + "probability": 0.877 + }, + { + "start": 6068.15, + "end": 6068.35, + "probability": 0.6311 + }, + { + "start": 6069.93, + "end": 6071.65, + "probability": 0.5269 + }, + { + "start": 6073.31, + "end": 6077.51, + "probability": 0.8822 + }, + { + "start": 6078.41, + "end": 6078.89, + "probability": 0.9832 + }, + { + "start": 6080.79, + "end": 6081.71, + "probability": 0.8977 + }, + { + "start": 6082.49, + "end": 6082.91, + "probability": 0.9884 + }, + { + "start": 6084.23, + "end": 6085.05, + "probability": 0.9308 + }, + { + "start": 6085.97, + "end": 6088.09, + "probability": 0.9861 + }, + { + "start": 6088.71, + "end": 6089.63, + "probability": 0.835 + }, + { + "start": 6094.51, + "end": 6095.39, + "probability": 0.8303 + }, + { + "start": 6096.27, + "end": 6098.07, + "probability": 0.713 + }, + { + "start": 6099.87, + "end": 6100.59, + "probability": 0.8985 + }, + { + "start": 6102.17, + "end": 6104.87, + "probability": 0.9836 + }, + { + "start": 6106.99, + "end": 6112.57, + "probability": 0.9764 + }, + { + "start": 6114.45, + "end": 6115.77, + "probability": 0.9918 + }, + { + "start": 6117.21, + "end": 6118.29, + "probability": 0.9874 + }, + { + "start": 6119.13, + "end": 6120.79, + "probability": 0.8096 + }, + { + "start": 6121.83, + "end": 6124.31, + "probability": 0.9255 + }, + { + "start": 6125.63, + "end": 6126.43, + "probability": 0.9875 + }, + { + "start": 6127.07, + "end": 6127.97, + "probability": 0.8375 + }, + { + "start": 6128.63, + "end": 6130.69, + "probability": 0.863 + }, + { + "start": 6132.11, + "end": 6133.95, + "probability": 0.9635 + }, + { + "start": 6137.53, + "end": 6139.87, + "probability": 0.8502 + }, + { + "start": 6143.87, + "end": 6144.63, + "probability": 0.9165 + }, + { + "start": 6146.39, + "end": 6147.31, + "probability": 0.746 + }, + { + "start": 6148.19, + "end": 6151.13, + "probability": 0.8374 + }, + { + "start": 6152.35, + "end": 6154.67, + "probability": 0.9219 + }, + { + "start": 6155.33, + "end": 6157.9, + "probability": 0.8204 + }, + { + "start": 6160.69, + "end": 6163.21, + "probability": 0.8331 + }, + { + "start": 6166.55, + "end": 6167.17, + "probability": 0.5384 + }, + { + "start": 6168.13, + "end": 6168.59, + "probability": 0.5898 + }, + { + "start": 6171.07, + "end": 6171.93, + "probability": 0.7132 + }, + { + "start": 6173.29, + "end": 6173.39, + "probability": 0.9486 + }, + { + "start": 6175.05, + "end": 6175.91, + "probability": 0.9132 + }, + { + "start": 6177.05, + "end": 6177.67, + "probability": 0.8569 + }, + { + "start": 6178.63, + "end": 6179.27, + "probability": 0.8815 + }, + { + "start": 6180.47, + "end": 6181.85, + "probability": 0.9783 + }, + { + "start": 6182.59, + "end": 6183.25, + "probability": 0.8105 + }, + { + "start": 6184.59, + "end": 6186.97, + "probability": 0.9433 + }, + { + "start": 6188.19, + "end": 6190.47, + "probability": 0.7069 + }, + { + "start": 6191.47, + "end": 6191.91, + "probability": 0.8298 + }, + { + "start": 6193.39, + "end": 6194.83, + "probability": 0.7181 + }, + { + "start": 6195.89, + "end": 6197.83, + "probability": 0.8044 + }, + { + "start": 6200.13, + "end": 6200.63, + "probability": 0.5395 + }, + { + "start": 6202.13, + "end": 6203.43, + "probability": 0.6393 + }, + { + "start": 6204.85, + "end": 6206.81, + "probability": 0.8283 + }, + { + "start": 6210.31, + "end": 6210.97, + "probability": 0.6183 + }, + { + "start": 6212.59, + "end": 6214.65, + "probability": 0.845 + }, + { + "start": 6216.19, + "end": 6218.05, + "probability": 0.9008 + }, + { + "start": 6218.29, + "end": 6220.53, + "probability": 0.9825 + }, + { + "start": 6221.97, + "end": 6222.85, + "probability": 0.9872 + }, + { + "start": 6223.85, + "end": 6224.85, + "probability": 0.9162 + }, + { + "start": 6227.87, + "end": 6230.25, + "probability": 0.9659 + }, + { + "start": 6231.19, + "end": 6232.63, + "probability": 0.9725 + }, + { + "start": 6233.71, + "end": 6234.09, + "probability": 0.8967 + }, + { + "start": 6236.09, + "end": 6236.65, + "probability": 0.3008 + }, + { + "start": 6237.41, + "end": 6240.21, + "probability": 0.6356 + }, + { + "start": 6240.27, + "end": 6242.33, + "probability": 0.9868 + }, + { + "start": 6244.13, + "end": 6247.87, + "probability": 0.2041 + }, + { + "start": 6248.49, + "end": 6248.97, + "probability": 0.7852 + }, + { + "start": 6251.91, + "end": 6252.65, + "probability": 0.7406 + }, + { + "start": 6253.45, + "end": 6253.67, + "probability": 0.6375 + }, + { + "start": 6254.83, + "end": 6255.71, + "probability": 0.9871 + }, + { + "start": 6257.73, + "end": 6258.67, + "probability": 0.474 + }, + { + "start": 6258.67, + "end": 6259.67, + "probability": 0.4512 + }, + { + "start": 6261.13, + "end": 6261.75, + "probability": 0.6028 + }, + { + "start": 6279.27, + "end": 6282.31, + "probability": 0.1328 + }, + { + "start": 6283.39, + "end": 6283.93, + "probability": 0.0998 + }, + { + "start": 6289.47, + "end": 6291.39, + "probability": 0.1117 + }, + { + "start": 6292.13, + "end": 6292.27, + "probability": 0.0032 + }, + { + "start": 6295.37, + "end": 6296.37, + "probability": 0.0191 + }, + { + "start": 6301.99, + "end": 6302.61, + "probability": 0.0795 + }, + { + "start": 6307.73, + "end": 6309.41, + "probability": 0.0161 + }, + { + "start": 6319.23, + "end": 6320.51, + "probability": 0.0436 + }, + { + "start": 6322.21, + "end": 6322.61, + "probability": 0.0506 + }, + { + "start": 6339.19, + "end": 6340.13, + "probability": 0.0428 + }, + { + "start": 6401.0, + "end": 6401.0, + "probability": 0.0 + }, + { + "start": 6401.0, + "end": 6401.0, + "probability": 0.0 + }, + { + "start": 6401.0, + "end": 6401.0, + "probability": 0.0 + }, + { + "start": 6401.12, + "end": 6405.48, + "probability": 0.0202 + }, + { + "start": 6406.32, + "end": 6407.88, + "probability": 0.0552 + }, + { + "start": 6407.88, + "end": 6407.88, + "probability": 0.1497 + }, + { + "start": 6407.88, + "end": 6413.88, + "probability": 0.6821 + }, + { + "start": 6414.6, + "end": 6418.1, + "probability": 0.3098 + }, + { + "start": 6419.58, + "end": 6419.68, + "probability": 0.0512 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.0, + "end": 6522.0, + "probability": 0.0 + }, + { + "start": 6522.2, + "end": 6523.06, + "probability": 0.5433 + }, + { + "start": 6523.5, + "end": 6524.08, + "probability": 0.5894 + }, + { + "start": 6524.14, + "end": 6527.8, + "probability": 0.9168 + }, + { + "start": 6528.36, + "end": 6529.6, + "probability": 0.6188 + }, + { + "start": 6529.9, + "end": 6530.84, + "probability": 0.9616 + }, + { + "start": 6531.16, + "end": 6534.48, + "probability": 0.8593 + }, + { + "start": 6534.58, + "end": 6537.16, + "probability": 0.9364 + }, + { + "start": 6539.12, + "end": 6541.1, + "probability": 0.7299 + }, + { + "start": 6541.22, + "end": 6542.22, + "probability": 0.8284 + }, + { + "start": 6542.58, + "end": 6549.62, + "probability": 0.9344 + }, + { + "start": 6549.84, + "end": 6551.56, + "probability": 0.7827 + }, + { + "start": 6551.7, + "end": 6553.22, + "probability": 0.9657 + }, + { + "start": 6553.58, + "end": 6555.84, + "probability": 0.9847 + }, + { + "start": 6556.82, + "end": 6561.44, + "probability": 0.9482 + }, + { + "start": 6561.44, + "end": 6565.46, + "probability": 0.9566 + }, + { + "start": 6567.1, + "end": 6568.9, + "probability": 0.8381 + }, + { + "start": 6569.02, + "end": 6572.32, + "probability": 0.9976 + }, + { + "start": 6572.72, + "end": 6576.56, + "probability": 0.9659 + }, + { + "start": 6577.76, + "end": 6580.24, + "probability": 0.916 + }, + { + "start": 6580.26, + "end": 6581.26, + "probability": 0.8875 + }, + { + "start": 6581.54, + "end": 6583.26, + "probability": 0.7524 + }, + { + "start": 6583.74, + "end": 6588.96, + "probability": 0.8581 + }, + { + "start": 6589.54, + "end": 6592.97, + "probability": 0.9579 + }, + { + "start": 6593.1, + "end": 6597.46, + "probability": 0.6777 + }, + { + "start": 6598.08, + "end": 6607.32, + "probability": 0.987 + }, + { + "start": 6607.54, + "end": 6614.38, + "probability": 0.9621 + }, + { + "start": 6614.78, + "end": 6619.9, + "probability": 0.9711 + }, + { + "start": 6620.4, + "end": 6623.72, + "probability": 0.9879 + }, + { + "start": 6623.86, + "end": 6624.61, + "probability": 0.8188 + }, + { + "start": 6625.57, + "end": 6628.31, + "probability": 0.9941 + }, + { + "start": 6629.0, + "end": 6630.74, + "probability": 0.7026 + }, + { + "start": 6630.88, + "end": 6631.74, + "probability": 0.7413 + }, + { + "start": 6631.94, + "end": 6635.54, + "probability": 0.9693 + }, + { + "start": 6636.33, + "end": 6639.87, + "probability": 0.9936 + }, + { + "start": 6641.44, + "end": 6647.74, + "probability": 0.9968 + }, + { + "start": 6648.3, + "end": 6649.84, + "probability": 0.621 + }, + { + "start": 6650.28, + "end": 6651.86, + "probability": 0.8894 + }, + { + "start": 6652.1, + "end": 6655.38, + "probability": 0.5569 + }, + { + "start": 6655.64, + "end": 6658.76, + "probability": 0.9163 + }, + { + "start": 6659.36, + "end": 6662.52, + "probability": 0.9075 + }, + { + "start": 6663.5, + "end": 6665.98, + "probability": 0.8076 + }, + { + "start": 6666.74, + "end": 6671.54, + "probability": 0.992 + }, + { + "start": 6672.16, + "end": 6676.4, + "probability": 0.979 + }, + { + "start": 6676.64, + "end": 6678.8, + "probability": 0.8491 + }, + { + "start": 6679.16, + "end": 6679.98, + "probability": 0.7964 + }, + { + "start": 6680.04, + "end": 6681.36, + "probability": 0.8055 + }, + { + "start": 6681.86, + "end": 6684.62, + "probability": 0.9684 + }, + { + "start": 6684.9, + "end": 6689.82, + "probability": 0.9696 + }, + { + "start": 6690.16, + "end": 6695.92, + "probability": 0.9808 + }, + { + "start": 6696.4, + "end": 6701.26, + "probability": 0.8445 + }, + { + "start": 6702.16, + "end": 6705.58, + "probability": 0.9504 + }, + { + "start": 6706.0, + "end": 6707.42, + "probability": 0.9839 + }, + { + "start": 6707.76, + "end": 6708.86, + "probability": 0.9559 + }, + { + "start": 6709.18, + "end": 6714.08, + "probability": 0.9827 + }, + { + "start": 6714.14, + "end": 6716.2, + "probability": 0.7886 + }, + { + "start": 6716.96, + "end": 6724.28, + "probability": 0.7832 + }, + { + "start": 6725.02, + "end": 6727.12, + "probability": 0.8378 + }, + { + "start": 6727.8, + "end": 6728.36, + "probability": 0.8149 + }, + { + "start": 6728.46, + "end": 6730.12, + "probability": 0.9726 + }, + { + "start": 6730.28, + "end": 6731.38, + "probability": 0.9161 + }, + { + "start": 6731.82, + "end": 6734.08, + "probability": 0.9881 + }, + { + "start": 6734.9, + "end": 6737.72, + "probability": 0.9941 + }, + { + "start": 6737.84, + "end": 6739.4, + "probability": 0.8221 + }, + { + "start": 6739.44, + "end": 6740.5, + "probability": 0.5274 + }, + { + "start": 6741.2, + "end": 6747.62, + "probability": 0.9962 + }, + { + "start": 6748.28, + "end": 6753.78, + "probability": 0.9874 + }, + { + "start": 6755.01, + "end": 6756.86, + "probability": 0.6053 + }, + { + "start": 6756.9, + "end": 6759.52, + "probability": 0.6663 + }, + { + "start": 6759.52, + "end": 6759.86, + "probability": 0.684 + }, + { + "start": 6760.6, + "end": 6764.24, + "probability": 0.6153 + }, + { + "start": 6774.56, + "end": 6775.34, + "probability": 0.3141 + }, + { + "start": 6780.72, + "end": 6782.86, + "probability": 0.6138 + }, + { + "start": 6783.94, + "end": 6787.18, + "probability": 0.9591 + }, + { + "start": 6787.6, + "end": 6790.62, + "probability": 0.8326 + }, + { + "start": 6791.24, + "end": 6794.44, + "probability": 0.9962 + }, + { + "start": 6794.62, + "end": 6797.06, + "probability": 0.8587 + }, + { + "start": 6798.0, + "end": 6801.64, + "probability": 0.9968 + }, + { + "start": 6801.64, + "end": 6806.06, + "probability": 0.9906 + }, + { + "start": 6806.8, + "end": 6809.72, + "probability": 0.9763 + }, + { + "start": 6809.86, + "end": 6811.5, + "probability": 0.9915 + }, + { + "start": 6812.06, + "end": 6816.26, + "probability": 0.9921 + }, + { + "start": 6816.4, + "end": 6817.68, + "probability": 0.9327 + }, + { + "start": 6818.2, + "end": 6823.44, + "probability": 0.9633 + }, + { + "start": 6823.76, + "end": 6824.32, + "probability": 0.5832 + }, + { + "start": 6825.14, + "end": 6831.32, + "probability": 0.9814 + }, + { + "start": 6832.64, + "end": 6835.6, + "probability": 0.9511 + }, + { + "start": 6836.44, + "end": 6842.96, + "probability": 0.9502 + }, + { + "start": 6843.68, + "end": 6846.84, + "probability": 0.8521 + }, + { + "start": 6848.34, + "end": 6854.04, + "probability": 0.9539 + }, + { + "start": 6854.54, + "end": 6855.06, + "probability": 0.4873 + }, + { + "start": 6855.2, + "end": 6857.32, + "probability": 0.9706 + }, + { + "start": 6858.64, + "end": 6861.74, + "probability": 0.9253 + }, + { + "start": 6861.82, + "end": 6864.12, + "probability": 0.9867 + }, + { + "start": 6864.14, + "end": 6866.08, + "probability": 0.9663 + }, + { + "start": 6866.26, + "end": 6867.42, + "probability": 0.9188 + }, + { + "start": 6867.68, + "end": 6867.84, + "probability": 0.4848 + }, + { + "start": 6867.98, + "end": 6869.96, + "probability": 0.3275 + }, + { + "start": 6869.96, + "end": 6873.84, + "probability": 0.9702 + }, + { + "start": 6874.72, + "end": 6878.96, + "probability": 0.9933 + }, + { + "start": 6879.46, + "end": 6880.62, + "probability": 0.7992 + }, + { + "start": 6880.7, + "end": 6881.72, + "probability": 0.95 + }, + { + "start": 6882.26, + "end": 6884.86, + "probability": 0.9463 + }, + { + "start": 6885.44, + "end": 6887.46, + "probability": 0.9712 + }, + { + "start": 6887.64, + "end": 6891.82, + "probability": 0.9038 + }, + { + "start": 6892.0, + "end": 6893.54, + "probability": 0.9962 + }, + { + "start": 6893.74, + "end": 6895.21, + "probability": 0.9966 + }, + { + "start": 6895.84, + "end": 6899.44, + "probability": 0.8704 + }, + { + "start": 6899.6, + "end": 6899.92, + "probability": 0.8946 + }, + { + "start": 6900.08, + "end": 6903.44, + "probability": 0.9875 + }, + { + "start": 6903.94, + "end": 6904.58, + "probability": 0.8432 + }, + { + "start": 6904.62, + "end": 6909.4, + "probability": 0.9742 + }, + { + "start": 6910.02, + "end": 6915.98, + "probability": 0.9777 + }, + { + "start": 6916.0, + "end": 6918.66, + "probability": 0.941 + }, + { + "start": 6920.62, + "end": 6926.74, + "probability": 0.9551 + }, + { + "start": 6927.3, + "end": 6930.82, + "probability": 0.9223 + }, + { + "start": 6932.0, + "end": 6935.4, + "probability": 0.964 + }, + { + "start": 6935.68, + "end": 6938.5, + "probability": 0.8119 + }, + { + "start": 6938.62, + "end": 6941.76, + "probability": 0.9683 + }, + { + "start": 6942.78, + "end": 6944.64, + "probability": 0.8563 + }, + { + "start": 6944.8, + "end": 6946.72, + "probability": 0.96 + }, + { + "start": 6947.3, + "end": 6948.5, + "probability": 0.9514 + }, + { + "start": 6948.94, + "end": 6950.14, + "probability": 0.9778 + }, + { + "start": 6951.22, + "end": 6955.38, + "probability": 0.9855 + }, + { + "start": 6955.46, + "end": 6957.78, + "probability": 0.9954 + }, + { + "start": 6958.08, + "end": 6962.0, + "probability": 0.8961 + }, + { + "start": 6962.1, + "end": 6963.92, + "probability": 0.958 + }, + { + "start": 6964.48, + "end": 6964.84, + "probability": 0.74 + }, + { + "start": 6964.9, + "end": 6968.86, + "probability": 0.9904 + }, + { + "start": 6969.56, + "end": 6971.36, + "probability": 0.9692 + }, + { + "start": 6971.36, + "end": 6973.56, + "probability": 0.9967 + }, + { + "start": 6974.88, + "end": 6977.26, + "probability": 0.8805 + }, + { + "start": 6978.04, + "end": 6981.8, + "probability": 0.9922 + }, + { + "start": 6981.9, + "end": 6982.36, + "probability": 0.7849 + }, + { + "start": 6983.64, + "end": 6984.68, + "probability": 0.7988 + }, + { + "start": 6987.46, + "end": 6987.76, + "probability": 0.0208 + }, + { + "start": 6987.76, + "end": 6991.12, + "probability": 0.3259 + }, + { + "start": 6991.38, + "end": 6994.44, + "probability": 0.6167 + }, + { + "start": 7005.28, + "end": 7006.98, + "probability": 0.2623 + }, + { + "start": 7008.84, + "end": 7010.1, + "probability": 0.7523 + }, + { + "start": 7010.7, + "end": 7011.72, + "probability": 0.8795 + }, + { + "start": 7012.76, + "end": 7014.28, + "probability": 0.9136 + }, + { + "start": 7015.6, + "end": 7019.0, + "probability": 0.9683 + }, + { + "start": 7019.8, + "end": 7022.9, + "probability": 0.9765 + }, + { + "start": 7023.6, + "end": 7025.1, + "probability": 0.9919 + }, + { + "start": 7025.82, + "end": 7028.62, + "probability": 0.9769 + }, + { + "start": 7029.16, + "end": 7030.18, + "probability": 0.8521 + }, + { + "start": 7031.08, + "end": 7035.08, + "probability": 0.908 + }, + { + "start": 7035.08, + "end": 7039.4, + "probability": 0.9951 + }, + { + "start": 7040.16, + "end": 7048.02, + "probability": 0.8396 + }, + { + "start": 7048.02, + "end": 7054.6, + "probability": 0.9565 + }, + { + "start": 7055.32, + "end": 7059.58, + "probability": 0.9753 + }, + { + "start": 7060.36, + "end": 7061.95, + "probability": 0.5741 + }, + { + "start": 7063.4, + "end": 7067.56, + "probability": 0.9653 + }, + { + "start": 7067.56, + "end": 7075.24, + "probability": 0.964 + }, + { + "start": 7075.76, + "end": 7078.62, + "probability": 0.9833 + }, + { + "start": 7079.34, + "end": 7081.32, + "probability": 0.7202 + }, + { + "start": 7081.4, + "end": 7081.96, + "probability": 0.4385 + }, + { + "start": 7082.46, + "end": 7086.18, + "probability": 0.9737 + }, + { + "start": 7086.84, + "end": 7090.92, + "probability": 0.9749 + }, + { + "start": 7091.44, + "end": 7095.96, + "probability": 0.9951 + }, + { + "start": 7096.48, + "end": 7097.08, + "probability": 0.9115 + }, + { + "start": 7097.78, + "end": 7102.42, + "probability": 0.9974 + }, + { + "start": 7103.3, + "end": 7108.18, + "probability": 0.9987 + }, + { + "start": 7108.9, + "end": 7112.52, + "probability": 0.9779 + }, + { + "start": 7113.14, + "end": 7116.66, + "probability": 0.9643 + }, + { + "start": 7116.66, + "end": 7121.18, + "probability": 0.9824 + }, + { + "start": 7122.0, + "end": 7126.78, + "probability": 0.9421 + }, + { + "start": 7126.92, + "end": 7131.58, + "probability": 0.983 + }, + { + "start": 7131.58, + "end": 7134.18, + "probability": 0.9914 + }, + { + "start": 7134.98, + "end": 7135.28, + "probability": 0.6439 + }, + { + "start": 7136.2, + "end": 7138.3, + "probability": 0.8413 + }, + { + "start": 7138.3, + "end": 7140.98, + "probability": 0.906 + }, + { + "start": 7141.36, + "end": 7143.84, + "probability": 0.831 + }, + { + "start": 7143.86, + "end": 7147.62, + "probability": 0.9938 + }, + { + "start": 7148.54, + "end": 7153.02, + "probability": 0.9963 + }, + { + "start": 7153.02, + "end": 7156.48, + "probability": 0.9958 + }, + { + "start": 7157.04, + "end": 7161.66, + "probability": 0.9963 + }, + { + "start": 7161.66, + "end": 7165.4, + "probability": 0.9863 + }, + { + "start": 7166.3, + "end": 7170.34, + "probability": 0.9388 + }, + { + "start": 7170.34, + "end": 7174.96, + "probability": 0.9644 + }, + { + "start": 7175.84, + "end": 7179.52, + "probability": 0.9288 + }, + { + "start": 7180.02, + "end": 7184.38, + "probability": 0.9899 + }, + { + "start": 7184.38, + "end": 7190.34, + "probability": 0.904 + }, + { + "start": 7191.24, + "end": 7194.22, + "probability": 0.999 + }, + { + "start": 7194.84, + "end": 7197.4, + "probability": 0.9925 + }, + { + "start": 7197.98, + "end": 7200.64, + "probability": 0.9851 + }, + { + "start": 7201.24, + "end": 7206.94, + "probability": 0.8827 + }, + { + "start": 7207.76, + "end": 7210.46, + "probability": 0.0726 + }, + { + "start": 7210.8, + "end": 7213.16, + "probability": 0.4323 + }, + { + "start": 7215.42, + "end": 7219.0, + "probability": 0.9904 + }, + { + "start": 7220.84, + "end": 7222.32, + "probability": 0.6598 + }, + { + "start": 7222.5, + "end": 7224.18, + "probability": 0.8986 + }, + { + "start": 7225.46, + "end": 7226.54, + "probability": 0.6033 + }, + { + "start": 7226.78, + "end": 7227.54, + "probability": 0.0478 + }, + { + "start": 7228.24, + "end": 7230.06, + "probability": 0.2554 + }, + { + "start": 7239.62, + "end": 7240.68, + "probability": 0.2359 + }, + { + "start": 7240.76, + "end": 7241.66, + "probability": 0.9132 + }, + { + "start": 7241.8, + "end": 7242.54, + "probability": 0.382 + }, + { + "start": 7242.76, + "end": 7247.32, + "probability": 0.7721 + }, + { + "start": 7247.68, + "end": 7248.62, + "probability": 0.9927 + }, + { + "start": 7249.4, + "end": 7250.58, + "probability": 0.9727 + }, + { + "start": 7250.64, + "end": 7251.08, + "probability": 0.9671 + }, + { + "start": 7251.12, + "end": 7254.42, + "probability": 0.9853 + }, + { + "start": 7254.9, + "end": 7257.32, + "probability": 0.8586 + }, + { + "start": 7257.88, + "end": 7261.02, + "probability": 0.9106 + }, + { + "start": 7261.58, + "end": 7264.06, + "probability": 0.9668 + }, + { + "start": 7264.36, + "end": 7265.26, + "probability": 0.868 + }, + { + "start": 7265.5, + "end": 7270.2, + "probability": 0.9916 + }, + { + "start": 7270.86, + "end": 7274.0, + "probability": 0.998 + }, + { + "start": 7275.56, + "end": 7278.04, + "probability": 0.9068 + }, + { + "start": 7278.72, + "end": 7281.3, + "probability": 0.875 + }, + { + "start": 7282.92, + "end": 7285.7, + "probability": 0.3994 + }, + { + "start": 7286.1, + "end": 7286.2, + "probability": 0.1454 + }, + { + "start": 7287.2, + "end": 7288.52, + "probability": 0.5349 + }, + { + "start": 7289.04, + "end": 7292.2, + "probability": 0.8549 + }, + { + "start": 7292.76, + "end": 7293.26, + "probability": 0.6626 + }, + { + "start": 7293.36, + "end": 7297.36, + "probability": 0.8663 + }, + { + "start": 7297.36, + "end": 7300.62, + "probability": 0.9441 + }, + { + "start": 7300.84, + "end": 7301.76, + "probability": 0.7246 + }, + { + "start": 7301.84, + "end": 7306.5, + "probability": 0.9956 + }, + { + "start": 7307.0, + "end": 7307.08, + "probability": 0.1175 + }, + { + "start": 7307.18, + "end": 7309.18, + "probability": 0.9197 + }, + { + "start": 7309.28, + "end": 7309.82, + "probability": 0.7906 + }, + { + "start": 7310.44, + "end": 7316.0, + "probability": 0.9639 + }, + { + "start": 7316.0, + "end": 7323.16, + "probability": 0.9968 + }, + { + "start": 7323.28, + "end": 7323.72, + "probability": 0.7233 + }, + { + "start": 7325.28, + "end": 7327.6, + "probability": 0.7227 + }, + { + "start": 7327.8, + "end": 7329.04, + "probability": 0.6474 + }, + { + "start": 7330.58, + "end": 7331.36, + "probability": 0.6969 + }, + { + "start": 7331.46, + "end": 7331.7, + "probability": 0.8394 + }, + { + "start": 7331.78, + "end": 7332.76, + "probability": 0.5508 + }, + { + "start": 7333.2, + "end": 7334.84, + "probability": 0.7374 + }, + { + "start": 7334.98, + "end": 7336.72, + "probability": 0.8811 + }, + { + "start": 7336.72, + "end": 7337.72, + "probability": 0.5625 + }, + { + "start": 7337.82, + "end": 7338.74, + "probability": 0.3362 + }, + { + "start": 7339.18, + "end": 7340.02, + "probability": 0.6147 + }, + { + "start": 7340.78, + "end": 7345.22, + "probability": 0.8851 + }, + { + "start": 7346.17, + "end": 7349.04, + "probability": 0.8802 + }, + { + "start": 7349.38, + "end": 7349.9, + "probability": 0.2026 + }, + { + "start": 7350.42, + "end": 7351.08, + "probability": 0.585 + }, + { + "start": 7351.84, + "end": 7353.96, + "probability": 0.8148 + }, + { + "start": 7354.56, + "end": 7356.38, + "probability": 0.832 + }, + { + "start": 7357.48, + "end": 7358.76, + "probability": 0.93 + }, + { + "start": 7359.82, + "end": 7362.02, + "probability": 0.9178 + }, + { + "start": 7362.86, + "end": 7367.24, + "probability": 0.9607 + }, + { + "start": 7368.08, + "end": 7370.18, + "probability": 0.6454 + }, + { + "start": 7371.7, + "end": 7373.98, + "probability": 0.7463 + }, + { + "start": 7375.36, + "end": 7375.82, + "probability": 0.9438 + }, + { + "start": 7377.06, + "end": 7378.32, + "probability": 0.7268 + }, + { + "start": 7378.95, + "end": 7381.16, + "probability": 0.9414 + }, + { + "start": 7382.66, + "end": 7385.96, + "probability": 0.9922 + }, + { + "start": 7388.99, + "end": 7393.14, + "probability": 0.7651 + }, + { + "start": 7394.14, + "end": 7396.18, + "probability": 0.8239 + }, + { + "start": 7397.62, + "end": 7399.6, + "probability": 0.6587 + }, + { + "start": 7400.72, + "end": 7402.88, + "probability": 0.8033 + }, + { + "start": 7403.52, + "end": 7407.12, + "probability": 0.9153 + }, + { + "start": 7408.26, + "end": 7411.76, + "probability": 0.9418 + }, + { + "start": 7412.44, + "end": 7415.8, + "probability": 0.9392 + }, + { + "start": 7416.52, + "end": 7419.62, + "probability": 0.9822 + }, + { + "start": 7420.4, + "end": 7420.9, + "probability": 0.9243 + }, + { + "start": 7422.1, + "end": 7423.62, + "probability": 0.9794 + }, + { + "start": 7424.86, + "end": 7427.16, + "probability": 0.8371 + }, + { + "start": 7427.94, + "end": 7431.34, + "probability": 0.9273 + }, + { + "start": 7431.98, + "end": 7432.92, + "probability": 0.9174 + }, + { + "start": 7433.92, + "end": 7435.54, + "probability": 0.8392 + }, + { + "start": 7437.74, + "end": 7440.18, + "probability": 0.9453 + }, + { + "start": 7445.18, + "end": 7446.44, + "probability": 0.3435 + }, + { + "start": 7447.34, + "end": 7449.7, + "probability": 0.7023 + }, + { + "start": 7452.18, + "end": 7454.24, + "probability": 0.9573 + }, + { + "start": 7454.76, + "end": 7459.42, + "probability": 0.9598 + }, + { + "start": 7460.49, + "end": 7463.24, + "probability": 0.9412 + }, + { + "start": 7464.24, + "end": 7465.68, + "probability": 0.9773 + }, + { + "start": 7466.32, + "end": 7467.3, + "probability": 0.9768 + }, + { + "start": 7467.86, + "end": 7468.84, + "probability": 0.7336 + }, + { + "start": 7472.32, + "end": 7472.72, + "probability": 0.5353 + }, + { + "start": 7473.76, + "end": 7474.96, + "probability": 0.7398 + }, + { + "start": 7475.98, + "end": 7477.46, + "probability": 0.6029 + }, + { + "start": 7478.4, + "end": 7479.57, + "probability": 0.9425 + }, + { + "start": 7480.46, + "end": 7482.0, + "probability": 0.9817 + }, + { + "start": 7482.6, + "end": 7486.32, + "probability": 0.9256 + }, + { + "start": 7493.94, + "end": 7496.46, + "probability": 0.7525 + }, + { + "start": 7500.14, + "end": 7500.92, + "probability": 0.263 + }, + { + "start": 7502.34, + "end": 7503.66, + "probability": 0.6299 + }, + { + "start": 7504.66, + "end": 7508.5, + "probability": 0.951 + }, + { + "start": 7509.18, + "end": 7512.14, + "probability": 0.8346 + }, + { + "start": 7513.16, + "end": 7514.62, + "probability": 0.8832 + }, + { + "start": 7516.92, + "end": 7521.06, + "probability": 0.8668 + }, + { + "start": 7522.8, + "end": 7526.08, + "probability": 0.8143 + }, + { + "start": 7527.32, + "end": 7527.64, + "probability": 0.9917 + }, + { + "start": 7529.08, + "end": 7529.52, + "probability": 0.1685 + }, + { + "start": 7531.1, + "end": 7534.08, + "probability": 0.9435 + }, + { + "start": 7534.82, + "end": 7538.64, + "probability": 0.9883 + }, + { + "start": 7539.26, + "end": 7540.6, + "probability": 0.9852 + }, + { + "start": 7544.46, + "end": 7546.64, + "probability": 0.813 + }, + { + "start": 7546.88, + "end": 7549.12, + "probability": 0.9762 + }, + { + "start": 7549.54, + "end": 7551.44, + "probability": 0.9862 + }, + { + "start": 7552.06, + "end": 7554.7, + "probability": 0.9473 + }, + { + "start": 7555.94, + "end": 7558.24, + "probability": 0.7501 + }, + { + "start": 7559.44, + "end": 7564.58, + "probability": 0.8894 + }, + { + "start": 7565.1, + "end": 7566.84, + "probability": 0.9566 + }, + { + "start": 7568.22, + "end": 7578.64, + "probability": 0.9403 + }, + { + "start": 7579.88, + "end": 7582.54, + "probability": 0.6798 + }, + { + "start": 7583.9, + "end": 7586.22, + "probability": 0.646 + }, + { + "start": 7586.36, + "end": 7588.02, + "probability": 0.8424 + }, + { + "start": 7588.5, + "end": 7590.9, + "probability": 0.9115 + }, + { + "start": 7591.46, + "end": 7595.8, + "probability": 0.9737 + }, + { + "start": 7596.36, + "end": 7598.88, + "probability": 0.9216 + }, + { + "start": 7599.82, + "end": 7602.62, + "probability": 0.9797 + }, + { + "start": 7602.7, + "end": 7605.84, + "probability": 0.6531 + }, + { + "start": 7606.14, + "end": 7611.16, + "probability": 0.797 + }, + { + "start": 7612.7, + "end": 7618.32, + "probability": 0.8771 + }, + { + "start": 7619.2, + "end": 7620.7, + "probability": 0.946 + }, + { + "start": 7621.76, + "end": 7623.8, + "probability": 0.9648 + }, + { + "start": 7624.02, + "end": 7625.92, + "probability": 0.9458 + }, + { + "start": 7626.26, + "end": 7629.36, + "probability": 0.7874 + }, + { + "start": 7632.12, + "end": 7635.44, + "probability": 0.7217 + }, + { + "start": 7636.38, + "end": 7637.66, + "probability": 0.9582 + }, + { + "start": 7638.58, + "end": 7640.42, + "probability": 0.8877 + }, + { + "start": 7641.66, + "end": 7642.84, + "probability": 0.8457 + }, + { + "start": 7646.24, + "end": 7647.44, + "probability": 0.6213 + }, + { + "start": 7647.96, + "end": 7649.72, + "probability": 0.6021 + }, + { + "start": 7651.54, + "end": 7655.0, + "probability": 0.8704 + }, + { + "start": 7656.0, + "end": 7656.44, + "probability": 0.9578 + }, + { + "start": 7657.05, + "end": 7663.08, + "probability": 0.8476 + }, + { + "start": 7664.06, + "end": 7667.42, + "probability": 0.9682 + }, + { + "start": 7668.9, + "end": 7670.24, + "probability": 0.9936 + }, + { + "start": 7671.02, + "end": 7671.96, + "probability": 0.9384 + }, + { + "start": 7674.0, + "end": 7675.6, + "probability": 0.8035 + }, + { + "start": 7676.32, + "end": 7678.26, + "probability": 0.5563 + }, + { + "start": 7679.36, + "end": 7681.8, + "probability": 0.9577 + }, + { + "start": 7683.38, + "end": 7683.86, + "probability": 0.8574 + }, + { + "start": 7686.58, + "end": 7687.5, + "probability": 0.7041 + }, + { + "start": 7688.58, + "end": 7689.8, + "probability": 0.9768 + }, + { + "start": 7690.52, + "end": 7691.32, + "probability": 0.8879 + }, + { + "start": 7692.82, + "end": 7693.66, + "probability": 0.9763 + }, + { + "start": 7694.46, + "end": 7695.4, + "probability": 0.8352 + }, + { + "start": 7698.55, + "end": 7701.8, + "probability": 0.5722 + }, + { + "start": 7703.2, + "end": 7705.94, + "probability": 0.8893 + }, + { + "start": 7706.56, + "end": 7708.6, + "probability": 0.9459 + }, + { + "start": 7709.42, + "end": 7711.54, + "probability": 0.9687 + }, + { + "start": 7712.14, + "end": 7712.4, + "probability": 0.9751 + }, + { + "start": 7713.18, + "end": 7715.36, + "probability": 0.7712 + }, + { + "start": 7716.66, + "end": 7720.04, + "probability": 0.828 + }, + { + "start": 7722.82, + "end": 7726.24, + "probability": 0.9927 + }, + { + "start": 7727.08, + "end": 7729.12, + "probability": 0.8438 + }, + { + "start": 7730.44, + "end": 7733.78, + "probability": 0.927 + }, + { + "start": 7735.14, + "end": 7736.12, + "probability": 0.9824 + }, + { + "start": 7737.3, + "end": 7738.24, + "probability": 0.9899 + }, + { + "start": 7739.98, + "end": 7743.72, + "probability": 0.9227 + }, + { + "start": 7744.46, + "end": 7748.18, + "probability": 0.7576 + }, + { + "start": 7749.2, + "end": 7750.86, + "probability": 0.7767 + }, + { + "start": 7751.72, + "end": 7753.34, + "probability": 0.9748 + }, + { + "start": 7754.72, + "end": 7756.42, + "probability": 0.8033 + }, + { + "start": 7757.78, + "end": 7759.9, + "probability": 0.9901 + }, + { + "start": 7761.04, + "end": 7764.56, + "probability": 0.9914 + }, + { + "start": 7765.9, + "end": 7768.64, + "probability": 0.9341 + }, + { + "start": 7769.52, + "end": 7771.16, + "probability": 0.9932 + }, + { + "start": 7773.08, + "end": 7774.16, + "probability": 0.7625 + }, + { + "start": 7774.3, + "end": 7776.16, + "probability": 0.8776 + }, + { + "start": 7776.58, + "end": 7779.32, + "probability": 0.9071 + }, + { + "start": 7780.72, + "end": 7784.26, + "probability": 0.955 + }, + { + "start": 7786.18, + "end": 7788.26, + "probability": 0.8701 + }, + { + "start": 7789.08, + "end": 7791.64, + "probability": 0.9851 + }, + { + "start": 7796.22, + "end": 7796.44, + "probability": 0.5161 + }, + { + "start": 7798.72, + "end": 7799.76, + "probability": 0.7544 + }, + { + "start": 7800.78, + "end": 7805.5, + "probability": 0.8699 + }, + { + "start": 7806.88, + "end": 7808.46, + "probability": 0.7482 + }, + { + "start": 7809.58, + "end": 7814.55, + "probability": 0.7444 + }, + { + "start": 7816.83, + "end": 7818.46, + "probability": 0.2194 + }, + { + "start": 7819.22, + "end": 7821.68, + "probability": 0.6313 + }, + { + "start": 7821.68, + "end": 7821.68, + "probability": 0.0716 + }, + { + "start": 7821.68, + "end": 7822.1, + "probability": 0.5824 + }, + { + "start": 7823.02, + "end": 7823.28, + "probability": 0.4867 + }, + { + "start": 7823.86, + "end": 7825.96, + "probability": 0.4525 + }, + { + "start": 7828.1, + "end": 7829.06, + "probability": 0.7076 + }, + { + "start": 7829.72, + "end": 7832.1, + "probability": 0.7642 + }, + { + "start": 7833.86, + "end": 7836.16, + "probability": 0.9097 + }, + { + "start": 7837.06, + "end": 7840.84, + "probability": 0.8201 + }, + { + "start": 7842.2, + "end": 7844.22, + "probability": 0.6113 + }, + { + "start": 7845.7, + "end": 7848.34, + "probability": 0.9063 + }, + { + "start": 7850.12, + "end": 7853.42, + "probability": 0.9439 + }, + { + "start": 7859.14, + "end": 7859.94, + "probability": 0.5764 + }, + { + "start": 7867.2, + "end": 7869.24, + "probability": 0.5263 + }, + { + "start": 7869.48, + "end": 7871.62, + "probability": 0.8093 + }, + { + "start": 7871.72, + "end": 7873.06, + "probability": 0.9342 + }, + { + "start": 7877.02, + "end": 7881.9, + "probability": 0.8199 + }, + { + "start": 7882.89, + "end": 7885.02, + "probability": 0.7808 + }, + { + "start": 7886.48, + "end": 7888.62, + "probability": 0.9483 + }, + { + "start": 7889.74, + "end": 7892.42, + "probability": 0.9338 + }, + { + "start": 7893.04, + "end": 7896.18, + "probability": 0.9637 + }, + { + "start": 7897.14, + "end": 7897.54, + "probability": 0.9803 + }, + { + "start": 7908.12, + "end": 7908.74, + "probability": 0.5862 + }, + { + "start": 7910.75, + "end": 7913.72, + "probability": 0.8958 + }, + { + "start": 7914.7, + "end": 7915.82, + "probability": 0.8752 + }, + { + "start": 7917.34, + "end": 7918.2, + "probability": 0.9954 + }, + { + "start": 7919.52, + "end": 7920.46, + "probability": 0.9419 + }, + { + "start": 7921.14, + "end": 7922.46, + "probability": 0.9507 + }, + { + "start": 7923.48, + "end": 7923.92, + "probability": 0.9553 + }, + { + "start": 7925.02, + "end": 7926.6, + "probability": 0.5373 + }, + { + "start": 7929.06, + "end": 7931.06, + "probability": 0.5463 + }, + { + "start": 7931.62, + "end": 7933.38, + "probability": 0.7486 + }, + { + "start": 7934.28, + "end": 7938.74, + "probability": 0.9844 + }, + { + "start": 7939.72, + "end": 7942.18, + "probability": 0.9799 + }, + { + "start": 7943.8, + "end": 7946.72, + "probability": 0.9849 + }, + { + "start": 7947.36, + "end": 7950.74, + "probability": 0.9741 + }, + { + "start": 7952.14, + "end": 7955.12, + "probability": 0.8844 + }, + { + "start": 7956.0, + "end": 7958.54, + "probability": 0.8014 + }, + { + "start": 7959.94, + "end": 7962.92, + "probability": 0.8398 + }, + { + "start": 7964.02, + "end": 7967.58, + "probability": 0.7094 + }, + { + "start": 7969.22, + "end": 7970.02, + "probability": 0.9203 + }, + { + "start": 7971.24, + "end": 7972.02, + "probability": 0.5425 + }, + { + "start": 7973.46, + "end": 7975.88, + "probability": 0.9216 + }, + { + "start": 7977.34, + "end": 7978.54, + "probability": 0.6686 + }, + { + "start": 7979.18, + "end": 7980.9, + "probability": 0.9546 + }, + { + "start": 7981.7, + "end": 7982.04, + "probability": 0.9813 + }, + { + "start": 7985.58, + "end": 7988.94, + "probability": 0.7607 + }, + { + "start": 7989.8, + "end": 7991.98, + "probability": 0.8725 + }, + { + "start": 7993.18, + "end": 7998.46, + "probability": 0.9845 + }, + { + "start": 7999.8, + "end": 8000.64, + "probability": 0.8992 + }, + { + "start": 8004.14, + "end": 8005.14, + "probability": 0.0679 + }, + { + "start": 8007.16, + "end": 8008.88, + "probability": 0.5521 + }, + { + "start": 8010.1, + "end": 8012.1, + "probability": 0.9576 + }, + { + "start": 8012.4, + "end": 8013.56, + "probability": 0.9731 + }, + { + "start": 8014.24, + "end": 8014.48, + "probability": 0.4867 + }, + { + "start": 8014.5, + "end": 8014.9, + "probability": 0.8792 + }, + { + "start": 8015.48, + "end": 8016.08, + "probability": 0.4984 + }, + { + "start": 8016.08, + "end": 8016.6, + "probability": 0.4043 + }, + { + "start": 8164.64, + "end": 8165.26, + "probability": 0.4182 + }, + { + "start": 8165.42, + "end": 8165.44, + "probability": 0.0622 + }, + { + "start": 8165.44, + "end": 8165.44, + "probability": 0.0913 + }, + { + "start": 8165.44, + "end": 8165.44, + "probability": 0.1511 + }, + { + "start": 8165.44, + "end": 8168.08, + "probability": 0.6806 + }, + { + "start": 8168.28, + "end": 8174.72, + "probability": 0.7148 + }, + { + "start": 8174.86, + "end": 8176.3, + "probability": 0.0749 + }, + { + "start": 8176.3, + "end": 8178.58, + "probability": 0.6803 + }, + { + "start": 8179.0, + "end": 8180.98, + "probability": 0.8562 + }, + { + "start": 8185.74, + "end": 8185.74, + "probability": 0.0215 + }, + { + "start": 8190.38, + "end": 8192.48, + "probability": 0.728 + }, + { + "start": 8192.7, + "end": 8193.78, + "probability": 0.4401 + }, + { + "start": 8195.02, + "end": 8195.86, + "probability": 0.9359 + }, + { + "start": 8196.72, + "end": 8197.34, + "probability": 0.7751 + }, + { + "start": 8198.64, + "end": 8200.16, + "probability": 0.8323 + }, + { + "start": 8201.22, + "end": 8203.94, + "probability": 0.9436 + }, + { + "start": 8204.74, + "end": 8205.2, + "probability": 0.9943 + }, + { + "start": 8205.8, + "end": 8206.82, + "probability": 0.7523 + }, + { + "start": 8207.56, + "end": 8208.02, + "probability": 0.9727 + }, + { + "start": 8208.66, + "end": 8209.54, + "probability": 0.6573 + }, + { + "start": 8210.28, + "end": 8211.68, + "probability": 0.7437 + }, + { + "start": 8212.74, + "end": 8213.16, + "probability": 0.9523 + }, + { + "start": 8213.86, + "end": 8214.74, + "probability": 0.6704 + }, + { + "start": 8216.52, + "end": 8219.24, + "probability": 0.7345 + }, + { + "start": 8220.04, + "end": 8220.5, + "probability": 0.9717 + }, + { + "start": 8221.38, + "end": 8222.68, + "probability": 0.6 + }, + { + "start": 8223.82, + "end": 8226.1, + "probability": 0.9561 + }, + { + "start": 8227.26, + "end": 8229.26, + "probability": 0.9883 + }, + { + "start": 8230.26, + "end": 8233.58, + "probability": 0.8069 + }, + { + "start": 8237.48, + "end": 8238.28, + "probability": 0.7455 + }, + { + "start": 8239.08, + "end": 8239.82, + "probability": 0.6683 + }, + { + "start": 8241.16, + "end": 8243.22, + "probability": 0.889 + }, + { + "start": 8246.54, + "end": 8247.58, + "probability": 0.4895 + }, + { + "start": 8248.78, + "end": 8249.52, + "probability": 0.8042 + }, + { + "start": 8251.28, + "end": 8253.24, + "probability": 0.871 + }, + { + "start": 8253.94, + "end": 8255.92, + "probability": 0.916 + }, + { + "start": 8257.28, + "end": 8257.54, + "probability": 0.7089 + }, + { + "start": 8258.9, + "end": 8260.38, + "probability": 0.6838 + }, + { + "start": 8262.08, + "end": 8264.12, + "probability": 0.7845 + }, + { + "start": 8265.08, + "end": 8265.56, + "probability": 0.8892 + }, + { + "start": 8266.54, + "end": 8267.76, + "probability": 0.8427 + }, + { + "start": 8271.74, + "end": 8274.32, + "probability": 0.9906 + }, + { + "start": 8274.84, + "end": 8275.28, + "probability": 0.9867 + }, + { + "start": 8276.82, + "end": 8277.96, + "probability": 0.9776 + }, + { + "start": 8279.08, + "end": 8279.52, + "probability": 0.9906 + }, + { + "start": 8280.64, + "end": 8281.88, + "probability": 0.9165 + }, + { + "start": 8283.1, + "end": 8283.54, + "probability": 0.064 + }, + { + "start": 8289.52, + "end": 8291.18, + "probability": 0.4508 + }, + { + "start": 8291.9, + "end": 8292.62, + "probability": 0.5329 + }, + { + "start": 8296.02, + "end": 8300.44, + "probability": 0.7175 + }, + { + "start": 8300.96, + "end": 8302.48, + "probability": 0.7628 + }, + { + "start": 8305.26, + "end": 8307.5, + "probability": 0.9417 + }, + { + "start": 8311.04, + "end": 8313.34, + "probability": 0.9563 + }, + { + "start": 8314.04, + "end": 8315.36, + "probability": 0.9692 + }, + { + "start": 8316.16, + "end": 8317.04, + "probability": 0.4491 + }, + { + "start": 8324.5, + "end": 8326.24, + "probability": 0.7887 + }, + { + "start": 8327.48, + "end": 8329.36, + "probability": 0.8276 + }, + { + "start": 8330.98, + "end": 8333.42, + "probability": 0.9652 + }, + { + "start": 8334.9, + "end": 8338.4, + "probability": 0.6222 + }, + { + "start": 8338.5, + "end": 8339.42, + "probability": 0.0281 + }, + { + "start": 8339.64, + "end": 8339.92, + "probability": 0.0818 + }, + { + "start": 8339.94, + "end": 8339.94, + "probability": 0.3209 + }, + { + "start": 8339.94, + "end": 8340.1, + "probability": 0.2999 + }, + { + "start": 8340.1, + "end": 8340.88, + "probability": 0.5489 + }, + { + "start": 8343.32, + "end": 8344.54, + "probability": 0.0508 + }, + { + "start": 8346.74, + "end": 8347.9, + "probability": 0.056 + }, + { + "start": 8353.84, + "end": 8359.54, + "probability": 0.0204 + }, + { + "start": 8361.32, + "end": 8364.68, + "probability": 0.0875 + }, + { + "start": 8365.92, + "end": 8366.26, + "probability": 0.3909 + }, + { + "start": 8367.95, + "end": 8368.54, + "probability": 0.0506 + }, + { + "start": 8369.14, + "end": 8370.3, + "probability": 0.1241 + }, + { + "start": 8371.98, + "end": 8373.4, + "probability": 0.0273 + }, + { + "start": 8375.35, + "end": 8377.74, + "probability": 0.1183 + }, + { + "start": 8378.58, + "end": 8379.52, + "probability": 0.2202 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8728.0, + "end": 8728.0, + "probability": 0.0 + }, + { + "start": 8729.25, + "end": 8729.5, + "probability": 0.0148 + }, + { + "start": 8730.76, + "end": 8731.69, + "probability": 0.6401 + }, + { + "start": 8732.74, + "end": 8734.76, + "probability": 0.7785 + }, + { + "start": 8736.52, + "end": 8738.9, + "probability": 0.8552 + }, + { + "start": 8741.24, + "end": 8741.96, + "probability": 0.9462 + }, + { + "start": 8742.8, + "end": 8743.74, + "probability": 0.8754 + }, + { + "start": 8745.6, + "end": 8747.78, + "probability": 0.9426 + }, + { + "start": 8749.24, + "end": 8753.06, + "probability": 0.9369 + }, + { + "start": 8754.98, + "end": 8756.04, + "probability": 0.4299 + }, + { + "start": 8758.02, + "end": 8760.84, + "probability": 0.6731 + }, + { + "start": 8762.28, + "end": 8764.9, + "probability": 0.9109 + }, + { + "start": 8766.82, + "end": 8769.0, + "probability": 0.9883 + }, + { + "start": 8771.26, + "end": 8773.62, + "probability": 0.9512 + }, + { + "start": 8774.8, + "end": 8775.22, + "probability": 0.9881 + }, + { + "start": 8778.24, + "end": 8779.46, + "probability": 0.3657 + }, + { + "start": 8780.28, + "end": 8782.06, + "probability": 0.8147 + }, + { + "start": 8783.1, + "end": 8784.66, + "probability": 0.9906 + }, + { + "start": 8785.84, + "end": 8787.64, + "probability": 0.9673 + }, + { + "start": 8788.2, + "end": 8790.36, + "probability": 0.9874 + }, + { + "start": 8791.72, + "end": 8794.16, + "probability": 0.9674 + }, + { + "start": 8795.0, + "end": 8795.96, + "probability": 0.9716 + }, + { + "start": 8796.96, + "end": 8799.32, + "probability": 0.9936 + }, + { + "start": 8800.24, + "end": 8801.0, + "probability": 0.9927 + }, + { + "start": 8801.64, + "end": 8802.56, + "probability": 0.9872 + }, + { + "start": 8803.6, + "end": 8804.06, + "probability": 0.9979 + }, + { + "start": 8805.98, + "end": 8807.28, + "probability": 0.7861 + }, + { + "start": 8808.04, + "end": 8808.7, + "probability": 0.8225 + }, + { + "start": 8809.4, + "end": 8810.76, + "probability": 0.8192 + }, + { + "start": 8811.44, + "end": 8811.82, + "probability": 0.9512 + }, + { + "start": 8815.28, + "end": 8815.82, + "probability": 0.337 + }, + { + "start": 8817.6, + "end": 8817.88, + "probability": 0.802 + }, + { + "start": 8820.6, + "end": 8821.06, + "probability": 0.881 + }, + { + "start": 8822.8, + "end": 8824.56, + "probability": 0.6718 + }, + { + "start": 8825.12, + "end": 8825.9, + "probability": 0.9214 + }, + { + "start": 8827.38, + "end": 8828.26, + "probability": 0.9318 + }, + { + "start": 8829.2, + "end": 8831.62, + "probability": 0.9084 + }, + { + "start": 8832.14, + "end": 8834.62, + "probability": 0.9355 + }, + { + "start": 8835.84, + "end": 8836.3, + "probability": 0.9863 + }, + { + "start": 8838.94, + "end": 8839.76, + "probability": 0.8759 + }, + { + "start": 8843.18, + "end": 8844.0, + "probability": 0.8837 + }, + { + "start": 8844.76, + "end": 8845.8, + "probability": 0.2924 + }, + { + "start": 8850.12, + "end": 8854.88, + "probability": 0.9173 + }, + { + "start": 8857.04, + "end": 8859.22, + "probability": 0.9932 + }, + { + "start": 8859.74, + "end": 8861.5, + "probability": 0.9714 + }, + { + "start": 8862.58, + "end": 8863.54, + "probability": 0.9534 + }, + { + "start": 8865.36, + "end": 8866.76, + "probability": 0.8723 + }, + { + "start": 8868.0, + "end": 8870.48, + "probability": 0.842 + }, + { + "start": 8871.82, + "end": 8872.68, + "probability": 0.8782 + }, + { + "start": 8873.22, + "end": 8874.26, + "probability": 0.7087 + }, + { + "start": 8876.88, + "end": 8879.0, + "probability": 0.8802 + }, + { + "start": 8881.98, + "end": 8882.42, + "probability": 0.793 + }, + { + "start": 8884.32, + "end": 8885.42, + "probability": 0.8292 + }, + { + "start": 8887.66, + "end": 8888.44, + "probability": 0.9525 + }, + { + "start": 8889.06, + "end": 8890.68, + "probability": 0.9609 + }, + { + "start": 8891.76, + "end": 8893.76, + "probability": 0.958 + }, + { + "start": 8896.02, + "end": 8898.64, + "probability": 0.9686 + }, + { + "start": 8899.76, + "end": 8902.62, + "probability": 0.8972 + }, + { + "start": 8903.64, + "end": 8904.1, + "probability": 0.8784 + }, + { + "start": 8905.64, + "end": 8909.44, + "probability": 0.8719 + }, + { + "start": 8911.26, + "end": 8912.08, + "probability": 0.9858 + }, + { + "start": 8913.0, + "end": 8914.42, + "probability": 0.8702 + }, + { + "start": 8920.84, + "end": 8921.92, + "probability": 0.5671 + }, + { + "start": 8923.38, + "end": 8928.2, + "probability": 0.948 + }, + { + "start": 8929.24, + "end": 8929.74, + "probability": 0.9629 + }, + { + "start": 8932.26, + "end": 8933.08, + "probability": 0.6819 + }, + { + "start": 8934.4, + "end": 8935.24, + "probability": 0.9974 + }, + { + "start": 8937.6, + "end": 8940.67, + "probability": 0.928 + }, + { + "start": 8941.01, + "end": 8946.63, + "probability": 0.2619 + }, + { + "start": 8947.55, + "end": 8948.93, + "probability": 0.8338 + }, + { + "start": 8951.11, + "end": 8951.59, + "probability": 0.3594 + }, + { + "start": 8954.03, + "end": 8954.71, + "probability": 0.6061 + }, + { + "start": 8955.33, + "end": 8955.63, + "probability": 0.5609 + }, + { + "start": 8956.21, + "end": 8957.67, + "probability": 0.8596 + }, + { + "start": 8958.97, + "end": 8959.69, + "probability": 0.6743 + }, + { + "start": 8961.53, + "end": 8962.75, + "probability": 0.5762 + }, + { + "start": 8962.89, + "end": 8964.4, + "probability": 0.6935 + }, + { + "start": 8964.97, + "end": 8965.97, + "probability": 0.844 + }, + { + "start": 8966.61, + "end": 8967.39, + "probability": 0.9592 + }, + { + "start": 8967.47, + "end": 8968.25, + "probability": 0.9629 + }, + { + "start": 8970.55, + "end": 8971.65, + "probability": 0.3494 + }, + { + "start": 8972.43, + "end": 8974.83, + "probability": 0.5341 + }, + { + "start": 8983.39, + "end": 8983.59, + "probability": 0.5166 + }, + { + "start": 8984.43, + "end": 8987.07, + "probability": 0.4918 + }, + { + "start": 8987.69, + "end": 8988.09, + "probability": 0.5216 + }, + { + "start": 9000.09, + "end": 9000.61, + "probability": 0.6643 + }, + { + "start": 9001.11, + "end": 9002.15, + "probability": 0.844 + }, + { + "start": 9004.23, + "end": 9005.43, + "probability": 0.3204 + }, + { + "start": 9005.95, + "end": 9006.43, + "probability": 0.3998 + }, + { + "start": 9009.27, + "end": 9009.78, + "probability": 0.0853 + }, + { + "start": 9010.35, + "end": 9011.17, + "probability": 0.0325 + }, + { + "start": 9012.55, + "end": 9012.97, + "probability": 0.3619 + }, + { + "start": 9012.97, + "end": 9012.97, + "probability": 0.3047 + }, + { + "start": 9012.97, + "end": 9013.57, + "probability": 0.4326 + }, + { + "start": 9014.65, + "end": 9018.65, + "probability": 0.2992 + }, + { + "start": 9019.67, + "end": 9020.91, + "probability": 0.4168 + }, + { + "start": 9020.91, + "end": 9021.09, + "probability": 0.1835 + }, + { + "start": 9021.09, + "end": 9022.21, + "probability": 0.633 + }, + { + "start": 9022.73, + "end": 9024.67, + "probability": 0.4889 + }, + { + "start": 9025.51, + "end": 9025.83, + "probability": 0.1462 + }, + { + "start": 9025.83, + "end": 9026.79, + "probability": 0.0107 + }, + { + "start": 9027.19, + "end": 9028.75, + "probability": 0.1877 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9129.0, + "end": 9129.0, + "probability": 0.0 + }, + { + "start": 9130.52, + "end": 9131.52, + "probability": 0.031 + }, + { + "start": 9136.02, + "end": 9141.44, + "probability": 0.121 + }, + { + "start": 9141.52, + "end": 9144.02, + "probability": 0.1372 + }, + { + "start": 9147.74, + "end": 9147.74, + "probability": 0.0985 + }, + { + "start": 9153.66, + "end": 9155.34, + "probability": 0.217 + }, + { + "start": 9155.34, + "end": 9157.44, + "probability": 0.0415 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.0, + "end": 9251.0, + "probability": 0.0 + }, + { + "start": 9251.46, + "end": 9255.4, + "probability": 0.9214 + }, + { + "start": 9255.54, + "end": 9259.1, + "probability": 0.5497 + }, + { + "start": 9259.36, + "end": 9259.64, + "probability": 0.2439 + }, + { + "start": 9264.44, + "end": 9265.88, + "probability": 0.2407 + }, + { + "start": 9266.06, + "end": 9267.18, + "probability": 0.7264 + }, + { + "start": 9269.08, + "end": 9270.88, + "probability": 0.9623 + }, + { + "start": 9271.78, + "end": 9272.86, + "probability": 0.9147 + }, + { + "start": 9274.5, + "end": 9278.78, + "probability": 0.9811 + }, + { + "start": 9280.2, + "end": 9283.9, + "probability": 0.8943 + }, + { + "start": 9285.18, + "end": 9289.28, + "probability": 0.9625 + }, + { + "start": 9290.6, + "end": 9293.34, + "probability": 0.9961 + }, + { + "start": 9293.76, + "end": 9297.96, + "probability": 0.9936 + }, + { + "start": 9300.56, + "end": 9307.26, + "probability": 0.9731 + }, + { + "start": 9308.3, + "end": 9312.54, + "probability": 0.9534 + }, + { + "start": 9312.8, + "end": 9314.74, + "probability": 0.4314 + }, + { + "start": 9316.4, + "end": 9319.58, + "probability": 0.9907 + }, + { + "start": 9320.42, + "end": 9321.44, + "probability": 0.9703 + }, + { + "start": 9322.76, + "end": 9325.65, + "probability": 0.9512 + }, + { + "start": 9326.62, + "end": 9329.36, + "probability": 0.7644 + }, + { + "start": 9330.0, + "end": 9331.06, + "probability": 0.9871 + }, + { + "start": 9331.64, + "end": 9333.16, + "probability": 0.9966 + }, + { + "start": 9334.22, + "end": 9336.98, + "probability": 0.9928 + }, + { + "start": 9338.62, + "end": 9340.08, + "probability": 0.914 + }, + { + "start": 9340.54, + "end": 9342.16, + "probability": 0.9848 + }, + { + "start": 9342.64, + "end": 9344.14, + "probability": 0.9916 + }, + { + "start": 9344.66, + "end": 9349.7, + "probability": 0.9955 + }, + { + "start": 9351.2, + "end": 9354.38, + "probability": 0.9958 + }, + { + "start": 9355.14, + "end": 9357.2, + "probability": 0.9451 + }, + { + "start": 9358.68, + "end": 9359.84, + "probability": 0.7136 + }, + { + "start": 9360.46, + "end": 9364.24, + "probability": 0.9775 + }, + { + "start": 9365.02, + "end": 9366.42, + "probability": 0.9429 + }, + { + "start": 9367.6, + "end": 9372.8, + "probability": 0.9641 + }, + { + "start": 9374.04, + "end": 9380.01, + "probability": 0.9902 + }, + { + "start": 9381.48, + "end": 9382.66, + "probability": 0.8942 + }, + { + "start": 9383.2, + "end": 9383.64, + "probability": 0.6928 + }, + { + "start": 9384.42, + "end": 9385.58, + "probability": 0.9937 + }, + { + "start": 9386.76, + "end": 9386.76, + "probability": 0.1896 + }, + { + "start": 9386.76, + "end": 9390.12, + "probability": 0.9924 + }, + { + "start": 9390.18, + "end": 9391.02, + "probability": 0.9531 + }, + { + "start": 9392.84, + "end": 9394.3, + "probability": 0.9445 + }, + { + "start": 9395.18, + "end": 9399.62, + "probability": 0.9801 + }, + { + "start": 9400.58, + "end": 9403.13, + "probability": 0.9731 + }, + { + "start": 9404.06, + "end": 9406.62, + "probability": 0.9307 + }, + { + "start": 9407.54, + "end": 9410.46, + "probability": 0.9977 + }, + { + "start": 9411.54, + "end": 9415.78, + "probability": 0.9887 + }, + { + "start": 9417.12, + "end": 9421.32, + "probability": 0.979 + }, + { + "start": 9422.74, + "end": 9424.6, + "probability": 0.9929 + }, + { + "start": 9428.08, + "end": 9439.02, + "probability": 0.9341 + }, + { + "start": 9439.92, + "end": 9442.48, + "probability": 0.9902 + }, + { + "start": 9443.92, + "end": 9446.62, + "probability": 0.9888 + }, + { + "start": 9449.34, + "end": 9455.34, + "probability": 0.995 + }, + { + "start": 9455.34, + "end": 9460.58, + "probability": 0.9992 + }, + { + "start": 9461.52, + "end": 9465.1, + "probability": 0.9974 + }, + { + "start": 9465.28, + "end": 9468.94, + "probability": 0.9952 + }, + { + "start": 9470.22, + "end": 9473.38, + "probability": 0.665 + }, + { + "start": 9473.38, + "end": 9476.53, + "probability": 0.9958 + }, + { + "start": 9478.24, + "end": 9482.86, + "probability": 0.9037 + }, + { + "start": 9483.84, + "end": 9491.52, + "probability": 0.9928 + }, + { + "start": 9491.92, + "end": 9492.94, + "probability": 0.8316 + }, + { + "start": 9494.28, + "end": 9497.0, + "probability": 0.9602 + }, + { + "start": 9497.54, + "end": 9500.52, + "probability": 0.975 + }, + { + "start": 9501.82, + "end": 9504.7, + "probability": 0.997 + }, + { + "start": 9505.48, + "end": 9507.12, + "probability": 0.7958 + }, + { + "start": 9507.68, + "end": 9509.54, + "probability": 0.9757 + }, + { + "start": 9510.46, + "end": 9511.84, + "probability": 0.9412 + }, + { + "start": 9512.08, + "end": 9513.5, + "probability": 0.9486 + }, + { + "start": 9513.98, + "end": 9515.26, + "probability": 0.9791 + }, + { + "start": 9518.08, + "end": 9520.82, + "probability": 0.9956 + }, + { + "start": 9521.52, + "end": 9523.88, + "probability": 0.8889 + }, + { + "start": 9525.04, + "end": 9525.92, + "probability": 0.8891 + }, + { + "start": 9526.16, + "end": 9527.0, + "probability": 0.8328 + }, + { + "start": 9527.12, + "end": 9529.3, + "probability": 0.901 + }, + { + "start": 9530.1, + "end": 9534.5, + "probability": 0.9766 + }, + { + "start": 9534.5, + "end": 9539.02, + "probability": 0.9127 + }, + { + "start": 9540.22, + "end": 9542.12, + "probability": 0.9808 + }, + { + "start": 9542.6, + "end": 9548.32, + "probability": 0.987 + }, + { + "start": 9550.54, + "end": 9551.2, + "probability": 0.9331 + }, + { + "start": 9551.2, + "end": 9554.92, + "probability": 0.9902 + }, + { + "start": 9555.08, + "end": 9559.88, + "probability": 0.9921 + }, + { + "start": 9562.58, + "end": 9564.1, + "probability": 0.6148 + }, + { + "start": 9564.34, + "end": 9564.58, + "probability": 0.8662 + }, + { + "start": 9564.76, + "end": 9566.13, + "probability": 0.9495 + }, + { + "start": 9566.32, + "end": 9568.82, + "probability": 0.9206 + }, + { + "start": 9569.56, + "end": 9573.12, + "probability": 0.9874 + }, + { + "start": 9574.14, + "end": 9576.68, + "probability": 0.9767 + }, + { + "start": 9576.68, + "end": 9580.46, + "probability": 0.9993 + }, + { + "start": 9581.9, + "end": 9588.3, + "probability": 0.9958 + }, + { + "start": 9589.44, + "end": 9592.06, + "probability": 0.9399 + }, + { + "start": 9592.92, + "end": 9593.92, + "probability": 0.9924 + }, + { + "start": 9594.54, + "end": 9597.72, + "probability": 0.906 + }, + { + "start": 9597.74, + "end": 9601.96, + "probability": 0.9983 + }, + { + "start": 9603.34, + "end": 9607.42, + "probability": 0.8835 + }, + { + "start": 9608.22, + "end": 9612.88, + "probability": 0.9966 + }, + { + "start": 9617.52, + "end": 9619.24, + "probability": 0.6943 + }, + { + "start": 9621.06, + "end": 9624.46, + "probability": 0.9145 + }, + { + "start": 9624.6, + "end": 9625.12, + "probability": 0.9641 + }, + { + "start": 9625.22, + "end": 9629.12, + "probability": 0.993 + }, + { + "start": 9629.12, + "end": 9632.36, + "probability": 0.9915 + }, + { + "start": 9633.3, + "end": 9635.94, + "probability": 0.986 + }, + { + "start": 9636.58, + "end": 9641.38, + "probability": 0.9911 + }, + { + "start": 9642.46, + "end": 9645.76, + "probability": 0.9957 + }, + { + "start": 9646.36, + "end": 9650.62, + "probability": 0.9581 + }, + { + "start": 9651.06, + "end": 9651.48, + "probability": 0.7653 + }, + { + "start": 9651.71, + "end": 9655.96, + "probability": 0.9597 + }, + { + "start": 9665.78, + "end": 9668.22, + "probability": 0.9855 + }, + { + "start": 9669.7, + "end": 9670.48, + "probability": 0.8729 + }, + { + "start": 9672.28, + "end": 9676.14, + "probability": 0.9963 + }, + { + "start": 9676.14, + "end": 9679.12, + "probability": 0.9954 + }, + { + "start": 9679.42, + "end": 9680.52, + "probability": 0.9338 + }, + { + "start": 9680.58, + "end": 9681.22, + "probability": 0.97 + }, + { + "start": 9681.86, + "end": 9683.7, + "probability": 0.9887 + }, + { + "start": 9684.54, + "end": 9689.54, + "probability": 0.96 + }, + { + "start": 9690.1, + "end": 9690.84, + "probability": 0.8534 + }, + { + "start": 9692.68, + "end": 9694.58, + "probability": 0.981 + }, + { + "start": 9695.28, + "end": 9696.9, + "probability": 0.5623 + }, + { + "start": 9697.76, + "end": 9701.9, + "probability": 0.9573 + }, + { + "start": 9702.82, + "end": 9707.52, + "probability": 0.9899 + }, + { + "start": 9707.64, + "end": 9708.84, + "probability": 0.821 + }, + { + "start": 9709.48, + "end": 9714.36, + "probability": 0.9532 + }, + { + "start": 9714.46, + "end": 9718.2, + "probability": 0.9679 + }, + { + "start": 9719.08, + "end": 9719.9, + "probability": 0.6158 + }, + { + "start": 9719.96, + "end": 9723.98, + "probability": 0.9926 + }, + { + "start": 9724.38, + "end": 9726.38, + "probability": 0.8794 + }, + { + "start": 9727.42, + "end": 9728.12, + "probability": 0.8735 + }, + { + "start": 9728.86, + "end": 9730.5, + "probability": 0.9976 + }, + { + "start": 9730.56, + "end": 9732.98, + "probability": 0.9655 + }, + { + "start": 9733.74, + "end": 9735.9, + "probability": 0.985 + }, + { + "start": 9735.9, + "end": 9739.44, + "probability": 0.9948 + }, + { + "start": 9739.76, + "end": 9740.22, + "probability": 0.4958 + }, + { + "start": 9741.18, + "end": 9745.6, + "probability": 0.9888 + }, + { + "start": 9748.74, + "end": 9752.62, + "probability": 0.998 + }, + { + "start": 9753.66, + "end": 9755.54, + "probability": 0.9988 + }, + { + "start": 9756.44, + "end": 9757.46, + "probability": 0.8349 + }, + { + "start": 9757.98, + "end": 9763.24, + "probability": 0.9985 + }, + { + "start": 9764.8, + "end": 9770.88, + "probability": 0.9967 + }, + { + "start": 9771.54, + "end": 9773.5, + "probability": 0.9714 + }, + { + "start": 9774.0, + "end": 9774.96, + "probability": 0.6156 + }, + { + "start": 9775.94, + "end": 9776.92, + "probability": 0.687 + }, + { + "start": 9777.08, + "end": 9780.08, + "probability": 0.988 + }, + { + "start": 9780.2, + "end": 9781.32, + "probability": 0.6396 + }, + { + "start": 9781.66, + "end": 9782.9, + "probability": 0.9845 + }, + { + "start": 9783.06, + "end": 9784.58, + "probability": 0.9868 + }, + { + "start": 9785.12, + "end": 9787.16, + "probability": 0.9669 + }, + { + "start": 9787.26, + "end": 9788.2, + "probability": 0.8288 + }, + { + "start": 9788.56, + "end": 9789.32, + "probability": 0.9441 + }, + { + "start": 9789.7, + "end": 9790.78, + "probability": 0.9302 + }, + { + "start": 9790.88, + "end": 9793.9, + "probability": 0.9803 + }, + { + "start": 9795.46, + "end": 9797.05, + "probability": 0.8809 + }, + { + "start": 9797.68, + "end": 9798.56, + "probability": 0.0397 + }, + { + "start": 9799.72, + "end": 9802.02, + "probability": 0.3263 + }, + { + "start": 9802.9, + "end": 9804.4, + "probability": 0.9789 + }, + { + "start": 9804.96, + "end": 9807.72, + "probability": 0.9668 + }, + { + "start": 9808.14, + "end": 9813.12, + "probability": 0.9016 + }, + { + "start": 9813.44, + "end": 9814.84, + "probability": 0.4839 + }, + { + "start": 9814.96, + "end": 9816.2, + "probability": 0.7544 + }, + { + "start": 9816.24, + "end": 9817.22, + "probability": 0.9341 + }, + { + "start": 9817.32, + "end": 9821.86, + "probability": 0.948 + }, + { + "start": 9821.94, + "end": 9825.97, + "probability": 0.9922 + }, + { + "start": 9826.16, + "end": 9829.62, + "probability": 0.9969 + }, + { + "start": 9830.64, + "end": 9833.26, + "probability": 0.9236 + }, + { + "start": 9833.26, + "end": 9837.7, + "probability": 0.7789 + }, + { + "start": 9838.18, + "end": 9842.96, + "probability": 0.9358 + }, + { + "start": 9843.08, + "end": 9847.98, + "probability": 0.9972 + }, + { + "start": 9848.84, + "end": 9849.68, + "probability": 0.8825 + }, + { + "start": 9850.46, + "end": 9851.48, + "probability": 0.8122 + }, + { + "start": 9852.02, + "end": 9856.38, + "probability": 0.9543 + }, + { + "start": 9856.6, + "end": 9857.68, + "probability": 0.6661 + }, + { + "start": 9858.16, + "end": 9863.6, + "probability": 0.9971 + }, + { + "start": 9863.8, + "end": 9866.18, + "probability": 0.9906 + }, + { + "start": 9866.96, + "end": 9869.78, + "probability": 0.9849 + }, + { + "start": 9869.94, + "end": 9871.06, + "probability": 0.7986 + }, + { + "start": 9871.38, + "end": 9875.24, + "probability": 0.9858 + }, + { + "start": 9875.24, + "end": 9880.06, + "probability": 0.9688 + }, + { + "start": 9880.3, + "end": 9880.42, + "probability": 0.8103 + }, + { + "start": 9880.86, + "end": 9884.96, + "probability": 0.9873 + }, + { + "start": 9884.96, + "end": 9888.4, + "probability": 0.9979 + }, + { + "start": 9888.62, + "end": 9890.26, + "probability": 0.4995 + }, + { + "start": 9890.26, + "end": 9890.5, + "probability": 0.2994 + }, + { + "start": 9890.64, + "end": 9892.04, + "probability": 0.8212 + }, + { + "start": 9894.93, + "end": 9895.29, + "probability": 0.2005 + }, + { + "start": 9895.42, + "end": 9895.5, + "probability": 0.6222 + }, + { + "start": 9895.68, + "end": 9896.45, + "probability": 0.511 + }, + { + "start": 9896.86, + "end": 9897.68, + "probability": 0.5772 + }, + { + "start": 9898.32, + "end": 9900.34, + "probability": 0.2429 + }, + { + "start": 9900.36, + "end": 9900.46, + "probability": 0.2516 + }, + { + "start": 9900.46, + "end": 9900.46, + "probability": 0.5198 + }, + { + "start": 9900.46, + "end": 9900.46, + "probability": 0.1261 + }, + { + "start": 9900.46, + "end": 9900.48, + "probability": 0.444 + }, + { + "start": 9900.62, + "end": 9900.68, + "probability": 0.4554 + }, + { + "start": 9900.8, + "end": 9900.8, + "probability": 0.4308 + }, + { + "start": 9901.0, + "end": 9901.72, + "probability": 0.9343 + }, + { + "start": 9901.82, + "end": 9902.6, + "probability": 0.6708 + }, + { + "start": 9902.72, + "end": 9905.2, + "probability": 0.7474 + }, + { + "start": 9905.56, + "end": 9907.72, + "probability": 0.758 + }, + { + "start": 9908.2, + "end": 9910.06, + "probability": 0.5729 + }, + { + "start": 9910.92, + "end": 9913.22, + "probability": 0.9495 + }, + { + "start": 9918.44, + "end": 9920.8, + "probability": 0.9449 + }, + { + "start": 9921.26, + "end": 9922.32, + "probability": 0.9709 + }, + { + "start": 9922.52, + "end": 9923.68, + "probability": 0.932 + }, + { + "start": 9924.08, + "end": 9924.64, + "probability": 0.9348 + }, + { + "start": 9925.26, + "end": 9926.36, + "probability": 0.9927 + }, + { + "start": 9927.2, + "end": 9931.0, + "probability": 0.9983 + }, + { + "start": 9932.9, + "end": 9934.34, + "probability": 0.7113 + }, + { + "start": 9934.48, + "end": 9935.1, + "probability": 0.7441 + }, + { + "start": 9935.28, + "end": 9937.56, + "probability": 0.7244 + }, + { + "start": 9938.4, + "end": 9941.14, + "probability": 0.3452 + }, + { + "start": 9941.6, + "end": 9942.88, + "probability": 0.4812 + }, + { + "start": 9943.48, + "end": 9945.78, + "probability": 0.9792 + }, + { + "start": 9945.96, + "end": 9946.84, + "probability": 0.6365 + }, + { + "start": 9946.84, + "end": 9948.88, + "probability": 0.7995 + }, + { + "start": 9949.0, + "end": 9949.74, + "probability": 0.9293 + }, + { + "start": 9949.84, + "end": 9953.04, + "probability": 0.9932 + }, + { + "start": 9953.1, + "end": 9955.24, + "probability": 0.9967 + }, + { + "start": 9955.8, + "end": 9958.94, + "probability": 0.9965 + }, + { + "start": 9959.08, + "end": 9959.8, + "probability": 0.6846 + }, + { + "start": 9959.8, + "end": 9962.46, + "probability": 0.9194 + }, + { + "start": 9963.2, + "end": 9964.08, + "probability": 0.9188 + }, + { + "start": 9964.48, + "end": 9965.74, + "probability": 0.9437 + }, + { + "start": 9965.98, + "end": 9968.96, + "probability": 0.9807 + }, + { + "start": 9968.96, + "end": 9971.8, + "probability": 0.9839 + }, + { + "start": 9971.92, + "end": 9972.78, + "probability": 0.7827 + }, + { + "start": 9973.18, + "end": 9975.84, + "probability": 0.9861 + }, + { + "start": 9976.26, + "end": 9977.44, + "probability": 0.8936 + }, + { + "start": 9977.58, + "end": 9979.82, + "probability": 0.9937 + }, + { + "start": 9979.92, + "end": 9983.08, + "probability": 0.9977 + }, + { + "start": 9983.24, + "end": 9984.0, + "probability": 0.6303 + }, + { + "start": 9984.0, + "end": 9988.5, + "probability": 0.4942 + }, + { + "start": 9988.5, + "end": 9991.96, + "probability": 0.7889 + }, + { + "start": 9992.14, + "end": 9992.14, + "probability": 0.0208 + }, + { + "start": 9992.14, + "end": 9998.32, + "probability": 0.8652 + }, + { + "start": 9998.32, + "end": 10002.02, + "probability": 0.9858 + }, + { + "start": 10002.92, + "end": 10004.92, + "probability": 0.9439 + }, + { + "start": 10005.44, + "end": 10006.77, + "probability": 0.9178 + }, + { + "start": 10007.3, + "end": 10008.96, + "probability": 0.9927 + }, + { + "start": 10008.96, + "end": 10009.48, + "probability": 0.4931 + }, + { + "start": 10009.58, + "end": 10013.14, + "probability": 0.9434 + }, + { + "start": 10013.5, + "end": 10015.8, + "probability": 0.9438 + }, + { + "start": 10016.44, + "end": 10016.46, + "probability": 0.6893 + }, + { + "start": 10016.46, + "end": 10023.36, + "probability": 0.9551 + }, + { + "start": 10023.56, + "end": 10028.14, + "probability": 0.7582 + }, + { + "start": 10028.68, + "end": 10030.06, + "probability": 0.213 + }, + { + "start": 10030.14, + "end": 10031.58, + "probability": 0.8908 + }, + { + "start": 10031.64, + "end": 10032.92, + "probability": 0.6904 + }, + { + "start": 10034.76, + "end": 10036.08, + "probability": 0.538 + }, + { + "start": 10036.22, + "end": 10037.18, + "probability": 0.4873 + }, + { + "start": 10037.72, + "end": 10040.38, + "probability": 0.8003 + }, + { + "start": 10041.78, + "end": 10045.84, + "probability": 0.5003 + }, + { + "start": 10045.92, + "end": 10048.04, + "probability": 0.646 + }, + { + "start": 10048.74, + "end": 10049.0, + "probability": 0.087 + }, + { + "start": 10049.98, + "end": 10051.34, + "probability": 0.8531 + }, + { + "start": 10051.42, + "end": 10054.36, + "probability": 0.8788 + }, + { + "start": 10054.84, + "end": 10055.94, + "probability": 0.5123 + }, + { + "start": 10055.96, + "end": 10059.84, + "probability": 0.3617 + }, + { + "start": 10059.96, + "end": 10061.88, + "probability": 0.7232 + }, + { + "start": 10061.96, + "end": 10065.54, + "probability": 0.9289 + }, + { + "start": 10065.54, + "end": 10068.68, + "probability": 0.8851 + }, + { + "start": 10069.06, + "end": 10073.04, + "probability": 0.2105 + }, + { + "start": 10073.16, + "end": 10077.98, + "probability": 0.3364 + }, + { + "start": 10077.98, + "end": 10078.34, + "probability": 0.1668 + }, + { + "start": 10078.34, + "end": 10084.74, + "probability": 0.6559 + }, + { + "start": 10085.27, + "end": 10088.02, + "probability": 0.5096 + }, + { + "start": 10088.16, + "end": 10090.1, + "probability": 0.7153 + }, + { + "start": 10090.86, + "end": 10092.22, + "probability": 0.9082 + }, + { + "start": 10094.28, + "end": 10097.02, + "probability": 0.9047 + }, + { + "start": 10097.42, + "end": 10100.06, + "probability": 0.8585 + }, + { + "start": 10101.36, + "end": 10104.26, + "probability": 0.8812 + }, + { + "start": 10104.92, + "end": 10107.66, + "probability": 0.9812 + }, + { + "start": 10107.74, + "end": 10110.5, + "probability": 0.9813 + }, + { + "start": 10110.6, + "end": 10114.08, + "probability": 0.9792 + }, + { + "start": 10116.36, + "end": 10118.56, + "probability": 0.9435 + }, + { + "start": 10119.52, + "end": 10121.9, + "probability": 0.7246 + }, + { + "start": 10122.04, + "end": 10124.88, + "probability": 0.6714 + }, + { + "start": 10126.22, + "end": 10127.28, + "probability": 0.5736 + }, + { + "start": 10134.9, + "end": 10140.4, + "probability": 0.9755 + }, + { + "start": 10140.4, + "end": 10143.78, + "probability": 0.999 + }, + { + "start": 10144.6, + "end": 10150.56, + "probability": 0.9947 + }, + { + "start": 10150.7, + "end": 10151.56, + "probability": 0.4343 + }, + { + "start": 10153.3, + "end": 10156.76, + "probability": 0.9852 + }, + { + "start": 10156.76, + "end": 10160.74, + "probability": 0.9978 + }, + { + "start": 10161.0, + "end": 10164.64, + "probability": 0.9989 + }, + { + "start": 10165.6, + "end": 10167.02, + "probability": 0.9669 + }, + { + "start": 10167.3, + "end": 10172.76, + "probability": 0.9964 + }, + { + "start": 10173.58, + "end": 10175.62, + "probability": 0.9312 + }, + { + "start": 10175.78, + "end": 10177.64, + "probability": 0.0002 + }, + { + "start": 10178.88, + "end": 10180.85, + "probability": 0.2044 + }, + { + "start": 10182.32, + "end": 10188.74, + "probability": 0.9411 + }, + { + "start": 10189.1, + "end": 10192.14, + "probability": 0.9775 + }, + { + "start": 10192.26, + "end": 10195.12, + "probability": 0.9782 + }, + { + "start": 10195.84, + "end": 10198.62, + "probability": 0.8861 + }, + { + "start": 10198.74, + "end": 10200.42, + "probability": 0.8283 + }, + { + "start": 10201.26, + "end": 10204.18, + "probability": 0.9928 + }, + { + "start": 10204.26, + "end": 10207.1, + "probability": 0.9774 + }, + { + "start": 10207.94, + "end": 10210.08, + "probability": 0.9978 + }, + { + "start": 10211.08, + "end": 10214.72, + "probability": 0.8786 + }, + { + "start": 10214.78, + "end": 10221.38, + "probability": 0.98 + }, + { + "start": 10221.38, + "end": 10227.36, + "probability": 0.9954 + }, + { + "start": 10228.28, + "end": 10231.44, + "probability": 0.991 + }, + { + "start": 10232.12, + "end": 10234.92, + "probability": 0.9931 + }, + { + "start": 10236.72, + "end": 10237.38, + "probability": 0.721 + }, + { + "start": 10237.64, + "end": 10239.96, + "probability": 0.9175 + }, + { + "start": 10241.2, + "end": 10242.42, + "probability": 0.8864 + }, + { + "start": 10242.56, + "end": 10244.8, + "probability": 0.7893 + }, + { + "start": 10245.16, + "end": 10246.82, + "probability": 0.8429 + }, + { + "start": 10247.0, + "end": 10247.36, + "probability": 0.5108 + }, + { + "start": 10247.78, + "end": 10248.16, + "probability": 0.5107 + }, + { + "start": 10249.04, + "end": 10249.86, + "probability": 0.2129 + }, + { + "start": 10250.16, + "end": 10251.54, + "probability": 0.0193 + }, + { + "start": 10256.14, + "end": 10258.06, + "probability": 0.9629 + }, + { + "start": 10258.4, + "end": 10264.35, + "probability": 0.9971 + }, + { + "start": 10266.58, + "end": 10269.8, + "probability": 0.9672 + }, + { + "start": 10270.52, + "end": 10271.8, + "probability": 0.7926 + }, + { + "start": 10272.54, + "end": 10273.26, + "probability": 0.1952 + }, + { + "start": 10273.68, + "end": 10276.14, + "probability": 0.9653 + }, + { + "start": 10276.24, + "end": 10278.66, + "probability": 0.9573 + }, + { + "start": 10279.3, + "end": 10281.8, + "probability": 0.9348 + }, + { + "start": 10282.86, + "end": 10287.06, + "probability": 0.9648 + }, + { + "start": 10288.06, + "end": 10289.66, + "probability": 0.9679 + }, + { + "start": 10289.74, + "end": 10291.14, + "probability": 0.9955 + }, + { + "start": 10291.28, + "end": 10294.38, + "probability": 0.9967 + }, + { + "start": 10294.44, + "end": 10295.6, + "probability": 0.9191 + }, + { + "start": 10296.18, + "end": 10299.48, + "probability": 0.9747 + }, + { + "start": 10300.3, + "end": 10303.3, + "probability": 0.9749 + }, + { + "start": 10304.52, + "end": 10308.97, + "probability": 0.9957 + }, + { + "start": 10309.12, + "end": 10311.52, + "probability": 0.9465 + }, + { + "start": 10311.58, + "end": 10311.76, + "probability": 0.9003 + }, + { + "start": 10311.84, + "end": 10315.28, + "probability": 0.9951 + }, + { + "start": 10315.82, + "end": 10321.24, + "probability": 0.9855 + }, + { + "start": 10322.4, + "end": 10326.62, + "probability": 0.8838 + }, + { + "start": 10327.62, + "end": 10330.0, + "probability": 0.9969 + }, + { + "start": 10331.35, + "end": 10336.84, + "probability": 0.9735 + }, + { + "start": 10336.84, + "end": 10340.92, + "probability": 0.9424 + }, + { + "start": 10341.96, + "end": 10343.76, + "probability": 0.1008 + }, + { + "start": 10343.76, + "end": 10351.34, + "probability": 0.9823 + }, + { + "start": 10352.31, + "end": 10357.32, + "probability": 0.9937 + }, + { + "start": 10357.44, + "end": 10358.82, + "probability": 0.9893 + }, + { + "start": 10359.88, + "end": 10361.22, + "probability": 0.7784 + }, + { + "start": 10362.14, + "end": 10366.22, + "probability": 0.9962 + }, + { + "start": 10366.24, + "end": 10369.36, + "probability": 0.998 + }, + { + "start": 10369.84, + "end": 10371.36, + "probability": 0.8905 + }, + { + "start": 10371.38, + "end": 10372.08, + "probability": 0.7748 + }, + { + "start": 10372.22, + "end": 10373.21, + "probability": 0.8774 + }, + { + "start": 10373.66, + "end": 10378.6, + "probability": 0.9451 + }, + { + "start": 10379.22, + "end": 10382.06, + "probability": 0.9925 + }, + { + "start": 10383.0, + "end": 10391.68, + "probability": 0.9941 + }, + { + "start": 10392.34, + "end": 10395.84, + "probability": 0.9917 + }, + { + "start": 10398.1, + "end": 10404.44, + "probability": 0.7895 + }, + { + "start": 10405.3, + "end": 10405.98, + "probability": 0.6498 + }, + { + "start": 10406.42, + "end": 10406.74, + "probability": 0.3406 + }, + { + "start": 10407.16, + "end": 10409.31, + "probability": 0.9729 + }, + { + "start": 10409.5, + "end": 10413.38, + "probability": 0.9962 + }, + { + "start": 10413.96, + "end": 10418.42, + "probability": 0.9932 + }, + { + "start": 10418.66, + "end": 10420.54, + "probability": 0.9951 + }, + { + "start": 10421.68, + "end": 10424.46, + "probability": 0.9146 + }, + { + "start": 10425.22, + "end": 10430.66, + "probability": 0.9846 + }, + { + "start": 10430.74, + "end": 10433.12, + "probability": 0.9897 + }, + { + "start": 10434.34, + "end": 10441.06, + "probability": 0.9976 + }, + { + "start": 10441.2, + "end": 10443.48, + "probability": 0.9943 + }, + { + "start": 10443.54, + "end": 10445.2, + "probability": 0.9855 + }, + { + "start": 10445.32, + "end": 10448.54, + "probability": 0.9569 + }, + { + "start": 10449.98, + "end": 10451.54, + "probability": 0.8027 + }, + { + "start": 10452.48, + "end": 10454.84, + "probability": 0.873 + }, + { + "start": 10455.52, + "end": 10461.44, + "probability": 0.9914 + }, + { + "start": 10461.44, + "end": 10466.0, + "probability": 0.9936 + }, + { + "start": 10466.54, + "end": 10467.68, + "probability": 0.8561 + }, + { + "start": 10468.32, + "end": 10473.16, + "probability": 0.9995 + }, + { + "start": 10474.02, + "end": 10477.2, + "probability": 0.9938 + }, + { + "start": 10477.42, + "end": 10482.04, + "probability": 0.8588 + }, + { + "start": 10482.04, + "end": 10486.46, + "probability": 0.9136 + }, + { + "start": 10486.92, + "end": 10487.76, + "probability": 0.8277 + }, + { + "start": 10487.84, + "end": 10490.48, + "probability": 0.9958 + }, + { + "start": 10490.62, + "end": 10491.94, + "probability": 0.9821 + }, + { + "start": 10492.02, + "end": 10494.02, + "probability": 0.9937 + }, + { + "start": 10494.56, + "end": 10496.2, + "probability": 0.7434 + }, + { + "start": 10496.36, + "end": 10497.36, + "probability": 0.5309 + }, + { + "start": 10498.0, + "end": 10500.48, + "probability": 0.7756 + }, + { + "start": 10501.24, + "end": 10505.02, + "probability": 0.9983 + }, + { + "start": 10505.64, + "end": 10505.86, + "probability": 0.6639 + }, + { + "start": 10505.94, + "end": 10507.06, + "probability": 0.9724 + }, + { + "start": 10507.1, + "end": 10510.62, + "probability": 0.9863 + }, + { + "start": 10511.04, + "end": 10515.44, + "probability": 0.9691 + }, + { + "start": 10515.74, + "end": 10520.54, + "probability": 0.9875 + }, + { + "start": 10520.58, + "end": 10522.36, + "probability": 0.8757 + }, + { + "start": 10522.78, + "end": 10523.88, + "probability": 0.937 + }, + { + "start": 10523.94, + "end": 10527.18, + "probability": 0.9581 + }, + { + "start": 10527.34, + "end": 10527.34, + "probability": 0.0815 + }, + { + "start": 10527.34, + "end": 10534.7, + "probability": 0.9504 + }, + { + "start": 10534.8, + "end": 10535.76, + "probability": 0.9049 + }, + { + "start": 10536.88, + "end": 10539.32, + "probability": 0.9831 + }, + { + "start": 10540.06, + "end": 10541.11, + "probability": 0.8262 + }, + { + "start": 10543.3, + "end": 10545.44, + "probability": 0.9971 + }, + { + "start": 10546.5, + "end": 10549.86, + "probability": 0.9984 + }, + { + "start": 10550.24, + "end": 10553.84, + "probability": 0.99 + }, + { + "start": 10554.28, + "end": 10558.7, + "probability": 0.9946 + }, + { + "start": 10558.7, + "end": 10562.12, + "probability": 0.9983 + }, + { + "start": 10562.26, + "end": 10564.67, + "probability": 0.9972 + }, + { + "start": 10565.04, + "end": 10567.14, + "probability": 0.989 + }, + { + "start": 10567.26, + "end": 10570.01, + "probability": 0.9123 + }, + { + "start": 10570.46, + "end": 10570.8, + "probability": 0.6145 + }, + { + "start": 10571.02, + "end": 10572.68, + "probability": 0.9636 + }, + { + "start": 10573.86, + "end": 10574.24, + "probability": 0.6351 + }, + { + "start": 10574.36, + "end": 10578.4, + "probability": 0.9684 + }, + { + "start": 10579.06, + "end": 10581.9, + "probability": 0.9971 + }, + { + "start": 10581.9, + "end": 10585.92, + "probability": 0.9834 + }, + { + "start": 10586.42, + "end": 10590.66, + "probability": 0.9834 + }, + { + "start": 10590.82, + "end": 10591.76, + "probability": 0.9948 + }, + { + "start": 10592.4, + "end": 10594.64, + "probability": 0.6194 + }, + { + "start": 10594.66, + "end": 10594.9, + "probability": 0.6969 + }, + { + "start": 10595.16, + "end": 10598.38, + "probability": 0.8239 + }, + { + "start": 10598.64, + "end": 10600.98, + "probability": 0.9051 + }, + { + "start": 10601.5, + "end": 10606.62, + "probability": 0.9916 + }, + { + "start": 10607.38, + "end": 10610.24, + "probability": 0.9979 + }, + { + "start": 10610.24, + "end": 10613.62, + "probability": 0.9981 + }, + { + "start": 10614.44, + "end": 10615.82, + "probability": 0.9972 + }, + { + "start": 10616.46, + "end": 10618.22, + "probability": 0.9971 + }, + { + "start": 10618.32, + "end": 10619.56, + "probability": 0.9421 + }, + { + "start": 10619.64, + "end": 10626.47, + "probability": 0.9959 + }, + { + "start": 10627.3, + "end": 10635.28, + "probability": 0.9878 + }, + { + "start": 10635.74, + "end": 10636.58, + "probability": 0.447 + }, + { + "start": 10637.6, + "end": 10639.48, + "probability": 0.942 + }, + { + "start": 10639.56, + "end": 10644.12, + "probability": 0.9913 + }, + { + "start": 10644.66, + "end": 10645.82, + "probability": 0.953 + }, + { + "start": 10647.24, + "end": 10652.44, + "probability": 0.9805 + }, + { + "start": 10652.84, + "end": 10655.0, + "probability": 0.999 + }, + { + "start": 10655.42, + "end": 10658.28, + "probability": 0.9286 + }, + { + "start": 10658.42, + "end": 10661.32, + "probability": 0.8991 + }, + { + "start": 10662.34, + "end": 10666.6, + "probability": 0.993 + }, + { + "start": 10666.82, + "end": 10670.08, + "probability": 0.9106 + }, + { + "start": 10670.46, + "end": 10673.68, + "probability": 0.9731 + }, + { + "start": 10673.84, + "end": 10677.5, + "probability": 0.8259 + }, + { + "start": 10677.6, + "end": 10680.04, + "probability": 0.9933 + }, + { + "start": 10680.1, + "end": 10685.8, + "probability": 0.8746 + }, + { + "start": 10685.96, + "end": 10686.2, + "probability": 0.5053 + }, + { + "start": 10686.7, + "end": 10687.48, + "probability": 0.6788 + }, + { + "start": 10687.54, + "end": 10692.44, + "probability": 0.9692 + }, + { + "start": 10692.5, + "end": 10693.44, + "probability": 0.9544 + }, + { + "start": 10693.5, + "end": 10694.7, + "probability": 0.9851 + }, + { + "start": 10695.5, + "end": 10697.44, + "probability": 0.8901 + }, + { + "start": 10698.4, + "end": 10699.9, + "probability": 0.824 + }, + { + "start": 10700.6, + "end": 10703.6, + "probability": 0.9764 + }, + { + "start": 10703.7, + "end": 10704.36, + "probability": 0.6646 + }, + { + "start": 10704.56, + "end": 10705.32, + "probability": 0.8492 + }, + { + "start": 10705.42, + "end": 10706.18, + "probability": 0.9118 + }, + { + "start": 10706.24, + "end": 10707.42, + "probability": 0.6857 + }, + { + "start": 10707.84, + "end": 10709.38, + "probability": 0.994 + }, + { + "start": 10711.16, + "end": 10715.62, + "probability": 0.9762 + }, + { + "start": 10715.72, + "end": 10719.94, + "probability": 0.997 + }, + { + "start": 10720.88, + "end": 10725.9, + "probability": 0.9555 + }, + { + "start": 10726.08, + "end": 10727.96, + "probability": 0.9491 + }, + { + "start": 10728.16, + "end": 10731.22, + "probability": 0.9896 + }, + { + "start": 10732.84, + "end": 10735.48, + "probability": 0.4549 + }, + { + "start": 10736.5, + "end": 10739.26, + "probability": 0.9346 + }, + { + "start": 10739.26, + "end": 10741.62, + "probability": 0.9507 + }, + { + "start": 10741.7, + "end": 10746.68, + "probability": 0.9873 + }, + { + "start": 10746.78, + "end": 10747.54, + "probability": 0.3966 + }, + { + "start": 10747.62, + "end": 10752.26, + "probability": 0.8716 + }, + { + "start": 10752.3, + "end": 10752.6, + "probability": 0.5098 + }, + { + "start": 10752.64, + "end": 10753.02, + "probability": 0.9289 + }, + { + "start": 10753.12, + "end": 10756.42, + "probability": 0.9888 + }, + { + "start": 10756.42, + "end": 10759.76, + "probability": 0.9266 + }, + { + "start": 10760.72, + "end": 10762.0, + "probability": 0.9562 + }, + { + "start": 10762.1, + "end": 10762.78, + "probability": 0.6807 + }, + { + "start": 10762.88, + "end": 10764.68, + "probability": 0.7587 + }, + { + "start": 10764.76, + "end": 10767.48, + "probability": 0.9976 + }, + { + "start": 10768.06, + "end": 10773.72, + "probability": 0.9824 + }, + { + "start": 10773.72, + "end": 10777.34, + "probability": 0.9946 + }, + { + "start": 10777.44, + "end": 10777.96, + "probability": 0.8199 + }, + { + "start": 10778.68, + "end": 10780.04, + "probability": 0.8653 + }, + { + "start": 10780.36, + "end": 10782.0, + "probability": 0.5067 + }, + { + "start": 10782.72, + "end": 10785.72, + "probability": 0.9451 + }, + { + "start": 10792.58, + "end": 10793.74, + "probability": 0.7576 + }, + { + "start": 10797.3, + "end": 10802.3, + "probability": 0.6707 + }, + { + "start": 10803.36, + "end": 10809.86, + "probability": 0.9946 + }, + { + "start": 10811.9, + "end": 10818.16, + "probability": 0.9949 + }, + { + "start": 10820.72, + "end": 10822.4, + "probability": 0.961 + }, + { + "start": 10824.22, + "end": 10825.74, + "probability": 0.8896 + }, + { + "start": 10826.4, + "end": 10828.23, + "probability": 0.2006 + }, + { + "start": 10829.9, + "end": 10835.58, + "probability": 0.9814 + }, + { + "start": 10836.24, + "end": 10839.34, + "probability": 0.9854 + }, + { + "start": 10840.04, + "end": 10841.48, + "probability": 0.8965 + }, + { + "start": 10844.34, + "end": 10847.28, + "probability": 0.9666 + }, + { + "start": 10849.12, + "end": 10855.66, + "probability": 0.9947 + }, + { + "start": 10856.3, + "end": 10857.98, + "probability": 0.9893 + }, + { + "start": 10859.78, + "end": 10862.32, + "probability": 0.9401 + }, + { + "start": 10862.68, + "end": 10863.72, + "probability": 0.9307 + }, + { + "start": 10865.04, + "end": 10866.6, + "probability": 0.9246 + }, + { + "start": 10867.28, + "end": 10869.84, + "probability": 0.9955 + }, + { + "start": 10870.02, + "end": 10871.24, + "probability": 0.9694 + }, + { + "start": 10872.9, + "end": 10876.96, + "probability": 0.9651 + }, + { + "start": 10877.94, + "end": 10883.68, + "probability": 0.9702 + }, + { + "start": 10884.4, + "end": 10886.44, + "probability": 0.9818 + }, + { + "start": 10886.9, + "end": 10892.06, + "probability": 0.8842 + }, + { + "start": 10892.56, + "end": 10895.06, + "probability": 0.9913 + }, + { + "start": 10895.12, + "end": 10896.06, + "probability": 0.6813 + }, + { + "start": 10896.68, + "end": 10897.38, + "probability": 0.8992 + }, + { + "start": 10898.02, + "end": 10901.32, + "probability": 0.9857 + }, + { + "start": 10901.32, + "end": 10903.86, + "probability": 0.9928 + }, + { + "start": 10903.92, + "end": 10905.0, + "probability": 0.6197 + }, + { + "start": 10906.22, + "end": 10908.5, + "probability": 0.9285 + }, + { + "start": 10910.18, + "end": 10910.86, + "probability": 0.8811 + }, + { + "start": 10911.62, + "end": 10914.36, + "probability": 0.6464 + }, + { + "start": 10914.68, + "end": 10917.32, + "probability": 0.903 + }, + { + "start": 10918.32, + "end": 10923.1, + "probability": 0.1034 + }, + { + "start": 10924.68, + "end": 10924.78, + "probability": 0.0006 + }, + { + "start": 10924.78, + "end": 10924.78, + "probability": 0.0592 + }, + { + "start": 10924.78, + "end": 10925.6, + "probability": 0.1042 + }, + { + "start": 10925.6, + "end": 10926.86, + "probability": 0.6001 + }, + { + "start": 10927.5, + "end": 10929.2, + "probability": 0.7088 + }, + { + "start": 10929.88, + "end": 10931.46, + "probability": 0.7561 + }, + { + "start": 10932.22, + "end": 10933.12, + "probability": 0.896 + }, + { + "start": 10934.68, + "end": 10935.64, + "probability": 0.9906 + }, + { + "start": 10935.7, + "end": 10938.18, + "probability": 0.975 + }, + { + "start": 10938.38, + "end": 10940.02, + "probability": 0.5622 + }, + { + "start": 10940.44, + "end": 10941.14, + "probability": 0.6564 + }, + { + "start": 10942.8, + "end": 10944.52, + "probability": 0.952 + }, + { + "start": 10945.22, + "end": 10946.24, + "probability": 0.779 + }, + { + "start": 10947.64, + "end": 10950.2, + "probability": 0.996 + }, + { + "start": 10950.28, + "end": 10953.22, + "probability": 0.9893 + }, + { + "start": 10953.32, + "end": 10955.24, + "probability": 0.9317 + }, + { + "start": 10955.46, + "end": 10956.24, + "probability": 0.5582 + }, + { + "start": 10956.36, + "end": 10957.58, + "probability": 0.9504 + }, + { + "start": 10957.66, + "end": 10960.08, + "probability": 0.9923 + }, + { + "start": 10960.8, + "end": 10964.4, + "probability": 0.9911 + }, + { + "start": 10966.54, + "end": 10972.26, + "probability": 0.9033 + }, + { + "start": 10972.98, + "end": 10974.06, + "probability": 0.8776 + }, + { + "start": 10974.66, + "end": 10975.4, + "probability": 0.8481 + }, + { + "start": 10976.02, + "end": 10977.28, + "probability": 0.7739 + }, + { + "start": 10977.92, + "end": 10979.28, + "probability": 0.5075 + }, + { + "start": 10982.72, + "end": 10985.06, + "probability": 0.9938 + }, + { + "start": 10985.48, + "end": 10988.68, + "probability": 0.9682 + }, + { + "start": 10989.16, + "end": 10992.84, + "probability": 0.9959 + }, + { + "start": 10993.06, + "end": 10993.96, + "probability": 0.9973 + }, + { + "start": 10995.26, + "end": 10995.48, + "probability": 0.5557 + }, + { + "start": 10996.36, + "end": 10998.02, + "probability": 0.0247 + }, + { + "start": 10998.3, + "end": 11000.01, + "probability": 0.9895 + }, + { + "start": 11000.6, + "end": 11003.56, + "probability": 0.6951 + }, + { + "start": 11004.68, + "end": 11007.14, + "probability": 0.6437 + }, + { + "start": 11007.66, + "end": 11011.16, + "probability": 0.9721 + }, + { + "start": 11011.86, + "end": 11013.48, + "probability": 0.8245 + }, + { + "start": 11014.16, + "end": 11016.18, + "probability": 0.9963 + }, + { + "start": 11016.62, + "end": 11020.26, + "probability": 0.9235 + }, + { + "start": 11020.62, + "end": 11026.68, + "probability": 0.958 + }, + { + "start": 11026.96, + "end": 11027.58, + "probability": 0.8347 + }, + { + "start": 11028.66, + "end": 11030.48, + "probability": 0.422 + }, + { + "start": 11030.86, + "end": 11033.04, + "probability": 0.9348 + }, + { + "start": 11033.38, + "end": 11033.52, + "probability": 0.244 + }, + { + "start": 11033.52, + "end": 11037.32, + "probability": 0.8662 + }, + { + "start": 11038.1, + "end": 11038.98, + "probability": 0.9417 + }, + { + "start": 11040.08, + "end": 11042.72, + "probability": 0.8066 + }, + { + "start": 11042.8, + "end": 11045.43, + "probability": 0.5667 + }, + { + "start": 11047.26, + "end": 11050.54, + "probability": 0.927 + }, + { + "start": 11050.56, + "end": 11051.12, + "probability": 0.2534 + }, + { + "start": 11051.12, + "end": 11052.36, + "probability": 0.7656 + }, + { + "start": 11052.4, + "end": 11053.6, + "probability": 0.9861 + }, + { + "start": 11054.44, + "end": 11055.1, + "probability": 0.9911 + }, + { + "start": 11055.9, + "end": 11056.98, + "probability": 0.5265 + }, + { + "start": 11057.22, + "end": 11057.44, + "probability": 0.9279 + }, + { + "start": 11057.94, + "end": 11059.26, + "probability": 0.5519 + }, + { + "start": 11059.3, + "end": 11062.36, + "probability": 0.9932 + }, + { + "start": 11062.88, + "end": 11066.3, + "probability": 0.9961 + }, + { + "start": 11066.94, + "end": 11070.14, + "probability": 0.9994 + }, + { + "start": 11070.72, + "end": 11074.1, + "probability": 0.9917 + }, + { + "start": 11074.58, + "end": 11075.92, + "probability": 0.7502 + }, + { + "start": 11076.0, + "end": 11076.52, + "probability": 0.2307 + }, + { + "start": 11076.52, + "end": 11077.54, + "probability": 0.8305 + }, + { + "start": 11077.78, + "end": 11078.46, + "probability": 0.5432 + }, + { + "start": 11078.46, + "end": 11078.68, + "probability": 0.491 + }, + { + "start": 11079.2, + "end": 11082.7, + "probability": 0.8945 + }, + { + "start": 11082.82, + "end": 11085.21, + "probability": 0.9683 + }, + { + "start": 11092.6, + "end": 11096.96, + "probability": 0.4884 + }, + { + "start": 11097.18, + "end": 11098.41, + "probability": 0.7388 + }, + { + "start": 11099.28, + "end": 11103.54, + "probability": 0.5312 + }, + { + "start": 11103.64, + "end": 11105.66, + "probability": 0.9866 + }, + { + "start": 11105.72, + "end": 11109.54, + "probability": 0.9963 + }, + { + "start": 11112.41, + "end": 11112.68, + "probability": 0.0532 + }, + { + "start": 11112.68, + "end": 11115.96, + "probability": 0.7883 + }, + { + "start": 11115.96, + "end": 11119.88, + "probability": 0.8652 + }, + { + "start": 11120.46, + "end": 11126.1, + "probability": 0.9837 + }, + { + "start": 11126.26, + "end": 11127.42, + "probability": 0.7065 + }, + { + "start": 11127.74, + "end": 11128.62, + "probability": 0.6454 + }, + { + "start": 11128.8, + "end": 11132.88, + "probability": 0.9846 + }, + { + "start": 11133.7, + "end": 11136.7, + "probability": 0.9575 + }, + { + "start": 11137.68, + "end": 11140.3, + "probability": 0.9834 + }, + { + "start": 11141.08, + "end": 11142.84, + "probability": 0.9846 + }, + { + "start": 11143.3, + "end": 11145.48, + "probability": 0.8759 + }, + { + "start": 11145.58, + "end": 11146.69, + "probability": 0.9243 + }, + { + "start": 11147.66, + "end": 11149.3, + "probability": 0.8681 + }, + { + "start": 11149.9, + "end": 11155.32, + "probability": 0.9813 + }, + { + "start": 11155.32, + "end": 11155.32, + "probability": 0.0693 + }, + { + "start": 11155.32, + "end": 11156.64, + "probability": 0.8486 + }, + { + "start": 11157.28, + "end": 11159.78, + "probability": 0.8269 + }, + { + "start": 11160.58, + "end": 11162.26, + "probability": 0.9893 + }, + { + "start": 11162.38, + "end": 11164.94, + "probability": 0.9973 + }, + { + "start": 11165.44, + "end": 11165.84, + "probability": 0.1581 + }, + { + "start": 11165.84, + "end": 11167.82, + "probability": 0.8151 + }, + { + "start": 11168.38, + "end": 11170.12, + "probability": 0.9057 + }, + { + "start": 11170.24, + "end": 11171.02, + "probability": 0.9315 + }, + { + "start": 11171.06, + "end": 11172.0, + "probability": 0.7783 + }, + { + "start": 11172.4, + "end": 11173.66, + "probability": 0.8423 + }, + { + "start": 11174.04, + "end": 11175.38, + "probability": 0.984 + }, + { + "start": 11176.16, + "end": 11177.52, + "probability": 0.9896 + }, + { + "start": 11178.1, + "end": 11180.06, + "probability": 0.8928 + }, + { + "start": 11180.34, + "end": 11184.66, + "probability": 0.9933 + }, + { + "start": 11184.88, + "end": 11187.06, + "probability": 0.9978 + }, + { + "start": 11187.52, + "end": 11191.68, + "probability": 0.9653 + }, + { + "start": 11192.24, + "end": 11193.96, + "probability": 0.9707 + }, + { + "start": 11193.96, + "end": 11197.08, + "probability": 0.8662 + }, + { + "start": 11197.4, + "end": 11198.88, + "probability": 0.9556 + }, + { + "start": 11199.16, + "end": 11202.08, + "probability": 0.8969 + }, + { + "start": 11202.66, + "end": 11204.36, + "probability": 0.9944 + }, + { + "start": 11204.94, + "end": 11207.3, + "probability": 0.9983 + }, + { + "start": 11207.82, + "end": 11212.0, + "probability": 0.9973 + }, + { + "start": 11212.54, + "end": 11214.08, + "probability": 0.8927 + }, + { + "start": 11214.8, + "end": 11216.18, + "probability": 0.9963 + }, + { + "start": 11219.0, + "end": 11225.4, + "probability": 0.8545 + }, + { + "start": 11226.3, + "end": 11229.68, + "probability": 0.9703 + }, + { + "start": 11229.82, + "end": 11231.24, + "probability": 0.647 + }, + { + "start": 11231.78, + "end": 11235.86, + "probability": 0.9737 + }, + { + "start": 11236.74, + "end": 11238.12, + "probability": 0.999 + }, + { + "start": 11238.68, + "end": 11241.94, + "probability": 0.801 + }, + { + "start": 11242.04, + "end": 11242.36, + "probability": 0.6406 + }, + { + "start": 11243.36, + "end": 11243.36, + "probability": 0.0001 + }, + { + "start": 11244.96, + "end": 11245.86, + "probability": 0.0375 + }, + { + "start": 11245.86, + "end": 11245.86, + "probability": 0.1304 + }, + { + "start": 11245.86, + "end": 11245.86, + "probability": 0.2291 + }, + { + "start": 11245.86, + "end": 11245.86, + "probability": 0.2897 + }, + { + "start": 11245.92, + "end": 11246.14, + "probability": 0.3942 + }, + { + "start": 11246.14, + "end": 11249.66, + "probability": 0.6281 + }, + { + "start": 11250.1, + "end": 11250.14, + "probability": 0.3555 + }, + { + "start": 11250.14, + "end": 11250.36, + "probability": 0.486 + }, + { + "start": 11250.6, + "end": 11250.6, + "probability": 0.8433 + }, + { + "start": 11252.02, + "end": 11252.12, + "probability": 0.3597 + }, + { + "start": 11252.12, + "end": 11253.02, + "probability": 0.3648 + }, + { + "start": 11253.7, + "end": 11256.58, + "probability": 0.6671 + }, + { + "start": 11256.96, + "end": 11259.0, + "probability": 0.3124 + }, + { + "start": 11259.38, + "end": 11260.92, + "probability": 0.807 + }, + { + "start": 11261.22, + "end": 11262.16, + "probability": 0.7468 + }, + { + "start": 11263.3, + "end": 11267.92, + "probability": 0.0488 + }, + { + "start": 11267.92, + "end": 11268.5, + "probability": 0.3196 + }, + { + "start": 11268.78, + "end": 11270.18, + "probability": 0.6251 + }, + { + "start": 11270.52, + "end": 11272.64, + "probability": 0.9659 + }, + { + "start": 11272.94, + "end": 11273.46, + "probability": 0.7398 + }, + { + "start": 11274.18, + "end": 11277.02, + "probability": 0.7162 + }, + { + "start": 11277.4, + "end": 11282.3, + "probability": 0.9106 + }, + { + "start": 11282.3, + "end": 11285.54, + "probability": 0.6805 + }, + { + "start": 11286.68, + "end": 11290.02, + "probability": 0.9966 + }, + { + "start": 11290.08, + "end": 11294.96, + "probability": 0.967 + }, + { + "start": 11295.04, + "end": 11296.04, + "probability": 0.6852 + }, + { + "start": 11296.34, + "end": 11297.58, + "probability": 0.7466 + }, + { + "start": 11297.62, + "end": 11298.39, + "probability": 0.9794 + }, + { + "start": 11299.68, + "end": 11302.84, + "probability": 0.9802 + }, + { + "start": 11303.3, + "end": 11304.12, + "probability": 0.5195 + }, + { + "start": 11304.96, + "end": 11305.46, + "probability": 0.949 + }, + { + "start": 11306.82, + "end": 11307.75, + "probability": 0.3442 + }, + { + "start": 11308.52, + "end": 11310.9, + "probability": 0.7673 + }, + { + "start": 11312.66, + "end": 11317.94, + "probability": 0.6656 + }, + { + "start": 11318.8, + "end": 11319.3, + "probability": 0.989 + }, + { + "start": 11320.32, + "end": 11321.64, + "probability": 0.9242 + }, + { + "start": 11322.82, + "end": 11328.34, + "probability": 0.9404 + }, + { + "start": 11329.44, + "end": 11332.12, + "probability": 0.7318 + }, + { + "start": 11334.04, + "end": 11335.12, + "probability": 0.991 + }, + { + "start": 11337.8, + "end": 11338.64, + "probability": 0.3919 + }, + { + "start": 11339.28, + "end": 11344.8, + "probability": 0.9633 + }, + { + "start": 11347.94, + "end": 11350.88, + "probability": 0.9066 + }, + { + "start": 11353.66, + "end": 11354.3, + "probability": 0.7037 + }, + { + "start": 11355.36, + "end": 11356.74, + "probability": 0.7505 + }, + { + "start": 11357.52, + "end": 11362.3, + "probability": 0.9369 + }, + { + "start": 11363.14, + "end": 11363.54, + "probability": 0.9906 + }, + { + "start": 11364.86, + "end": 11366.28, + "probability": 0.4034 + }, + { + "start": 11367.02, + "end": 11369.64, + "probability": 0.7502 + }, + { + "start": 11370.92, + "end": 11373.14, + "probability": 0.9208 + }, + { + "start": 11374.18, + "end": 11374.62, + "probability": 0.8091 + }, + { + "start": 11375.48, + "end": 11376.96, + "probability": 0.8962 + }, + { + "start": 11377.62, + "end": 11378.38, + "probability": 0.8421 + }, + { + "start": 11379.0, + "end": 11379.82, + "probability": 0.9529 + }, + { + "start": 11380.64, + "end": 11383.16, + "probability": 0.9849 + }, + { + "start": 11383.84, + "end": 11386.74, + "probability": 0.9901 + }, + { + "start": 11387.34, + "end": 11388.2, + "probability": 0.9728 + }, + { + "start": 11388.86, + "end": 11391.08, + "probability": 0.8357 + }, + { + "start": 11391.6, + "end": 11392.94, + "probability": 0.7816 + }, + { + "start": 11393.62, + "end": 11395.94, + "probability": 0.902 + }, + { + "start": 11396.64, + "end": 11398.2, + "probability": 0.8928 + }, + { + "start": 11398.88, + "end": 11404.44, + "probability": 0.5271 + }, + { + "start": 11405.12, + "end": 11407.38, + "probability": 0.9213 + }, + { + "start": 11408.44, + "end": 11410.02, + "probability": 0.989 + }, + { + "start": 11410.74, + "end": 11411.52, + "probability": 0.8703 + }, + { + "start": 11412.08, + "end": 11413.62, + "probability": 0.9897 + }, + { + "start": 11414.3, + "end": 11415.3, + "probability": 0.93 + }, + { + "start": 11419.92, + "end": 11424.08, + "probability": 0.7985 + }, + { + "start": 11425.32, + "end": 11428.68, + "probability": 0.9328 + }, + { + "start": 11429.68, + "end": 11430.42, + "probability": 0.9704 + }, + { + "start": 11431.96, + "end": 11433.0, + "probability": 0.9418 + }, + { + "start": 11434.02, + "end": 11437.02, + "probability": 0.9814 + }, + { + "start": 11437.96, + "end": 11439.5, + "probability": 0.9433 + }, + { + "start": 11441.27, + "end": 11445.88, + "probability": 0.9792 + }, + { + "start": 11447.72, + "end": 11449.94, + "probability": 0.7036 + }, + { + "start": 11450.68, + "end": 11452.18, + "probability": 0.8991 + }, + { + "start": 11452.76, + "end": 11453.86, + "probability": 0.9878 + }, + { + "start": 11454.52, + "end": 11455.48, + "probability": 0.4163 + }, + { + "start": 11456.58, + "end": 11457.04, + "probability": 0.8979 + }, + { + "start": 11457.84, + "end": 11459.16, + "probability": 0.9136 + }, + { + "start": 11460.06, + "end": 11465.18, + "probability": 0.9861 + }, + { + "start": 11465.72, + "end": 11467.3, + "probability": 0.9839 + }, + { + "start": 11468.63, + "end": 11472.78, + "probability": 0.8986 + }, + { + "start": 11473.74, + "end": 11477.96, + "probability": 0.671 + }, + { + "start": 11478.84, + "end": 11480.58, + "probability": 0.4405 + }, + { + "start": 11489.1, + "end": 11490.38, + "probability": 0.6238 + }, + { + "start": 11493.22, + "end": 11494.22, + "probability": 0.6372 + }, + { + "start": 11495.5, + "end": 11496.28, + "probability": 0.8322 + }, + { + "start": 11496.84, + "end": 11497.62, + "probability": 0.6819 + }, + { + "start": 11498.64, + "end": 11498.98, + "probability": 0.9704 + }, + { + "start": 11500.42, + "end": 11501.18, + "probability": 0.9768 + }, + { + "start": 11502.58, + "end": 11503.12, + "probability": 0.9377 + }, + { + "start": 11503.94, + "end": 11504.62, + "probability": 0.9739 + }, + { + "start": 11505.76, + "end": 11507.48, + "probability": 0.7279 + }, + { + "start": 11508.08, + "end": 11510.22, + "probability": 0.9782 + }, + { + "start": 11511.44, + "end": 11513.12, + "probability": 0.9355 + }, + { + "start": 11514.96, + "end": 11516.06, + "probability": 0.6897 + }, + { + "start": 11517.26, + "end": 11520.26, + "probability": 0.8344 + }, + { + "start": 11521.42, + "end": 11522.74, + "probability": 0.8906 + }, + { + "start": 11524.34, + "end": 11526.12, + "probability": 0.955 + }, + { + "start": 11526.9, + "end": 11529.18, + "probability": 0.9782 + }, + { + "start": 11530.02, + "end": 11532.34, + "probability": 0.9842 + }, + { + "start": 11533.62, + "end": 11535.76, + "probability": 0.9876 + }, + { + "start": 11537.24, + "end": 11542.84, + "probability": 0.9861 + }, + { + "start": 11544.3, + "end": 11544.62, + "probability": 0.72 + }, + { + "start": 11545.64, + "end": 11546.84, + "probability": 0.4079 + }, + { + "start": 11547.8, + "end": 11548.82, + "probability": 0.981 + }, + { + "start": 11550.34, + "end": 11553.5, + "probability": 0.93 + }, + { + "start": 11554.16, + "end": 11554.62, + "probability": 0.8057 + }, + { + "start": 11555.52, + "end": 11557.02, + "probability": 0.8703 + }, + { + "start": 11560.12, + "end": 11563.52, + "probability": 0.8767 + }, + { + "start": 11564.26, + "end": 11564.88, + "probability": 0.8761 + }, + { + "start": 11565.4, + "end": 11566.18, + "probability": 0.9259 + }, + { + "start": 11567.16, + "end": 11567.96, + "probability": 0.9896 + }, + { + "start": 11569.08, + "end": 11570.3, + "probability": 0.9424 + }, + { + "start": 11571.34, + "end": 11571.82, + "probability": 0.958 + }, + { + "start": 11572.76, + "end": 11574.02, + "probability": 0.8993 + }, + { + "start": 11574.96, + "end": 11577.32, + "probability": 0.9518 + }, + { + "start": 11580.4, + "end": 11583.0, + "probability": 0.7817 + }, + { + "start": 11584.22, + "end": 11586.48, + "probability": 0.9093 + }, + { + "start": 11587.66, + "end": 11589.94, + "probability": 0.913 + }, + { + "start": 11590.54, + "end": 11590.94, + "probability": 0.9014 + }, + { + "start": 11592.78, + "end": 11593.72, + "probability": 0.9905 + }, + { + "start": 11594.62, + "end": 11596.9, + "probability": 0.9836 + }, + { + "start": 11597.76, + "end": 11598.18, + "probability": 0.9881 + }, + { + "start": 11599.94, + "end": 11601.36, + "probability": 0.9521 + }, + { + "start": 11602.52, + "end": 11604.88, + "probability": 0.8803 + }, + { + "start": 11606.76, + "end": 11609.9, + "probability": 0.6334 + }, + { + "start": 11611.21, + "end": 11613.38, + "probability": 0.9758 + }, + { + "start": 11614.58, + "end": 11615.04, + "probability": 0.8926 + }, + { + "start": 11615.66, + "end": 11617.0, + "probability": 0.9559 + }, + { + "start": 11617.64, + "end": 11620.02, + "probability": 0.8262 + }, + { + "start": 11623.28, + "end": 11623.72, + "probability": 0.8106 + }, + { + "start": 11625.16, + "end": 11626.0, + "probability": 0.5605 + }, + { + "start": 11626.8, + "end": 11628.92, + "probability": 0.9315 + }, + { + "start": 11630.04, + "end": 11630.48, + "probability": 0.8389 + }, + { + "start": 11632.32, + "end": 11633.22, + "probability": 0.8077 + }, + { + "start": 11634.39, + "end": 11636.22, + "probability": 0.8557 + }, + { + "start": 11637.38, + "end": 11640.18, + "probability": 0.9657 + }, + { + "start": 11641.52, + "end": 11643.68, + "probability": 0.9741 + }, + { + "start": 11644.98, + "end": 11646.94, + "probability": 0.9423 + }, + { + "start": 11648.3, + "end": 11648.76, + "probability": 0.601 + }, + { + "start": 11649.72, + "end": 11651.56, + "probability": 0.8581 + }, + { + "start": 11653.26, + "end": 11655.28, + "probability": 0.9759 + }, + { + "start": 11657.18, + "end": 11658.6, + "probability": 0.9888 + }, + { + "start": 11659.76, + "end": 11660.46, + "probability": 0.9427 + }, + { + "start": 11661.74, + "end": 11664.44, + "probability": 0.8503 + }, + { + "start": 11665.98, + "end": 11666.48, + "probability": 0.9956 + }, + { + "start": 11667.78, + "end": 11668.84, + "probability": 0.5747 + }, + { + "start": 11670.02, + "end": 11671.0, + "probability": 0.98 + }, + { + "start": 11671.66, + "end": 11675.88, + "probability": 0.9363 + }, + { + "start": 11679.68, + "end": 11679.9, + "probability": 0.5533 + }, + { + "start": 11682.22, + "end": 11682.64, + "probability": 0.6743 + }, + { + "start": 11685.42, + "end": 11689.82, + "probability": 0.9543 + }, + { + "start": 11691.42, + "end": 11692.34, + "probability": 0.7567 + }, + { + "start": 11693.26, + "end": 11695.16, + "probability": 0.9788 + }, + { + "start": 11696.1, + "end": 11696.56, + "probability": 0.9777 + }, + { + "start": 11697.24, + "end": 11698.64, + "probability": 0.8308 + }, + { + "start": 11699.58, + "end": 11700.58, + "probability": 0.9839 + }, + { + "start": 11701.14, + "end": 11702.9, + "probability": 0.8697 + }, + { + "start": 11703.46, + "end": 11703.84, + "probability": 0.9902 + }, + { + "start": 11708.26, + "end": 11709.94, + "probability": 0.9585 + }, + { + "start": 11710.56, + "end": 11710.86, + "probability": 0.5783 + }, + { + "start": 11712.12, + "end": 11713.12, + "probability": 0.8159 + }, + { + "start": 11714.89, + "end": 11716.14, + "probability": 0.9734 + }, + { + "start": 11717.44, + "end": 11717.82, + "probability": 0.9077 + }, + { + "start": 11718.5, + "end": 11719.72, + "probability": 0.8573 + }, + { + "start": 11721.03, + "end": 11723.34, + "probability": 0.9824 + }, + { + "start": 11724.2, + "end": 11724.66, + "probability": 0.9883 + }, + { + "start": 11725.24, + "end": 11726.04, + "probability": 0.85 + }, + { + "start": 11727.06, + "end": 11727.84, + "probability": 0.9917 + }, + { + "start": 11728.46, + "end": 11729.3, + "probability": 0.9923 + }, + { + "start": 11729.84, + "end": 11731.02, + "probability": 0.9961 + }, + { + "start": 11732.32, + "end": 11733.16, + "probability": 0.9949 + }, + { + "start": 11735.76, + "end": 11736.82, + "probability": 0.6208 + }, + { + "start": 11737.44, + "end": 11739.32, + "probability": 0.7637 + }, + { + "start": 11740.58, + "end": 11742.28, + "probability": 0.8955 + }, + { + "start": 11742.86, + "end": 11744.46, + "probability": 0.8957 + }, + { + "start": 11748.14, + "end": 11750.46, + "probability": 0.7142 + }, + { + "start": 11750.98, + "end": 11753.24, + "probability": 0.7904 + }, + { + "start": 11754.52, + "end": 11754.98, + "probability": 0.9775 + }, + { + "start": 11755.86, + "end": 11756.62, + "probability": 0.9375 + }, + { + "start": 11758.86, + "end": 11759.28, + "probability": 0.9805 + }, + { + "start": 11761.18, + "end": 11761.9, + "probability": 0.946 + }, + { + "start": 11762.74, + "end": 11763.14, + "probability": 0.9368 + }, + { + "start": 11764.62, + "end": 11765.76, + "probability": 0.8333 + }, + { + "start": 11767.38, + "end": 11769.66, + "probability": 0.8543 + }, + { + "start": 11770.86, + "end": 11771.64, + "probability": 0.9956 + }, + { + "start": 11772.54, + "end": 11773.28, + "probability": 0.5806 + }, + { + "start": 11773.28, + "end": 11776.4, + "probability": 0.5763 + }, + { + "start": 11777.66, + "end": 11778.86, + "probability": 0.5436 + }, + { + "start": 11779.74, + "end": 11782.22, + "probability": 0.8314 + }, + { + "start": 11783.7, + "end": 11786.24, + "probability": 0.8887 + }, + { + "start": 11790.36, + "end": 11790.82, + "probability": 0.9626 + }, + { + "start": 11793.42, + "end": 11794.12, + "probability": 0.6297 + }, + { + "start": 11795.26, + "end": 11796.3, + "probability": 0.7383 + }, + { + "start": 11799.18, + "end": 11799.18, + "probability": 0.4332 + }, + { + "start": 11799.18, + "end": 11799.18, + "probability": 0.6524 + }, + { + "start": 11799.18, + "end": 11800.12, + "probability": 0.3955 + }, + { + "start": 11805.4, + "end": 11806.12, + "probability": 0.2966 + }, + { + "start": 11806.86, + "end": 11807.5, + "probability": 0.5827 + }, + { + "start": 11808.1, + "end": 11808.84, + "probability": 0.7384 + }, + { + "start": 11810.68, + "end": 11811.48, + "probability": 0.9766 + }, + { + "start": 11812.9, + "end": 11813.8, + "probability": 0.9082 + }, + { + "start": 11815.16, + "end": 11815.92, + "probability": 0.9891 + }, + { + "start": 11816.56, + "end": 11817.58, + "probability": 0.9963 + }, + { + "start": 11818.78, + "end": 11819.48, + "probability": 0.9826 + }, + { + "start": 11821.92, + "end": 11823.14, + "probability": 0.324 + }, + { + "start": 11824.08, + "end": 11827.9, + "probability": 0.8514 + }, + { + "start": 11828.6, + "end": 11830.48, + "probability": 0.7903 + }, + { + "start": 11831.02, + "end": 11832.7, + "probability": 0.8625 + }, + { + "start": 11833.7, + "end": 11839.3, + "probability": 0.9584 + }, + { + "start": 11839.82, + "end": 11840.24, + "probability": 0.9894 + }, + { + "start": 11843.1, + "end": 11843.82, + "probability": 0.8972 + }, + { + "start": 11844.86, + "end": 11846.46, + "probability": 0.8876 + }, + { + "start": 11846.68, + "end": 11848.66, + "probability": 0.9794 + }, + { + "start": 11848.88, + "end": 11850.94, + "probability": 0.953 + }, + { + "start": 11851.66, + "end": 11853.72, + "probability": 0.9794 + }, + { + "start": 11853.92, + "end": 11856.0, + "probability": 0.9713 + }, + { + "start": 11857.12, + "end": 11857.76, + "probability": 0.983 + }, + { + "start": 11858.28, + "end": 11859.14, + "probability": 0.7884 + }, + { + "start": 11859.8, + "end": 11861.74, + "probability": 0.7985 + }, + { + "start": 11862.68, + "end": 11864.52, + "probability": 0.9772 + }, + { + "start": 11865.32, + "end": 11866.92, + "probability": 0.9717 + }, + { + "start": 11868.18, + "end": 11869.0, + "probability": 0.9938 + }, + { + "start": 11870.06, + "end": 11872.82, + "probability": 0.9132 + }, + { + "start": 11873.54, + "end": 11875.0, + "probability": 0.9886 + }, + { + "start": 11877.12, + "end": 11879.94, + "probability": 0.7466 + }, + { + "start": 11881.04, + "end": 11883.62, + "probability": 0.9487 + }, + { + "start": 11884.5, + "end": 11886.32, + "probability": 0.8882 + }, + { + "start": 11887.06, + "end": 11892.3, + "probability": 0.9673 + }, + { + "start": 11896.48, + "end": 11896.9, + "probability": 0.3306 + }, + { + "start": 11897.68, + "end": 11903.34, + "probability": 0.5041 + }, + { + "start": 11904.84, + "end": 11905.92, + "probability": 0.3371 + }, + { + "start": 11907.58, + "end": 11907.76, + "probability": 0.8281 + }, + { + "start": 11909.0, + "end": 11910.24, + "probability": 0.3042 + }, + { + "start": 11912.34, + "end": 11914.46, + "probability": 0.1261 + }, + { + "start": 11914.46, + "end": 11914.46, + "probability": 0.2839 + }, + { + "start": 11914.46, + "end": 11917.28, + "probability": 0.8805 + }, + { + "start": 11918.02, + "end": 11919.52, + "probability": 0.2781 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.0, + "end": 12085.0, + "probability": 0.0 + }, + { + "start": 12085.34, + "end": 12088.62, + "probability": 0.0441 + }, + { + "start": 12089.64, + "end": 12089.88, + "probability": 0.2682 + }, + { + "start": 12090.62, + "end": 12091.12, + "probability": 0.1629 + }, + { + "start": 12092.82, + "end": 12093.19, + "probability": 0.0876 + }, + { + "start": 12095.2, + "end": 12099.1, + "probability": 0.0603 + }, + { + "start": 12108.02, + "end": 12108.06, + "probability": 0.0118 + }, + { + "start": 12109.42, + "end": 12111.64, + "probability": 0.0561 + }, + { + "start": 12113.2, + "end": 12113.84, + "probability": 0.0776 + }, + { + "start": 12113.84, + "end": 12116.9, + "probability": 0.0511 + }, + { + "start": 12118.48, + "end": 12120.68, + "probability": 0.0255 + }, + { + "start": 12122.1, + "end": 12122.62, + "probability": 0.283 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.0, + "end": 12206.0, + "probability": 0.0 + }, + { + "start": 12206.08, + "end": 12206.14, + "probability": 0.0652 + }, + { + "start": 12206.16, + "end": 12206.92, + "probability": 0.4873 + }, + { + "start": 12206.98, + "end": 12208.9, + "probability": 0.418 + }, + { + "start": 12208.94, + "end": 12210.04, + "probability": 0.8613 + }, + { + "start": 12210.48, + "end": 12212.7, + "probability": 0.6338 + }, + { + "start": 12212.8, + "end": 12213.84, + "probability": 0.7064 + }, + { + "start": 12213.92, + "end": 12215.13, + "probability": 0.8921 + }, + { + "start": 12215.72, + "end": 12219.32, + "probability": 0.8024 + }, + { + "start": 12220.06, + "end": 12224.16, + "probability": 0.5194 + }, + { + "start": 12224.18, + "end": 12224.56, + "probability": 0.6656 + }, + { + "start": 12228.54, + "end": 12230.48, + "probability": 0.596 + }, + { + "start": 12230.84, + "end": 12233.54, + "probability": 0.601 + }, + { + "start": 12233.8, + "end": 12235.66, + "probability": 0.7834 + }, + { + "start": 12235.8, + "end": 12237.21, + "probability": 0.7031 + }, + { + "start": 12237.46, + "end": 12242.78, + "probability": 0.2228 + }, + { + "start": 12242.78, + "end": 12244.02, + "probability": 0.4968 + }, + { + "start": 12246.6, + "end": 12247.3, + "probability": 0.2216 + }, + { + "start": 12249.63, + "end": 12250.24, + "probability": 0.1152 + }, + { + "start": 12250.92, + "end": 12251.34, + "probability": 0.1312 + }, + { + "start": 12251.68, + "end": 12255.78, + "probability": 0.0771 + }, + { + "start": 12256.9, + "end": 12257.38, + "probability": 0.1275 + }, + { + "start": 12257.38, + "end": 12260.2, + "probability": 0.0439 + }, + { + "start": 12262.52, + "end": 12263.06, + "probability": 0.0026 + }, + { + "start": 12263.06, + "end": 12263.87, + "probability": 0.1543 + }, + { + "start": 12265.76, + "end": 12266.94, + "probability": 0.1244 + }, + { + "start": 12267.62, + "end": 12268.52, + "probability": 0.079 + }, + { + "start": 12269.56, + "end": 12270.4, + "probability": 0.1199 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.0, + "end": 12327.0, + "probability": 0.0 + }, + { + "start": 12327.16, + "end": 12331.36, + "probability": 0.5114 + }, + { + "start": 12331.94, + "end": 12336.58, + "probability": 0.9507 + }, + { + "start": 12336.92, + "end": 12339.46, + "probability": 0.9497 + }, + { + "start": 12339.7, + "end": 12342.46, + "probability": 0.8383 + }, + { + "start": 12343.36, + "end": 12345.48, + "probability": 0.9543 + }, + { + "start": 12346.34, + "end": 12352.46, + "probability": 0.6351 + }, + { + "start": 12353.02, + "end": 12356.96, + "probability": 0.9518 + }, + { + "start": 12358.4, + "end": 12366.26, + "probability": 0.9538 + }, + { + "start": 12366.26, + "end": 12374.42, + "probability": 0.9122 + }, + { + "start": 12375.16, + "end": 12377.26, + "probability": 0.6029 + }, + { + "start": 12378.34, + "end": 12382.36, + "probability": 0.9967 + }, + { + "start": 12383.02, + "end": 12385.88, + "probability": 0.9376 + }, + { + "start": 12387.04, + "end": 12391.9, + "probability": 0.9774 + }, + { + "start": 12392.48, + "end": 12393.42, + "probability": 0.5043 + }, + { + "start": 12395.45, + "end": 12399.56, + "probability": 0.9944 + }, + { + "start": 12399.56, + "end": 12404.58, + "probability": 0.9969 + }, + { + "start": 12405.72, + "end": 12409.3, + "probability": 0.9856 + }, + { + "start": 12409.76, + "end": 12412.26, + "probability": 0.4873 + }, + { + "start": 12412.84, + "end": 12414.06, + "probability": 0.5254 + }, + { + "start": 12414.88, + "end": 12417.24, + "probability": 0.8701 + }, + { + "start": 12417.46, + "end": 12422.3, + "probability": 0.9971 + }, + { + "start": 12422.3, + "end": 12428.38, + "probability": 0.9489 + }, + { + "start": 12430.94, + "end": 12433.6, + "probability": 0.8455 + }, + { + "start": 12433.7, + "end": 12434.36, + "probability": 0.6831 + }, + { + "start": 12435.12, + "end": 12436.54, + "probability": 0.9322 + }, + { + "start": 12437.24, + "end": 12439.34, + "probability": 0.8813 + }, + { + "start": 12440.04, + "end": 12442.26, + "probability": 0.8731 + }, + { + "start": 12442.32, + "end": 12445.54, + "probability": 0.9876 + }, + { + "start": 12447.84, + "end": 12455.42, + "probability": 0.4072 + }, + { + "start": 12457.5, + "end": 12458.68, + "probability": 0.6694 + }, + { + "start": 12460.02, + "end": 12465.48, + "probability": 0.9846 + }, + { + "start": 12466.1, + "end": 12470.14, + "probability": 0.8529 + }, + { + "start": 12471.62, + "end": 12474.54, + "probability": 0.9984 + }, + { + "start": 12474.54, + "end": 12479.64, + "probability": 0.9933 + }, + { + "start": 12479.98, + "end": 12481.16, + "probability": 0.9101 + }, + { + "start": 12481.18, + "end": 12485.44, + "probability": 0.6128 + }, + { + "start": 12486.12, + "end": 12495.54, + "probability": 0.9766 + }, + { + "start": 12497.74, + "end": 12500.96, + "probability": 0.9989 + }, + { + "start": 12501.48, + "end": 12506.28, + "probability": 0.9892 + }, + { + "start": 12506.92, + "end": 12509.96, + "probability": 0.9664 + }, + { + "start": 12510.54, + "end": 12511.1, + "probability": 0.7336 + }, + { + "start": 12511.74, + "end": 12514.64, + "probability": 0.9626 + }, + { + "start": 12516.5, + "end": 12520.2, + "probability": 0.8408 + }, + { + "start": 12520.9, + "end": 12524.78, + "probability": 0.9113 + }, + { + "start": 12525.54, + "end": 12533.12, + "probability": 0.8527 + }, + { + "start": 12533.68, + "end": 12540.0, + "probability": 0.9944 + }, + { + "start": 12541.14, + "end": 12542.78, + "probability": 0.959 + }, + { + "start": 12543.58, + "end": 12545.75, + "probability": 0.5392 + }, + { + "start": 12546.93, + "end": 12552.14, + "probability": 0.9677 + }, + { + "start": 12552.7, + "end": 12555.2, + "probability": 0.8691 + }, + { + "start": 12555.24, + "end": 12557.74, + "probability": 0.9362 + }, + { + "start": 12558.32, + "end": 12561.28, + "probability": 0.7624 + }, + { + "start": 12561.94, + "end": 12567.66, + "probability": 0.9899 + }, + { + "start": 12568.18, + "end": 12575.84, + "probability": 0.8075 + }, + { + "start": 12576.36, + "end": 12581.46, + "probability": 0.9751 + }, + { + "start": 12581.46, + "end": 12586.76, + "probability": 0.9905 + }, + { + "start": 12588.66, + "end": 12589.96, + "probability": 0.6674 + }, + { + "start": 12590.4, + "end": 12594.76, + "probability": 0.8611 + }, + { + "start": 12594.96, + "end": 12599.76, + "probability": 0.9636 + }, + { + "start": 12600.1, + "end": 12604.22, + "probability": 0.9989 + }, + { + "start": 12605.0, + "end": 12608.82, + "probability": 0.9922 + }, + { + "start": 12608.82, + "end": 12614.78, + "probability": 0.9937 + }, + { + "start": 12615.4, + "end": 12621.0, + "probability": 0.9918 + }, + { + "start": 12621.0, + "end": 12629.82, + "probability": 0.9908 + }, + { + "start": 12630.36, + "end": 12634.8, + "probability": 0.9993 + }, + { + "start": 12635.42, + "end": 12640.76, + "probability": 0.9959 + }, + { + "start": 12640.76, + "end": 12646.14, + "probability": 0.9651 + }, + { + "start": 12646.62, + "end": 12648.9, + "probability": 0.9109 + }, + { + "start": 12648.96, + "end": 12651.92, + "probability": 0.9325 + }, + { + "start": 12652.3, + "end": 12657.42, + "probability": 0.8778 + }, + { + "start": 12658.04, + "end": 12659.58, + "probability": 0.9716 + }, + { + "start": 12660.0, + "end": 12661.56, + "probability": 0.9902 + }, + { + "start": 12662.02, + "end": 12667.5, + "probability": 0.9822 + }, + { + "start": 12668.08, + "end": 12674.16, + "probability": 0.9792 + }, + { + "start": 12675.62, + "end": 12682.14, + "probability": 0.9918 + }, + { + "start": 12682.62, + "end": 12684.5, + "probability": 0.9167 + }, + { + "start": 12684.94, + "end": 12687.84, + "probability": 0.9554 + }, + { + "start": 12689.3, + "end": 12693.42, + "probability": 0.9413 + }, + { + "start": 12693.94, + "end": 12695.86, + "probability": 0.9265 + }, + { + "start": 12696.48, + "end": 12700.36, + "probability": 0.9926 + }, + { + "start": 12700.84, + "end": 12706.02, + "probability": 0.9956 + }, + { + "start": 12707.9, + "end": 12711.2, + "probability": 0.9195 + }, + { + "start": 12712.2, + "end": 12715.84, + "probability": 0.7236 + }, + { + "start": 12715.84, + "end": 12716.88, + "probability": 0.5446 + }, + { + "start": 12717.64, + "end": 12721.84, + "probability": 0.9771 + }, + { + "start": 12722.42, + "end": 12725.7, + "probability": 0.9058 + }, + { + "start": 12726.64, + "end": 12727.44, + "probability": 0.9939 + }, + { + "start": 12727.5, + "end": 12728.76, + "probability": 0.9795 + }, + { + "start": 12729.16, + "end": 12731.42, + "probability": 0.9038 + }, + { + "start": 12735.24, + "end": 12739.76, + "probability": 0.952 + }, + { + "start": 12739.9, + "end": 12745.92, + "probability": 0.9944 + }, + { + "start": 12747.66, + "end": 12750.22, + "probability": 0.8044 + }, + { + "start": 12750.86, + "end": 12755.84, + "probability": 0.991 + }, + { + "start": 12755.84, + "end": 12761.04, + "probability": 0.9873 + }, + { + "start": 12761.64, + "end": 12765.18, + "probability": 0.9275 + }, + { + "start": 12765.7, + "end": 12771.24, + "probability": 0.9832 + }, + { + "start": 12771.46, + "end": 12772.64, + "probability": 0.7992 + }, + { + "start": 12773.36, + "end": 12777.72, + "probability": 0.9863 + }, + { + "start": 12778.42, + "end": 12780.78, + "probability": 0.9832 + }, + { + "start": 12780.92, + "end": 12782.16, + "probability": 0.9389 + }, + { + "start": 12782.2, + "end": 12787.94, + "probability": 0.9828 + }, + { + "start": 12788.2, + "end": 12789.96, + "probability": 0.7834 + }, + { + "start": 12790.46, + "end": 12790.98, + "probability": 0.4483 + }, + { + "start": 12791.2, + "end": 12793.18, + "probability": 0.8833 + }, + { + "start": 12793.46, + "end": 12795.08, + "probability": 0.9882 + }, + { + "start": 12795.9, + "end": 12799.82, + "probability": 0.9956 + }, + { + "start": 12801.08, + "end": 12807.44, + "probability": 0.9779 + }, + { + "start": 12807.62, + "end": 12809.53, + "probability": 0.944 + }, + { + "start": 12810.88, + "end": 12812.8, + "probability": 0.9746 + }, + { + "start": 12814.18, + "end": 12816.94, + "probability": 0.9008 + }, + { + "start": 12817.76, + "end": 12822.02, + "probability": 0.9961 + }, + { + "start": 12822.02, + "end": 12827.58, + "probability": 0.9941 + }, + { + "start": 12827.96, + "end": 12830.86, + "probability": 0.9978 + }, + { + "start": 12831.38, + "end": 12833.5, + "probability": 0.9854 + }, + { + "start": 12834.34, + "end": 12835.24, + "probability": 0.4857 + }, + { + "start": 12835.76, + "end": 12837.06, + "probability": 0.9859 + }, + { + "start": 12837.34, + "end": 12838.34, + "probability": 0.5401 + }, + { + "start": 12838.82, + "end": 12840.62, + "probability": 0.9933 + }, + { + "start": 12841.14, + "end": 12844.74, + "probability": 0.9854 + }, + { + "start": 12845.2, + "end": 12846.48, + "probability": 0.8128 + }, + { + "start": 12846.84, + "end": 12847.54, + "probability": 0.4913 + }, + { + "start": 12847.58, + "end": 12852.38, + "probability": 0.8213 + }, + { + "start": 12854.26, + "end": 12854.9, + "probability": 0.6686 + }, + { + "start": 12855.6, + "end": 12858.62, + "probability": 0.868 + }, + { + "start": 12858.72, + "end": 12859.72, + "probability": 0.763 + }, + { + "start": 12859.9, + "end": 12863.38, + "probability": 0.7295 + }, + { + "start": 12870.78, + "end": 12873.0, + "probability": 0.6254 + }, + { + "start": 12873.1, + "end": 12873.89, + "probability": 0.5784 + }, + { + "start": 12877.84, + "end": 12878.47, + "probability": 0.2042 + }, + { + "start": 12878.9, + "end": 12880.93, + "probability": 0.1915 + }, + { + "start": 12881.04, + "end": 12884.28, + "probability": 0.0539 + }, + { + "start": 12885.52, + "end": 12885.88, + "probability": 0.2435 + }, + { + "start": 12886.11, + "end": 12887.88, + "probability": 0.2802 + }, + { + "start": 12887.98, + "end": 12887.98, + "probability": 0.6305 + }, + { + "start": 12888.02, + "end": 12889.58, + "probability": 0.8091 + }, + { + "start": 12889.72, + "end": 12890.9, + "probability": 0.6669 + }, + { + "start": 12891.66, + "end": 12894.04, + "probability": 0.9731 + }, + { + "start": 12894.96, + "end": 12897.66, + "probability": 0.1003 + }, + { + "start": 12897.66, + "end": 12899.58, + "probability": 0.1915 + }, + { + "start": 12899.58, + "end": 12899.58, + "probability": 0.0422 + }, + { + "start": 12899.58, + "end": 12901.15, + "probability": 0.2669 + }, + { + "start": 12903.0, + "end": 12904.96, + "probability": 0.7188 + }, + { + "start": 12905.14, + "end": 12906.56, + "probability": 0.5457 + }, + { + "start": 12906.64, + "end": 12908.22, + "probability": 0.9034 + }, + { + "start": 12909.82, + "end": 12913.38, + "probability": 0.6298 + }, + { + "start": 12914.76, + "end": 12917.14, + "probability": 0.5664 + }, + { + "start": 12918.52, + "end": 12918.86, + "probability": 0.9528 + }, + { + "start": 12918.92, + "end": 12919.98, + "probability": 0.7237 + }, + { + "start": 12920.04, + "end": 12925.06, + "probability": 0.9807 + }, + { + "start": 12925.16, + "end": 12925.67, + "probability": 0.6924 + }, + { + "start": 12926.62, + "end": 12929.7, + "probability": 0.9979 + }, + { + "start": 12931.31, + "end": 12936.6, + "probability": 0.7988 + }, + { + "start": 12936.88, + "end": 12937.66, + "probability": 0.8 + }, + { + "start": 12938.04, + "end": 12939.06, + "probability": 0.1262 + }, + { + "start": 12939.32, + "end": 12940.96, + "probability": 0.9943 + }, + { + "start": 12942.64, + "end": 12944.75, + "probability": 0.9143 + }, + { + "start": 12945.34, + "end": 12946.86, + "probability": 0.8843 + }, + { + "start": 12947.1, + "end": 12952.9, + "probability": 0.8078 + }, + { + "start": 12953.84, + "end": 12954.24, + "probability": 0.9664 + }, + { + "start": 12954.4, + "end": 12954.86, + "probability": 0.6957 + }, + { + "start": 12955.0, + "end": 12956.04, + "probability": 0.8752 + }, + { + "start": 12956.54, + "end": 12957.5, + "probability": 0.6816 + }, + { + "start": 12957.62, + "end": 12958.13, + "probability": 0.9566 + }, + { + "start": 12959.14, + "end": 12961.3, + "probability": 0.5653 + }, + { + "start": 12961.46, + "end": 12966.38, + "probability": 0.9484 + }, + { + "start": 12967.28, + "end": 12970.04, + "probability": 0.9188 + }, + { + "start": 12970.14, + "end": 12970.96, + "probability": 0.8742 + }, + { + "start": 12971.8, + "end": 12972.86, + "probability": 0.9697 + }, + { + "start": 12973.28, + "end": 12974.36, + "probability": 0.821 + }, + { + "start": 12975.16, + "end": 12977.46, + "probability": 0.8425 + }, + { + "start": 12978.38, + "end": 12982.46, + "probability": 0.9672 + }, + { + "start": 12989.28, + "end": 12990.16, + "probability": 0.2948 + }, + { + "start": 12993.32, + "end": 12996.28, + "probability": 0.9377 + }, + { + "start": 12996.62, + "end": 12998.94, + "probability": 0.6992 + }, + { + "start": 12999.4, + "end": 13001.14, + "probability": 0.6307 + }, + { + "start": 13001.52, + "end": 13002.56, + "probability": 0.7749 + }, + { + "start": 13002.62, + "end": 13002.99, + "probability": 0.7852 + }, + { + "start": 13003.24, + "end": 13003.86, + "probability": 0.4967 + }, + { + "start": 13004.66, + "end": 13006.24, + "probability": 0.672 + }, + { + "start": 13010.14, + "end": 13013.46, + "probability": 0.9136 + }, + { + "start": 13015.5, + "end": 13018.1, + "probability": 0.873 + }, + { + "start": 13020.88, + "end": 13022.28, + "probability": 0.9443 + }, + { + "start": 13022.36, + "end": 13025.18, + "probability": 0.9543 + }, + { + "start": 13025.64, + "end": 13028.35, + "probability": 0.9603 + }, + { + "start": 13029.56, + "end": 13030.26, + "probability": 0.9215 + }, + { + "start": 13031.54, + "end": 13034.9, + "probability": 0.8446 + }, + { + "start": 13036.38, + "end": 13037.32, + "probability": 0.6045 + }, + { + "start": 13037.84, + "end": 13039.84, + "probability": 0.9688 + }, + { + "start": 13040.56, + "end": 13041.42, + "probability": 0.7563 + }, + { + "start": 13042.08, + "end": 13044.96, + "probability": 0.9543 + }, + { + "start": 13046.02, + "end": 13046.74, + "probability": 0.6117 + }, + { + "start": 13047.44, + "end": 13050.5, + "probability": 0.9346 + }, + { + "start": 13050.5, + "end": 13053.74, + "probability": 0.9901 + }, + { + "start": 13054.34, + "end": 13054.8, + "probability": 0.7194 + }, + { + "start": 13055.44, + "end": 13058.98, + "probability": 0.73 + }, + { + "start": 13059.68, + "end": 13061.2, + "probability": 0.9867 + }, + { + "start": 13061.3, + "end": 13062.46, + "probability": 0.8598 + }, + { + "start": 13062.92, + "end": 13064.34, + "probability": 0.8975 + }, + { + "start": 13064.78, + "end": 13065.34, + "probability": 0.9614 + }, + { + "start": 13066.18, + "end": 13069.08, + "probability": 0.77 + }, + { + "start": 13069.18, + "end": 13069.94, + "probability": 0.8643 + }, + { + "start": 13070.08, + "end": 13074.08, + "probability": 0.9874 + }, + { + "start": 13074.34, + "end": 13075.32, + "probability": 0.8683 + }, + { + "start": 13075.68, + "end": 13078.6, + "probability": 0.9736 + }, + { + "start": 13079.76, + "end": 13080.98, + "probability": 0.9365 + }, + { + "start": 13081.1, + "end": 13087.64, + "probability": 0.9902 + }, + { + "start": 13088.48, + "end": 13091.08, + "probability": 0.9521 + }, + { + "start": 13091.7, + "end": 13092.14, + "probability": 0.6702 + }, + { + "start": 13092.58, + "end": 13095.75, + "probability": 0.8848 + }, + { + "start": 13095.88, + "end": 13098.52, + "probability": 0.9801 + }, + { + "start": 13099.34, + "end": 13099.78, + "probability": 0.7867 + }, + { + "start": 13101.12, + "end": 13103.84, + "probability": 0.96 + }, + { + "start": 13103.84, + "end": 13106.4, + "probability": 0.9091 + }, + { + "start": 13107.06, + "end": 13107.78, + "probability": 0.7443 + }, + { + "start": 13108.58, + "end": 13110.22, + "probability": 0.9583 + }, + { + "start": 13110.22, + "end": 13112.5, + "probability": 0.9546 + }, + { + "start": 13113.08, + "end": 13114.68, + "probability": 0.6357 + }, + { + "start": 13115.2, + "end": 13115.86, + "probability": 0.9648 + }, + { + "start": 13117.04, + "end": 13119.02, + "probability": 0.8506 + }, + { + "start": 13119.3, + "end": 13122.04, + "probability": 0.9543 + }, + { + "start": 13122.4, + "end": 13125.0, + "probability": 0.9807 + }, + { + "start": 13126.02, + "end": 13132.14, + "probability": 0.9511 + }, + { + "start": 13132.14, + "end": 13135.8, + "probability": 0.9881 + }, + { + "start": 13137.06, + "end": 13138.66, + "probability": 0.5627 + }, + { + "start": 13140.28, + "end": 13141.0, + "probability": 0.8176 + }, + { + "start": 13142.94, + "end": 13147.06, + "probability": 0.9775 + }, + { + "start": 13148.1, + "end": 13150.46, + "probability": 0.1676 + }, + { + "start": 13150.92, + "end": 13151.41, + "probability": 0.5146 + }, + { + "start": 13151.46, + "end": 13152.12, + "probability": 0.8745 + }, + { + "start": 13152.26, + "end": 13152.69, + "probability": 0.4749 + }, + { + "start": 13153.1, + "end": 13154.46, + "probability": 0.5456 + }, + { + "start": 13154.56, + "end": 13156.72, + "probability": 0.6939 + }, + { + "start": 13156.86, + "end": 13159.64, + "probability": 0.1048 + }, + { + "start": 13159.64, + "end": 13160.42, + "probability": 0.5784 + }, + { + "start": 13160.42, + "end": 13161.06, + "probability": 0.9108 + }, + { + "start": 13161.5, + "end": 13163.0, + "probability": 0.8409 + }, + { + "start": 13163.58, + "end": 13164.5, + "probability": 0.6178 + }, + { + "start": 13165.06, + "end": 13166.01, + "probability": 0.8115 + }, + { + "start": 13167.26, + "end": 13173.06, + "probability": 0.9306 + }, + { + "start": 13174.02, + "end": 13175.42, + "probability": 0.9777 + }, + { + "start": 13177.04, + "end": 13178.26, + "probability": 0.9985 + }, + { + "start": 13179.5, + "end": 13181.22, + "probability": 0.7148 + }, + { + "start": 13181.28, + "end": 13182.28, + "probability": 0.7885 + }, + { + "start": 13182.6, + "end": 13183.04, + "probability": 0.9281 + }, + { + "start": 13184.16, + "end": 13185.16, + "probability": 0.9722 + }, + { + "start": 13186.18, + "end": 13188.86, + "probability": 0.9182 + }, + { + "start": 13188.86, + "end": 13193.58, + "probability": 0.8221 + }, + { + "start": 13193.62, + "end": 13194.48, + "probability": 0.9273 + }, + { + "start": 13195.18, + "end": 13196.16, + "probability": 0.7985 + }, + { + "start": 13197.6, + "end": 13199.0, + "probability": 0.7096 + }, + { + "start": 13199.1, + "end": 13200.6, + "probability": 0.6938 + }, + { + "start": 13201.88, + "end": 13205.46, + "probability": 0.856 + }, + { + "start": 13206.08, + "end": 13206.98, + "probability": 0.8234 + }, + { + "start": 13207.12, + "end": 13207.56, + "probability": 0.8789 + }, + { + "start": 13207.86, + "end": 13209.8, + "probability": 0.661 + }, + { + "start": 13209.86, + "end": 13213.48, + "probability": 0.6538 + }, + { + "start": 13213.7, + "end": 13214.92, + "probability": 0.6736 + }, + { + "start": 13215.52, + "end": 13220.86, + "probability": 0.8167 + }, + { + "start": 13221.08, + "end": 13221.42, + "probability": 0.6794 + }, + { + "start": 13222.48, + "end": 13224.4, + "probability": 0.7369 + }, + { + "start": 13226.98, + "end": 13228.26, + "probability": 0.7485 + }, + { + "start": 13228.64, + "end": 13232.14, + "probability": 0.2466 + }, + { + "start": 13233.78, + "end": 13236.94, + "probability": 0.8407 + }, + { + "start": 13241.96, + "end": 13244.54, + "probability": 0.7537 + }, + { + "start": 13245.12, + "end": 13246.33, + "probability": 0.4567 + }, + { + "start": 13248.28, + "end": 13250.6, + "probability": 0.954 + }, + { + "start": 13252.5, + "end": 13254.22, + "probability": 0.9896 + }, + { + "start": 13255.32, + "end": 13257.12, + "probability": 0.9758 + }, + { + "start": 13259.32, + "end": 13261.94, + "probability": 0.4685 + }, + { + "start": 13262.5, + "end": 13263.02, + "probability": 0.9572 + }, + { + "start": 13263.52, + "end": 13264.4, + "probability": 0.6155 + }, + { + "start": 13270.58, + "end": 13272.58, + "probability": 0.7749 + }, + { + "start": 13277.14, + "end": 13278.9, + "probability": 0.9148 + }, + { + "start": 13282.37, + "end": 13284.7, + "probability": 0.4766 + }, + { + "start": 13286.17, + "end": 13288.66, + "probability": 0.7627 + }, + { + "start": 13296.78, + "end": 13300.6, + "probability": 0.7073 + }, + { + "start": 13300.66, + "end": 13302.1, + "probability": 0.3901 + }, + { + "start": 13302.12, + "end": 13302.86, + "probability": 0.6643 + }, + { + "start": 13303.48, + "end": 13305.62, + "probability": 0.3653 + }, + { + "start": 13306.82, + "end": 13308.94, + "probability": 0.9364 + }, + { + "start": 13315.28, + "end": 13315.84, + "probability": 0.0347 + }, + { + "start": 13316.36, + "end": 13317.98, + "probability": 0.4596 + }, + { + "start": 13318.36, + "end": 13318.6, + "probability": 0.5623 + }, + { + "start": 13324.78, + "end": 13325.38, + "probability": 0.2683 + }, + { + "start": 13325.46, + "end": 13327.24, + "probability": 0.463 + }, + { + "start": 13327.68, + "end": 13328.44, + "probability": 0.5879 + }, + { + "start": 13328.76, + "end": 13329.64, + "probability": 0.7866 + }, + { + "start": 13330.0, + "end": 13331.26, + "probability": 0.582 + }, + { + "start": 13331.44, + "end": 13331.78, + "probability": 0.0659 + }, + { + "start": 13331.82, + "end": 13333.5, + "probability": 0.7125 + }, + { + "start": 13333.58, + "end": 13334.38, + "probability": 0.5675 + }, + { + "start": 13334.44, + "end": 13334.9, + "probability": 0.5779 + }, + { + "start": 13335.2, + "end": 13338.78, + "probability": 0.95 + }, + { + "start": 13338.9, + "end": 13339.49, + "probability": 0.8777 + }, + { + "start": 13340.24, + "end": 13340.86, + "probability": 0.8641 + }, + { + "start": 13341.9, + "end": 13343.36, + "probability": 0.7607 + }, + { + "start": 13345.18, + "end": 13345.96, + "probability": 0.7063 + }, + { + "start": 13346.2, + "end": 13348.1, + "probability": 0.0228 + }, + { + "start": 13349.84, + "end": 13350.18, + "probability": 0.1991 + }, + { + "start": 13350.18, + "end": 13350.34, + "probability": 0.1273 + }, + { + "start": 13350.34, + "end": 13352.32, + "probability": 0.3633 + }, + { + "start": 13352.34, + "end": 13352.92, + "probability": 0.5784 + }, + { + "start": 13354.64, + "end": 13355.92, + "probability": 0.9912 + }, + { + "start": 13356.46, + "end": 13357.12, + "probability": 0.6384 + }, + { + "start": 13357.12, + "end": 13357.3, + "probability": 0.958 + }, + { + "start": 13357.3, + "end": 13358.4, + "probability": 0.9897 + }, + { + "start": 13358.6, + "end": 13359.5, + "probability": 0.8436 + }, + { + "start": 13360.66, + "end": 13364.38, + "probability": 0.6465 + }, + { + "start": 13365.61, + "end": 13366.05, + "probability": 0.0333 + }, + { + "start": 13366.96, + "end": 13369.08, + "probability": 0.6685 + }, + { + "start": 13369.28, + "end": 13370.12, + "probability": 0.6284 + }, + { + "start": 13370.87, + "end": 13374.38, + "probability": 0.9902 + }, + { + "start": 13375.25, + "end": 13380.24, + "probability": 0.9683 + }, + { + "start": 13380.4, + "end": 13383.08, + "probability": 0.9842 + }, + { + "start": 13383.16, + "end": 13384.14, + "probability": 0.9406 + }, + { + "start": 13385.06, + "end": 13390.58, + "probability": 0.9922 + }, + { + "start": 13391.2, + "end": 13393.7, + "probability": 0.9009 + }, + { + "start": 13395.66, + "end": 13398.74, + "probability": 0.9484 + }, + { + "start": 13399.3, + "end": 13402.72, + "probability": 0.9668 + }, + { + "start": 13403.5, + "end": 13404.3, + "probability": 0.7678 + }, + { + "start": 13404.48, + "end": 13406.12, + "probability": 0.9092 + }, + { + "start": 13406.2, + "end": 13407.42, + "probability": 0.9961 + }, + { + "start": 13408.04, + "end": 13414.64, + "probability": 0.9837 + }, + { + "start": 13415.56, + "end": 13418.5, + "probability": 0.9707 + }, + { + "start": 13419.3, + "end": 13423.84, + "probability": 0.9724 + }, + { + "start": 13427.22, + "end": 13433.82, + "probability": 0.9858 + }, + { + "start": 13434.12, + "end": 13437.3, + "probability": 0.8105 + }, + { + "start": 13439.37, + "end": 13442.48, + "probability": 0.8193 + }, + { + "start": 13448.56, + "end": 13452.0, + "probability": 0.9939 + }, + { + "start": 13453.62, + "end": 13454.54, + "probability": 0.693 + }, + { + "start": 13455.18, + "end": 13457.82, + "probability": 0.9933 + }, + { + "start": 13458.78, + "end": 13462.48, + "probability": 0.9973 + }, + { + "start": 13463.52, + "end": 13468.02, + "probability": 0.8981 + }, + { + "start": 13469.16, + "end": 13473.52, + "probability": 0.7849 + }, + { + "start": 13474.36, + "end": 13478.1, + "probability": 0.9806 + }, + { + "start": 13478.82, + "end": 13481.1, + "probability": 0.9932 + }, + { + "start": 13481.72, + "end": 13484.58, + "probability": 0.9907 + }, + { + "start": 13485.1, + "end": 13486.74, + "probability": 0.7576 + }, + { + "start": 13488.24, + "end": 13493.78, + "probability": 0.9259 + }, + { + "start": 13498.72, + "end": 13499.44, + "probability": 0.7549 + }, + { + "start": 13499.66, + "end": 13502.76, + "probability": 0.995 + }, + { + "start": 13503.7, + "end": 13506.56, + "probability": 0.9973 + }, + { + "start": 13506.72, + "end": 13511.92, + "probability": 0.9934 + }, + { + "start": 13512.62, + "end": 13514.6, + "probability": 0.813 + }, + { + "start": 13515.02, + "end": 13515.94, + "probability": 0.7338 + }, + { + "start": 13516.24, + "end": 13517.8, + "probability": 0.3698 + }, + { + "start": 13517.84, + "end": 13518.94, + "probability": 0.5884 + }, + { + "start": 13519.08, + "end": 13520.2, + "probability": 0.353 + }, + { + "start": 13520.64, + "end": 13521.36, + "probability": 0.0771 + }, + { + "start": 13521.36, + "end": 13522.12, + "probability": 0.155 + }, + { + "start": 13522.34, + "end": 13522.85, + "probability": 0.1553 + }, + { + "start": 13525.32, + "end": 13530.63, + "probability": 0.1413 + }, + { + "start": 13531.56, + "end": 13537.36, + "probability": 0.2891 + }, + { + "start": 13540.62, + "end": 13544.86, + "probability": 0.7602 + }, + { + "start": 13544.9, + "end": 13545.22, + "probability": 0.7788 + }, + { + "start": 13546.3, + "end": 13546.91, + "probability": 0.958 + }, + { + "start": 13547.76, + "end": 13548.67, + "probability": 0.9197 + }, + { + "start": 13548.9, + "end": 13550.1, + "probability": 0.9823 + }, + { + "start": 13550.28, + "end": 13551.1, + "probability": 0.8657 + }, + { + "start": 13551.32, + "end": 13551.88, + "probability": 0.2186 + }, + { + "start": 13552.34, + "end": 13554.6, + "probability": 0.9635 + }, + { + "start": 13554.9, + "end": 13555.82, + "probability": 0.8425 + }, + { + "start": 13555.88, + "end": 13556.92, + "probability": 0.8822 + }, + { + "start": 13556.98, + "end": 13559.04, + "probability": 0.5852 + }, + { + "start": 13559.96, + "end": 13561.8, + "probability": 0.8927 + }, + { + "start": 13562.54, + "end": 13564.4, + "probability": 0.3116 + }, + { + "start": 13564.58, + "end": 13567.44, + "probability": 0.1381 + }, + { + "start": 13567.88, + "end": 13569.72, + "probability": 0.5636 + }, + { + "start": 13571.08, + "end": 13571.67, + "probability": 0.8898 + }, + { + "start": 13574.16, + "end": 13579.5, + "probability": 0.283 + }, + { + "start": 13580.98, + "end": 13581.54, + "probability": 0.0377 + }, + { + "start": 13582.12, + "end": 13584.74, + "probability": 0.1177 + }, + { + "start": 13594.44, + "end": 13595.26, + "probability": 0.5963 + }, + { + "start": 13595.85, + "end": 13598.4, + "probability": 0.0655 + }, + { + "start": 13599.52, + "end": 13604.42, + "probability": 0.9904 + }, + { + "start": 13605.04, + "end": 13607.0, + "probability": 0.9941 + }, + { + "start": 13609.0, + "end": 13610.16, + "probability": 0.9561 + }, + { + "start": 13610.68, + "end": 13613.18, + "probability": 0.8975 + }, + { + "start": 13613.32, + "end": 13617.48, + "probability": 0.9949 + }, + { + "start": 13618.6, + "end": 13620.06, + "probability": 0.9985 + }, + { + "start": 13621.22, + "end": 13623.2, + "probability": 0.8687 + }, + { + "start": 13623.9, + "end": 13628.56, + "probability": 0.856 + }, + { + "start": 13631.54, + "end": 13633.4, + "probability": 0.9572 + }, + { + "start": 13634.48, + "end": 13638.6, + "probability": 0.7286 + }, + { + "start": 13639.28, + "end": 13644.7, + "probability": 0.9702 + }, + { + "start": 13645.6, + "end": 13647.92, + "probability": 0.9767 + }, + { + "start": 13649.7, + "end": 13652.32, + "probability": 0.9487 + }, + { + "start": 13652.5, + "end": 13652.5, + "probability": 0.0879 + }, + { + "start": 13652.5, + "end": 13656.7, + "probability": 0.9903 + }, + { + "start": 13656.86, + "end": 13662.84, + "probability": 0.9696 + }, + { + "start": 13664.1, + "end": 13670.02, + "probability": 0.9976 + }, + { + "start": 13670.82, + "end": 13673.44, + "probability": 0.9856 + }, + { + "start": 13673.58, + "end": 13674.88, + "probability": 0.8301 + }, + { + "start": 13675.42, + "end": 13678.96, + "probability": 0.9182 + }, + { + "start": 13679.96, + "end": 13680.18, + "probability": 0.4511 + }, + { + "start": 13680.2, + "end": 13685.9, + "probability": 0.9368 + }, + { + "start": 13687.24, + "end": 13690.5, + "probability": 0.7069 + }, + { + "start": 13691.2, + "end": 13694.2, + "probability": 0.9683 + }, + { + "start": 13695.38, + "end": 13700.62, + "probability": 0.9795 + }, + { + "start": 13700.62, + "end": 13704.94, + "probability": 0.9895 + }, + { + "start": 13706.16, + "end": 13707.44, + "probability": 0.7748 + }, + { + "start": 13708.26, + "end": 13709.02, + "probability": 0.7708 + }, + { + "start": 13709.88, + "end": 13710.46, + "probability": 0.8517 + }, + { + "start": 13710.56, + "end": 13711.52, + "probability": 0.9893 + }, + { + "start": 13712.54, + "end": 13715.22, + "probability": 0.9819 + }, + { + "start": 13716.48, + "end": 13718.98, + "probability": 0.9798 + }, + { + "start": 13720.07, + "end": 13721.01, + "probability": 0.8695 + }, + { + "start": 13721.92, + "end": 13726.46, + "probability": 0.9919 + }, + { + "start": 13728.84, + "end": 13730.64, + "probability": 0.9913 + }, + { + "start": 13731.82, + "end": 13734.66, + "probability": 0.9796 + }, + { + "start": 13735.62, + "end": 13739.6, + "probability": 0.9662 + }, + { + "start": 13741.1, + "end": 13743.22, + "probability": 0.8911 + }, + { + "start": 13744.28, + "end": 13747.96, + "probability": 0.992 + }, + { + "start": 13748.16, + "end": 13750.98, + "probability": 0.8825 + }, + { + "start": 13751.66, + "end": 13755.58, + "probability": 0.9185 + }, + { + "start": 13756.14, + "end": 13757.98, + "probability": 0.963 + }, + { + "start": 13758.64, + "end": 13762.22, + "probability": 0.9364 + }, + { + "start": 13767.67, + "end": 13773.6, + "probability": 0.9729 + }, + { + "start": 13775.9, + "end": 13777.24, + "probability": 0.675 + }, + { + "start": 13777.4, + "end": 13781.06, + "probability": 0.6834 + }, + { + "start": 13781.56, + "end": 13786.84, + "probability": 0.9967 + }, + { + "start": 13787.72, + "end": 13788.82, + "probability": 0.6023 + }, + { + "start": 13789.3, + "end": 13790.56, + "probability": 0.7935 + }, + { + "start": 13791.22, + "end": 13794.76, + "probability": 0.9982 + }, + { + "start": 13795.4, + "end": 13798.66, + "probability": 0.9958 + }, + { + "start": 13799.24, + "end": 13800.82, + "probability": 0.9908 + }, + { + "start": 13801.38, + "end": 13802.52, + "probability": 0.9655 + }, + { + "start": 13803.52, + "end": 13805.98, + "probability": 0.9851 + }, + { + "start": 13806.76, + "end": 13808.86, + "probability": 0.9842 + }, + { + "start": 13809.66, + "end": 13811.1, + "probability": 0.7051 + }, + { + "start": 13812.54, + "end": 13815.9, + "probability": 0.9762 + }, + { + "start": 13816.3, + "end": 13818.04, + "probability": 0.9879 + }, + { + "start": 13818.16, + "end": 13821.9, + "probability": 0.9401 + }, + { + "start": 13822.72, + "end": 13824.52, + "probability": 0.967 + }, + { + "start": 13825.12, + "end": 13826.14, + "probability": 0.9458 + }, + { + "start": 13826.76, + "end": 13827.82, + "probability": 0.876 + }, + { + "start": 13828.26, + "end": 13829.58, + "probability": 0.9812 + }, + { + "start": 13830.52, + "end": 13831.72, + "probability": 0.9751 + }, + { + "start": 13832.28, + "end": 13834.3, + "probability": 0.9364 + }, + { + "start": 13834.78, + "end": 13836.16, + "probability": 0.9791 + }, + { + "start": 13836.52, + "end": 13838.36, + "probability": 0.954 + }, + { + "start": 13839.1, + "end": 13839.78, + "probability": 0.5729 + }, + { + "start": 13839.92, + "end": 13840.67, + "probability": 0.9976 + }, + { + "start": 13841.06, + "end": 13841.84, + "probability": 0.9351 + }, + { + "start": 13842.36, + "end": 13843.5, + "probability": 0.9958 + }, + { + "start": 13843.84, + "end": 13846.42, + "probability": 0.9463 + }, + { + "start": 13846.9, + "end": 13848.32, + "probability": 0.9268 + }, + { + "start": 13848.76, + "end": 13853.0, + "probability": 0.9773 + }, + { + "start": 13853.7, + "end": 13857.08, + "probability": 0.9274 + }, + { + "start": 13857.4, + "end": 13862.14, + "probability": 0.9932 + }, + { + "start": 13863.0, + "end": 13865.62, + "probability": 0.8622 + }, + { + "start": 13867.2, + "end": 13873.52, + "probability": 0.9888 + }, + { + "start": 13873.92, + "end": 13877.06, + "probability": 0.9824 + }, + { + "start": 13878.42, + "end": 13879.42, + "probability": 0.5 + }, + { + "start": 13880.1, + "end": 13882.08, + "probability": 0.8328 + }, + { + "start": 13883.06, + "end": 13886.48, + "probability": 0.9384 + }, + { + "start": 13886.92, + "end": 13888.62, + "probability": 0.9983 + }, + { + "start": 13889.1, + "end": 13891.04, + "probability": 0.991 + }, + { + "start": 13893.16, + "end": 13894.94, + "probability": 0.9303 + }, + { + "start": 13895.26, + "end": 13900.2, + "probability": 0.9979 + }, + { + "start": 13900.92, + "end": 13905.56, + "probability": 0.9751 + }, + { + "start": 13907.24, + "end": 13909.0, + "probability": 0.8804 + }, + { + "start": 13910.04, + "end": 13910.55, + "probability": 0.9619 + }, + { + "start": 13911.78, + "end": 13913.86, + "probability": 0.8683 + }, + { + "start": 13915.02, + "end": 13918.82, + "probability": 0.9674 + }, + { + "start": 13919.1, + "end": 13919.86, + "probability": 0.7371 + }, + { + "start": 13919.96, + "end": 13920.68, + "probability": 0.8901 + }, + { + "start": 13921.8, + "end": 13923.13, + "probability": 0.9933 + }, + { + "start": 13923.28, + "end": 13925.04, + "probability": 0.9966 + }, + { + "start": 13925.54, + "end": 13927.68, + "probability": 0.969 + }, + { + "start": 13928.42, + "end": 13929.88, + "probability": 0.999 + }, + { + "start": 13929.96, + "end": 13931.51, + "probability": 0.9619 + }, + { + "start": 13932.4, + "end": 13934.1, + "probability": 0.9967 + }, + { + "start": 13935.86, + "end": 13937.48, + "probability": 0.9971 + }, + { + "start": 13938.14, + "end": 13939.04, + "probability": 0.9412 + }, + { + "start": 13940.02, + "end": 13941.57, + "probability": 0.9878 + }, + { + "start": 13942.38, + "end": 13943.59, + "probability": 0.9058 + }, + { + "start": 13943.92, + "end": 13945.82, + "probability": 0.9939 + }, + { + "start": 13946.6, + "end": 13947.22, + "probability": 0.8099 + }, + { + "start": 13948.56, + "end": 13949.68, + "probability": 0.9323 + }, + { + "start": 13949.94, + "end": 13950.68, + "probability": 0.9537 + }, + { + "start": 13950.78, + "end": 13952.03, + "probability": 0.9316 + }, + { + "start": 13952.86, + "end": 13953.82, + "probability": 0.9607 + }, + { + "start": 13953.86, + "end": 13954.76, + "probability": 0.946 + }, + { + "start": 13954.82, + "end": 13958.58, + "probability": 0.9461 + }, + { + "start": 13959.14, + "end": 13960.18, + "probability": 0.9089 + }, + { + "start": 13960.96, + "end": 13962.58, + "probability": 0.9517 + }, + { + "start": 13962.96, + "end": 13965.94, + "probability": 0.9917 + }, + { + "start": 13966.34, + "end": 13967.64, + "probability": 0.9864 + }, + { + "start": 13968.5, + "end": 13969.25, + "probability": 0.9849 + }, + { + "start": 13970.16, + "end": 13972.57, + "probability": 0.9983 + }, + { + "start": 13973.54, + "end": 13975.22, + "probability": 0.6117 + }, + { + "start": 13975.9, + "end": 13977.6, + "probability": 0.6796 + }, + { + "start": 13978.14, + "end": 13984.46, + "probability": 0.996 + }, + { + "start": 13984.68, + "end": 13985.1, + "probability": 0.6883 + }, + { + "start": 13986.66, + "end": 13987.06, + "probability": 0.8364 + }, + { + "start": 13990.41, + "end": 13993.66, + "probability": 0.7552 + }, + { + "start": 13993.96, + "end": 13993.96, + "probability": 0.0003 + }, + { + "start": 13994.8, + "end": 13996.22, + "probability": 0.3121 + }, + { + "start": 13999.5, + "end": 13999.5, + "probability": 0.0006 + }, + { + "start": 14000.28, + "end": 14001.0, + "probability": 0.2457 + }, + { + "start": 14001.62, + "end": 14005.34, + "probability": 0.0018 + }, + { + "start": 14006.48, + "end": 14008.52, + "probability": 0.4123 + }, + { + "start": 14010.56, + "end": 14012.42, + "probability": 0.3234 + }, + { + "start": 14013.0, + "end": 14014.92, + "probability": 0.719 + }, + { + "start": 14019.74, + "end": 14020.64, + "probability": 0.5773 + }, + { + "start": 14020.76, + "end": 14021.9, + "probability": 0.9518 + }, + { + "start": 14022.28, + "end": 14023.12, + "probability": 0.7491 + }, + { + "start": 14025.58, + "end": 14027.64, + "probability": 0.9194 + }, + { + "start": 14028.46, + "end": 14030.92, + "probability": 0.9892 + }, + { + "start": 14031.76, + "end": 14035.14, + "probability": 0.9868 + }, + { + "start": 14035.96, + "end": 14036.86, + "probability": 0.8337 + }, + { + "start": 14037.46, + "end": 14039.06, + "probability": 0.9213 + }, + { + "start": 14040.26, + "end": 14041.92, + "probability": 0.7828 + }, + { + "start": 14043.2, + "end": 14045.34, + "probability": 0.8042 + }, + { + "start": 14046.24, + "end": 14047.92, + "probability": 0.9772 + }, + { + "start": 14050.66, + "end": 14051.14, + "probability": 0.4344 + }, + { + "start": 14052.1, + "end": 14054.84, + "probability": 0.9219 + }, + { + "start": 14056.44, + "end": 14059.04, + "probability": 0.9569 + }, + { + "start": 14059.9, + "end": 14063.6, + "probability": 0.8295 + }, + { + "start": 14064.42, + "end": 14066.04, + "probability": 0.9971 + }, + { + "start": 14067.08, + "end": 14067.96, + "probability": 0.999 + }, + { + "start": 14068.62, + "end": 14071.75, + "probability": 0.9856 + }, + { + "start": 14072.72, + "end": 14075.34, + "probability": 0.9663 + }, + { + "start": 14076.12, + "end": 14079.0, + "probability": 0.9876 + }, + { + "start": 14079.86, + "end": 14080.02, + "probability": 0.5724 + }, + { + "start": 14080.72, + "end": 14081.21, + "probability": 0.8501 + }, + { + "start": 14082.32, + "end": 14083.52, + "probability": 0.6683 + }, + { + "start": 14085.4, + "end": 14088.3, + "probability": 0.613 + }, + { + "start": 14089.3, + "end": 14090.7, + "probability": 0.7952 + }, + { + "start": 14091.34, + "end": 14093.86, + "probability": 0.5971 + }, + { + "start": 14094.94, + "end": 14095.92, + "probability": 0.9076 + }, + { + "start": 14097.16, + "end": 14099.44, + "probability": 0.8239 + }, + { + "start": 14100.24, + "end": 14102.5, + "probability": 0.9392 + }, + { + "start": 14103.16, + "end": 14106.8, + "probability": 0.9873 + }, + { + "start": 14107.7, + "end": 14109.34, + "probability": 0.9961 + }, + { + "start": 14109.88, + "end": 14112.48, + "probability": 0.9948 + }, + { + "start": 14113.72, + "end": 14114.52, + "probability": 0.9901 + }, + { + "start": 14115.12, + "end": 14116.4, + "probability": 0.9709 + }, + { + "start": 14117.98, + "end": 14119.62, + "probability": 0.8533 + }, + { + "start": 14121.18, + "end": 14123.55, + "probability": 0.8715 + }, + { + "start": 14124.48, + "end": 14126.0, + "probability": 0.8774 + }, + { + "start": 14126.74, + "end": 14127.7, + "probability": 0.8602 + }, + { + "start": 14128.6, + "end": 14131.82, + "probability": 0.9786 + }, + { + "start": 14131.82, + "end": 14136.12, + "probability": 0.9234 + }, + { + "start": 14136.12, + "end": 14139.38, + "probability": 0.9644 + }, + { + "start": 14140.44, + "end": 14143.1, + "probability": 0.9897 + }, + { + "start": 14143.1, + "end": 14145.34, + "probability": 0.9984 + }, + { + "start": 14145.9, + "end": 14147.96, + "probability": 0.6924 + }, + { + "start": 14148.5, + "end": 14150.56, + "probability": 0.9865 + }, + { + "start": 14152.34, + "end": 14154.22, + "probability": 0.9984 + }, + { + "start": 14154.78, + "end": 14160.08, + "probability": 0.9973 + }, + { + "start": 14161.12, + "end": 14162.58, + "probability": 0.9929 + }, + { + "start": 14163.4, + "end": 14167.46, + "probability": 0.9874 + }, + { + "start": 14167.46, + "end": 14172.06, + "probability": 0.9246 + }, + { + "start": 14172.72, + "end": 14174.36, + "probability": 0.9567 + }, + { + "start": 14174.98, + "end": 14176.32, + "probability": 0.9986 + }, + { + "start": 14176.98, + "end": 14178.8, + "probability": 0.9968 + }, + { + "start": 14179.48, + "end": 14180.84, + "probability": 0.8369 + }, + { + "start": 14181.28, + "end": 14182.58, + "probability": 0.9982 + }, + { + "start": 14184.0, + "end": 14186.78, + "probability": 0.833 + }, + { + "start": 14187.66, + "end": 14193.84, + "probability": 0.9728 + }, + { + "start": 14193.84, + "end": 14197.22, + "probability": 0.9988 + }, + { + "start": 14198.14, + "end": 14200.36, + "probability": 0.9941 + }, + { + "start": 14200.48, + "end": 14202.32, + "probability": 0.979 + }, + { + "start": 14202.4, + "end": 14206.18, + "probability": 0.9821 + }, + { + "start": 14206.58, + "end": 14209.08, + "probability": 0.9772 + }, + { + "start": 14210.12, + "end": 14213.36, + "probability": 0.9664 + }, + { + "start": 14213.66, + "end": 14218.38, + "probability": 0.9961 + }, + { + "start": 14219.3, + "end": 14222.02, + "probability": 0.9623 + }, + { + "start": 14222.02, + "end": 14224.64, + "probability": 0.9607 + }, + { + "start": 14225.44, + "end": 14226.62, + "probability": 0.8655 + }, + { + "start": 14226.76, + "end": 14230.2, + "probability": 0.9941 + }, + { + "start": 14230.26, + "end": 14231.43, + "probability": 0.998 + }, + { + "start": 14232.38, + "end": 14233.42, + "probability": 0.7294 + }, + { + "start": 14234.3, + "end": 14236.76, + "probability": 0.9937 + }, + { + "start": 14237.58, + "end": 14241.92, + "probability": 0.9946 + }, + { + "start": 14242.86, + "end": 14243.36, + "probability": 0.9951 + }, + { + "start": 14247.16, + "end": 14248.82, + "probability": 0.661 + }, + { + "start": 14249.48, + "end": 14250.88, + "probability": 0.9908 + }, + { + "start": 14251.4, + "end": 14252.54, + "probability": 0.9862 + }, + { + "start": 14252.6, + "end": 14255.34, + "probability": 0.9663 + }, + { + "start": 14256.06, + "end": 14258.8, + "probability": 0.9465 + }, + { + "start": 14259.56, + "end": 14262.44, + "probability": 0.9549 + }, + { + "start": 14263.18, + "end": 14264.6, + "probability": 0.9575 + }, + { + "start": 14265.12, + "end": 14270.22, + "probability": 0.9714 + }, + { + "start": 14270.94, + "end": 14275.93, + "probability": 0.8589 + }, + { + "start": 14276.62, + "end": 14279.26, + "probability": 0.7652 + }, + { + "start": 14279.26, + "end": 14282.62, + "probability": 0.9869 + }, + { + "start": 14283.18, + "end": 14288.74, + "probability": 0.9907 + }, + { + "start": 14292.64, + "end": 14295.1, + "probability": 0.558 + }, + { + "start": 14296.38, + "end": 14299.04, + "probability": 0.9714 + }, + { + "start": 14300.0, + "end": 14301.64, + "probability": 0.8825 + }, + { + "start": 14302.54, + "end": 14305.7, + "probability": 0.9878 + }, + { + "start": 14309.6, + "end": 14311.1, + "probability": 0.9009 + }, + { + "start": 14311.18, + "end": 14315.08, + "probability": 0.9954 + }, + { + "start": 14315.36, + "end": 14320.16, + "probability": 0.9971 + }, + { + "start": 14320.34, + "end": 14321.23, + "probability": 0.9453 + }, + { + "start": 14321.82, + "end": 14322.86, + "probability": 0.9123 + }, + { + "start": 14323.94, + "end": 14324.78, + "probability": 0.9292 + }, + { + "start": 14326.1, + "end": 14327.04, + "probability": 0.7864 + }, + { + "start": 14327.3, + "end": 14329.74, + "probability": 0.797 + }, + { + "start": 14330.26, + "end": 14330.28, + "probability": 0.2524 + }, + { + "start": 14330.7, + "end": 14332.06, + "probability": 0.5854 + }, + { + "start": 14332.62, + "end": 14336.48, + "probability": 0.9788 + }, + { + "start": 14336.54, + "end": 14339.82, + "probability": 0.7929 + }, + { + "start": 14339.82, + "end": 14339.86, + "probability": 0.0031 + }, + { + "start": 14339.86, + "end": 14340.0, + "probability": 0.0393 + }, + { + "start": 14340.76, + "end": 14342.14, + "probability": 0.6826 + }, + { + "start": 14342.22, + "end": 14344.62, + "probability": 0.8701 + }, + { + "start": 14345.44, + "end": 14351.58, + "probability": 0.7385 + }, + { + "start": 14352.06, + "end": 14354.4, + "probability": 0.9954 + }, + { + "start": 14354.92, + "end": 14357.88, + "probability": 0.859 + }, + { + "start": 14358.54, + "end": 14362.76, + "probability": 0.9814 + }, + { + "start": 14363.0, + "end": 14366.52, + "probability": 0.9313 + }, + { + "start": 14366.52, + "end": 14369.52, + "probability": 0.8405 + }, + { + "start": 14369.56, + "end": 14371.0, + "probability": 0.8376 + }, + { + "start": 14371.44, + "end": 14373.26, + "probability": 0.9862 + }, + { + "start": 14373.78, + "end": 14377.54, + "probability": 0.9854 + }, + { + "start": 14378.06, + "end": 14381.88, + "probability": 0.9922 + }, + { + "start": 14384.5, + "end": 14385.61, + "probability": 0.586 + }, + { + "start": 14385.82, + "end": 14389.78, + "probability": 0.989 + }, + { + "start": 14390.06, + "end": 14395.34, + "probability": 0.9778 + }, + { + "start": 14395.9, + "end": 14397.28, + "probability": 0.8632 + }, + { + "start": 14397.92, + "end": 14398.92, + "probability": 0.9085 + }, + { + "start": 14399.82, + "end": 14402.1, + "probability": 0.3142 + }, + { + "start": 14402.26, + "end": 14402.82, + "probability": 0.7379 + }, + { + "start": 14403.46, + "end": 14404.88, + "probability": 0.9819 + }, + { + "start": 14405.1, + "end": 14405.64, + "probability": 0.3392 + }, + { + "start": 14406.02, + "end": 14406.7, + "probability": 0.7932 + }, + { + "start": 14408.58, + "end": 14411.5, + "probability": 0.6449 + }, + { + "start": 14412.8, + "end": 14415.12, + "probability": 0.6825 + }, + { + "start": 14415.2, + "end": 14415.64, + "probability": 0.897 + }, + { + "start": 14417.0, + "end": 14418.92, + "probability": 0.6771 + }, + { + "start": 14420.23, + "end": 14422.44, + "probability": 0.485 + }, + { + "start": 14431.62, + "end": 14432.32, + "probability": 0.1342 + }, + { + "start": 14435.66, + "end": 14436.64, + "probability": 0.6193 + }, + { + "start": 14441.18, + "end": 14445.7, + "probability": 0.899 + }, + { + "start": 14448.16, + "end": 14451.82, + "probability": 0.9953 + }, + { + "start": 14460.72, + "end": 14460.94, + "probability": 0.1233 + }, + { + "start": 14464.85, + "end": 14467.12, + "probability": 0.1687 + }, + { + "start": 14467.38, + "end": 14469.08, + "probability": 0.6506 + }, + { + "start": 14470.56, + "end": 14472.38, + "probability": 0.4736 + }, + { + "start": 14481.52, + "end": 14482.2, + "probability": 0.757 + }, + { + "start": 14482.32, + "end": 14483.4, + "probability": 0.6232 + }, + { + "start": 14483.5, + "end": 14485.43, + "probability": 0.7158 + }, + { + "start": 14486.5, + "end": 14486.84, + "probability": 0.7595 + }, + { + "start": 14487.0, + "end": 14487.4, + "probability": 0.5421 + }, + { + "start": 14487.5, + "end": 14487.78, + "probability": 0.6154 + }, + { + "start": 14488.68, + "end": 14489.88, + "probability": 0.4907 + }, + { + "start": 14489.88, + "end": 14490.5, + "probability": 0.5731 + }, + { + "start": 14490.84, + "end": 14492.53, + "probability": 0.9679 + }, + { + "start": 14493.8, + "end": 14497.0, + "probability": 0.9083 + }, + { + "start": 14497.78, + "end": 14499.04, + "probability": 0.7255 + }, + { + "start": 14500.32, + "end": 14501.86, + "probability": 0.7744 + }, + { + "start": 14505.22, + "end": 14507.86, + "probability": 0.8887 + }, + { + "start": 14508.88, + "end": 14512.38, + "probability": 0.9929 + }, + { + "start": 14512.62, + "end": 14517.2, + "probability": 0.9959 + }, + { + "start": 14517.42, + "end": 14518.44, + "probability": 0.5481 + }, + { + "start": 14518.72, + "end": 14522.6, + "probability": 0.9054 + }, + { + "start": 14522.66, + "end": 14523.57, + "probability": 0.6307 + }, + { + "start": 14523.94, + "end": 14524.12, + "probability": 0.058 + }, + { + "start": 14524.12, + "end": 14524.12, + "probability": 0.0931 + }, + { + "start": 14524.12, + "end": 14525.94, + "probability": 0.2544 + }, + { + "start": 14526.38, + "end": 14526.82, + "probability": 0.3951 + }, + { + "start": 14526.82, + "end": 14526.94, + "probability": 0.0424 + }, + { + "start": 14528.08, + "end": 14529.9, + "probability": 0.1488 + }, + { + "start": 14530.2, + "end": 14532.84, + "probability": 0.2297 + }, + { + "start": 14533.36, + "end": 14534.16, + "probability": 0.0552 + }, + { + "start": 14534.6, + "end": 14535.34, + "probability": 0.0946 + }, + { + "start": 14535.34, + "end": 14536.92, + "probability": 0.6855 + }, + { + "start": 14536.98, + "end": 14537.24, + "probability": 0.6049 + }, + { + "start": 14537.26, + "end": 14539.8, + "probability": 0.3915 + }, + { + "start": 14542.34, + "end": 14543.92, + "probability": 0.5754 + }, + { + "start": 14544.22, + "end": 14546.04, + "probability": 0.5043 + }, + { + "start": 14546.12, + "end": 14547.1, + "probability": 0.7045 + }, + { + "start": 14547.2, + "end": 14549.8, + "probability": 0.4332 + }, + { + "start": 14549.96, + "end": 14550.42, + "probability": 0.0175 + }, + { + "start": 14550.42, + "end": 14553.44, + "probability": 0.8511 + }, + { + "start": 14553.92, + "end": 14556.2, + "probability": 0.6456 + }, + { + "start": 14556.28, + "end": 14557.18, + "probability": 0.8836 + }, + { + "start": 14558.0, + "end": 14559.16, + "probability": 0.5704 + }, + { + "start": 14559.26, + "end": 14561.46, + "probability": 0.6214 + }, + { + "start": 14561.86, + "end": 14562.2, + "probability": 0.8866 + }, + { + "start": 14562.92, + "end": 14564.9, + "probability": 0.9713 + }, + { + "start": 14565.0, + "end": 14566.58, + "probability": 0.9022 + }, + { + "start": 14566.72, + "end": 14570.22, + "probability": 0.9931 + }, + { + "start": 14570.22, + "end": 14573.66, + "probability": 0.9985 + }, + { + "start": 14573.78, + "end": 14574.84, + "probability": 0.6051 + }, + { + "start": 14575.48, + "end": 14577.58, + "probability": 0.895 + }, + { + "start": 14577.64, + "end": 14578.64, + "probability": 0.9633 + }, + { + "start": 14579.1, + "end": 14581.14, + "probability": 0.9354 + }, + { + "start": 14581.5, + "end": 14585.02, + "probability": 0.9977 + }, + { + "start": 14586.76, + "end": 14589.78, + "probability": 0.6629 + }, + { + "start": 14591.5, + "end": 14593.52, + "probability": 0.9234 + }, + { + "start": 14594.08, + "end": 14598.2, + "probability": 0.9917 + }, + { + "start": 14598.62, + "end": 14599.8, + "probability": 0.7759 + }, + { + "start": 14599.96, + "end": 14600.8, + "probability": 0.9796 + }, + { + "start": 14600.92, + "end": 14601.82, + "probability": 0.9871 + }, + { + "start": 14601.98, + "end": 14602.98, + "probability": 0.9226 + }, + { + "start": 14603.7, + "end": 14606.94, + "probability": 0.8419 + }, + { + "start": 14607.88, + "end": 14611.24, + "probability": 0.9902 + }, + { + "start": 14612.4, + "end": 14613.94, + "probability": 0.953 + }, + { + "start": 14614.78, + "end": 14620.54, + "probability": 0.9899 + }, + { + "start": 14621.3, + "end": 14624.28, + "probability": 0.981 + }, + { + "start": 14625.02, + "end": 14625.86, + "probability": 0.7636 + }, + { + "start": 14626.58, + "end": 14631.78, + "probability": 0.9955 + }, + { + "start": 14632.18, + "end": 14635.8, + "probability": 0.9956 + }, + { + "start": 14636.08, + "end": 14642.62, + "probability": 0.9887 + }, + { + "start": 14643.74, + "end": 14648.16, + "probability": 0.9749 + }, + { + "start": 14648.68, + "end": 14649.82, + "probability": 0.7252 + }, + { + "start": 14650.62, + "end": 14653.02, + "probability": 0.99 + }, + { + "start": 14653.68, + "end": 14655.38, + "probability": 0.4986 + }, + { + "start": 14655.4, + "end": 14661.58, + "probability": 0.9513 + }, + { + "start": 14662.6, + "end": 14663.26, + "probability": 0.5884 + }, + { + "start": 14663.34, + "end": 14666.44, + "probability": 0.9888 + }, + { + "start": 14666.44, + "end": 14671.22, + "probability": 0.9907 + }, + { + "start": 14672.32, + "end": 14676.62, + "probability": 0.9609 + }, + { + "start": 14677.26, + "end": 14678.88, + "probability": 0.9947 + }, + { + "start": 14679.58, + "end": 14680.81, + "probability": 0.8862 + }, + { + "start": 14681.78, + "end": 14685.22, + "probability": 0.9612 + }, + { + "start": 14686.34, + "end": 14688.3, + "probability": 0.9976 + }, + { + "start": 14688.74, + "end": 14690.08, + "probability": 0.843 + }, + { + "start": 14690.22, + "end": 14693.76, + "probability": 0.9905 + }, + { + "start": 14695.0, + "end": 14696.48, + "probability": 0.9343 + }, + { + "start": 14697.42, + "end": 14701.84, + "probability": 0.9971 + }, + { + "start": 14701.92, + "end": 14702.88, + "probability": 0.8685 + }, + { + "start": 14703.44, + "end": 14707.82, + "probability": 0.9464 + }, + { + "start": 14707.94, + "end": 14711.2, + "probability": 0.9334 + }, + { + "start": 14711.76, + "end": 14712.76, + "probability": 0.9516 + }, + { + "start": 14713.52, + "end": 14718.28, + "probability": 0.9937 + }, + { + "start": 14719.02, + "end": 14721.18, + "probability": 0.9337 + }, + { + "start": 14721.64, + "end": 14723.62, + "probability": 0.7425 + }, + { + "start": 14723.96, + "end": 14725.5, + "probability": 0.8894 + }, + { + "start": 14726.78, + "end": 14730.0, + "probability": 0.7595 + }, + { + "start": 14730.0, + "end": 14732.84, + "probability": 0.9988 + }, + { + "start": 14733.4, + "end": 14736.28, + "probability": 0.9464 + }, + { + "start": 14736.28, + "end": 14739.74, + "probability": 0.9991 + }, + { + "start": 14740.96, + "end": 14745.64, + "probability": 0.966 + }, + { + "start": 14746.84, + "end": 14750.46, + "probability": 0.9336 + }, + { + "start": 14750.76, + "end": 14755.84, + "probability": 0.9973 + }, + { + "start": 14756.44, + "end": 14760.0, + "probability": 0.9917 + }, + { + "start": 14760.52, + "end": 14762.22, + "probability": 0.938 + }, + { + "start": 14762.96, + "end": 14765.82, + "probability": 0.9943 + }, + { + "start": 14766.4, + "end": 14768.34, + "probability": 0.9499 + }, + { + "start": 14768.4, + "end": 14769.32, + "probability": 0.868 + }, + { + "start": 14769.66, + "end": 14773.9, + "probability": 0.9424 + }, + { + "start": 14774.38, + "end": 14777.5, + "probability": 0.9977 + }, + { + "start": 14777.5, + "end": 14782.06, + "probability": 0.9858 + }, + { + "start": 14782.58, + "end": 14783.83, + "probability": 0.9946 + }, + { + "start": 14784.0, + "end": 14784.94, + "probability": 0.9673 + }, + { + "start": 14785.22, + "end": 14789.46, + "probability": 0.9585 + }, + { + "start": 14791.24, + "end": 14794.92, + "probability": 0.799 + }, + { + "start": 14795.04, + "end": 14797.42, + "probability": 0.9756 + }, + { + "start": 14797.88, + "end": 14799.78, + "probability": 0.9883 + }, + { + "start": 14800.42, + "end": 14801.92, + "probability": 0.9846 + }, + { + "start": 14802.36, + "end": 14803.5, + "probability": 0.9973 + }, + { + "start": 14804.18, + "end": 14806.8, + "probability": 0.9837 + }, + { + "start": 14806.8, + "end": 14809.84, + "probability": 0.8635 + }, + { + "start": 14810.28, + "end": 14812.36, + "probability": 0.7485 + }, + { + "start": 14813.5, + "end": 14815.08, + "probability": 0.9667 + }, + { + "start": 14815.76, + "end": 14819.84, + "probability": 0.9726 + }, + { + "start": 14820.6, + "end": 14824.62, + "probability": 0.9961 + }, + { + "start": 14825.04, + "end": 14828.7, + "probability": 0.9799 + }, + { + "start": 14829.44, + "end": 14831.24, + "probability": 0.8762 + }, + { + "start": 14831.86, + "end": 14837.1, + "probability": 0.9951 + }, + { + "start": 14837.5, + "end": 14840.59, + "probability": 0.9913 + }, + { + "start": 14841.92, + "end": 14845.8, + "probability": 0.9859 + }, + { + "start": 14846.42, + "end": 14850.22, + "probability": 0.9842 + }, + { + "start": 14850.8, + "end": 14852.75, + "probability": 0.4359 + }, + { + "start": 14853.52, + "end": 14856.58, + "probability": 0.9905 + }, + { + "start": 14857.42, + "end": 14863.36, + "probability": 0.996 + }, + { + "start": 14864.08, + "end": 14865.16, + "probability": 0.9092 + }, + { + "start": 14865.56, + "end": 14870.2, + "probability": 0.8904 + }, + { + "start": 14870.34, + "end": 14871.22, + "probability": 0.9214 + }, + { + "start": 14871.68, + "end": 14874.62, + "probability": 0.9983 + }, + { + "start": 14875.0, + "end": 14875.58, + "probability": 0.9221 + }, + { + "start": 14875.82, + "end": 14876.48, + "probability": 0.7573 + }, + { + "start": 14877.02, + "end": 14878.62, + "probability": 0.9681 + }, + { + "start": 14879.68, + "end": 14881.58, + "probability": 0.9968 + }, + { + "start": 14881.58, + "end": 14884.78, + "probability": 0.9897 + }, + { + "start": 14885.48, + "end": 14887.24, + "probability": 0.7985 + }, + { + "start": 14887.39, + "end": 14890.94, + "probability": 0.9284 + }, + { + "start": 14891.38, + "end": 14895.84, + "probability": 0.998 + }, + { + "start": 14896.54, + "end": 14899.86, + "probability": 0.9518 + }, + { + "start": 14900.3, + "end": 14904.04, + "probability": 0.9785 + }, + { + "start": 14904.2, + "end": 14904.97, + "probability": 0.9827 + }, + { + "start": 14905.98, + "end": 14906.98, + "probability": 0.77 + }, + { + "start": 14907.76, + "end": 14911.32, + "probability": 0.9971 + }, + { + "start": 14911.32, + "end": 14914.38, + "probability": 0.999 + }, + { + "start": 14915.26, + "end": 14917.54, + "probability": 0.9801 + }, + { + "start": 14918.08, + "end": 14919.96, + "probability": 0.9965 + }, + { + "start": 14920.5, + "end": 14921.25, + "probability": 0.8477 + }, + { + "start": 14921.82, + "end": 14923.46, + "probability": 0.9736 + }, + { + "start": 14923.76, + "end": 14925.48, + "probability": 0.9982 + }, + { + "start": 14928.74, + "end": 14932.1, + "probability": 0.9991 + }, + { + "start": 14932.1, + "end": 14935.22, + "probability": 0.9768 + }, + { + "start": 14935.72, + "end": 14940.34, + "probability": 0.9952 + }, + { + "start": 14940.86, + "end": 14944.8, + "probability": 0.9988 + }, + { + "start": 14945.36, + "end": 14950.8, + "probability": 0.9922 + }, + { + "start": 14951.34, + "end": 14954.48, + "probability": 0.8377 + }, + { + "start": 14955.16, + "end": 14958.78, + "probability": 0.9172 + }, + { + "start": 14958.78, + "end": 14959.46, + "probability": 0.8595 + }, + { + "start": 14959.7, + "end": 14963.28, + "probability": 0.9929 + }, + { + "start": 14963.86, + "end": 14968.08, + "probability": 0.9927 + }, + { + "start": 14968.18, + "end": 14973.12, + "probability": 0.9967 + }, + { + "start": 14973.6, + "end": 14978.82, + "probability": 0.9938 + }, + { + "start": 14979.72, + "end": 14982.76, + "probability": 0.985 + }, + { + "start": 14983.38, + "end": 14984.38, + "probability": 0.8317 + }, + { + "start": 14984.98, + "end": 14988.28, + "probability": 0.7532 + }, + { + "start": 14989.0, + "end": 14992.02, + "probability": 0.9843 + }, + { + "start": 14992.46, + "end": 14995.8, + "probability": 0.9951 + }, + { + "start": 14996.36, + "end": 14998.48, + "probability": 0.9374 + }, + { + "start": 14999.1, + "end": 15000.38, + "probability": 0.9565 + }, + { + "start": 15000.48, + "end": 15003.78, + "probability": 0.992 + }, + { + "start": 15003.84, + "end": 15006.6, + "probability": 0.9369 + }, + { + "start": 15008.44, + "end": 15012.82, + "probability": 0.9992 + }, + { + "start": 15012.86, + "end": 15017.12, + "probability": 0.8315 + }, + { + "start": 15017.22, + "end": 15020.2, + "probability": 0.7664 + }, + { + "start": 15020.72, + "end": 15021.9, + "probability": 0.7104 + }, + { + "start": 15022.12, + "end": 15022.94, + "probability": 0.2993 + }, + { + "start": 15023.38, + "end": 15024.26, + "probability": 0.0215 + }, + { + "start": 15024.8, + "end": 15025.06, + "probability": 0.0451 + }, + { + "start": 15025.06, + "end": 15025.06, + "probability": 0.1143 + }, + { + "start": 15025.06, + "end": 15025.58, + "probability": 0.304 + }, + { + "start": 15025.72, + "end": 15027.84, + "probability": 0.9871 + }, + { + "start": 15027.94, + "end": 15027.94, + "probability": 0.3326 + }, + { + "start": 15028.68, + "end": 15029.18, + "probability": 0.0723 + }, + { + "start": 15029.18, + "end": 15029.18, + "probability": 0.0086 + }, + { + "start": 15029.18, + "end": 15029.66, + "probability": 0.3055 + }, + { + "start": 15030.3, + "end": 15031.48, + "probability": 0.7116 + }, + { + "start": 15033.1, + "end": 15033.52, + "probability": 0.1032 + }, + { + "start": 15033.64, + "end": 15034.62, + "probability": 0.1796 + }, + { + "start": 15035.0, + "end": 15035.84, + "probability": 0.1883 + }, + { + "start": 15036.58, + "end": 15037.02, + "probability": 0.4607 + }, + { + "start": 15037.26, + "end": 15039.9, + "probability": 0.9811 + }, + { + "start": 15039.9, + "end": 15044.16, + "probability": 0.7753 + }, + { + "start": 15044.4, + "end": 15048.7, + "probability": 0.0244 + }, + { + "start": 15048.96, + "end": 15051.78, + "probability": 0.0452 + }, + { + "start": 15052.12, + "end": 15052.55, + "probability": 0.1417 + }, + { + "start": 15055.42, + "end": 15055.42, + "probability": 0.0769 + }, + { + "start": 15057.46, + "end": 15058.14, + "probability": 0.0715 + }, + { + "start": 15058.86, + "end": 15061.18, + "probability": 0.1629 + }, + { + "start": 15061.24, + "end": 15064.64, + "probability": 0.0179 + }, + { + "start": 15066.8, + "end": 15067.66, + "probability": 0.049 + }, + { + "start": 15067.66, + "end": 15069.08, + "probability": 0.1396 + }, + { + "start": 15069.08, + "end": 15069.58, + "probability": 0.1475 + }, + { + "start": 15070.06, + "end": 15071.4, + "probability": 0.1352 + }, + { + "start": 15071.4, + "end": 15071.92, + "probability": 0.0368 + }, + { + "start": 15072.62, + "end": 15073.4, + "probability": 0.2402 + }, + { + "start": 15076.38, + "end": 15079.7, + "probability": 0.0356 + }, + { + "start": 15080.32, + "end": 15081.14, + "probability": 0.0588 + }, + { + "start": 15082.02, + "end": 15084.66, + "probability": 0.1954 + }, + { + "start": 15085.2, + "end": 15088.74, + "probability": 0.0816 + }, + { + "start": 15088.74, + "end": 15088.84, + "probability": 0.0283 + }, + { + "start": 15088.84, + "end": 15089.12, + "probability": 0.0594 + }, + { + "start": 15089.12, + "end": 15089.26, + "probability": 0.1008 + }, + { + "start": 15091.24, + "end": 15091.86, + "probability": 0.0889 + }, + { + "start": 15095.5, + "end": 15096.36, + "probability": 0.0556 + }, + { + "start": 15097.0, + "end": 15098.52, + "probability": 0.2951 + }, + { + "start": 15105.0, + "end": 15105.0, + "probability": 0.0 + }, + { + "start": 15105.0, + "end": 15105.0, + "probability": 0.0 + }, + { + "start": 15105.0, + "end": 15105.0, + "probability": 0.0 + }, + { + "start": 15105.0, + "end": 15105.0, + "probability": 0.0 + }, + { + "start": 15105.0, + "end": 15105.0, + "probability": 0.0 + }, + { + "start": 15105.0, + "end": 15105.0, + "probability": 0.0 + }, + { + "start": 15105.34, + "end": 15105.34, + "probability": 0.0212 + }, + { + "start": 15105.34, + "end": 15105.34, + "probability": 0.0327 + }, + { + "start": 15105.34, + "end": 15105.34, + "probability": 0.2019 + }, + { + "start": 15105.34, + "end": 15105.34, + "probability": 0.0581 + }, + { + "start": 15105.34, + "end": 15105.56, + "probability": 0.2814 + }, + { + "start": 15106.26, + "end": 15108.92, + "probability": 0.9313 + }, + { + "start": 15109.26, + "end": 15110.1, + "probability": 0.9337 + }, + { + "start": 15110.38, + "end": 15111.42, + "probability": 0.8382 + }, + { + "start": 15127.1, + "end": 15127.26, + "probability": 0.5669 + }, + { + "start": 15134.0, + "end": 15135.5, + "probability": 0.1197 + }, + { + "start": 15135.5, + "end": 15138.09, + "probability": 0.1459 + }, + { + "start": 15140.52, + "end": 15141.38, + "probability": 0.0072 + }, + { + "start": 15142.1, + "end": 15142.74, + "probability": 0.007 + }, + { + "start": 15142.74, + "end": 15143.38, + "probability": 0.2494 + }, + { + "start": 15143.38, + "end": 15145.94, + "probability": 0.0497 + }, + { + "start": 15146.34, + "end": 15147.46, + "probability": 0.1485 + }, + { + "start": 15147.55, + "end": 15149.58, + "probability": 0.2462 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.0, + "end": 15230.0, + "probability": 0.0 + }, + { + "start": 15230.12, + "end": 15231.02, + "probability": 0.2562 + }, + { + "start": 15231.02, + "end": 15231.02, + "probability": 0.1455 + }, + { + "start": 15231.02, + "end": 15231.02, + "probability": 0.0573 + }, + { + "start": 15231.02, + "end": 15233.48, + "probability": 0.5516 + }, + { + "start": 15233.58, + "end": 15234.62, + "probability": 0.8059 + }, + { + "start": 15235.96, + "end": 15236.0, + "probability": 0.2125 + }, + { + "start": 15236.0, + "end": 15238.54, + "probability": 0.8211 + }, + { + "start": 15238.64, + "end": 15240.5, + "probability": 0.6307 + }, + { + "start": 15240.78, + "end": 15242.06, + "probability": 0.1186 + }, + { + "start": 15243.78, + "end": 15244.14, + "probability": 0.1149 + }, + { + "start": 15244.6, + "end": 15247.16, + "probability": 0.0288 + }, + { + "start": 15247.2, + "end": 15248.52, + "probability": 0.3822 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15357.0, + "end": 15357.0, + "probability": 0.0 + }, + { + "start": 15371.5, + "end": 15373.66, + "probability": 0.5163 + }, + { + "start": 15374.38, + "end": 15374.88, + "probability": 0.0591 + }, + { + "start": 15374.88, + "end": 15378.04, + "probability": 0.1529 + }, + { + "start": 15378.66, + "end": 15386.18, + "probability": 0.1102 + }, + { + "start": 15388.0, + "end": 15390.44, + "probability": 0.0299 + }, + { + "start": 15391.62, + "end": 15395.06, + "probability": 0.2095 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.0, + "end": 15481.0, + "probability": 0.0 + }, + { + "start": 15481.66, + "end": 15486.04, + "probability": 0.7385 + }, + { + "start": 15486.32, + "end": 15488.18, + "probability": 0.9191 + }, + { + "start": 15488.2, + "end": 15488.86, + "probability": 0.4554 + }, + { + "start": 15488.86, + "end": 15489.42, + "probability": 0.4161 + }, + { + "start": 15489.42, + "end": 15491.16, + "probability": 0.2964 + }, + { + "start": 15491.9, + "end": 15492.96, + "probability": 0.015 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.0 + }, + { + "start": 15607.48, + "end": 15608.82, + "probability": 0.0104 + }, + { + "start": 15608.82, + "end": 15611.3, + "probability": 0.118 + }, + { + "start": 15611.58, + "end": 15612.8, + "probability": 0.8499 + }, + { + "start": 15612.88, + "end": 15616.98, + "probability": 0.8869 + }, + { + "start": 15617.1, + "end": 15617.86, + "probability": 0.4815 + }, + { + "start": 15617.96, + "end": 15619.22, + "probability": 0.6908 + }, + { + "start": 15621.24, + "end": 15624.26, + "probability": 0.7747 + }, + { + "start": 15625.46, + "end": 15626.02, + "probability": 0.048 + }, + { + "start": 15626.7, + "end": 15627.22, + "probability": 0.1764 + }, + { + "start": 15627.4, + "end": 15629.14, + "probability": 0.1704 + }, + { + "start": 15629.98, + "end": 15630.86, + "probability": 0.2323 + }, + { + "start": 15631.2, + "end": 15632.4, + "probability": 0.3644 + }, + { + "start": 15632.92, + "end": 15632.92, + "probability": 0.4426 + }, + { + "start": 15633.0, + "end": 15633.54, + "probability": 0.4538 + }, + { + "start": 15633.74, + "end": 15635.48, + "probability": 0.4422 + }, + { + "start": 15635.64, + "end": 15637.0, + "probability": 0.9736 + }, + { + "start": 15637.22, + "end": 15638.84, + "probability": 0.5512 + }, + { + "start": 15639.12, + "end": 15641.9, + "probability": 0.6495 + }, + { + "start": 15642.58, + "end": 15643.72, + "probability": 0.7694 + }, + { + "start": 15644.46, + "end": 15646.64, + "probability": 0.9248 + }, + { + "start": 15647.16, + "end": 15650.52, + "probability": 0.9458 + }, + { + "start": 15651.1, + "end": 15656.34, + "probability": 0.9989 + }, + { + "start": 15656.68, + "end": 15660.54, + "probability": 0.952 + }, + { + "start": 15661.0, + "end": 15663.16, + "probability": 0.8234 + }, + { + "start": 15663.8, + "end": 15665.42, + "probability": 0.7823 + }, + { + "start": 15666.12, + "end": 15666.82, + "probability": 0.6449 + }, + { + "start": 15667.06, + "end": 15668.02, + "probability": 0.838 + }, + { + "start": 15668.22, + "end": 15671.17, + "probability": 0.7186 + }, + { + "start": 15671.4, + "end": 15671.4, + "probability": 0.0479 + }, + { + "start": 15671.4, + "end": 15672.54, + "probability": 0.7859 + }, + { + "start": 15672.62, + "end": 15676.9, + "probability": 0.9915 + }, + { + "start": 15677.14, + "end": 15677.6, + "probability": 0.874 + }, + { + "start": 15677.92, + "end": 15682.7, + "probability": 0.996 + }, + { + "start": 15682.8, + "end": 15686.86, + "probability": 0.8546 + }, + { + "start": 15687.18, + "end": 15691.42, + "probability": 0.9351 + }, + { + "start": 15691.72, + "end": 15693.74, + "probability": 0.9751 + }, + { + "start": 15694.04, + "end": 15695.98, + "probability": 0.9808 + }, + { + "start": 15696.16, + "end": 15696.95, + "probability": 0.9396 + }, + { + "start": 15697.62, + "end": 15699.08, + "probability": 0.812 + }, + { + "start": 15699.28, + "end": 15700.66, + "probability": 0.9899 + }, + { + "start": 15700.68, + "end": 15700.9, + "probability": 0.6598 + }, + { + "start": 15701.84, + "end": 15705.24, + "probability": 0.9058 + }, + { + "start": 15705.64, + "end": 15707.06, + "probability": 0.9125 + }, + { + "start": 15707.48, + "end": 15710.41, + "probability": 0.9951 + }, + { + "start": 15710.88, + "end": 15713.86, + "probability": 0.986 + }, + { + "start": 15714.28, + "end": 15715.0, + "probability": 0.4825 + }, + { + "start": 15715.56, + "end": 15717.6, + "probability": 0.8973 + }, + { + "start": 15717.94, + "end": 15720.14, + "probability": 0.9628 + }, + { + "start": 15720.44, + "end": 15720.84, + "probability": 0.88 + }, + { + "start": 15720.88, + "end": 15721.95, + "probability": 0.7598 + }, + { + "start": 15722.14, + "end": 15723.24, + "probability": 0.8825 + }, + { + "start": 15723.64, + "end": 15726.18, + "probability": 0.9561 + }, + { + "start": 15726.44, + "end": 15727.1, + "probability": 0.8526 + }, + { + "start": 15727.24, + "end": 15728.9, + "probability": 0.926 + }, + { + "start": 15729.48, + "end": 15730.56, + "probability": 0.8729 + }, + { + "start": 15730.64, + "end": 15731.82, + "probability": 0.7779 + }, + { + "start": 15732.1, + "end": 15736.1, + "probability": 0.9824 + }, + { + "start": 15736.5, + "end": 15740.1, + "probability": 0.9727 + }, + { + "start": 15740.74, + "end": 15743.68, + "probability": 0.9933 + }, + { + "start": 15744.06, + "end": 15745.26, + "probability": 0.6776 + }, + { + "start": 15745.7, + "end": 15746.3, + "probability": 0.7342 + }, + { + "start": 15746.38, + "end": 15747.36, + "probability": 0.9905 + }, + { + "start": 15747.52, + "end": 15748.92, + "probability": 0.864 + }, + { + "start": 15749.36, + "end": 15751.68, + "probability": 0.98 + }, + { + "start": 15752.52, + "end": 15753.34, + "probability": 0.9512 + }, + { + "start": 15753.88, + "end": 15754.82, + "probability": 0.7222 + }, + { + "start": 15754.84, + "end": 15756.62, + "probability": 0.3161 + }, + { + "start": 15758.0, + "end": 15758.88, + "probability": 0.8037 + }, + { + "start": 15759.76, + "end": 15764.02, + "probability": 0.8777 + }, + { + "start": 15764.12, + "end": 15765.06, + "probability": 0.8616 + }, + { + "start": 15765.4, + "end": 15767.12, + "probability": 0.9142 + }, + { + "start": 15767.3, + "end": 15771.56, + "probability": 0.982 + }, + { + "start": 15771.92, + "end": 15774.46, + "probability": 0.989 + }, + { + "start": 15774.86, + "end": 15775.9, + "probability": 0.9374 + }, + { + "start": 15776.24, + "end": 15778.42, + "probability": 0.9863 + }, + { + "start": 15778.42, + "end": 15781.58, + "probability": 0.9738 + }, + { + "start": 15781.78, + "end": 15783.04, + "probability": 0.0386 + }, + { + "start": 15783.24, + "end": 15786.5, + "probability": 0.9404 + }, + { + "start": 15787.38, + "end": 15789.82, + "probability": 0.8291 + }, + { + "start": 15790.5, + "end": 15792.16, + "probability": 0.635 + }, + { + "start": 15792.28, + "end": 15794.28, + "probability": 0.7708 + }, + { + "start": 15794.96, + "end": 15797.3, + "probability": 0.2114 + }, + { + "start": 15798.14, + "end": 15802.12, + "probability": 0.6447 + }, + { + "start": 15802.14, + "end": 15805.02, + "probability": 0.8348 + }, + { + "start": 15805.14, + "end": 15807.14, + "probability": 0.961 + }, + { + "start": 15807.66, + "end": 15809.98, + "probability": 0.9927 + }, + { + "start": 15809.98, + "end": 15812.92, + "probability": 0.9976 + }, + { + "start": 15813.38, + "end": 15816.17, + "probability": 0.7462 + }, + { + "start": 15816.66, + "end": 15821.54, + "probability": 0.8036 + }, + { + "start": 15821.54, + "end": 15826.7, + "probability": 0.9955 + }, + { + "start": 15826.98, + "end": 15827.88, + "probability": 0.7944 + }, + { + "start": 15828.1, + "end": 15832.86, + "probability": 0.9313 + }, + { + "start": 15833.88, + "end": 15836.5, + "probability": 0.9897 + }, + { + "start": 15836.5, + "end": 15839.78, + "probability": 0.998 + }, + { + "start": 15840.14, + "end": 15841.66, + "probability": 0.9257 + }, + { + "start": 15841.76, + "end": 15844.89, + "probability": 0.9888 + }, + { + "start": 15845.22, + "end": 15845.94, + "probability": 0.47 + }, + { + "start": 15846.28, + "end": 15851.02, + "probability": 0.9766 + }, + { + "start": 15851.46, + "end": 15855.08, + "probability": 0.9801 + }, + { + "start": 15855.78, + "end": 15859.0, + "probability": 0.9947 + }, + { + "start": 15859.0, + "end": 15861.94, + "probability": 0.9982 + }, + { + "start": 15862.42, + "end": 15862.72, + "probability": 0.2989 + }, + { + "start": 15862.74, + "end": 15867.18, + "probability": 0.9946 + }, + { + "start": 15867.66, + "end": 15868.44, + "probability": 0.7199 + }, + { + "start": 15868.68, + "end": 15873.44, + "probability": 0.9495 + }, + { + "start": 15874.02, + "end": 15879.94, + "probability": 0.9915 + }, + { + "start": 15880.14, + "end": 15880.7, + "probability": 0.913 + }, + { + "start": 15881.24, + "end": 15881.6, + "probability": 0.6167 + }, + { + "start": 15882.12, + "end": 15887.28, + "probability": 0.9969 + }, + { + "start": 15887.36, + "end": 15887.92, + "probability": 0.808 + }, + { + "start": 15888.64, + "end": 15890.84, + "probability": 0.9883 + }, + { + "start": 15891.68, + "end": 15893.48, + "probability": 0.6592 + }, + { + "start": 15893.48, + "end": 15895.34, + "probability": 0.9559 + }, + { + "start": 15895.86, + "end": 15897.58, + "probability": 0.8066 + }, + { + "start": 15897.92, + "end": 15900.52, + "probability": 0.9918 + }, + { + "start": 15900.6, + "end": 15901.76, + "probability": 0.4192 + }, + { + "start": 15902.28, + "end": 15905.76, + "probability": 0.7969 + }, + { + "start": 15906.48, + "end": 15909.26, + "probability": 0.985 + }, + { + "start": 15909.64, + "end": 15911.54, + "probability": 0.996 + }, + { + "start": 15911.68, + "end": 15912.78, + "probability": 0.9187 + }, + { + "start": 15913.22, + "end": 15915.22, + "probability": 0.9888 + }, + { + "start": 15915.8, + "end": 15916.72, + "probability": 0.9237 + }, + { + "start": 15917.52, + "end": 15922.24, + "probability": 0.9839 + }, + { + "start": 15922.28, + "end": 15926.66, + "probability": 0.9775 + }, + { + "start": 15927.46, + "end": 15930.02, + "probability": 0.9778 + }, + { + "start": 15930.02, + "end": 15932.6, + "probability": 0.9255 + }, + { + "start": 15933.16, + "end": 15937.22, + "probability": 0.9941 + }, + { + "start": 15937.22, + "end": 15941.14, + "probability": 0.9901 + }, + { + "start": 15941.26, + "end": 15943.02, + "probability": 0.9868 + }, + { + "start": 15943.86, + "end": 15946.46, + "probability": 0.9769 + }, + { + "start": 15946.58, + "end": 15950.42, + "probability": 0.7566 + }, + { + "start": 15950.9, + "end": 15955.3, + "probability": 0.9684 + }, + { + "start": 15955.46, + "end": 15957.52, + "probability": 0.8136 + }, + { + "start": 15957.9, + "end": 15962.24, + "probability": 0.9957 + }, + { + "start": 15962.24, + "end": 15968.48, + "probability": 0.9653 + }, + { + "start": 15968.5, + "end": 15973.98, + "probability": 0.9871 + }, + { + "start": 15974.3, + "end": 15974.62, + "probability": 0.7045 + }, + { + "start": 15975.22, + "end": 15976.0, + "probability": 0.6153 + }, + { + "start": 15976.12, + "end": 15977.26, + "probability": 0.9784 + }, + { + "start": 15977.7, + "end": 15978.33, + "probability": 0.9764 + }, + { + "start": 15978.74, + "end": 15980.08, + "probability": 0.9644 + }, + { + "start": 15980.54, + "end": 15983.54, + "probability": 0.9514 + }, + { + "start": 15985.02, + "end": 15991.46, + "probability": 0.9952 + }, + { + "start": 15991.82, + "end": 15996.4, + "probability": 0.9843 + }, + { + "start": 15997.38, + "end": 16001.9, + "probability": 0.9982 + }, + { + "start": 16002.18, + "end": 16003.18, + "probability": 0.5749 + }, + { + "start": 16005.98, + "end": 16009.36, + "probability": 0.027 + }, + { + "start": 16009.62, + "end": 16009.76, + "probability": 0.0557 + }, + { + "start": 16009.76, + "end": 16010.5, + "probability": 0.4711 + }, + { + "start": 16010.7, + "end": 16011.34, + "probability": 0.6593 + }, + { + "start": 16011.48, + "end": 16012.32, + "probability": 0.1682 + }, + { + "start": 16012.56, + "end": 16013.65, + "probability": 0.3502 + }, + { + "start": 16014.16, + "end": 16014.88, + "probability": 0.312 + }, + { + "start": 16016.08, + "end": 16019.22, + "probability": 0.24 + }, + { + "start": 16020.64, + "end": 16021.18, + "probability": 0.1776 + }, + { + "start": 16021.32, + "end": 16025.36, + "probability": 0.9946 + }, + { + "start": 16025.36, + "end": 16029.04, + "probability": 0.9975 + }, + { + "start": 16029.04, + "end": 16032.92, + "probability": 0.9941 + }, + { + "start": 16033.34, + "end": 16037.72, + "probability": 0.9917 + }, + { + "start": 16037.72, + "end": 16043.54, + "probability": 0.9878 + }, + { + "start": 16043.84, + "end": 16044.94, + "probability": 0.4921 + }, + { + "start": 16045.34, + "end": 16046.14, + "probability": 0.8804 + }, + { + "start": 16046.52, + "end": 16047.18, + "probability": 0.7654 + }, + { + "start": 16047.5, + "end": 16049.92, + "probability": 0.9211 + }, + { + "start": 16050.24, + "end": 16051.82, + "probability": 0.9887 + }, + { + "start": 16051.88, + "end": 16054.84, + "probability": 0.9818 + }, + { + "start": 16055.04, + "end": 16059.12, + "probability": 0.9905 + }, + { + "start": 16059.5, + "end": 16061.82, + "probability": 0.99 + }, + { + "start": 16061.82, + "end": 16065.2, + "probability": 0.9983 + }, + { + "start": 16065.68, + "end": 16070.04, + "probability": 0.991 + }, + { + "start": 16070.62, + "end": 16071.22, + "probability": 0.7896 + }, + { + "start": 16071.3, + "end": 16074.62, + "probability": 0.9985 + }, + { + "start": 16075.04, + "end": 16079.23, + "probability": 0.9859 + }, + { + "start": 16079.88, + "end": 16080.82, + "probability": 0.6952 + }, + { + "start": 16081.18, + "end": 16082.1, + "probability": 0.8251 + }, + { + "start": 16082.46, + "end": 16086.6, + "probability": 0.8915 + }, + { + "start": 16087.12, + "end": 16087.78, + "probability": 0.8945 + }, + { + "start": 16088.52, + "end": 16089.12, + "probability": 0.6781 + }, + { + "start": 16089.52, + "end": 16093.44, + "probability": 0.9574 + }, + { + "start": 16093.6, + "end": 16095.4, + "probability": 0.831 + }, + { + "start": 16095.54, + "end": 16101.48, + "probability": 0.9445 + }, + { + "start": 16101.48, + "end": 16102.14, + "probability": 0.008 + }, + { + "start": 16102.14, + "end": 16102.34, + "probability": 0.2036 + }, + { + "start": 16102.34, + "end": 16106.28, + "probability": 0.6621 + }, + { + "start": 16106.52, + "end": 16108.6, + "probability": 0.9082 + }, + { + "start": 16108.74, + "end": 16112.56, + "probability": 0.8988 + }, + { + "start": 16112.74, + "end": 16113.8, + "probability": 0.6555 + }, + { + "start": 16114.24, + "end": 16117.72, + "probability": 0.9797 + }, + { + "start": 16117.82, + "end": 16120.86, + "probability": 0.9761 + }, + { + "start": 16121.04, + "end": 16126.46, + "probability": 0.9756 + }, + { + "start": 16126.5, + "end": 16127.44, + "probability": 0.8213 + }, + { + "start": 16127.56, + "end": 16129.04, + "probability": 0.9744 + }, + { + "start": 16130.16, + "end": 16132.36, + "probability": 0.7365 + }, + { + "start": 16132.4, + "end": 16132.9, + "probability": 0.7882 + }, + { + "start": 16132.96, + "end": 16135.14, + "probability": 0.9758 + }, + { + "start": 16135.54, + "end": 16137.44, + "probability": 0.8263 + }, + { + "start": 16137.6, + "end": 16140.32, + "probability": 0.9824 + }, + { + "start": 16140.56, + "end": 16150.76, + "probability": 0.9834 + }, + { + "start": 16150.84, + "end": 16154.4, + "probability": 0.7142 + }, + { + "start": 16154.7, + "end": 16157.56, + "probability": 0.9371 + }, + { + "start": 16158.22, + "end": 16158.5, + "probability": 0.664 + }, + { + "start": 16158.96, + "end": 16163.34, + "probability": 0.9972 + }, + { + "start": 16163.76, + "end": 16166.58, + "probability": 0.9215 + }, + { + "start": 16166.58, + "end": 16170.78, + "probability": 0.9971 + }, + { + "start": 16170.92, + "end": 16172.78, + "probability": 0.8512 + }, + { + "start": 16173.08, + "end": 16175.7, + "probability": 0.727 + }, + { + "start": 16175.8, + "end": 16176.22, + "probability": 0.8734 + }, + { + "start": 16176.58, + "end": 16177.1, + "probability": 0.8325 + }, + { + "start": 16177.18, + "end": 16177.84, + "probability": 0.9534 + }, + { + "start": 16177.92, + "end": 16179.06, + "probability": 0.7499 + }, + { + "start": 16179.42, + "end": 16183.53, + "probability": 0.8081 + }, + { + "start": 16183.62, + "end": 16186.62, + "probability": 0.9779 + }, + { + "start": 16187.12, + "end": 16187.38, + "probability": 0.7291 + }, + { + "start": 16188.16, + "end": 16189.42, + "probability": 0.7663 + }, + { + "start": 16190.5, + "end": 16197.0, + "probability": 0.7557 + }, + { + "start": 16204.06, + "end": 16208.36, + "probability": 0.5472 + }, + { + "start": 16225.1, + "end": 16229.8, + "probability": 0.9982 + }, + { + "start": 16230.86, + "end": 16232.08, + "probability": 0.6828 + }, + { + "start": 16232.8, + "end": 16234.12, + "probability": 0.9314 + }, + { + "start": 16234.44, + "end": 16235.86, + "probability": 0.9688 + }, + { + "start": 16235.9, + "end": 16238.12, + "probability": 0.8807 + }, + { + "start": 16238.9, + "end": 16240.72, + "probability": 0.8092 + }, + { + "start": 16240.82, + "end": 16244.3, + "probability": 0.992 + }, + { + "start": 16244.92, + "end": 16247.12, + "probability": 0.9857 + }, + { + "start": 16247.98, + "end": 16252.26, + "probability": 0.912 + }, + { + "start": 16253.2, + "end": 16255.8, + "probability": 0.8843 + }, + { + "start": 16255.86, + "end": 16257.76, + "probability": 0.4648 + }, + { + "start": 16258.28, + "end": 16261.66, + "probability": 0.0042 + }, + { + "start": 16262.3, + "end": 16263.52, + "probability": 0.2389 + }, + { + "start": 16265.66, + "end": 16266.96, + "probability": 0.1038 + }, + { + "start": 16269.02, + "end": 16269.64, + "probability": 0.5393 + }, + { + "start": 16269.86, + "end": 16269.86, + "probability": 0.2047 + }, + { + "start": 16269.86, + "end": 16272.07, + "probability": 0.4402 + }, + { + "start": 16272.62, + "end": 16273.44, + "probability": 0.4095 + }, + { + "start": 16273.52, + "end": 16273.72, + "probability": 0.096 + }, + { + "start": 16273.72, + "end": 16274.28, + "probability": 0.115 + }, + { + "start": 16274.4, + "end": 16275.2, + "probability": 0.0563 + }, + { + "start": 16275.7, + "end": 16280.34, + "probability": 0.0458 + }, + { + "start": 16280.46, + "end": 16284.14, + "probability": 0.0765 + }, + { + "start": 16284.25, + "end": 16291.82, + "probability": 0.2189 + }, + { + "start": 16292.0, + "end": 16293.18, + "probability": 0.0528 + }, + { + "start": 16293.88, + "end": 16294.18, + "probability": 0.0271 + }, + { + "start": 16294.18, + "end": 16294.25, + "probability": 0.0268 + }, + { + "start": 16294.34, + "end": 16294.66, + "probability": 0.1547 + }, + { + "start": 16297.18, + "end": 16303.1, + "probability": 0.0505 + }, + { + "start": 16303.66, + "end": 16303.66, + "probability": 0.0232 + }, + { + "start": 16303.66, + "end": 16303.66, + "probability": 0.2212 + }, + { + "start": 16303.66, + "end": 16303.66, + "probability": 0.0452 + }, + { + "start": 16303.66, + "end": 16303.66, + "probability": 0.1078 + }, + { + "start": 16303.76, + "end": 16304.11, + "probability": 0.8331 + }, + { + "start": 16312.0, + "end": 16312.0, + "probability": 0.0 + }, + { + "start": 16312.0, + "end": 16312.0, + "probability": 0.0 + }, + { + "start": 16312.0, + "end": 16312.0, + "probability": 0.0 + }, + { + "start": 16312.0, + "end": 16312.0, + "probability": 0.0 + }, + { + "start": 16312.84, + "end": 16312.84, + "probability": 0.0482 + }, + { + "start": 16312.84, + "end": 16312.84, + "probability": 0.1039 + }, + { + "start": 16312.84, + "end": 16312.84, + "probability": 0.0259 + }, + { + "start": 16312.84, + "end": 16312.84, + "probability": 0.2406 + }, + { + "start": 16312.84, + "end": 16315.78, + "probability": 0.0364 + }, + { + "start": 16318.26, + "end": 16322.08, + "probability": 0.5813 + }, + { + "start": 16322.58, + "end": 16323.48, + "probability": 0.6159 + }, + { + "start": 16323.92, + "end": 16324.72, + "probability": 0.6566 + }, + { + "start": 16324.74, + "end": 16329.34, + "probability": 0.8241 + }, + { + "start": 16329.9, + "end": 16334.78, + "probability": 0.8161 + }, + { + "start": 16334.78, + "end": 16340.64, + "probability": 0.341 + }, + { + "start": 16340.64, + "end": 16340.64, + "probability": 0.027 + }, + { + "start": 16340.64, + "end": 16342.98, + "probability": 0.2916 + }, + { + "start": 16343.18, + "end": 16347.46, + "probability": 0.9907 + }, + { + "start": 16347.66, + "end": 16349.52, + "probability": 0.9929 + }, + { + "start": 16349.66, + "end": 16350.84, + "probability": 0.9 + }, + { + "start": 16351.36, + "end": 16354.44, + "probability": 0.9785 + }, + { + "start": 16355.28, + "end": 16355.72, + "probability": 0.0501 + }, + { + "start": 16355.72, + "end": 16355.78, + "probability": 0.2196 + }, + { + "start": 16355.78, + "end": 16356.84, + "probability": 0.9922 + }, + { + "start": 16357.8, + "end": 16359.96, + "probability": 0.9849 + }, + { + "start": 16360.24, + "end": 16364.64, + "probability": 0.799 + }, + { + "start": 16365.12, + "end": 16369.48, + "probability": 0.9854 + }, + { + "start": 16369.5, + "end": 16374.68, + "probability": 0.9799 + }, + { + "start": 16375.06, + "end": 16375.48, + "probability": 0.7334 + }, + { + "start": 16375.96, + "end": 16379.48, + "probability": 0.9881 + }, + { + "start": 16379.62, + "end": 16381.08, + "probability": 0.9158 + }, + { + "start": 16381.16, + "end": 16383.29, + "probability": 0.9928 + }, + { + "start": 16384.02, + "end": 16385.34, + "probability": 0.9976 + }, + { + "start": 16385.8, + "end": 16386.76, + "probability": 0.8726 + }, + { + "start": 16387.2, + "end": 16388.38, + "probability": 0.9148 + }, + { + "start": 16389.08, + "end": 16390.24, + "probability": 0.9717 + }, + { + "start": 16390.76, + "end": 16393.02, + "probability": 0.959 + }, + { + "start": 16393.68, + "end": 16398.0, + "probability": 0.974 + }, + { + "start": 16398.68, + "end": 16400.45, + "probability": 0.998 + }, + { + "start": 16401.06, + "end": 16403.78, + "probability": 0.9827 + }, + { + "start": 16405.37, + "end": 16407.88, + "probability": 0.9312 + }, + { + "start": 16407.88, + "end": 16408.74, + "probability": 0.5417 + }, + { + "start": 16408.78, + "end": 16410.62, + "probability": 0.9507 + }, + { + "start": 16410.94, + "end": 16413.64, + "probability": 0.8542 + }, + { + "start": 16413.79, + "end": 16414.2, + "probability": 0.4224 + }, + { + "start": 16414.2, + "end": 16414.58, + "probability": 0.6405 + }, + { + "start": 16414.94, + "end": 16417.28, + "probability": 0.8461 + }, + { + "start": 16444.84, + "end": 16453.02, + "probability": 0.974 + }, + { + "start": 16453.02, + "end": 16457.92, + "probability": 0.9954 + }, + { + "start": 16458.64, + "end": 16460.2, + "probability": 0.9179 + }, + { + "start": 16461.12, + "end": 16465.36, + "probability": 0.9922 + }, + { + "start": 16466.92, + "end": 16470.64, + "probability": 0.9968 + }, + { + "start": 16471.48, + "end": 16474.12, + "probability": 0.999 + }, + { + "start": 16474.62, + "end": 16475.34, + "probability": 0.7279 + }, + { + "start": 16475.42, + "end": 16476.26, + "probability": 0.9644 + }, + { + "start": 16476.38, + "end": 16479.02, + "probability": 0.9705 + }, + { + "start": 16479.24, + "end": 16481.38, + "probability": 0.9963 + }, + { + "start": 16482.08, + "end": 16483.12, + "probability": 0.8507 + }, + { + "start": 16483.58, + "end": 16486.5, + "probability": 0.9952 + }, + { + "start": 16487.54, + "end": 16490.02, + "probability": 0.9941 + }, + { + "start": 16490.2, + "end": 16491.4, + "probability": 0.8741 + }, + { + "start": 16492.04, + "end": 16492.12, + "probability": 0.2541 + }, + { + "start": 16492.12, + "end": 16493.74, + "probability": 0.7458 + }, + { + "start": 16493.92, + "end": 16496.58, + "probability": 0.9714 + }, + { + "start": 16497.6, + "end": 16498.84, + "probability": 0.8557 + }, + { + "start": 16499.7, + "end": 16502.16, + "probability": 0.9954 + }, + { + "start": 16502.78, + "end": 16507.84, + "probability": 0.9438 + }, + { + "start": 16507.96, + "end": 16508.34, + "probability": 0.8854 + }, + { + "start": 16508.42, + "end": 16509.12, + "probability": 0.8901 + }, + { + "start": 16509.54, + "end": 16511.02, + "probability": 0.9648 + }, + { + "start": 16511.1, + "end": 16513.4, + "probability": 0.9753 + }, + { + "start": 16513.66, + "end": 16514.64, + "probability": 0.8292 + }, + { + "start": 16515.64, + "end": 16518.86, + "probability": 0.4822 + }, + { + "start": 16518.86, + "end": 16523.58, + "probability": 0.9779 + }, + { + "start": 16524.1, + "end": 16529.28, + "probability": 0.9683 + }, + { + "start": 16529.5, + "end": 16530.3, + "probability": 0.9063 + }, + { + "start": 16531.24, + "end": 16531.24, + "probability": 0.1813 + }, + { + "start": 16531.24, + "end": 16531.64, + "probability": 0.3824 + }, + { + "start": 16531.9, + "end": 16537.22, + "probability": 0.7364 + }, + { + "start": 16538.7, + "end": 16539.12, + "probability": 0.1153 + }, + { + "start": 16539.12, + "end": 16539.84, + "probability": 0.0301 + }, + { + "start": 16539.84, + "end": 16539.84, + "probability": 0.1595 + }, + { + "start": 16539.84, + "end": 16542.51, + "probability": 0.5438 + }, + { + "start": 16543.54, + "end": 16544.94, + "probability": 0.9741 + }, + { + "start": 16545.06, + "end": 16545.5, + "probability": 0.9385 + }, + { + "start": 16545.62, + "end": 16547.64, + "probability": 0.7851 + }, + { + "start": 16547.74, + "end": 16549.66, + "probability": 0.9979 + }, + { + "start": 16549.66, + "end": 16553.48, + "probability": 0.9831 + }, + { + "start": 16553.68, + "end": 16553.98, + "probability": 0.7413 + }, + { + "start": 16554.58, + "end": 16559.62, + "probability": 0.8361 + }, + { + "start": 16559.98, + "end": 16562.82, + "probability": 0.9575 + }, + { + "start": 16562.9, + "end": 16563.34, + "probability": 0.5482 + }, + { + "start": 16563.36, + "end": 16568.32, + "probability": 0.9906 + }, + { + "start": 16568.7, + "end": 16573.0, + "probability": 0.9951 + }, + { + "start": 16573.0, + "end": 16578.18, + "probability": 0.9904 + }, + { + "start": 16578.52, + "end": 16579.94, + "probability": 0.7373 + }, + { + "start": 16580.66, + "end": 16583.76, + "probability": 0.9851 + }, + { + "start": 16583.76, + "end": 16587.36, + "probability": 0.8546 + }, + { + "start": 16587.82, + "end": 16592.62, + "probability": 0.9955 + }, + { + "start": 16592.72, + "end": 16593.42, + "probability": 0.5751 + }, + { + "start": 16594.18, + "end": 16594.78, + "probability": 0.6379 + }, + { + "start": 16594.94, + "end": 16596.54, + "probability": 0.9635 + }, + { + "start": 16596.54, + "end": 16596.86, + "probability": 0.7854 + }, + { + "start": 16597.0, + "end": 16598.36, + "probability": 0.8486 + }, + { + "start": 16598.8, + "end": 16599.54, + "probability": 0.5156 + }, + { + "start": 16600.62, + "end": 16604.46, + "probability": 0.9837 + }, + { + "start": 16604.46, + "end": 16609.84, + "probability": 0.9873 + }, + { + "start": 16610.46, + "end": 16612.9, + "probability": 0.9578 + }, + { + "start": 16613.66, + "end": 16615.32, + "probability": 0.8611 + }, + { + "start": 16615.88, + "end": 16618.86, + "probability": 0.3248 + }, + { + "start": 16620.14, + "end": 16625.42, + "probability": 0.0406 + }, + { + "start": 16625.64, + "end": 16626.66, + "probability": 0.4119 + }, + { + "start": 16626.66, + "end": 16627.82, + "probability": 0.8207 + }, + { + "start": 16627.82, + "end": 16629.84, + "probability": 0.7399 + }, + { + "start": 16629.92, + "end": 16630.78, + "probability": 0.9478 + }, + { + "start": 16631.45, + "end": 16634.42, + "probability": 0.9034 + }, + { + "start": 16635.08, + "end": 16638.26, + "probability": 0.9984 + }, + { + "start": 16638.36, + "end": 16640.44, + "probability": 0.5693 + }, + { + "start": 16640.48, + "end": 16641.06, + "probability": 0.8516 + }, + { + "start": 16641.98, + "end": 16643.94, + "probability": 0.9473 + }, + { + "start": 16644.1, + "end": 16646.56, + "probability": 0.9614 + }, + { + "start": 16647.0, + "end": 16648.71, + "probability": 0.8781 + }, + { + "start": 16649.34, + "end": 16651.92, + "probability": 0.5304 + }, + { + "start": 16652.93, + "end": 16657.12, + "probability": 0.7467 + }, + { + "start": 16658.87, + "end": 16660.11, + "probability": 0.3667 + }, + { + "start": 16661.4, + "end": 16664.54, + "probability": 0.8234 + }, + { + "start": 16665.16, + "end": 16667.0, + "probability": 0.8527 + }, + { + "start": 16667.9, + "end": 16670.46, + "probability": 0.9128 + }, + { + "start": 16671.1, + "end": 16671.54, + "probability": 0.9919 + }, + { + "start": 16672.24, + "end": 16673.12, + "probability": 0.8607 + }, + { + "start": 16673.64, + "end": 16679.52, + "probability": 0.809 + }, + { + "start": 16680.6, + "end": 16684.78, + "probability": 0.7693 + }, + { + "start": 16686.34, + "end": 16688.52, + "probability": 0.8592 + }, + { + "start": 16689.54, + "end": 16689.94, + "probability": 0.9875 + }, + { + "start": 16691.54, + "end": 16692.42, + "probability": 0.9152 + }, + { + "start": 16693.68, + "end": 16695.72, + "probability": 0.9738 + }, + { + "start": 16697.16, + "end": 16697.94, + "probability": 0.984 + }, + { + "start": 16700.88, + "end": 16701.22, + "probability": 0.7361 + }, + { + "start": 16704.66, + "end": 16705.12, + "probability": 0.8392 + }, + { + "start": 16708.38, + "end": 16709.24, + "probability": 0.5459 + }, + { + "start": 16714.66, + "end": 16714.94, + "probability": 0.8319 + }, + { + "start": 16716.86, + "end": 16717.92, + "probability": 0.8824 + }, + { + "start": 16719.02, + "end": 16721.04, + "probability": 0.96 + }, + { + "start": 16723.02, + "end": 16725.24, + "probability": 0.9062 + }, + { + "start": 16726.02, + "end": 16727.9, + "probability": 0.9669 + }, + { + "start": 16729.28, + "end": 16731.08, + "probability": 0.8907 + }, + { + "start": 16731.68, + "end": 16732.06, + "probability": 0.9826 + }, + { + "start": 16734.36, + "end": 16735.3, + "probability": 0.9521 + }, + { + "start": 16736.32, + "end": 16738.6, + "probability": 0.9504 + }, + { + "start": 16740.64, + "end": 16741.48, + "probability": 0.9257 + }, + { + "start": 16742.14, + "end": 16742.92, + "probability": 0.9777 + }, + { + "start": 16743.92, + "end": 16745.3, + "probability": 0.6821 + }, + { + "start": 16746.32, + "end": 16747.26, + "probability": 0.9734 + }, + { + "start": 16748.68, + "end": 16749.34, + "probability": 0.8299 + }, + { + "start": 16750.02, + "end": 16750.96, + "probability": 0.9818 + }, + { + "start": 16752.0, + "end": 16754.64, + "probability": 0.9666 + }, + { + "start": 16755.48, + "end": 16756.18, + "probability": 0.9741 + }, + { + "start": 16756.94, + "end": 16757.9, + "probability": 0.9604 + }, + { + "start": 16759.04, + "end": 16760.52, + "probability": 0.9932 + }, + { + "start": 16761.16, + "end": 16766.84, + "probability": 0.8966 + }, + { + "start": 16767.9, + "end": 16769.74, + "probability": 0.4581 + }, + { + "start": 16770.78, + "end": 16771.88, + "probability": 0.9206 + }, + { + "start": 16772.44, + "end": 16773.06, + "probability": 0.7228 + }, + { + "start": 16774.64, + "end": 16776.48, + "probability": 0.987 + }, + { + "start": 16777.24, + "end": 16778.88, + "probability": 0.9323 + }, + { + "start": 16782.22, + "end": 16784.56, + "probability": 0.9901 + }, + { + "start": 16785.38, + "end": 16786.06, + "probability": 0.9711 + }, + { + "start": 16786.64, + "end": 16787.48, + "probability": 0.9793 + }, + { + "start": 16788.46, + "end": 16790.54, + "probability": 0.9801 + }, + { + "start": 16791.46, + "end": 16791.66, + "probability": 0.6887 + }, + { + "start": 16792.6, + "end": 16793.3, + "probability": 0.6488 + }, + { + "start": 16793.96, + "end": 16795.72, + "probability": 0.8058 + }, + { + "start": 16797.64, + "end": 16799.52, + "probability": 0.9868 + }, + { + "start": 16801.26, + "end": 16803.24, + "probability": 0.9784 + }, + { + "start": 16803.84, + "end": 16804.24, + "probability": 0.9865 + }, + { + "start": 16805.26, + "end": 16805.94, + "probability": 0.9682 + }, + { + "start": 16806.76, + "end": 16808.54, + "probability": 0.9592 + }, + { + "start": 16809.14, + "end": 16809.62, + "probability": 0.9714 + }, + { + "start": 16810.28, + "end": 16811.48, + "probability": 0.6099 + }, + { + "start": 16813.12, + "end": 16817.98, + "probability": 0.82 + }, + { + "start": 16818.94, + "end": 16819.2, + "probability": 0.8044 + }, + { + "start": 16821.18, + "end": 16822.46, + "probability": 0.8928 + }, + { + "start": 16823.42, + "end": 16823.72, + "probability": 0.991 + }, + { + "start": 16826.06, + "end": 16827.34, + "probability": 0.8638 + }, + { + "start": 16829.76, + "end": 16830.46, + "probability": 0.9371 + }, + { + "start": 16831.38, + "end": 16832.5, + "probability": 0.8685 + }, + { + "start": 16834.44, + "end": 16835.64, + "probability": 0.993 + }, + { + "start": 16836.4, + "end": 16838.44, + "probability": 0.7978 + }, + { + "start": 16839.48, + "end": 16840.18, + "probability": 0.3353 + }, + { + "start": 16842.0, + "end": 16842.74, + "probability": 0.9869 + }, + { + "start": 16843.62, + "end": 16844.68, + "probability": 0.6991 + }, + { + "start": 16846.4, + "end": 16848.7, + "probability": 0.7444 + }, + { + "start": 16850.96, + "end": 16851.36, + "probability": 0.8391 + }, + { + "start": 16853.4, + "end": 16854.2, + "probability": 0.9864 + }, + { + "start": 16855.44, + "end": 16856.1, + "probability": 0.9878 + }, + { + "start": 16856.86, + "end": 16857.64, + "probability": 0.8869 + }, + { + "start": 16858.96, + "end": 16859.4, + "probability": 0.9731 + }, + { + "start": 16860.64, + "end": 16861.12, + "probability": 0.9752 + }, + { + "start": 16862.04, + "end": 16863.98, + "probability": 0.9822 + }, + { + "start": 16867.32, + "end": 16869.98, + "probability": 0.9495 + }, + { + "start": 16871.74, + "end": 16872.46, + "probability": 0.9976 + }, + { + "start": 16873.92, + "end": 16875.1, + "probability": 0.8881 + }, + { + "start": 16876.34, + "end": 16876.58, + "probability": 0.7556 + }, + { + "start": 16877.58, + "end": 16878.86, + "probability": 0.7658 + }, + { + "start": 16879.76, + "end": 16881.6, + "probability": 0.9566 + }, + { + "start": 16884.9, + "end": 16887.32, + "probability": 0.9841 + }, + { + "start": 16888.72, + "end": 16891.62, + "probability": 0.9673 + }, + { + "start": 16892.24, + "end": 16894.52, + "probability": 0.9855 + }, + { + "start": 16895.4, + "end": 16895.8, + "probability": 0.9961 + }, + { + "start": 16896.4, + "end": 16897.5, + "probability": 0.9871 + }, + { + "start": 16899.0, + "end": 16900.14, + "probability": 0.9963 + }, + { + "start": 16901.84, + "end": 16902.46, + "probability": 0.9875 + }, + { + "start": 16903.66, + "end": 16904.98, + "probability": 0.6245 + }, + { + "start": 16905.46, + "end": 16909.1, + "probability": 0.8549 + }, + { + "start": 16909.3, + "end": 16911.08, + "probability": 0.9468 + }, + { + "start": 16911.82, + "end": 16912.2, + "probability": 0.9886 + }, + { + "start": 16913.22, + "end": 16915.96, + "probability": 0.8132 + }, + { + "start": 16917.1, + "end": 16917.56, + "probability": 0.8284 + }, + { + "start": 16919.32, + "end": 16920.38, + "probability": 0.9015 + }, + { + "start": 16921.68, + "end": 16923.54, + "probability": 0.8737 + }, + { + "start": 16924.2, + "end": 16926.3, + "probability": 0.9185 + }, + { + "start": 16927.46, + "end": 16928.12, + "probability": 0.9723 + }, + { + "start": 16929.38, + "end": 16930.22, + "probability": 0.8907 + }, + { + "start": 16931.62, + "end": 16933.72, + "probability": 0.9705 + }, + { + "start": 16934.7, + "end": 16937.38, + "probability": 0.9688 + }, + { + "start": 16937.98, + "end": 16938.34, + "probability": 0.9846 + }, + { + "start": 16939.12, + "end": 16940.16, + "probability": 0.7139 + }, + { + "start": 16941.1, + "end": 16946.44, + "probability": 0.7577 + }, + { + "start": 16949.88, + "end": 16950.32, + "probability": 0.9092 + }, + { + "start": 16952.18, + "end": 16953.82, + "probability": 0.8501 + }, + { + "start": 16954.66, + "end": 16955.68, + "probability": 0.8544 + }, + { + "start": 16956.98, + "end": 16958.82, + "probability": 0.8807 + }, + { + "start": 16960.48, + "end": 16962.68, + "probability": 0.9925 + }, + { + "start": 16963.88, + "end": 16964.62, + "probability": 0.9141 + }, + { + "start": 16966.48, + "end": 16966.84, + "probability": 0.9932 + }, + { + "start": 16967.64, + "end": 16968.4, + "probability": 0.9527 + }, + { + "start": 16969.38, + "end": 16969.54, + "probability": 0.9819 + }, + { + "start": 16970.76, + "end": 16975.52, + "probability": 0.7632 + }, + { + "start": 16976.28, + "end": 16980.02, + "probability": 0.9212 + }, + { + "start": 16980.72, + "end": 16981.1, + "probability": 0.9697 + }, + { + "start": 16982.02, + "end": 16982.98, + "probability": 0.8747 + }, + { + "start": 16983.94, + "end": 16984.3, + "probability": 0.9915 + }, + { + "start": 16984.86, + "end": 16985.98, + "probability": 0.8353 + }, + { + "start": 16986.74, + "end": 16987.12, + "probability": 0.9295 + }, + { + "start": 16987.8, + "end": 16988.78, + "probability": 0.6597 + }, + { + "start": 16990.0, + "end": 16990.7, + "probability": 0.9968 + }, + { + "start": 16991.34, + "end": 16992.3, + "probability": 0.8025 + }, + { + "start": 16993.76, + "end": 16995.92, + "probability": 0.8105 + }, + { + "start": 16997.7, + "end": 16998.12, + "probability": 0.992 + }, + { + "start": 16998.86, + "end": 16999.68, + "probability": 0.9555 + }, + { + "start": 17000.82, + "end": 17002.82, + "probability": 0.9706 + }, + { + "start": 17004.8, + "end": 17005.58, + "probability": 0.997 + }, + { + "start": 17006.2, + "end": 17007.5, + "probability": 0.9508 + }, + { + "start": 17008.8, + "end": 17009.5, + "probability": 0.9975 + }, + { + "start": 17010.28, + "end": 17011.2, + "probability": 0.9101 + }, + { + "start": 17012.04, + "end": 17012.38, + "probability": 0.981 + }, + { + "start": 17014.14, + "end": 17015.44, + "probability": 0.5942 + }, + { + "start": 17016.42, + "end": 17019.16, + "probability": 0.9631 + }, + { + "start": 17019.74, + "end": 17021.92, + "probability": 0.8634 + }, + { + "start": 17022.76, + "end": 17025.44, + "probability": 0.9852 + }, + { + "start": 17026.58, + "end": 17028.76, + "probability": 0.9937 + }, + { + "start": 17030.06, + "end": 17030.5, + "probability": 0.9961 + }, + { + "start": 17032.08, + "end": 17032.92, + "probability": 0.9531 + }, + { + "start": 17036.64, + "end": 17040.06, + "probability": 0.9251 + }, + { + "start": 17040.66, + "end": 17041.04, + "probability": 0.9243 + }, + { + "start": 17041.88, + "end": 17043.02, + "probability": 0.8409 + }, + { + "start": 17045.5, + "end": 17045.94, + "probability": 0.9834 + }, + { + "start": 17047.52, + "end": 17048.82, + "probability": 0.7744 + }, + { + "start": 17049.38, + "end": 17049.6, + "probability": 0.5984 + }, + { + "start": 17050.92, + "end": 17051.8, + "probability": 0.8779 + }, + { + "start": 17053.6, + "end": 17053.86, + "probability": 0.9736 + }, + { + "start": 17054.96, + "end": 17055.4, + "probability": 0.8094 + }, + { + "start": 17056.66, + "end": 17058.46, + "probability": 0.968 + }, + { + "start": 17059.88, + "end": 17060.32, + "probability": 0.9812 + }, + { + "start": 17061.42, + "end": 17062.14, + "probability": 0.898 + }, + { + "start": 17062.8, + "end": 17063.22, + "probability": 0.9701 + }, + { + "start": 17064.52, + "end": 17065.38, + "probability": 0.9911 + }, + { + "start": 17066.16, + "end": 17066.64, + "probability": 0.991 + }, + { + "start": 17067.34, + "end": 17068.44, + "probability": 0.9258 + }, + { + "start": 17068.98, + "end": 17072.24, + "probability": 0.9904 + }, + { + "start": 17075.98, + "end": 17079.06, + "probability": 0.5223 + }, + { + "start": 17079.94, + "end": 17080.4, + "probability": 0.5821 + }, + { + "start": 17081.0, + "end": 17082.12, + "probability": 0.7432 + }, + { + "start": 17086.82, + "end": 17087.66, + "probability": 0.9139 + }, + { + "start": 17088.86, + "end": 17092.58, + "probability": 0.9059 + }, + { + "start": 17095.68, + "end": 17096.36, + "probability": 0.9714 + }, + { + "start": 17096.88, + "end": 17098.04, + "probability": 0.87 + }, + { + "start": 17099.8, + "end": 17100.4, + "probability": 0.9603 + }, + { + "start": 17101.66, + "end": 17105.2, + "probability": 0.9677 + }, + { + "start": 17106.1, + "end": 17106.84, + "probability": 0.6764 + }, + { + "start": 17107.44, + "end": 17108.2, + "probability": 0.6382 + }, + { + "start": 17110.36, + "end": 17114.96, + "probability": 0.9287 + }, + { + "start": 17116.08, + "end": 17119.52, + "probability": 0.7474 + }, + { + "start": 17123.4, + "end": 17125.16, + "probability": 0.9495 + }, + { + "start": 17126.26, + "end": 17127.98, + "probability": 0.6326 + }, + { + "start": 17130.0, + "end": 17135.92, + "probability": 0.974 + }, + { + "start": 17139.8, + "end": 17141.4, + "probability": 0.4084 + }, + { + "start": 17142.52, + "end": 17144.94, + "probability": 0.6916 + }, + { + "start": 17146.52, + "end": 17148.52, + "probability": 0.8736 + }, + { + "start": 17151.98, + "end": 17154.54, + "probability": 0.7506 + }, + { + "start": 17156.26, + "end": 17157.04, + "probability": 0.9714 + }, + { + "start": 17157.58, + "end": 17158.8, + "probability": 0.8693 + }, + { + "start": 17161.74, + "end": 17164.38, + "probability": 0.948 + }, + { + "start": 17164.98, + "end": 17165.68, + "probability": 0.6354 + }, + { + "start": 17167.5, + "end": 17170.64, + "probability": 0.6718 + }, + { + "start": 17171.26, + "end": 17173.7, + "probability": 0.9453 + }, + { + "start": 17175.44, + "end": 17177.8, + "probability": 0.9574 + }, + { + "start": 17180.12, + "end": 17183.16, + "probability": 0.9961 + }, + { + "start": 17184.08, + "end": 17186.9, + "probability": 0.838 + }, + { + "start": 17187.64, + "end": 17191.62, + "probability": 0.7732 + }, + { + "start": 17194.34, + "end": 17196.44, + "probability": 0.9686 + }, + { + "start": 17197.04, + "end": 17197.32, + "probability": 0.7512 + }, + { + "start": 17198.64, + "end": 17199.36, + "probability": 0.9535 + }, + { + "start": 17199.62, + "end": 17201.56, + "probability": 0.9913 + }, + { + "start": 17201.84, + "end": 17203.34, + "probability": 0.9545 + }, + { + "start": 17207.68, + "end": 17209.92, + "probability": 0.9733 + }, + { + "start": 17212.9, + "end": 17215.48, + "probability": 0.9475 + }, + { + "start": 17215.88, + "end": 17217.88, + "probability": 0.5637 + }, + { + "start": 17219.0, + "end": 17219.46, + "probability": 0.783 + }, + { + "start": 17221.66, + "end": 17223.08, + "probability": 0.8646 + }, + { + "start": 17223.92, + "end": 17226.84, + "probability": 0.8838 + }, + { + "start": 17229.72, + "end": 17230.44, + "probability": 0.9625 + }, + { + "start": 17231.0, + "end": 17236.78, + "probability": 0.8498 + }, + { + "start": 17240.94, + "end": 17242.66, + "probability": 0.9092 + }, + { + "start": 17243.84, + "end": 17244.94, + "probability": 0.9722 + }, + { + "start": 17248.3, + "end": 17249.3, + "probability": 0.4266 + }, + { + "start": 17249.86, + "end": 17252.24, + "probability": 0.8517 + }, + { + "start": 17253.1, + "end": 17254.08, + "probability": 0.8693 + }, + { + "start": 17261.96, + "end": 17262.6, + "probability": 0.4701 + }, + { + "start": 17268.72, + "end": 17272.4, + "probability": 0.6438 + }, + { + "start": 17273.14, + "end": 17276.26, + "probability": 0.9656 + }, + { + "start": 17277.16, + "end": 17282.58, + "probability": 0.9572 + }, + { + "start": 17283.16, + "end": 17285.74, + "probability": 0.9945 + }, + { + "start": 17286.12, + "end": 17288.84, + "probability": 0.9908 + }, + { + "start": 17289.76, + "end": 17290.62, + "probability": 0.9971 + }, + { + "start": 17291.22, + "end": 17292.42, + "probability": 0.7479 + }, + { + "start": 17293.12, + "end": 17293.78, + "probability": 0.8502 + }, + { + "start": 17294.36, + "end": 17295.74, + "probability": 0.8208 + }, + { + "start": 17296.3, + "end": 17297.0, + "probability": 0.8816 + }, + { + "start": 17297.52, + "end": 17298.86, + "probability": 0.992 + }, + { + "start": 17299.26, + "end": 17301.3, + "probability": 0.9877 + }, + { + "start": 17301.62, + "end": 17304.02, + "probability": 0.9832 + }, + { + "start": 17308.08, + "end": 17309.9, + "probability": 0.8449 + }, + { + "start": 17315.16, + "end": 17316.02, + "probability": 0.6668 + }, + { + "start": 17318.52, + "end": 17321.54, + "probability": 0.8659 + }, + { + "start": 17322.98, + "end": 17324.84, + "probability": 0.9554 + }, + { + "start": 17326.06, + "end": 17326.6, + "probability": 0.969 + }, + { + "start": 17328.42, + "end": 17330.04, + "probability": 0.7653 + }, + { + "start": 17330.56, + "end": 17336.44, + "probability": 0.9928 + }, + { + "start": 17337.14, + "end": 17337.86, + "probability": 0.9904 + }, + { + "start": 17339.0, + "end": 17339.98, + "probability": 0.965 + }, + { + "start": 17340.74, + "end": 17346.42, + "probability": 0.6417 + }, + { + "start": 17347.21, + "end": 17349.38, + "probability": 0.7195 + }, + { + "start": 17349.64, + "end": 17352.2, + "probability": 0.9153 + }, + { + "start": 17353.54, + "end": 17356.04, + "probability": 0.9913 + }, + { + "start": 17356.18, + "end": 17358.04, + "probability": 0.8351 + }, + { + "start": 17359.77, + "end": 17362.04, + "probability": 0.9893 + }, + { + "start": 17364.0, + "end": 17366.42, + "probability": 0.8265 + }, + { + "start": 17367.44, + "end": 17371.62, + "probability": 0.972 + }, + { + "start": 17377.08, + "end": 17377.18, + "probability": 0.3474 + }, + { + "start": 17377.18, + "end": 17377.82, + "probability": 0.4525 + }, + { + "start": 17393.21, + "end": 17396.08, + "probability": 0.4938 + }, + { + "start": 17400.92, + "end": 17401.82, + "probability": 0.53 + }, + { + "start": 17416.42, + "end": 17418.5, + "probability": 0.6132 + }, + { + "start": 17422.64, + "end": 17426.4, + "probability": 0.6901 + }, + { + "start": 17427.22, + "end": 17430.5, + "probability": 0.6237 + }, + { + "start": 17434.58, + "end": 17435.52, + "probability": 0.5908 + }, + { + "start": 17436.04, + "end": 17436.3, + "probability": 0.5357 + }, + { + "start": 17437.3, + "end": 17439.04, + "probability": 0.6117 + }, + { + "start": 17441.38, + "end": 17442.46, + "probability": 0.895 + }, + { + "start": 17444.54, + "end": 17446.2, + "probability": 0.4984 + }, + { + "start": 17447.24, + "end": 17447.56, + "probability": 0.7895 + }, + { + "start": 17448.82, + "end": 17451.04, + "probability": 0.9681 + }, + { + "start": 17451.78, + "end": 17452.23, + "probability": 0.2089 + }, + { + "start": 17454.02, + "end": 17457.14, + "probability": 0.5989 + }, + { + "start": 17458.08, + "end": 17459.02, + "probability": 0.4489 + }, + { + "start": 17467.58, + "end": 17468.78, + "probability": 0.1768 + }, + { + "start": 17470.3, + "end": 17471.58, + "probability": 0.7957 + }, + { + "start": 17478.4, + "end": 17479.96, + "probability": 0.8272 + }, + { + "start": 17481.1, + "end": 17481.42, + "probability": 0.0269 + }, + { + "start": 17482.04, + "end": 17483.72, + "probability": 0.0981 + }, + { + "start": 17489.46, + "end": 17494.96, + "probability": 0.0167 + }, + { + "start": 17498.16, + "end": 17499.52, + "probability": 0.0002 + }, + { + "start": 17501.22, + "end": 17503.1, + "probability": 0.1237 + }, + { + "start": 17504.44, + "end": 17504.54, + "probability": 0.0198 + }, + { + "start": 17731.0, + "end": 17731.0, + "probability": 0.0 + }, + { + "start": 17731.0, + "end": 17731.0, + "probability": 0.0 + }, + { + "start": 17731.0, + "end": 17731.0, + "probability": 0.0 + }, + { + "start": 17736.16, + "end": 17740.49, + "probability": 0.889 + }, + { + "start": 17740.94, + "end": 17742.18, + "probability": 0.7869 + }, + { + "start": 17742.72, + "end": 17746.86, + "probability": 0.8785 + }, + { + "start": 17747.16, + "end": 17747.96, + "probability": 0.5539 + }, + { + "start": 17749.14, + "end": 17751.68, + "probability": 0.5743 + }, + { + "start": 17752.58, + "end": 17754.04, + "probability": 0.8154 + }, + { + "start": 17754.84, + "end": 17758.38, + "probability": 0.8777 + }, + { + "start": 17759.42, + "end": 17759.86, + "probability": 0.8997 + }, + { + "start": 17760.62, + "end": 17763.92, + "probability": 0.818 + }, + { + "start": 17764.54, + "end": 17766.8, + "probability": 0.8077 + }, + { + "start": 17769.96, + "end": 17771.6, + "probability": 0.7812 + }, + { + "start": 17772.7, + "end": 17773.16, + "probability": 0.5934 + }, + { + "start": 17774.44, + "end": 17775.36, + "probability": 0.8334 + }, + { + "start": 17775.92, + "end": 17777.36, + "probability": 0.8848 + }, + { + "start": 17778.94, + "end": 17781.28, + "probability": 0.9561 + }, + { + "start": 17782.28, + "end": 17786.36, + "probability": 0.8997 + }, + { + "start": 17787.8, + "end": 17791.44, + "probability": 0.9904 + }, + { + "start": 17792.0, + "end": 17792.76, + "probability": 0.9708 + }, + { + "start": 17793.58, + "end": 17794.62, + "probability": 0.8297 + }, + { + "start": 17795.48, + "end": 17796.82, + "probability": 0.7361 + }, + { + "start": 17798.94, + "end": 17799.04, + "probability": 0.9631 + }, + { + "start": 17800.42, + "end": 17801.34, + "probability": 0.8491 + }, + { + "start": 17802.2, + "end": 17803.68, + "probability": 0.9381 + }, + { + "start": 17804.82, + "end": 17806.38, + "probability": 0.7603 + }, + { + "start": 17807.22, + "end": 17807.9, + "probability": 0.9817 + }, + { + "start": 17808.82, + "end": 17810.48, + "probability": 0.9876 + }, + { + "start": 17811.3, + "end": 17811.58, + "probability": 0.9564 + }, + { + "start": 17812.56, + "end": 17815.64, + "probability": 0.9634 + }, + { + "start": 17816.54, + "end": 17818.04, + "probability": 0.6071 + }, + { + "start": 17818.64, + "end": 17819.62, + "probability": 0.9427 + }, + { + "start": 17820.4, + "end": 17820.86, + "probability": 0.9727 + }, + { + "start": 17822.06, + "end": 17825.02, + "probability": 0.6461 + }, + { + "start": 17826.23, + "end": 17829.38, + "probability": 0.8651 + }, + { + "start": 17830.34, + "end": 17833.28, + "probability": 0.8774 + }, + { + "start": 17836.74, + "end": 17837.2, + "probability": 0.9909 + }, + { + "start": 17838.6, + "end": 17839.48, + "probability": 0.9271 + }, + { + "start": 17840.66, + "end": 17841.12, + "probability": 0.981 + }, + { + "start": 17842.44, + "end": 17845.02, + "probability": 0.8485 + }, + { + "start": 17845.84, + "end": 17849.02, + "probability": 0.8717 + }, + { + "start": 17850.54, + "end": 17852.38, + "probability": 0.9727 + }, + { + "start": 17853.3, + "end": 17856.0, + "probability": 0.9867 + }, + { + "start": 17856.68, + "end": 17859.58, + "probability": 0.9677 + }, + { + "start": 17863.16, + "end": 17865.86, + "probability": 0.7152 + }, + { + "start": 17867.74, + "end": 17870.92, + "probability": 0.8123 + }, + { + "start": 17871.54, + "end": 17872.28, + "probability": 0.8012 + }, + { + "start": 17875.92, + "end": 17877.94, + "probability": 0.9724 + }, + { + "start": 17881.18, + "end": 17881.98, + "probability": 0.9501 + }, + { + "start": 17883.14, + "end": 17884.82, + "probability": 0.9597 + }, + { + "start": 17885.96, + "end": 17886.76, + "probability": 0.8569 + }, + { + "start": 17887.78, + "end": 17889.56, + "probability": 0.7545 + }, + { + "start": 17890.08, + "end": 17891.76, + "probability": 0.5593 + }, + { + "start": 17892.4, + "end": 17894.38, + "probability": 0.8623 + }, + { + "start": 17898.4, + "end": 17899.1, + "probability": 0.841 + }, + { + "start": 17900.54, + "end": 17901.36, + "probability": 0.9358 + }, + { + "start": 17901.88, + "end": 17902.1, + "probability": 0.7588 + }, + { + "start": 17903.68, + "end": 17904.1, + "probability": 0.9906 + }, + { + "start": 17905.62, + "end": 17906.06, + "probability": 0.9805 + }, + { + "start": 17907.18, + "end": 17907.92, + "probability": 0.9551 + }, + { + "start": 17908.84, + "end": 17909.22, + "probability": 0.9692 + }, + { + "start": 17909.88, + "end": 17912.38, + "probability": 0.9692 + }, + { + "start": 17913.54, + "end": 17913.92, + "probability": 0.7072 + }, + { + "start": 17915.3, + "end": 17916.18, + "probability": 0.63 + }, + { + "start": 17917.2, + "end": 17917.62, + "probability": 0.9229 + }, + { + "start": 17918.78, + "end": 17920.34, + "probability": 0.7023 + }, + { + "start": 17922.69, + "end": 17926.56, + "probability": 0.9283 + }, + { + "start": 17930.1, + "end": 17931.98, + "probability": 0.9563 + }, + { + "start": 17933.66, + "end": 17937.64, + "probability": 0.905 + }, + { + "start": 17938.58, + "end": 17940.32, + "probability": 0.9385 + }, + { + "start": 17941.12, + "end": 17941.82, + "probability": 0.9969 + }, + { + "start": 17942.46, + "end": 17943.14, + "probability": 0.7046 + }, + { + "start": 17945.6, + "end": 17946.22, + "probability": 0.832 + }, + { + "start": 17946.78, + "end": 17947.64, + "probability": 0.6064 + }, + { + "start": 17949.19, + "end": 17953.1, + "probability": 0.9457 + }, + { + "start": 17956.2, + "end": 17957.8, + "probability": 0.8462 + }, + { + "start": 17958.42, + "end": 17961.58, + "probability": 0.833 + }, + { + "start": 17962.64, + "end": 17965.18, + "probability": 0.9425 + }, + { + "start": 17966.06, + "end": 17968.02, + "probability": 0.946 + }, + { + "start": 17969.22, + "end": 17972.94, + "probability": 0.9753 + }, + { + "start": 17974.1, + "end": 17975.0, + "probability": 0.9851 + }, + { + "start": 17976.42, + "end": 17977.34, + "probability": 0.7541 + }, + { + "start": 17979.08, + "end": 17980.66, + "probability": 0.8904 + }, + { + "start": 17980.78, + "end": 17982.26, + "probability": 0.6457 + }, + { + "start": 17982.88, + "end": 17983.36, + "probability": 0.8566 + }, + { + "start": 17984.72, + "end": 17985.5, + "probability": 0.8613 + }, + { + "start": 17986.76, + "end": 17988.74, + "probability": 0.9913 + }, + { + "start": 17989.66, + "end": 17990.04, + "probability": 0.9155 + }, + { + "start": 17991.84, + "end": 17994.7, + "probability": 0.8806 + }, + { + "start": 17995.94, + "end": 17997.92, + "probability": 0.9831 + }, + { + "start": 17998.92, + "end": 17999.6, + "probability": 0.9636 + }, + { + "start": 18000.22, + "end": 18001.34, + "probability": 0.9868 + }, + { + "start": 18003.24, + "end": 18006.98, + "probability": 0.8336 + }, + { + "start": 18008.64, + "end": 18009.04, + "probability": 0.7991 + }, + { + "start": 18009.66, + "end": 18010.4, + "probability": 0.7338 + }, + { + "start": 18011.16, + "end": 18012.84, + "probability": 0.942 + }, + { + "start": 18013.56, + "end": 18013.96, + "probability": 0.9847 + }, + { + "start": 18014.64, + "end": 18015.54, + "probability": 0.8717 + }, + { + "start": 18016.64, + "end": 18017.74, + "probability": 0.7764 + }, + { + "start": 18018.68, + "end": 18019.16, + "probability": 0.9767 + }, + { + "start": 18019.9, + "end": 18020.96, + "probability": 0.9766 + }, + { + "start": 18021.14, + "end": 18023.06, + "probability": 0.8291 + }, + { + "start": 18023.26, + "end": 18024.58, + "probability": 0.7387 + }, + { + "start": 18025.6, + "end": 18026.66, + "probability": 0.8577 + }, + { + "start": 18027.84, + "end": 18032.24, + "probability": 0.9114 + }, + { + "start": 18033.04, + "end": 18033.48, + "probability": 0.8408 + }, + { + "start": 18035.46, + "end": 18036.3, + "probability": 0.906 + }, + { + "start": 18037.36, + "end": 18039.36, + "probability": 0.5133 + }, + { + "start": 18043.0, + "end": 18046.08, + "probability": 0.7601 + }, + { + "start": 18047.1, + "end": 18050.64, + "probability": 0.8234 + }, + { + "start": 18051.8, + "end": 18054.9, + "probability": 0.9902 + }, + { + "start": 18056.04, + "end": 18057.82, + "probability": 0.9851 + }, + { + "start": 18059.84, + "end": 18061.86, + "probability": 0.8607 + }, + { + "start": 18063.04, + "end": 18065.18, + "probability": 0.9046 + }, + { + "start": 18066.18, + "end": 18067.0, + "probability": 0.9948 + }, + { + "start": 18067.56, + "end": 18068.34, + "probability": 0.8063 + }, + { + "start": 18070.74, + "end": 18072.12, + "probability": 0.7796 + }, + { + "start": 18074.22, + "end": 18075.42, + "probability": 0.8731 + }, + { + "start": 18076.96, + "end": 18078.86, + "probability": 0.7905 + }, + { + "start": 18079.84, + "end": 18083.16, + "probability": 0.9812 + }, + { + "start": 18084.56, + "end": 18087.14, + "probability": 0.9876 + }, + { + "start": 18088.44, + "end": 18090.1, + "probability": 0.9393 + }, + { + "start": 18092.01, + "end": 18094.44, + "probability": 0.7815 + }, + { + "start": 18095.64, + "end": 18098.96, + "probability": 0.7408 + }, + { + "start": 18100.51, + "end": 18103.02, + "probability": 0.8889 + }, + { + "start": 18104.48, + "end": 18106.32, + "probability": 0.959 + }, + { + "start": 18106.88, + "end": 18107.54, + "probability": 0.9916 + }, + { + "start": 18109.28, + "end": 18110.26, + "probability": 0.8636 + }, + { + "start": 18111.32, + "end": 18111.84, + "probability": 0.9832 + }, + { + "start": 18112.56, + "end": 18113.34, + "probability": 0.9078 + }, + { + "start": 18117.42, + "end": 18118.12, + "probability": 0.8106 + }, + { + "start": 18118.76, + "end": 18119.56, + "probability": 0.7659 + }, + { + "start": 18120.58, + "end": 18122.28, + "probability": 0.896 + }, + { + "start": 18123.14, + "end": 18126.06, + "probability": 0.8616 + }, + { + "start": 18127.17, + "end": 18130.54, + "probability": 0.6724 + }, + { + "start": 18132.1, + "end": 18132.82, + "probability": 0.0529 + }, + { + "start": 18133.56, + "end": 18134.45, + "probability": 0.1581 + }, + { + "start": 18135.46, + "end": 18136.32, + "probability": 0.4894 + }, + { + "start": 18143.28, + "end": 18143.98, + "probability": 0.3785 + }, + { + "start": 18146.0, + "end": 18149.56, + "probability": 0.4384 + }, + { + "start": 18150.62, + "end": 18151.28, + "probability": 0.3057 + }, + { + "start": 18152.9, + "end": 18153.56, + "probability": 0.9644 + }, + { + "start": 18154.12, + "end": 18156.62, + "probability": 0.7925 + }, + { + "start": 18157.58, + "end": 18158.24, + "probability": 0.9649 + }, + { + "start": 18159.18, + "end": 18160.16, + "probability": 0.9402 + }, + { + "start": 18160.68, + "end": 18161.3, + "probability": 0.9773 + }, + { + "start": 18162.88, + "end": 18163.78, + "probability": 0.3125 + }, + { + "start": 18164.3, + "end": 18165.68, + "probability": 0.885 + }, + { + "start": 18166.58, + "end": 18169.6, + "probability": 0.8629 + }, + { + "start": 18170.32, + "end": 18171.1, + "probability": 0.7823 + }, + { + "start": 18171.34, + "end": 18172.84, + "probability": 0.8893 + }, + { + "start": 18172.92, + "end": 18174.08, + "probability": 0.9708 + }, + { + "start": 18174.18, + "end": 18175.38, + "probability": 0.8367 + }, + { + "start": 18176.48, + "end": 18177.28, + "probability": 0.9749 + }, + { + "start": 18178.38, + "end": 18180.62, + "probability": 0.9728 + }, + { + "start": 18181.4, + "end": 18181.86, + "probability": 0.9876 + }, + { + "start": 18184.22, + "end": 18189.08, + "probability": 0.8123 + }, + { + "start": 18190.29, + "end": 18194.14, + "probability": 0.9199 + }, + { + "start": 18194.96, + "end": 18195.36, + "probability": 0.8805 + }, + { + "start": 18196.36, + "end": 18198.16, + "probability": 0.8717 + }, + { + "start": 18199.08, + "end": 18201.18, + "probability": 0.8745 + }, + { + "start": 18201.3, + "end": 18202.82, + "probability": 0.7034 + }, + { + "start": 18203.76, + "end": 18207.52, + "probability": 0.9613 + }, + { + "start": 18208.72, + "end": 18208.92, + "probability": 0.5498 + }, + { + "start": 18210.84, + "end": 18212.76, + "probability": 0.7476 + }, + { + "start": 18213.74, + "end": 18217.59, + "probability": 0.886 + }, + { + "start": 18218.74, + "end": 18219.54, + "probability": 0.9835 + }, + { + "start": 18220.32, + "end": 18223.76, + "probability": 0.8323 + }, + { + "start": 18226.36, + "end": 18229.0, + "probability": 0.9269 + }, + { + "start": 18230.72, + "end": 18231.16, + "probability": 0.7581 + }, + { + "start": 18234.06, + "end": 18236.96, + "probability": 0.8029 + }, + { + "start": 18237.48, + "end": 18239.32, + "probability": 0.9498 + }, + { + "start": 18240.18, + "end": 18241.78, + "probability": 0.9678 + }, + { + "start": 18242.64, + "end": 18244.84, + "probability": 0.9604 + }, + { + "start": 18245.92, + "end": 18246.58, + "probability": 0.9978 + }, + { + "start": 18247.56, + "end": 18250.28, + "probability": 0.8401 + }, + { + "start": 18251.38, + "end": 18252.64, + "probability": 0.6393 + }, + { + "start": 18253.36, + "end": 18254.26, + "probability": 0.6735 + }, + { + "start": 18254.52, + "end": 18255.66, + "probability": 0.8715 + }, + { + "start": 18255.78, + "end": 18257.02, + "probability": 0.6339 + }, + { + "start": 18257.56, + "end": 18259.28, + "probability": 0.9418 + }, + { + "start": 18263.16, + "end": 18263.6, + "probability": 0.896 + }, + { + "start": 18265.78, + "end": 18267.04, + "probability": 0.8384 + }, + { + "start": 18268.85, + "end": 18270.22, + "probability": 0.9653 + }, + { + "start": 18272.48, + "end": 18274.74, + "probability": 0.9505 + }, + { + "start": 18275.42, + "end": 18275.78, + "probability": 0.9608 + }, + { + "start": 18277.7, + "end": 18278.56, + "probability": 0.9895 + }, + { + "start": 18279.72, + "end": 18280.98, + "probability": 0.989 + }, + { + "start": 18281.9, + "end": 18284.4, + "probability": 0.7539 + }, + { + "start": 18285.24, + "end": 18287.68, + "probability": 0.7631 + }, + { + "start": 18288.4, + "end": 18290.76, + "probability": 0.8416 + }, + { + "start": 18292.6, + "end": 18292.98, + "probability": 0.9094 + }, + { + "start": 18294.54, + "end": 18295.36, + "probability": 0.6296 + }, + { + "start": 18297.22, + "end": 18298.04, + "probability": 0.9856 + }, + { + "start": 18300.32, + "end": 18301.04, + "probability": 0.182 + }, + { + "start": 18301.92, + "end": 18304.36, + "probability": 0.9893 + }, + { + "start": 18304.58, + "end": 18305.58, + "probability": 0.5904 + }, + { + "start": 18306.46, + "end": 18308.58, + "probability": 0.0537 + }, + { + "start": 18309.54, + "end": 18309.84, + "probability": 0.7273 + }, + { + "start": 18311.08, + "end": 18313.22, + "probability": 0.5986 + }, + { + "start": 18316.08, + "end": 18316.62, + "probability": 0.9639 + }, + { + "start": 18320.0, + "end": 18320.92, + "probability": 0.396 + }, + { + "start": 18321.96, + "end": 18325.12, + "probability": 0.9717 + }, + { + "start": 18326.28, + "end": 18327.09, + "probability": 0.8384 + }, + { + "start": 18327.66, + "end": 18328.44, + "probability": 0.6779 + }, + { + "start": 18330.1, + "end": 18336.92, + "probability": 0.1834 + }, + { + "start": 18339.54, + "end": 18339.58, + "probability": 0.0 + }, + { + "start": 18354.46, + "end": 18356.64, + "probability": 0.1519 + }, + { + "start": 18357.84, + "end": 18362.94, + "probability": 0.0108 + }, + { + "start": 18375.5, + "end": 18376.4, + "probability": 0.0513 + }, + { + "start": 18376.4, + "end": 18376.64, + "probability": 0.0111 + }, + { + "start": 18538.24, + "end": 18538.6, + "probability": 0.1931 + }, + { + "start": 18549.8, + "end": 18553.54, + "probability": 0.7278 + }, + { + "start": 18554.34, + "end": 18554.44, + "probability": 0.0049 + }, + { + "start": 18554.44, + "end": 18554.44, + "probability": 0.0632 + }, + { + "start": 18554.44, + "end": 18555.64, + "probability": 0.543 + }, + { + "start": 18558.16, + "end": 18558.6, + "probability": 0.2721 + }, + { + "start": 18564.28, + "end": 18566.08, + "probability": 0.3569 + }, + { + "start": 18566.54, + "end": 18567.28, + "probability": 0.4209 + }, + { + "start": 18567.46, + "end": 18568.16, + "probability": 0.1783 + }, + { + "start": 18568.44, + "end": 18570.64, + "probability": 0.3058 + }, + { + "start": 18570.74, + "end": 18576.48, + "probability": 0.1275 + }, + { + "start": 18581.18, + "end": 18584.52, + "probability": 0.7758 + }, + { + "start": 18585.48, + "end": 18586.28, + "probability": 0.9979 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.0, + "end": 18670.0, + "probability": 0.0 + }, + { + "start": 18670.36, + "end": 18670.94, + "probability": 0.0155 + }, + { + "start": 18670.94, + "end": 18671.06, + "probability": 0.0891 + }, + { + "start": 18671.06, + "end": 18671.06, + "probability": 0.1137 + }, + { + "start": 18671.06, + "end": 18671.18, + "probability": 0.0514 + }, + { + "start": 18671.32, + "end": 18674.48, + "probability": 0.046 + }, + { + "start": 18675.02, + "end": 18676.86, + "probability": 0.0104 + }, + { + "start": 18682.42, + "end": 18682.84, + "probability": 0.0425 + }, + { + "start": 18683.06, + "end": 18685.18, + "probability": 0.0245 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.0, + "end": 18821.0, + "probability": 0.0 + }, + { + "start": 18821.28, + "end": 18824.14, + "probability": 0.403 + }, + { + "start": 18824.64, + "end": 18830.16, + "probability": 0.8987 + }, + { + "start": 18830.7, + "end": 18834.76, + "probability": 0.9205 + }, + { + "start": 18835.58, + "end": 18839.46, + "probability": 0.9926 + }, + { + "start": 18840.24, + "end": 18844.54, + "probability": 0.9972 + }, + { + "start": 18844.54, + "end": 18848.46, + "probability": 0.9989 + }, + { + "start": 18848.98, + "end": 18852.2, + "probability": 0.9739 + }, + { + "start": 18852.8, + "end": 18859.24, + "probability": 0.995 + }, + { + "start": 18859.88, + "end": 18863.9, + "probability": 0.9951 + }, + { + "start": 18864.34, + "end": 18865.56, + "probability": 0.7673 + }, + { + "start": 18865.72, + "end": 18867.38, + "probability": 0.9505 + }, + { + "start": 18868.8, + "end": 18874.84, + "probability": 0.9971 + }, + { + "start": 18874.84, + "end": 18882.4, + "probability": 0.999 + }, + { + "start": 18882.4, + "end": 18887.88, + "probability": 0.9993 + }, + { + "start": 18888.64, + "end": 18892.82, + "probability": 0.9742 + }, + { + "start": 18893.16, + "end": 18895.08, + "probability": 0.9456 + }, + { + "start": 18895.78, + "end": 18898.34, + "probability": 0.9804 + }, + { + "start": 18898.9, + "end": 18903.5, + "probability": 0.9412 + }, + { + "start": 18904.42, + "end": 18907.7, + "probability": 0.8942 + }, + { + "start": 18908.36, + "end": 18914.74, + "probability": 0.9916 + }, + { + "start": 18915.54, + "end": 18920.38, + "probability": 0.948 + }, + { + "start": 18921.38, + "end": 18923.74, + "probability": 0.999 + }, + { + "start": 18924.86, + "end": 18930.1, + "probability": 0.9899 + }, + { + "start": 18930.96, + "end": 18932.76, + "probability": 0.9803 + }, + { + "start": 18934.06, + "end": 18937.06, + "probability": 0.9817 + }, + { + "start": 18937.52, + "end": 18939.88, + "probability": 0.9373 + }, + { + "start": 18940.52, + "end": 18944.46, + "probability": 0.9882 + }, + { + "start": 18944.46, + "end": 18948.74, + "probability": 0.995 + }, + { + "start": 18949.18, + "end": 18953.0, + "probability": 0.9659 + }, + { + "start": 18953.0, + "end": 18958.3, + "probability": 0.0654 + }, + { + "start": 18959.02, + "end": 18960.74, + "probability": 0.824 + }, + { + "start": 18961.4, + "end": 18965.14, + "probability": 0.9346 + }, + { + "start": 18965.98, + "end": 18967.44, + "probability": 0.9917 + }, + { + "start": 18968.1, + "end": 18973.46, + "probability": 0.9871 + }, + { + "start": 18973.46, + "end": 18978.76, + "probability": 0.9987 + }, + { + "start": 18979.54, + "end": 18980.44, + "probability": 0.6627 + }, + { + "start": 18980.5, + "end": 18981.9, + "probability": 0.8779 + }, + { + "start": 18982.38, + "end": 18984.51, + "probability": 0.9976 + }, + { + "start": 18985.74, + "end": 18987.88, + "probability": 0.8372 + }, + { + "start": 18988.56, + "end": 18993.6, + "probability": 0.9242 + }, + { + "start": 18994.48, + "end": 18999.7, + "probability": 0.994 + }, + { + "start": 18999.7, + "end": 19005.08, + "probability": 0.977 + }, + { + "start": 19005.08, + "end": 19009.36, + "probability": 0.9995 + }, + { + "start": 19010.26, + "end": 19013.66, + "probability": 0.9521 + }, + { + "start": 19013.66, + "end": 19018.22, + "probability": 0.9853 + }, + { + "start": 19018.86, + "end": 19021.72, + "probability": 0.9952 + }, + { + "start": 19021.9, + "end": 19024.28, + "probability": 0.7442 + }, + { + "start": 19024.78, + "end": 19026.52, + "probability": 0.9762 + }, + { + "start": 19027.36, + "end": 19033.16, + "probability": 0.9346 + }, + { + "start": 19033.88, + "end": 19034.81, + "probability": 0.9387 + }, + { + "start": 19035.8, + "end": 19037.96, + "probability": 0.9874 + }, + { + "start": 19038.48, + "end": 19043.58, + "probability": 0.828 + }, + { + "start": 19044.72, + "end": 19045.62, + "probability": 0.597 + }, + { + "start": 19047.08, + "end": 19049.0, + "probability": 0.9932 + }, + { + "start": 19049.18, + "end": 19049.84, + "probability": 0.9922 + }, + { + "start": 19050.04, + "end": 19051.18, + "probability": 0.912 + }, + { + "start": 19051.62, + "end": 19058.02, + "probability": 0.9949 + }, + { + "start": 19058.92, + "end": 19062.0, + "probability": 0.9177 + }, + { + "start": 19062.66, + "end": 19067.82, + "probability": 0.9837 + }, + { + "start": 19068.54, + "end": 19075.3, + "probability": 0.9947 + }, + { + "start": 19076.2, + "end": 19077.72, + "probability": 0.9984 + }, + { + "start": 19078.24, + "end": 19084.04, + "probability": 0.9992 + }, + { + "start": 19084.56, + "end": 19086.9, + "probability": 0.9994 + }, + { + "start": 19088.58, + "end": 19092.88, + "probability": 0.9991 + }, + { + "start": 19093.48, + "end": 19097.34, + "probability": 0.9923 + }, + { + "start": 19098.04, + "end": 19101.58, + "probability": 0.9956 + }, + { + "start": 19101.7, + "end": 19106.64, + "probability": 0.7748 + }, + { + "start": 19107.28, + "end": 19110.62, + "probability": 0.7212 + }, + { + "start": 19111.32, + "end": 19115.0, + "probability": 0.9885 + }, + { + "start": 19115.66, + "end": 19119.46, + "probability": 0.9958 + }, + { + "start": 19120.08, + "end": 19123.64, + "probability": 0.9865 + }, + { + "start": 19124.74, + "end": 19130.04, + "probability": 0.9666 + }, + { + "start": 19130.62, + "end": 19134.92, + "probability": 0.9979 + }, + { + "start": 19135.34, + "end": 19138.12, + "probability": 0.7965 + }, + { + "start": 19139.04, + "end": 19142.1, + "probability": 0.9873 + }, + { + "start": 19142.14, + "end": 19146.16, + "probability": 0.9976 + }, + { + "start": 19146.8, + "end": 19149.24, + "probability": 0.9958 + }, + { + "start": 19149.96, + "end": 19155.14, + "probability": 0.9932 + }, + { + "start": 19155.14, + "end": 19159.88, + "probability": 0.9991 + }, + { + "start": 19160.48, + "end": 19164.88, + "probability": 0.9836 + }, + { + "start": 19165.72, + "end": 19170.96, + "probability": 0.9899 + }, + { + "start": 19171.28, + "end": 19174.98, + "probability": 0.9548 + }, + { + "start": 19175.58, + "end": 19176.34, + "probability": 0.7374 + }, + { + "start": 19177.08, + "end": 19185.26, + "probability": 0.9807 + }, + { + "start": 19185.86, + "end": 19189.44, + "probability": 0.9318 + }, + { + "start": 19190.58, + "end": 19192.0, + "probability": 0.9669 + }, + { + "start": 19192.72, + "end": 19195.91, + "probability": 0.9893 + }, + { + "start": 19196.84, + "end": 19202.24, + "probability": 0.9943 + }, + { + "start": 19203.18, + "end": 19209.74, + "probability": 0.9907 + }, + { + "start": 19210.22, + "end": 19216.16, + "probability": 0.9979 + }, + { + "start": 19216.7, + "end": 19219.08, + "probability": 0.9534 + }, + { + "start": 19219.48, + "end": 19222.3, + "probability": 0.9975 + }, + { + "start": 19223.14, + "end": 19227.62, + "probability": 0.9943 + }, + { + "start": 19227.62, + "end": 19232.28, + "probability": 0.9941 + }, + { + "start": 19232.82, + "end": 19235.3, + "probability": 0.9944 + }, + { + "start": 19236.24, + "end": 19239.28, + "probability": 0.9678 + }, + { + "start": 19239.28, + "end": 19242.78, + "probability": 0.998 + }, + { + "start": 19242.86, + "end": 19243.9, + "probability": 0.7315 + }, + { + "start": 19244.0, + "end": 19244.76, + "probability": 0.7704 + }, + { + "start": 19244.94, + "end": 19247.06, + "probability": 0.3169 + }, + { + "start": 19247.5, + "end": 19250.96, + "probability": 0.9906 + }, + { + "start": 19251.64, + "end": 19254.98, + "probability": 0.9636 + }, + { + "start": 19255.64, + "end": 19260.58, + "probability": 0.9968 + }, + { + "start": 19261.2, + "end": 19262.08, + "probability": 0.9117 + }, + { + "start": 19262.16, + "end": 19265.36, + "probability": 0.9969 + }, + { + "start": 19265.8, + "end": 19267.28, + "probability": 0.9832 + }, + { + "start": 19267.92, + "end": 19270.24, + "probability": 0.9962 + }, + { + "start": 19270.88, + "end": 19276.36, + "probability": 0.9961 + }, + { + "start": 19276.36, + "end": 19282.08, + "probability": 0.9951 + }, + { + "start": 19282.18, + "end": 19283.22, + "probability": 0.753 + }, + { + "start": 19284.02, + "end": 19286.64, + "probability": 0.9329 + }, + { + "start": 19287.2, + "end": 19290.58, + "probability": 0.9932 + }, + { + "start": 19290.96, + "end": 19292.42, + "probability": 0.8941 + }, + { + "start": 19293.2, + "end": 19297.62, + "probability": 0.9907 + }, + { + "start": 19297.62, + "end": 19302.24, + "probability": 0.9919 + }, + { + "start": 19302.24, + "end": 19307.44, + "probability": 0.999 + }, + { + "start": 19308.28, + "end": 19311.46, + "probability": 0.7858 + }, + { + "start": 19312.02, + "end": 19314.32, + "probability": 0.9347 + }, + { + "start": 19315.16, + "end": 19319.04, + "probability": 0.97 + }, + { + "start": 19319.86, + "end": 19326.02, + "probability": 0.9248 + }, + { + "start": 19326.9, + "end": 19330.32, + "probability": 0.9893 + }, + { + "start": 19330.84, + "end": 19331.94, + "probability": 0.9287 + }, + { + "start": 19332.78, + "end": 19333.56, + "probability": 0.9163 + }, + { + "start": 19333.8, + "end": 19340.76, + "probability": 0.9286 + }, + { + "start": 19341.68, + "end": 19344.38, + "probability": 0.9846 + }, + { + "start": 19345.04, + "end": 19350.28, + "probability": 0.9945 + }, + { + "start": 19350.28, + "end": 19355.7, + "probability": 0.9981 + }, + { + "start": 19356.52, + "end": 19360.36, + "probability": 0.8419 + }, + { + "start": 19361.0, + "end": 19364.14, + "probability": 0.9954 + }, + { + "start": 19364.92, + "end": 19367.64, + "probability": 0.9677 + }, + { + "start": 19368.18, + "end": 19369.56, + "probability": 0.8737 + }, + { + "start": 19369.64, + "end": 19370.66, + "probability": 0.739 + }, + { + "start": 19371.12, + "end": 19373.94, + "probability": 0.9963 + }, + { + "start": 19374.38, + "end": 19375.18, + "probability": 0.9307 + }, + { + "start": 19375.3, + "end": 19376.92, + "probability": 0.9248 + }, + { + "start": 19377.42, + "end": 19382.26, + "probability": 0.9802 + }, + { + "start": 19382.56, + "end": 19382.7, + "probability": 0.7107 + }, + { + "start": 19383.72, + "end": 19385.44, + "probability": 0.6657 + }, + { + "start": 19385.9, + "end": 19388.23, + "probability": 0.9749 + }, + { + "start": 19388.78, + "end": 19392.08, + "probability": 0.793 + }, + { + "start": 19392.5, + "end": 19396.28, + "probability": 0.9595 + }, + { + "start": 19396.76, + "end": 19398.12, + "probability": 0.853 + }, + { + "start": 19398.46, + "end": 19400.1, + "probability": 0.9182 + }, + { + "start": 19400.62, + "end": 19402.44, + "probability": 0.998 + }, + { + "start": 19403.06, + "end": 19407.44, + "probability": 0.9692 + }, + { + "start": 19407.8, + "end": 19409.52, + "probability": 0.8074 + }, + { + "start": 19410.52, + "end": 19410.82, + "probability": 0.8594 + }, + { + "start": 19411.62, + "end": 19411.62, + "probability": 0.578 + }, + { + "start": 19411.64, + "end": 19414.6, + "probability": 0.6397 + }, + { + "start": 19429.58, + "end": 19430.48, + "probability": 0.7065 + }, + { + "start": 19430.64, + "end": 19431.42, + "probability": 0.684 + }, + { + "start": 19431.54, + "end": 19432.21, + "probability": 0.7392 + }, + { + "start": 19432.5, + "end": 19433.24, + "probability": 0.9872 + }, + { + "start": 19433.46, + "end": 19436.44, + "probability": 0.958 + }, + { + "start": 19436.44, + "end": 19439.9, + "probability": 0.9382 + }, + { + "start": 19440.96, + "end": 19441.0, + "probability": 0.113 + }, + { + "start": 19441.0, + "end": 19441.22, + "probability": 0.4805 + }, + { + "start": 19441.22, + "end": 19441.26, + "probability": 0.4406 + }, + { + "start": 19441.36, + "end": 19442.62, + "probability": 0.8116 + }, + { + "start": 19442.86, + "end": 19443.84, + "probability": 0.8407 + }, + { + "start": 19443.9, + "end": 19444.4, + "probability": 0.7012 + }, + { + "start": 19444.54, + "end": 19445.14, + "probability": 0.623 + }, + { + "start": 19445.24, + "end": 19445.28, + "probability": 0.0795 + }, + { + "start": 19445.28, + "end": 19449.09, + "probability": 0.6359 + }, + { + "start": 19449.1, + "end": 19451.72, + "probability": 0.7037 + }, + { + "start": 19452.38, + "end": 19452.96, + "probability": 0.2653 + }, + { + "start": 19453.54, + "end": 19455.18, + "probability": 0.187 + }, + { + "start": 19455.82, + "end": 19458.18, + "probability": 0.9719 + }, + { + "start": 19458.3, + "end": 19459.12, + "probability": 0.9706 + }, + { + "start": 19460.14, + "end": 19464.09, + "probability": 0.9423 + }, + { + "start": 19464.54, + "end": 19467.42, + "probability": 0.9597 + }, + { + "start": 19468.0, + "end": 19471.14, + "probability": 0.8247 + }, + { + "start": 19471.58, + "end": 19473.4, + "probability": 0.99 + }, + { + "start": 19474.02, + "end": 19477.06, + "probability": 0.2991 + }, + { + "start": 19477.92, + "end": 19477.98, + "probability": 0.0139 + }, + { + "start": 19477.98, + "end": 19480.57, + "probability": 0.6285 + }, + { + "start": 19481.78, + "end": 19481.84, + "probability": 0.0655 + }, + { + "start": 19481.84, + "end": 19481.84, + "probability": 0.0114 + }, + { + "start": 19481.84, + "end": 19485.78, + "probability": 0.6102 + }, + { + "start": 19486.72, + "end": 19489.32, + "probability": 0.5676 + }, + { + "start": 19489.56, + "end": 19489.62, + "probability": 0.1632 + }, + { + "start": 19489.84, + "end": 19493.12, + "probability": 0.9785 + }, + { + "start": 19493.14, + "end": 19496.74, + "probability": 0.9116 + }, + { + "start": 19497.06, + "end": 19499.32, + "probability": 0.9967 + }, + { + "start": 19500.4, + "end": 19502.32, + "probability": 0.8335 + }, + { + "start": 19502.32, + "end": 19503.2, + "probability": 0.4667 + }, + { + "start": 19503.88, + "end": 19505.0, + "probability": 0.1236 + }, + { + "start": 19505.16, + "end": 19507.9, + "probability": 0.9634 + }, + { + "start": 19508.0, + "end": 19509.46, + "probability": 0.9956 + }, + { + "start": 19509.68, + "end": 19511.4, + "probability": 0.9879 + }, + { + "start": 19511.98, + "end": 19518.9, + "probability": 0.9834 + }, + { + "start": 19518.96, + "end": 19523.2, + "probability": 0.9982 + }, + { + "start": 19523.64, + "end": 19526.58, + "probability": 0.886 + }, + { + "start": 19526.82, + "end": 19529.46, + "probability": 0.9885 + }, + { + "start": 19529.88, + "end": 19531.18, + "probability": 0.8502 + }, + { + "start": 19531.44, + "end": 19532.54, + "probability": 0.8256 + }, + { + "start": 19532.74, + "end": 19534.8, + "probability": 0.9324 + }, + { + "start": 19535.2, + "end": 19537.02, + "probability": 0.7737 + }, + { + "start": 19537.4, + "end": 19539.48, + "probability": 0.9476 + }, + { + "start": 19539.6, + "end": 19545.44, + "probability": 0.9871 + }, + { + "start": 19545.5, + "end": 19546.5, + "probability": 0.8827 + }, + { + "start": 19546.82, + "end": 19548.5, + "probability": 0.9993 + }, + { + "start": 19548.82, + "end": 19549.82, + "probability": 0.0226 + }, + { + "start": 19550.72, + "end": 19553.85, + "probability": 0.8135 + }, + { + "start": 19554.98, + "end": 19556.44, + "probability": 0.2454 + }, + { + "start": 19557.98, + "end": 19558.6, + "probability": 0.0373 + }, + { + "start": 19558.72, + "end": 19559.86, + "probability": 0.0247 + }, + { + "start": 19560.56, + "end": 19561.88, + "probability": 0.0947 + }, + { + "start": 19561.88, + "end": 19563.26, + "probability": 0.7319 + }, + { + "start": 19563.32, + "end": 19563.71, + "probability": 0.6884 + }, + { + "start": 19564.28, + "end": 19564.38, + "probability": 0.2395 + }, + { + "start": 19564.6, + "end": 19569.44, + "probability": 0.9701 + }, + { + "start": 19570.06, + "end": 19570.24, + "probability": 0.6558 + }, + { + "start": 19570.9, + "end": 19574.48, + "probability": 0.9484 + }, + { + "start": 19574.56, + "end": 19577.26, + "probability": 0.9802 + }, + { + "start": 19577.82, + "end": 19580.88, + "probability": 0.9424 + }, + { + "start": 19581.84, + "end": 19583.0, + "probability": 0.9028 + }, + { + "start": 19583.06, + "end": 19586.82, + "probability": 0.9947 + }, + { + "start": 19587.24, + "end": 19589.56, + "probability": 0.7747 + }, + { + "start": 19590.5, + "end": 19590.5, + "probability": 0.04 + }, + { + "start": 19590.5, + "end": 19594.08, + "probability": 0.8623 + }, + { + "start": 19594.38, + "end": 19595.72, + "probability": 0.3358 + }, + { + "start": 19596.34, + "end": 19596.34, + "probability": 0.067 + }, + { + "start": 19596.34, + "end": 19596.34, + "probability": 0.0508 + }, + { + "start": 19596.34, + "end": 19596.34, + "probability": 0.0228 + }, + { + "start": 19596.34, + "end": 19598.28, + "probability": 0.9764 + }, + { + "start": 19598.34, + "end": 19600.06, + "probability": 0.9771 + }, + { + "start": 19600.36, + "end": 19603.76, + "probability": 0.8918 + }, + { + "start": 19603.76, + "end": 19606.8, + "probability": 0.2146 + }, + { + "start": 19607.08, + "end": 19611.42, + "probability": 0.0085 + }, + { + "start": 19611.5, + "end": 19613.0, + "probability": 0.3991 + }, + { + "start": 19613.08, + "end": 19615.94, + "probability": 0.0324 + }, + { + "start": 19617.32, + "end": 19620.64, + "probability": 0.1954 + }, + { + "start": 19623.88, + "end": 19624.54, + "probability": 0.2511 + }, + { + "start": 19625.44, + "end": 19625.76, + "probability": 0.483 + }, + { + "start": 19647.16, + "end": 19651.27, + "probability": 0.0595 + }, + { + "start": 19652.76, + "end": 19655.26, + "probability": 0.0313 + }, + { + "start": 19655.28, + "end": 19656.2, + "probability": 0.0596 + }, + { + "start": 19656.66, + "end": 19659.68, + "probability": 0.1382 + }, + { + "start": 19660.14, + "end": 19661.7, + "probability": 0.1161 + }, + { + "start": 19661.9, + "end": 19664.06, + "probability": 0.172 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.0, + "end": 19674.0, + "probability": 0.0 + }, + { + "start": 19674.18, + "end": 19674.4, + "probability": 0.0387 + }, + { + "start": 19674.4, + "end": 19675.24, + "probability": 0.6594 + }, + { + "start": 19675.26, + "end": 19675.86, + "probability": 0.578 + }, + { + "start": 19676.08, + "end": 19678.94, + "probability": 0.8428 + }, + { + "start": 19679.32, + "end": 19679.84, + "probability": 0.0293 + }, + { + "start": 19679.94, + "end": 19683.08, + "probability": 0.8766 + }, + { + "start": 19683.4, + "end": 19685.88, + "probability": 0.9806 + }, + { + "start": 19685.9, + "end": 19687.1, + "probability": 0.8474 + }, + { + "start": 19687.48, + "end": 19692.8, + "probability": 0.9604 + }, + { + "start": 19693.64, + "end": 19694.16, + "probability": 0.7277 + }, + { + "start": 19694.76, + "end": 19697.26, + "probability": 0.9907 + }, + { + "start": 19697.88, + "end": 19700.12, + "probability": 0.8662 + }, + { + "start": 19700.82, + "end": 19703.5, + "probability": 0.9799 + }, + { + "start": 19704.02, + "end": 19705.3, + "probability": 0.5626 + }, + { + "start": 19705.96, + "end": 19707.94, + "probability": 0.8763 + }, + { + "start": 19708.54, + "end": 19710.58, + "probability": 0.9865 + }, + { + "start": 19711.28, + "end": 19712.96, + "probability": 0.0316 + }, + { + "start": 19713.14, + "end": 19713.56, + "probability": 0.6328 + }, + { + "start": 19713.58, + "end": 19714.32, + "probability": 0.8164 + }, + { + "start": 19714.4, + "end": 19717.2, + "probability": 0.9967 + }, + { + "start": 19717.48, + "end": 19721.86, + "probability": 0.8652 + }, + { + "start": 19722.04, + "end": 19723.68, + "probability": 0.7783 + }, + { + "start": 19723.72, + "end": 19724.82, + "probability": 0.8398 + }, + { + "start": 19725.72, + "end": 19729.78, + "probability": 0.5444 + }, + { + "start": 19730.5, + "end": 19733.02, + "probability": 0.3357 + }, + { + "start": 19733.36, + "end": 19734.12, + "probability": 0.3289 + }, + { + "start": 19734.82, + "end": 19737.02, + "probability": 0.9456 + }, + { + "start": 19737.52, + "end": 19741.08, + "probability": 0.9985 + }, + { + "start": 19741.9, + "end": 19745.56, + "probability": 0.9246 + }, + { + "start": 19747.38, + "end": 19750.92, + "probability": 0.998 + }, + { + "start": 19750.92, + "end": 19754.88, + "probability": 0.9611 + }, + { + "start": 19755.64, + "end": 19759.5, + "probability": 0.7269 + }, + { + "start": 19760.06, + "end": 19762.2, + "probability": 0.9334 + }, + { + "start": 19762.78, + "end": 19767.54, + "probability": 0.999 + }, + { + "start": 19767.54, + "end": 19774.1, + "probability": 0.9988 + }, + { + "start": 19774.62, + "end": 19779.78, + "probability": 0.9976 + }, + { + "start": 19779.78, + "end": 19784.38, + "probability": 0.9992 + }, + { + "start": 19785.32, + "end": 19786.28, + "probability": 0.9587 + }, + { + "start": 19787.96, + "end": 19791.88, + "probability": 0.9529 + }, + { + "start": 19792.68, + "end": 19793.98, + "probability": 0.8358 + }, + { + "start": 19794.06, + "end": 19797.28, + "probability": 0.9917 + }, + { + "start": 19797.84, + "end": 19800.38, + "probability": 0.999 + }, + { + "start": 19800.38, + "end": 19803.52, + "probability": 0.999 + }, + { + "start": 19804.1, + "end": 19807.1, + "probability": 0.9977 + }, + { + "start": 19807.1, + "end": 19810.52, + "probability": 0.9994 + }, + { + "start": 19810.94, + "end": 19816.14, + "probability": 0.9738 + }, + { + "start": 19816.62, + "end": 19821.04, + "probability": 0.9965 + }, + { + "start": 19821.04, + "end": 19824.64, + "probability": 0.9844 + }, + { + "start": 19825.6, + "end": 19828.04, + "probability": 0.9864 + }, + { + "start": 19828.04, + "end": 19831.76, + "probability": 0.9299 + }, + { + "start": 19832.28, + "end": 19835.94, + "probability": 0.9401 + }, + { + "start": 19835.94, + "end": 19840.84, + "probability": 0.9976 + }, + { + "start": 19841.2, + "end": 19846.74, + "probability": 0.9968 + }, + { + "start": 19847.22, + "end": 19851.14, + "probability": 0.9949 + }, + { + "start": 19851.14, + "end": 19854.72, + "probability": 0.9968 + }, + { + "start": 19855.28, + "end": 19858.58, + "probability": 0.9987 + }, + { + "start": 19859.0, + "end": 19859.38, + "probability": 0.4768 + }, + { + "start": 19859.7, + "end": 19862.26, + "probability": 0.854 + }, + { + "start": 19862.78, + "end": 19863.34, + "probability": 0.7289 + }, + { + "start": 19864.42, + "end": 19867.02, + "probability": 0.9766 + }, + { + "start": 19867.02, + "end": 19871.08, + "probability": 0.9788 + }, + { + "start": 19871.46, + "end": 19875.78, + "probability": 0.9398 + }, + { + "start": 19876.42, + "end": 19879.8, + "probability": 0.9746 + }, + { + "start": 19879.86, + "end": 19884.94, + "probability": 0.9979 + }, + { + "start": 19885.46, + "end": 19890.72, + "probability": 0.9799 + }, + { + "start": 19891.76, + "end": 19896.86, + "probability": 0.9987 + }, + { + "start": 19897.74, + "end": 19901.7, + "probability": 0.9766 + }, + { + "start": 19901.72, + "end": 19903.22, + "probability": 0.6609 + }, + { + "start": 19903.66, + "end": 19905.66, + "probability": 0.9543 + }, + { + "start": 19906.44, + "end": 19910.14, + "probability": 0.9951 + }, + { + "start": 19910.54, + "end": 19913.62, + "probability": 0.9979 + }, + { + "start": 19914.22, + "end": 19915.08, + "probability": 0.806 + }, + { + "start": 19916.06, + "end": 19920.86, + "probability": 0.9893 + }, + { + "start": 19921.34, + "end": 19926.2, + "probability": 0.9307 + }, + { + "start": 19926.5, + "end": 19928.92, + "probability": 0.8106 + }, + { + "start": 19929.18, + "end": 19934.9, + "probability": 0.9794 + }, + { + "start": 19935.72, + "end": 19939.52, + "probability": 0.0531 + }, + { + "start": 19939.74, + "end": 19940.86, + "probability": 0.0939 + }, + { + "start": 19940.86, + "end": 19944.98, + "probability": 0.9904 + }, + { + "start": 19945.58, + "end": 19945.58, + "probability": 0.0534 + }, + { + "start": 19945.58, + "end": 19945.86, + "probability": 0.5331 + }, + { + "start": 19946.22, + "end": 19952.58, + "probability": 0.9982 + }, + { + "start": 19953.14, + "end": 19955.18, + "probability": 0.9575 + }, + { + "start": 19956.52, + "end": 19960.94, + "probability": 0.9819 + }, + { + "start": 19960.94, + "end": 19964.5, + "probability": 0.9957 + }, + { + "start": 19964.92, + "end": 19967.28, + "probability": 0.9988 + }, + { + "start": 19967.62, + "end": 19971.56, + "probability": 0.7828 + }, + { + "start": 19972.3, + "end": 19976.46, + "probability": 0.8137 + }, + { + "start": 19976.94, + "end": 19979.38, + "probability": 0.9606 + }, + { + "start": 19979.68, + "end": 19982.58, + "probability": 0.9972 + }, + { + "start": 19982.58, + "end": 19986.68, + "probability": 0.9651 + }, + { + "start": 19988.16, + "end": 19989.46, + "probability": 0.9799 + }, + { + "start": 19989.54, + "end": 19991.53, + "probability": 0.8914 + }, + { + "start": 19991.86, + "end": 19996.42, + "probability": 0.7393 + }, + { + "start": 19997.04, + "end": 19999.6, + "probability": 0.9954 + }, + { + "start": 20000.28, + "end": 20000.28, + "probability": 0.0031 + }, + { + "start": 20000.46, + "end": 20004.2, + "probability": 0.9828 + }, + { + "start": 20004.2, + "end": 20007.58, + "probability": 0.9178 + }, + { + "start": 20008.16, + "end": 20011.9, + "probability": 0.8975 + }, + { + "start": 20011.92, + "end": 20014.52, + "probability": 0.8824 + }, + { + "start": 20014.72, + "end": 20017.02, + "probability": 0.9967 + }, + { + "start": 20017.76, + "end": 20022.14, + "probability": 0.9971 + }, + { + "start": 20022.14, + "end": 20026.24, + "probability": 0.9954 + }, + { + "start": 20026.74, + "end": 20030.22, + "probability": 0.9842 + }, + { + "start": 20030.92, + "end": 20035.24, + "probability": 0.9888 + }, + { + "start": 20035.76, + "end": 20039.26, + "probability": 0.9966 + }, + { + "start": 20039.74, + "end": 20040.96, + "probability": 0.9818 + }, + { + "start": 20041.14, + "end": 20043.1, + "probability": 0.9947 + }, + { + "start": 20043.56, + "end": 20044.9, + "probability": 0.9118 + }, + { + "start": 20045.84, + "end": 20046.98, + "probability": 0.9491 + }, + { + "start": 20047.0, + "end": 20047.56, + "probability": 0.8191 + }, + { + "start": 20048.02, + "end": 20049.08, + "probability": 0.9529 + }, + { + "start": 20049.58, + "end": 20050.98, + "probability": 0.9076 + }, + { + "start": 20051.32, + "end": 20052.54, + "probability": 0.9685 + }, + { + "start": 20052.98, + "end": 20054.92, + "probability": 0.7198 + }, + { + "start": 20055.0, + "end": 20055.88, + "probability": 0.9852 + }, + { + "start": 20055.92, + "end": 20060.48, + "probability": 0.9987 + }, + { + "start": 20060.76, + "end": 20062.88, + "probability": 0.9092 + }, + { + "start": 20063.34, + "end": 20063.52, + "probability": 0.8022 + }, + { + "start": 20066.12, + "end": 20067.2, + "probability": 0.7021 + }, + { + "start": 20067.3, + "end": 20070.16, + "probability": 0.9563 + }, + { + "start": 20070.78, + "end": 20071.44, + "probability": 0.8842 + }, + { + "start": 20072.46, + "end": 20073.32, + "probability": 0.4379 + }, + { + "start": 20073.32, + "end": 20073.38, + "probability": 0.3897 + }, + { + "start": 20073.44, + "end": 20075.06, + "probability": 0.9863 + }, + { + "start": 20094.98, + "end": 20095.9, + "probability": 0.747 + }, + { + "start": 20106.64, + "end": 20109.42, + "probability": 0.9973 + }, + { + "start": 20109.48, + "end": 20110.48, + "probability": 0.8617 + }, + { + "start": 20110.8, + "end": 20111.4, + "probability": 0.4843 + }, + { + "start": 20111.44, + "end": 20112.8, + "probability": 0.9201 + }, + { + "start": 20112.96, + "end": 20113.8, + "probability": 0.746 + }, + { + "start": 20114.38, + "end": 20115.22, + "probability": 0.7301 + }, + { + "start": 20115.38, + "end": 20117.24, + "probability": 0.9844 + }, + { + "start": 20117.62, + "end": 20122.76, + "probability": 0.9935 + }, + { + "start": 20122.94, + "end": 20125.38, + "probability": 0.8341 + }, + { + "start": 20125.48, + "end": 20126.68, + "probability": 0.162 + }, + { + "start": 20126.68, + "end": 20127.14, + "probability": 0.1595 + }, + { + "start": 20127.14, + "end": 20132.4, + "probability": 0.9452 + }, + { + "start": 20132.4, + "end": 20136.5, + "probability": 0.9265 + }, + { + "start": 20136.6, + "end": 20137.52, + "probability": 0.6843 + }, + { + "start": 20137.54, + "end": 20138.08, + "probability": 0.5911 + }, + { + "start": 20138.26, + "end": 20138.32, + "probability": 0.3218 + }, + { + "start": 20138.5, + "end": 20138.78, + "probability": 0.4129 + }, + { + "start": 20139.16, + "end": 20139.84, + "probability": 0.0038 + }, + { + "start": 20139.96, + "end": 20140.5, + "probability": 0.0119 + }, + { + "start": 20140.5, + "end": 20142.12, + "probability": 0.7519 + }, + { + "start": 20142.42, + "end": 20143.76, + "probability": 0.8784 + }, + { + "start": 20144.18, + "end": 20151.36, + "probability": 0.7642 + }, + { + "start": 20152.0, + "end": 20152.84, + "probability": 0.9827 + }, + { + "start": 20155.88, + "end": 20157.36, + "probability": 0.8667 + }, + { + "start": 20157.42, + "end": 20161.44, + "probability": 0.7294 + }, + { + "start": 20163.04, + "end": 20168.44, + "probability": 0.8228 + }, + { + "start": 20168.56, + "end": 20170.4, + "probability": 0.7358 + }, + { + "start": 20170.96, + "end": 20173.36, + "probability": 0.8091 + }, + { + "start": 20174.18, + "end": 20175.39, + "probability": 0.707 + }, + { + "start": 20175.56, + "end": 20181.58, + "probability": 0.9251 + }, + { + "start": 20181.62, + "end": 20183.02, + "probability": 0.843 + }, + { + "start": 20183.98, + "end": 20188.58, + "probability": 0.998 + }, + { + "start": 20189.42, + "end": 20192.12, + "probability": 0.9985 + }, + { + "start": 20192.12, + "end": 20194.96, + "probability": 0.9995 + }, + { + "start": 20195.84, + "end": 20199.6, + "probability": 0.9897 + }, + { + "start": 20200.24, + "end": 20200.24, + "probability": 0.1339 + }, + { + "start": 20200.24, + "end": 20205.02, + "probability": 0.9734 + }, + { + "start": 20206.06, + "end": 20208.94, + "probability": 0.9475 + }, + { + "start": 20210.38, + "end": 20213.76, + "probability": 0.8772 + }, + { + "start": 20215.36, + "end": 20215.36, + "probability": 0.1841 + }, + { + "start": 20215.36, + "end": 20219.06, + "probability": 0.943 + }, + { + "start": 20220.08, + "end": 20224.3, + "probability": 0.9913 + }, + { + "start": 20224.76, + "end": 20228.3, + "probability": 0.9958 + }, + { + "start": 20228.52, + "end": 20231.86, + "probability": 0.9827 + }, + { + "start": 20232.3, + "end": 20234.52, + "probability": 0.9958 + }, + { + "start": 20234.68, + "end": 20237.28, + "probability": 0.8459 + }, + { + "start": 20237.7, + "end": 20239.82, + "probability": 0.9971 + }, + { + "start": 20240.66, + "end": 20244.34, + "probability": 0.9364 + }, + { + "start": 20244.48, + "end": 20244.86, + "probability": 0.6416 + }, + { + "start": 20244.92, + "end": 20247.56, + "probability": 0.9774 + }, + { + "start": 20248.32, + "end": 20252.18, + "probability": 0.9817 + }, + { + "start": 20252.18, + "end": 20255.26, + "probability": 0.9976 + }, + { + "start": 20256.04, + "end": 20259.82, + "probability": 0.9922 + }, + { + "start": 20259.82, + "end": 20263.44, + "probability": 0.8745 + }, + { + "start": 20264.24, + "end": 20264.86, + "probability": 0.5611 + }, + { + "start": 20264.86, + "end": 20266.98, + "probability": 0.6843 + }, + { + "start": 20267.04, + "end": 20268.4, + "probability": 0.9778 + }, + { + "start": 20268.72, + "end": 20270.88, + "probability": 0.6025 + }, + { + "start": 20270.88, + "end": 20273.26, + "probability": 0.8555 + }, + { + "start": 20273.58, + "end": 20277.66, + "probability": 0.7877 + }, + { + "start": 20278.04, + "end": 20280.12, + "probability": 0.9424 + }, + { + "start": 20280.28, + "end": 20283.5, + "probability": 0.9857 + }, + { + "start": 20283.8, + "end": 20284.44, + "probability": 0.0839 + }, + { + "start": 20284.7, + "end": 20285.1, + "probability": 0.8928 + }, + { + "start": 20285.18, + "end": 20287.28, + "probability": 0.8717 + }, + { + "start": 20287.64, + "end": 20289.28, + "probability": 0.7783 + }, + { + "start": 20289.42, + "end": 20289.42, + "probability": 0.27 + }, + { + "start": 20289.42, + "end": 20289.42, + "probability": 0.1774 + }, + { + "start": 20289.42, + "end": 20293.24, + "probability": 0.4679 + }, + { + "start": 20294.08, + "end": 20295.56, + "probability": 0.0575 + }, + { + "start": 20295.56, + "end": 20295.68, + "probability": 0.2022 + }, + { + "start": 20296.0, + "end": 20297.04, + "probability": 0.2497 + }, + { + "start": 20297.04, + "end": 20297.44, + "probability": 0.115 + }, + { + "start": 20297.9, + "end": 20302.74, + "probability": 0.7744 + }, + { + "start": 20303.34, + "end": 20303.52, + "probability": 0.0254 + }, + { + "start": 20303.52, + "end": 20303.52, + "probability": 0.0174 + }, + { + "start": 20303.52, + "end": 20306.1, + "probability": 0.5573 + }, + { + "start": 20306.66, + "end": 20310.04, + "probability": 0.9043 + }, + { + "start": 20310.04, + "end": 20314.04, + "probability": 0.8105 + }, + { + "start": 20314.24, + "end": 20314.24, + "probability": 0.2179 + }, + { + "start": 20314.24, + "end": 20314.24, + "probability": 0.4493 + }, + { + "start": 20314.24, + "end": 20314.24, + "probability": 0.0559 + }, + { + "start": 20314.24, + "end": 20314.58, + "probability": 0.8353 + }, + { + "start": 20314.86, + "end": 20316.88, + "probability": 0.9695 + }, + { + "start": 20316.88, + "end": 20317.16, + "probability": 0.7746 + }, + { + "start": 20317.16, + "end": 20317.18, + "probability": 0.706 + }, + { + "start": 20317.24, + "end": 20318.4, + "probability": 0.9941 + }, + { + "start": 20318.48, + "end": 20319.24, + "probability": 0.7269 + }, + { + "start": 20319.3, + "end": 20322.26, + "probability": 0.9653 + }, + { + "start": 20322.74, + "end": 20322.74, + "probability": 0.0486 + }, + { + "start": 20322.74, + "end": 20324.58, + "probability": 0.6857 + }, + { + "start": 20324.7, + "end": 20325.36, + "probability": 0.7668 + }, + { + "start": 20326.68, + "end": 20328.7, + "probability": 0.8633 + }, + { + "start": 20329.12, + "end": 20331.78, + "probability": 0.9775 + }, + { + "start": 20332.24, + "end": 20334.1, + "probability": 0.8075 + }, + { + "start": 20334.74, + "end": 20337.14, + "probability": 0.8361 + }, + { + "start": 20337.52, + "end": 20337.68, + "probability": 0.0409 + }, + { + "start": 20337.68, + "end": 20339.46, + "probability": 0.6463 + }, + { + "start": 20339.76, + "end": 20341.16, + "probability": 0.8658 + }, + { + "start": 20341.22, + "end": 20341.92, + "probability": 0.8434 + }, + { + "start": 20341.92, + "end": 20343.58, + "probability": 0.984 + }, + { + "start": 20346.34, + "end": 20348.98, + "probability": 0.3137 + }, + { + "start": 20349.02, + "end": 20349.16, + "probability": 0.2748 + }, + { + "start": 20349.16, + "end": 20350.78, + "probability": 0.1987 + }, + { + "start": 20350.92, + "end": 20350.92, + "probability": 0.0434 + }, + { + "start": 20350.92, + "end": 20353.16, + "probability": 0.8264 + }, + { + "start": 20355.26, + "end": 20356.1, + "probability": 0.2176 + }, + { + "start": 20357.94, + "end": 20361.6, + "probability": 0.7876 + }, + { + "start": 20362.32, + "end": 20364.08, + "probability": 0.8207 + }, + { + "start": 20364.98, + "end": 20368.78, + "probability": 0.895 + }, + { + "start": 20369.32, + "end": 20372.96, + "probability": 0.8453 + }, + { + "start": 20373.96, + "end": 20378.28, + "probability": 0.7025 + }, + { + "start": 20379.28, + "end": 20381.38, + "probability": 0.6901 + }, + { + "start": 20382.62, + "end": 20383.12, + "probability": 0.9504 + }, + { + "start": 20384.36, + "end": 20385.68, + "probability": 0.9775 + }, + { + "start": 20386.7, + "end": 20388.16, + "probability": 0.8842 + }, + { + "start": 20388.86, + "end": 20390.74, + "probability": 0.9786 + }, + { + "start": 20393.04, + "end": 20395.38, + "probability": 0.7724 + }, + { + "start": 20395.96, + "end": 20398.84, + "probability": 0.9604 + }, + { + "start": 20400.38, + "end": 20404.72, + "probability": 0.7387 + }, + { + "start": 20406.02, + "end": 20408.34, + "probability": 0.6975 + }, + { + "start": 20408.42, + "end": 20409.72, + "probability": 0.8816 + }, + { + "start": 20413.18, + "end": 20415.26, + "probability": 0.897 + }, + { + "start": 20416.06, + "end": 20418.06, + "probability": 0.9411 + }, + { + "start": 20418.68, + "end": 20420.2, + "probability": 0.9492 + }, + { + "start": 20421.34, + "end": 20422.88, + "probability": 0.8285 + }, + { + "start": 20423.72, + "end": 20424.26, + "probability": 0.5397 + }, + { + "start": 20425.74, + "end": 20426.7, + "probability": 0.9771 + }, + { + "start": 20427.62, + "end": 20430.28, + "probability": 0.9412 + }, + { + "start": 20431.2, + "end": 20431.74, + "probability": 0.9437 + }, + { + "start": 20432.7, + "end": 20433.72, + "probability": 0.8958 + }, + { + "start": 20434.62, + "end": 20435.5, + "probability": 0.9497 + }, + { + "start": 20436.2, + "end": 20438.88, + "probability": 0.9437 + }, + { + "start": 20439.52, + "end": 20444.36, + "probability": 0.7862 + }, + { + "start": 20445.38, + "end": 20447.22, + "probability": 0.9369 + }, + { + "start": 20449.76, + "end": 20453.52, + "probability": 0.8239 + }, + { + "start": 20454.48, + "end": 20457.52, + "probability": 0.9676 + }, + { + "start": 20458.64, + "end": 20461.48, + "probability": 0.932 + }, + { + "start": 20462.62, + "end": 20465.74, + "probability": 0.9768 + }, + { + "start": 20466.62, + "end": 20468.12, + "probability": 0.8316 + }, + { + "start": 20469.32, + "end": 20473.16, + "probability": 0.9393 + }, + { + "start": 20474.02, + "end": 20474.54, + "probability": 0.9834 + }, + { + "start": 20475.65, + "end": 20478.82, + "probability": 0.9492 + }, + { + "start": 20479.38, + "end": 20480.44, + "probability": 0.9302 + }, + { + "start": 20481.18, + "end": 20482.22, + "probability": 0.6407 + }, + { + "start": 20484.1, + "end": 20485.76, + "probability": 0.9054 + }, + { + "start": 20486.8, + "end": 20489.0, + "probability": 0.9808 + }, + { + "start": 20492.4, + "end": 20496.68, + "probability": 0.7657 + }, + { + "start": 20497.38, + "end": 20498.16, + "probability": 0.8662 + }, + { + "start": 20499.3, + "end": 20500.48, + "probability": 0.8188 + }, + { + "start": 20501.02, + "end": 20502.9, + "probability": 0.7278 + }, + { + "start": 20503.04, + "end": 20504.4, + "probability": 0.6277 + }, + { + "start": 20504.54, + "end": 20506.64, + "probability": 0.928 + }, + { + "start": 20507.74, + "end": 20508.64, + "probability": 0.9837 + }, + { + "start": 20509.24, + "end": 20509.96, + "probability": 0.6949 + }, + { + "start": 20511.42, + "end": 20514.1, + "probability": 0.8466 + }, + { + "start": 20515.54, + "end": 20517.2, + "probability": 0.9579 + }, + { + "start": 20519.68, + "end": 20520.96, + "probability": 0.8587 + }, + { + "start": 20522.12, + "end": 20524.68, + "probability": 0.9444 + }, + { + "start": 20525.36, + "end": 20527.74, + "probability": 0.987 + }, + { + "start": 20528.6, + "end": 20530.06, + "probability": 0.9887 + }, + { + "start": 20531.3, + "end": 20532.46, + "probability": 0.9043 + }, + { + "start": 20534.36, + "end": 20537.28, + "probability": 0.944 + }, + { + "start": 20538.16, + "end": 20540.82, + "probability": 0.8549 + }, + { + "start": 20541.68, + "end": 20545.62, + "probability": 0.9363 + }, + { + "start": 20546.64, + "end": 20547.1, + "probability": 0.9883 + }, + { + "start": 20547.7, + "end": 20548.52, + "probability": 0.9404 + }, + { + "start": 20553.74, + "end": 20559.6, + "probability": 0.9668 + }, + { + "start": 20561.56, + "end": 20563.24, + "probability": 0.7168 + }, + { + "start": 20564.38, + "end": 20566.96, + "probability": 0.9396 + }, + { + "start": 20571.1, + "end": 20574.0, + "probability": 0.6624 + }, + { + "start": 20575.68, + "end": 20576.36, + "probability": 0.7683 + }, + { + "start": 20577.98, + "end": 20580.34, + "probability": 0.9701 + }, + { + "start": 20581.66, + "end": 20581.94, + "probability": 0.9797 + }, + { + "start": 20582.64, + "end": 20583.64, + "probability": 0.9055 + }, + { + "start": 20585.06, + "end": 20586.82, + "probability": 0.9643 + }, + { + "start": 20587.42, + "end": 20589.52, + "probability": 0.9763 + }, + { + "start": 20590.28, + "end": 20592.28, + "probability": 0.9513 + }, + { + "start": 20593.46, + "end": 20595.12, + "probability": 0.6238 + }, + { + "start": 20595.22, + "end": 20596.74, + "probability": 0.5264 + }, + { + "start": 20597.44, + "end": 20600.08, + "probability": 0.901 + }, + { + "start": 20601.44, + "end": 20603.4, + "probability": 0.9868 + }, + { + "start": 20604.24, + "end": 20604.48, + "probability": 0.6941 + }, + { + "start": 20605.3, + "end": 20607.72, + "probability": 0.8161 + }, + { + "start": 20609.02, + "end": 20610.98, + "probability": 0.9238 + }, + { + "start": 20611.56, + "end": 20612.3, + "probability": 0.9738 + }, + { + "start": 20613.04, + "end": 20614.0, + "probability": 0.6779 + }, + { + "start": 20615.16, + "end": 20618.14, + "probability": 0.6841 + }, + { + "start": 20619.28, + "end": 20619.8, + "probability": 0.9019 + }, + { + "start": 20621.16, + "end": 20621.64, + "probability": 0.8213 + }, + { + "start": 20622.7, + "end": 20623.86, + "probability": 0.9157 + }, + { + "start": 20624.62, + "end": 20625.84, + "probability": 0.7941 + }, + { + "start": 20627.36, + "end": 20629.14, + "probability": 0.767 + }, + { + "start": 20631.39, + "end": 20634.58, + "probability": 0.838 + }, + { + "start": 20639.98, + "end": 20641.54, + "probability": 0.9121 + }, + { + "start": 20652.16, + "end": 20652.88, + "probability": 0.7986 + }, + { + "start": 20654.88, + "end": 20655.66, + "probability": 0.705 + }, + { + "start": 20656.7, + "end": 20658.18, + "probability": 0.9575 + }, + { + "start": 20659.16, + "end": 20659.98, + "probability": 0.9176 + }, + { + "start": 20660.2, + "end": 20661.7, + "probability": 0.942 + }, + { + "start": 20661.88, + "end": 20663.04, + "probability": 0.9082 + }, + { + "start": 20664.14, + "end": 20664.86, + "probability": 0.9819 + }, + { + "start": 20665.6, + "end": 20666.28, + "probability": 0.8339 + }, + { + "start": 20678.18, + "end": 20680.06, + "probability": 0.5339 + }, + { + "start": 20681.3, + "end": 20681.76, + "probability": 0.9881 + }, + { + "start": 20682.84, + "end": 20683.52, + "probability": 0.8414 + }, + { + "start": 20684.18, + "end": 20685.76, + "probability": 0.9693 + }, + { + "start": 20688.8, + "end": 20693.6, + "probability": 0.9827 + }, + { + "start": 20694.56, + "end": 20695.02, + "probability": 0.9899 + }, + { + "start": 20696.4, + "end": 20697.3, + "probability": 0.9012 + }, + { + "start": 20697.92, + "end": 20698.18, + "probability": 0.4494 + }, + { + "start": 20706.06, + "end": 20708.54, + "probability": 0.3818 + }, + { + "start": 20709.16, + "end": 20710.32, + "probability": 0.7369 + }, + { + "start": 20712.1, + "end": 20714.08, + "probability": 0.8291 + }, + { + "start": 20715.22, + "end": 20715.72, + "probability": 0.8474 + }, + { + "start": 20716.3, + "end": 20716.64, + "probability": 0.9935 + }, + { + "start": 20720.82, + "end": 20723.82, + "probability": 0.7415 + }, + { + "start": 20725.04, + "end": 20725.54, + "probability": 0.9831 + }, + { + "start": 20726.08, + "end": 20726.86, + "probability": 0.9455 + }, + { + "start": 20728.18, + "end": 20728.64, + "probability": 0.7888 + }, + { + "start": 20729.54, + "end": 20730.3, + "probability": 0.8784 + }, + { + "start": 20731.2, + "end": 20732.88, + "probability": 0.9748 + }, + { + "start": 20733.92, + "end": 20734.44, + "probability": 0.9971 + }, + { + "start": 20735.18, + "end": 20735.78, + "probability": 0.8993 + }, + { + "start": 20737.3, + "end": 20739.3, + "probability": 0.9928 + }, + { + "start": 20740.46, + "end": 20740.92, + "probability": 0.9914 + }, + { + "start": 20741.94, + "end": 20743.86, + "probability": 0.9878 + }, + { + "start": 20744.86, + "end": 20746.98, + "probability": 0.9362 + }, + { + "start": 20747.72, + "end": 20751.3, + "probability": 0.6748 + }, + { + "start": 20753.5, + "end": 20754.38, + "probability": 0.7861 + }, + { + "start": 20754.9, + "end": 20755.86, + "probability": 0.6328 + }, + { + "start": 20757.0, + "end": 20758.6, + "probability": 0.9332 + }, + { + "start": 20759.54, + "end": 20761.64, + "probability": 0.8631 + }, + { + "start": 20762.44, + "end": 20762.9, + "probability": 0.917 + }, + { + "start": 20764.5, + "end": 20765.34, + "probability": 0.9529 + }, + { + "start": 20766.89, + "end": 20769.54, + "probability": 0.8025 + }, + { + "start": 20770.24, + "end": 20772.24, + "probability": 0.7425 + }, + { + "start": 20772.98, + "end": 20774.38, + "probability": 0.8527 + }, + { + "start": 20775.04, + "end": 20781.58, + "probability": 0.9964 + }, + { + "start": 20782.12, + "end": 20783.14, + "probability": 0.0498 + }, + { + "start": 20783.14, + "end": 20784.34, + "probability": 0.7133 + }, + { + "start": 20785.06, + "end": 20786.54, + "probability": 0.7064 + }, + { + "start": 20787.64, + "end": 20789.04, + "probability": 0.873 + }, + { + "start": 20789.8, + "end": 20791.1, + "probability": 0.9455 + }, + { + "start": 20792.14, + "end": 20793.72, + "probability": 0.9602 + }, + { + "start": 20795.0, + "end": 20796.6, + "probability": 0.8346 + }, + { + "start": 20797.24, + "end": 20797.68, + "probability": 0.6223 + }, + { + "start": 20799.14, + "end": 20799.84, + "probability": 0.7325 + }, + { + "start": 20799.92, + "end": 20801.12, + "probability": 0.8622 + }, + { + "start": 20801.6, + "end": 20803.26, + "probability": 0.9006 + }, + { + "start": 20803.92, + "end": 20805.28, + "probability": 0.9186 + }, + { + "start": 20807.1, + "end": 20807.52, + "probability": 0.9634 + }, + { + "start": 20810.9, + "end": 20811.88, + "probability": 0.2384 + }, + { + "start": 20811.92, + "end": 20813.12, + "probability": 0.6489 + }, + { + "start": 20813.24, + "end": 20814.56, + "probability": 0.7421 + }, + { + "start": 20815.74, + "end": 20816.22, + "probability": 0.9458 + }, + { + "start": 20817.9, + "end": 20818.32, + "probability": 0.9714 + }, + { + "start": 20819.2, + "end": 20820.64, + "probability": 0.9532 + }, + { + "start": 20821.5, + "end": 20822.08, + "probability": 0.9792 + }, + { + "start": 20823.56, + "end": 20825.36, + "probability": 0.9901 + }, + { + "start": 20826.0, + "end": 20829.06, + "probability": 0.9624 + }, + { + "start": 20829.92, + "end": 20831.88, + "probability": 0.7883 + }, + { + "start": 20833.4, + "end": 20834.08, + "probability": 0.9596 + }, + { + "start": 20834.78, + "end": 20835.52, + "probability": 0.9053 + }, + { + "start": 20836.14, + "end": 20836.64, + "probability": 0.9497 + }, + { + "start": 20839.22, + "end": 20842.18, + "probability": 0.7663 + }, + { + "start": 20844.72, + "end": 20847.14, + "probability": 0.9852 + }, + { + "start": 20847.74, + "end": 20848.2, + "probability": 0.9637 + }, + { + "start": 20850.86, + "end": 20851.68, + "probability": 0.5352 + }, + { + "start": 20852.5, + "end": 20854.16, + "probability": 0.7236 + }, + { + "start": 20854.26, + "end": 20855.52, + "probability": 0.7754 + }, + { + "start": 20855.6, + "end": 20857.04, + "probability": 0.8382 + }, + { + "start": 20857.9, + "end": 20858.68, + "probability": 0.8552 + }, + { + "start": 20860.2, + "end": 20863.54, + "probability": 0.8492 + }, + { + "start": 20864.22, + "end": 20867.12, + "probability": 0.8884 + }, + { + "start": 20868.76, + "end": 20872.88, + "probability": 0.8774 + }, + { + "start": 20874.48, + "end": 20874.9, + "probability": 0.939 + }, + { + "start": 20876.88, + "end": 20881.88, + "probability": 0.9339 + }, + { + "start": 20882.62, + "end": 20882.98, + "probability": 0.9727 + }, + { + "start": 20884.04, + "end": 20885.22, + "probability": 0.752 + }, + { + "start": 20888.06, + "end": 20890.44, + "probability": 0.937 + }, + { + "start": 20891.62, + "end": 20892.1, + "probability": 0.8273 + }, + { + "start": 20893.92, + "end": 20897.24, + "probability": 0.8913 + }, + { + "start": 20898.06, + "end": 20900.26, + "probability": 0.9268 + }, + { + "start": 20900.78, + "end": 20901.14, + "probability": 0.8577 + }, + { + "start": 20902.56, + "end": 20904.42, + "probability": 0.9333 + }, + { + "start": 20905.4, + "end": 20906.38, + "probability": 0.9475 + }, + { + "start": 20907.52, + "end": 20908.28, + "probability": 0.9767 + }, + { + "start": 20908.8, + "end": 20910.38, + "probability": 0.9775 + }, + { + "start": 20910.9, + "end": 20912.06, + "probability": 0.4622 + }, + { + "start": 20914.4, + "end": 20914.88, + "probability": 0.9508 + }, + { + "start": 20916.58, + "end": 20917.84, + "probability": 0.8978 + }, + { + "start": 20919.2, + "end": 20921.24, + "probability": 0.93 + }, + { + "start": 20921.92, + "end": 20924.62, + "probability": 0.9504 + }, + { + "start": 20925.16, + "end": 20926.8, + "probability": 0.9209 + }, + { + "start": 20927.38, + "end": 20929.2, + "probability": 0.958 + }, + { + "start": 20929.28, + "end": 20930.58, + "probability": 0.8156 + }, + { + "start": 20930.7, + "end": 20932.94, + "probability": 0.9376 + }, + { + "start": 20933.74, + "end": 20934.2, + "probability": 0.675 + }, + { + "start": 20936.36, + "end": 20937.56, + "probability": 0.8419 + }, + { + "start": 20940.36, + "end": 20941.1, + "probability": 0.9877 + }, + { + "start": 20943.18, + "end": 20946.0, + "probability": 0.656 + }, + { + "start": 20946.7, + "end": 20947.12, + "probability": 0.8179 + }, + { + "start": 20949.02, + "end": 20950.02, + "probability": 0.9774 + }, + { + "start": 20950.6, + "end": 20952.5, + "probability": 0.9783 + }, + { + "start": 20953.66, + "end": 20956.04, + "probability": 0.9094 + }, + { + "start": 20956.9, + "end": 20958.01, + "probability": 0.9116 + }, + { + "start": 20958.2, + "end": 20959.52, + "probability": 0.8311 + }, + { + "start": 20959.7, + "end": 20960.38, + "probability": 0.9756 + }, + { + "start": 20961.79, + "end": 20966.46, + "probability": 0.9587 + }, + { + "start": 20968.22, + "end": 20970.2, + "probability": 0.2737 + }, + { + "start": 20971.12, + "end": 20972.1, + "probability": 0.9854 + }, + { + "start": 20973.7, + "end": 20974.78, + "probability": 0.456 + }, + { + "start": 20975.22, + "end": 20976.02, + "probability": 0.7272 + }, + { + "start": 20985.56, + "end": 20986.56, + "probability": 0.0854 + }, + { + "start": 21145.0, + "end": 21148.14, + "probability": 0.4932 + }, + { + "start": 21149.12, + "end": 21151.58, + "probability": 0.8668 + }, + { + "start": 21152.5, + "end": 21156.76, + "probability": 0.9975 + }, + { + "start": 21158.0, + "end": 21159.82, + "probability": 0.7993 + }, + { + "start": 21160.54, + "end": 21161.72, + "probability": 0.7448 + }, + { + "start": 21162.38, + "end": 21163.72, + "probability": 0.8345 + }, + { + "start": 21168.44, + "end": 21169.82, + "probability": 0.9028 + }, + { + "start": 21172.9, + "end": 21173.88, + "probability": 0.7423 + }, + { + "start": 21174.88, + "end": 21176.02, + "probability": 0.8483 + }, + { + "start": 21178.24, + "end": 21179.34, + "probability": 0.7042 + }, + { + "start": 21179.88, + "end": 21182.14, + "probability": 0.4808 + }, + { + "start": 21182.16, + "end": 21185.94, + "probability": 0.9941 + }, + { + "start": 21187.24, + "end": 21188.92, + "probability": 0.8858 + }, + { + "start": 21190.02, + "end": 21195.8, + "probability": 0.9957 + }, + { + "start": 21196.48, + "end": 21197.42, + "probability": 0.9797 + }, + { + "start": 21200.1, + "end": 21201.32, + "probability": 0.9785 + }, + { + "start": 21201.88, + "end": 21203.98, + "probability": 0.9957 + }, + { + "start": 21204.92, + "end": 21206.38, + "probability": 0.9722 + }, + { + "start": 21207.44, + "end": 21210.42, + "probability": 0.9671 + }, + { + "start": 21211.72, + "end": 21213.8, + "probability": 0.6342 + }, + { + "start": 21214.7, + "end": 21215.74, + "probability": 0.9163 + }, + { + "start": 21215.94, + "end": 21219.14, + "probability": 0.9639 + }, + { + "start": 21220.36, + "end": 21221.74, + "probability": 0.9515 + }, + { + "start": 21221.88, + "end": 21225.88, + "probability": 0.936 + }, + { + "start": 21226.72, + "end": 21228.0, + "probability": 0.5858 + }, + { + "start": 21228.94, + "end": 21232.2, + "probability": 0.928 + }, + { + "start": 21232.3, + "end": 21233.48, + "probability": 0.9701 + }, + { + "start": 21234.16, + "end": 21236.66, + "probability": 0.9786 + }, + { + "start": 21237.64, + "end": 21241.16, + "probability": 0.9978 + }, + { + "start": 21242.98, + "end": 21247.26, + "probability": 0.7709 + }, + { + "start": 21247.26, + "end": 21248.86, + "probability": 0.5804 + }, + { + "start": 21250.22, + "end": 21251.52, + "probability": 0.9465 + }, + { + "start": 21252.34, + "end": 21254.74, + "probability": 0.997 + }, + { + "start": 21255.36, + "end": 21260.22, + "probability": 0.946 + }, + { + "start": 21262.06, + "end": 21265.08, + "probability": 0.9928 + }, + { + "start": 21266.36, + "end": 21268.12, + "probability": 0.8455 + }, + { + "start": 21268.24, + "end": 21269.4, + "probability": 0.9591 + }, + { + "start": 21269.46, + "end": 21269.86, + "probability": 0.8915 + }, + { + "start": 21271.02, + "end": 21272.92, + "probability": 0.8207 + }, + { + "start": 21275.94, + "end": 21277.42, + "probability": 0.9958 + }, + { + "start": 21278.42, + "end": 21279.76, + "probability": 0.9663 + }, + { + "start": 21281.28, + "end": 21284.34, + "probability": 0.999 + }, + { + "start": 21285.36, + "end": 21290.74, + "probability": 0.9918 + }, + { + "start": 21291.64, + "end": 21294.08, + "probability": 0.991 + }, + { + "start": 21294.3, + "end": 21297.7, + "probability": 0.8863 + }, + { + "start": 21299.1, + "end": 21301.38, + "probability": 0.883 + }, + { + "start": 21301.38, + "end": 21302.16, + "probability": 0.8009 + }, + { + "start": 21302.28, + "end": 21302.96, + "probability": 0.955 + }, + { + "start": 21303.0, + "end": 21303.84, + "probability": 0.9459 + }, + { + "start": 21303.94, + "end": 21304.9, + "probability": 0.6956 + }, + { + "start": 21305.58, + "end": 21308.96, + "probability": 0.9955 + }, + { + "start": 21308.96, + "end": 21315.12, + "probability": 0.9997 + }, + { + "start": 21317.22, + "end": 21318.52, + "probability": 0.9924 + }, + { + "start": 21320.28, + "end": 21322.42, + "probability": 0.9715 + }, + { + "start": 21323.18, + "end": 21325.26, + "probability": 0.9955 + }, + { + "start": 21325.62, + "end": 21327.48, + "probability": 0.9873 + }, + { + "start": 21327.54, + "end": 21331.4, + "probability": 0.9987 + }, + { + "start": 21332.28, + "end": 21334.06, + "probability": 0.9958 + }, + { + "start": 21334.74, + "end": 21337.8, + "probability": 0.9944 + }, + { + "start": 21338.9, + "end": 21339.98, + "probability": 0.9569 + }, + { + "start": 21340.18, + "end": 21342.08, + "probability": 0.7652 + }, + { + "start": 21342.44, + "end": 21346.58, + "probability": 0.9946 + }, + { + "start": 21347.48, + "end": 21349.64, + "probability": 0.6429 + }, + { + "start": 21350.78, + "end": 21351.56, + "probability": 0.9204 + }, + { + "start": 21352.68, + "end": 21353.84, + "probability": 0.9928 + }, + { + "start": 21354.84, + "end": 21359.08, + "probability": 0.9853 + }, + { + "start": 21360.74, + "end": 21363.82, + "probability": 0.9969 + }, + { + "start": 21365.04, + "end": 21366.34, + "probability": 0.9934 + }, + { + "start": 21367.38, + "end": 21369.28, + "probability": 0.9019 + }, + { + "start": 21370.0, + "end": 21372.12, + "probability": 0.993 + }, + { + "start": 21372.52, + "end": 21373.62, + "probability": 0.7347 + }, + { + "start": 21373.7, + "end": 21375.84, + "probability": 0.9902 + }, + { + "start": 21377.54, + "end": 21378.34, + "probability": 0.9839 + }, + { + "start": 21380.16, + "end": 21384.08, + "probability": 0.9725 + }, + { + "start": 21384.94, + "end": 21386.18, + "probability": 0.93 + }, + { + "start": 21386.98, + "end": 21391.32, + "probability": 0.9874 + }, + { + "start": 21392.3, + "end": 21393.88, + "probability": 0.9983 + }, + { + "start": 21395.04, + "end": 21399.24, + "probability": 0.998 + }, + { + "start": 21400.84, + "end": 21404.64, + "probability": 0.9975 + }, + { + "start": 21405.66, + "end": 21407.32, + "probability": 0.9919 + }, + { + "start": 21407.98, + "end": 21409.06, + "probability": 0.716 + }, + { + "start": 21409.14, + "end": 21413.2, + "probability": 0.9976 + }, + { + "start": 21413.34, + "end": 21414.46, + "probability": 0.8867 + }, + { + "start": 21415.36, + "end": 21420.0, + "probability": 0.9711 + }, + { + "start": 21420.74, + "end": 21422.5, + "probability": 0.966 + }, + { + "start": 21423.14, + "end": 21425.6, + "probability": 0.9067 + }, + { + "start": 21427.56, + "end": 21430.0, + "probability": 0.8257 + }, + { + "start": 21431.06, + "end": 21432.14, + "probability": 0.9808 + }, + { + "start": 21433.59, + "end": 21437.32, + "probability": 0.981 + }, + { + "start": 21437.48, + "end": 21438.88, + "probability": 0.7195 + }, + { + "start": 21439.96, + "end": 21443.18, + "probability": 0.9868 + }, + { + "start": 21443.7, + "end": 21446.52, + "probability": 0.9987 + }, + { + "start": 21447.32, + "end": 21447.83, + "probability": 0.58 + }, + { + "start": 21448.6, + "end": 21451.2, + "probability": 0.9941 + }, + { + "start": 21452.32, + "end": 21453.1, + "probability": 0.8822 + }, + { + "start": 21454.78, + "end": 21457.94, + "probability": 0.9908 + }, + { + "start": 21458.02, + "end": 21460.98, + "probability": 0.9886 + }, + { + "start": 21462.52, + "end": 21465.24, + "probability": 0.9978 + }, + { + "start": 21465.34, + "end": 21466.24, + "probability": 0.8745 + }, + { + "start": 21467.0, + "end": 21469.02, + "probability": 0.8853 + }, + { + "start": 21470.42, + "end": 21472.74, + "probability": 0.9863 + }, + { + "start": 21473.34, + "end": 21475.86, + "probability": 0.9891 + }, + { + "start": 21477.52, + "end": 21480.06, + "probability": 0.9783 + }, + { + "start": 21480.62, + "end": 21483.66, + "probability": 0.9969 + }, + { + "start": 21484.1, + "end": 21485.6, + "probability": 0.9124 + }, + { + "start": 21485.94, + "end": 21493.01, + "probability": 0.9833 + }, + { + "start": 21494.38, + "end": 21495.72, + "probability": 0.9716 + }, + { + "start": 21497.74, + "end": 21498.8, + "probability": 0.9534 + }, + { + "start": 21499.9, + "end": 21503.42, + "probability": 0.8808 + }, + { + "start": 21504.38, + "end": 21506.74, + "probability": 0.9808 + }, + { + "start": 21507.24, + "end": 21510.46, + "probability": 0.9973 + }, + { + "start": 21511.56, + "end": 21516.6, + "probability": 0.996 + }, + { + "start": 21517.12, + "end": 21517.94, + "probability": 0.8748 + }, + { + "start": 21520.27, + "end": 21522.5, + "probability": 0.8748 + }, + { + "start": 21523.18, + "end": 21525.94, + "probability": 0.6313 + }, + { + "start": 21526.62, + "end": 21527.44, + "probability": 0.4248 + }, + { + "start": 21530.8, + "end": 21531.58, + "probability": 0.5007 + }, + { + "start": 21532.24, + "end": 21536.61, + "probability": 0.0038 + }, + { + "start": 21537.2, + "end": 21539.2, + "probability": 0.7049 + }, + { + "start": 21541.42, + "end": 21545.42, + "probability": 0.1267 + }, + { + "start": 21545.82, + "end": 21546.62, + "probability": 0.6475 + }, + { + "start": 21546.72, + "end": 21549.46, + "probability": 0.7254 + }, + { + "start": 21550.58, + "end": 21552.2, + "probability": 0.7902 + }, + { + "start": 21552.26, + "end": 21552.36, + "probability": 0.0862 + }, + { + "start": 21552.36, + "end": 21552.36, + "probability": 0.0896 + }, + { + "start": 21552.36, + "end": 21552.44, + "probability": 0.0287 + }, + { + "start": 21552.44, + "end": 21553.02, + "probability": 0.145 + }, + { + "start": 21553.16, + "end": 21553.5, + "probability": 0.7419 + }, + { + "start": 21554.24, + "end": 21556.28, + "probability": 0.9539 + }, + { + "start": 21557.4, + "end": 21559.58, + "probability": 0.9907 + }, + { + "start": 21560.58, + "end": 21560.82, + "probability": 0.3869 + }, + { + "start": 21560.82, + "end": 21564.64, + "probability": 0.8616 + }, + { + "start": 21565.04, + "end": 21565.66, + "probability": 0.9554 + }, + { + "start": 21566.16, + "end": 21567.62, + "probability": 0.9536 + }, + { + "start": 21568.3, + "end": 21568.78, + "probability": 0.9355 + }, + { + "start": 21569.58, + "end": 21573.48, + "probability": 0.9843 + }, + { + "start": 21573.86, + "end": 21577.56, + "probability": 0.98 + }, + { + "start": 21577.6, + "end": 21579.98, + "probability": 0.9893 + }, + { + "start": 21580.84, + "end": 21583.22, + "probability": 0.0378 + }, + { + "start": 21583.24, + "end": 21584.08, + "probability": 0.0368 + }, + { + "start": 21584.66, + "end": 21589.68, + "probability": 0.8996 + }, + { + "start": 21589.76, + "end": 21591.02, + "probability": 0.7916 + }, + { + "start": 21591.28, + "end": 21592.13, + "probability": 0.9464 + }, + { + "start": 21592.42, + "end": 21592.49, + "probability": 0.7463 + }, + { + "start": 21592.76, + "end": 21592.92, + "probability": 0.7424 + }, + { + "start": 21592.92, + "end": 21595.3, + "probability": 0.9954 + }, + { + "start": 21596.16, + "end": 21599.76, + "probability": 0.9934 + }, + { + "start": 21599.88, + "end": 21601.04, + "probability": 0.9956 + }, + { + "start": 21602.7, + "end": 21604.22, + "probability": 0.8612 + }, + { + "start": 21604.84, + "end": 21606.08, + "probability": 0.8958 + }, + { + "start": 21606.54, + "end": 21608.68, + "probability": 0.8958 + }, + { + "start": 21609.5, + "end": 21610.2, + "probability": 0.9721 + }, + { + "start": 21610.38, + "end": 21613.52, + "probability": 0.8682 + }, + { + "start": 21613.98, + "end": 21616.16, + "probability": 0.9802 + }, + { + "start": 21616.88, + "end": 21620.8, + "probability": 0.9942 + }, + { + "start": 21620.8, + "end": 21621.39, + "probability": 0.4514 + }, + { + "start": 21622.1, + "end": 21624.66, + "probability": 0.4969 + }, + { + "start": 21626.28, + "end": 21626.9, + "probability": 0.4281 + }, + { + "start": 21627.36, + "end": 21630.02, + "probability": 0.6405 + }, + { + "start": 21630.16, + "end": 21632.76, + "probability": 0.9241 + }, + { + "start": 21633.34, + "end": 21633.86, + "probability": 0.8303 + }, + { + "start": 21634.02, + "end": 21635.1, + "probability": 0.7891 + }, + { + "start": 21635.22, + "end": 21641.44, + "probability": 0.9946 + }, + { + "start": 21641.44, + "end": 21643.18, + "probability": 0.8387 + }, + { + "start": 21643.18, + "end": 21645.58, + "probability": 0.862 + }, + { + "start": 21645.66, + "end": 21647.6, + "probability": 0.6689 + }, + { + "start": 21647.7, + "end": 21649.74, + "probability": 0.5031 + }, + { + "start": 21649.8, + "end": 21650.32, + "probability": 0.1123 + }, + { + "start": 21650.32, + "end": 21650.34, + "probability": 0.0823 + }, + { + "start": 21650.34, + "end": 21655.24, + "probability": 0.7422 + }, + { + "start": 21655.24, + "end": 21657.78, + "probability": 0.3186 + }, + { + "start": 21657.86, + "end": 21658.12, + "probability": 0.9086 + }, + { + "start": 21658.22, + "end": 21660.48, + "probability": 0.6302 + }, + { + "start": 21660.48, + "end": 21660.94, + "probability": 0.0648 + }, + { + "start": 21661.18, + "end": 21661.18, + "probability": 0.2769 + }, + { + "start": 21661.18, + "end": 21662.16, + "probability": 0.7584 + }, + { + "start": 21662.26, + "end": 21667.7, + "probability": 0.985 + }, + { + "start": 21668.32, + "end": 21671.36, + "probability": 0.9288 + }, + { + "start": 21673.46, + "end": 21679.14, + "probability": 0.5313 + }, + { + "start": 21679.36, + "end": 21684.9, + "probability": 0.8987 + }, + { + "start": 21685.02, + "end": 21688.02, + "probability": 0.9937 + }, + { + "start": 21688.16, + "end": 21690.64, + "probability": 0.9888 + }, + { + "start": 21691.18, + "end": 21694.3, + "probability": 0.9946 + }, + { + "start": 21694.6, + "end": 21698.28, + "probability": 0.9867 + }, + { + "start": 21698.28, + "end": 21703.24, + "probability": 0.9965 + }, + { + "start": 21703.6, + "end": 21707.54, + "probability": 0.9914 + }, + { + "start": 21708.78, + "end": 21711.54, + "probability": 0.9977 + }, + { + "start": 21711.54, + "end": 21715.64, + "probability": 0.9985 + }, + { + "start": 21716.22, + "end": 21720.4, + "probability": 0.9983 + }, + { + "start": 21720.4, + "end": 21724.18, + "probability": 0.9971 + }, + { + "start": 21725.54, + "end": 21726.82, + "probability": 0.0178 + }, + { + "start": 21728.88, + "end": 21728.98, + "probability": 0.3695 + }, + { + "start": 21728.98, + "end": 21729.98, + "probability": 0.4278 + }, + { + "start": 21730.0, + "end": 21731.28, + "probability": 0.8898 + }, + { + "start": 21731.72, + "end": 21733.94, + "probability": 0.9983 + }, + { + "start": 21734.54, + "end": 21738.54, + "probability": 0.9946 + }, + { + "start": 21738.72, + "end": 21741.6, + "probability": 0.9985 + }, + { + "start": 21742.22, + "end": 21745.26, + "probability": 0.9 + }, + { + "start": 21745.68, + "end": 21747.26, + "probability": 0.7508 + }, + { + "start": 21747.34, + "end": 21750.14, + "probability": 0.6449 + }, + { + "start": 21750.82, + "end": 21753.88, + "probability": 0.9868 + }, + { + "start": 21753.88, + "end": 21758.28, + "probability": 0.8486 + }, + { + "start": 21758.82, + "end": 21764.44, + "probability": 0.972 + }, + { + "start": 21765.58, + "end": 21769.94, + "probability": 0.9938 + }, + { + "start": 21770.56, + "end": 21777.86, + "probability": 0.9902 + }, + { + "start": 21778.88, + "end": 21779.94, + "probability": 0.9244 + }, + { + "start": 21779.94, + "end": 21784.98, + "probability": 0.9973 + }, + { + "start": 21785.76, + "end": 21790.32, + "probability": 0.9976 + }, + { + "start": 21791.06, + "end": 21796.28, + "probability": 0.9978 + }, + { + "start": 21796.28, + "end": 21801.08, + "probability": 0.9987 + }, + { + "start": 21801.08, + "end": 21805.7, + "probability": 0.9979 + }, + { + "start": 21805.78, + "end": 21806.68, + "probability": 0.464 + }, + { + "start": 21807.42, + "end": 21807.74, + "probability": 0.4816 + }, + { + "start": 21807.74, + "end": 21813.25, + "probability": 0.9954 + }, + { + "start": 21813.9, + "end": 21820.3, + "probability": 0.9987 + }, + { + "start": 21820.72, + "end": 21826.06, + "probability": 0.9996 + }, + { + "start": 21827.36, + "end": 21827.92, + "probability": 0.8234 + }, + { + "start": 21828.48, + "end": 21830.52, + "probability": 0.775 + }, + { + "start": 21831.22, + "end": 21834.02, + "probability": 0.9983 + }, + { + "start": 21834.76, + "end": 21838.8, + "probability": 0.965 + }, + { + "start": 21839.16, + "end": 21841.66, + "probability": 0.8547 + }, + { + "start": 21842.0, + "end": 21843.86, + "probability": 0.9974 + }, + { + "start": 21843.86, + "end": 21846.38, + "probability": 0.2722 + }, + { + "start": 21846.38, + "end": 21847.84, + "probability": 0.6504 + }, + { + "start": 21848.14, + "end": 21848.84, + "probability": 0.3977 + }, + { + "start": 21848.84, + "end": 21850.06, + "probability": 0.6639 + }, + { + "start": 21850.34, + "end": 21852.48, + "probability": 0.9906 + }, + { + "start": 21852.56, + "end": 21852.56, + "probability": 0.0018 + }, + { + "start": 21853.74, + "end": 21855.32, + "probability": 0.23 + }, + { + "start": 21855.5, + "end": 21855.58, + "probability": 0.0009 + }, + { + "start": 21855.58, + "end": 21857.02, + "probability": 0.9563 + }, + { + "start": 21857.02, + "end": 21857.52, + "probability": 0.4866 + }, + { + "start": 21858.04, + "end": 21858.06, + "probability": 0.4045 + }, + { + "start": 21858.22, + "end": 21860.26, + "probability": 0.4341 + }, + { + "start": 21860.36, + "end": 21861.44, + "probability": 0.4613 + }, + { + "start": 21861.48, + "end": 21861.96, + "probability": 0.805 + }, + { + "start": 21861.96, + "end": 21866.06, + "probability": 0.6057 + }, + { + "start": 21866.46, + "end": 21869.2, + "probability": 0.8457 + }, + { + "start": 21869.32, + "end": 21871.1, + "probability": 0.3062 + }, + { + "start": 21871.3, + "end": 21873.68, + "probability": 0.4229 + }, + { + "start": 21874.9, + "end": 21877.86, + "probability": 0.3 + }, + { + "start": 21877.86, + "end": 21878.81, + "probability": 0.672 + }, + { + "start": 21878.92, + "end": 21880.68, + "probability": 0.788 + }, + { + "start": 21880.78, + "end": 21883.36, + "probability": 0.9121 + }, + { + "start": 21883.36, + "end": 21885.86, + "probability": 0.2139 + }, + { + "start": 21885.86, + "end": 21885.86, + "probability": 0.3226 + }, + { + "start": 21885.86, + "end": 21885.86, + "probability": 0.0648 + }, + { + "start": 21885.86, + "end": 21892.11, + "probability": 0.8276 + }, + { + "start": 21892.16, + "end": 21898.24, + "probability": 0.8065 + }, + { + "start": 21898.56, + "end": 21900.14, + "probability": 0.7105 + }, + { + "start": 21900.72, + "end": 21902.62, + "probability": 0.6655 + }, + { + "start": 21903.12, + "end": 21905.0, + "probability": 0.6448 + }, + { + "start": 21905.22, + "end": 21905.5, + "probability": 0.2096 + }, + { + "start": 21905.6, + "end": 21911.22, + "probability": 0.8957 + }, + { + "start": 21911.86, + "end": 21913.64, + "probability": 0.0207 + }, + { + "start": 21913.76, + "end": 21914.24, + "probability": 0.1053 + }, + { + "start": 21914.44, + "end": 21919.76, + "probability": 0.6899 + }, + { + "start": 21919.86, + "end": 21925.52, + "probability": 0.7595 + }, + { + "start": 21925.52, + "end": 21926.42, + "probability": 0.5764 + }, + { + "start": 21926.5, + "end": 21927.44, + "probability": 0.8315 + }, + { + "start": 21927.58, + "end": 21931.74, + "probability": 0.9575 + }, + { + "start": 21932.4, + "end": 21934.42, + "probability": 0.8024 + }, + { + "start": 21935.0, + "end": 21938.6, + "probability": 0.9049 + }, + { + "start": 21938.84, + "end": 21945.98, + "probability": 0.9888 + }, + { + "start": 21945.98, + "end": 21950.9, + "probability": 0.5798 + }, + { + "start": 21951.56, + "end": 21952.72, + "probability": 0.049 + }, + { + "start": 21952.8, + "end": 21953.6, + "probability": 0.1032 + }, + { + "start": 21954.26, + "end": 21954.28, + "probability": 0.3027 + }, + { + "start": 21954.28, + "end": 21956.87, + "probability": 0.5572 + }, + { + "start": 21957.12, + "end": 21959.76, + "probability": 0.6468 + }, + { + "start": 21960.32, + "end": 21962.9, + "probability": 0.7636 + }, + { + "start": 21963.28, + "end": 21964.12, + "probability": 0.3093 + }, + { + "start": 21964.22, + "end": 21970.74, + "probability": 0.9603 + }, + { + "start": 21970.86, + "end": 21973.34, + "probability": 0.6077 + }, + { + "start": 21973.78, + "end": 21975.27, + "probability": 0.1875 + }, + { + "start": 21975.82, + "end": 21977.56, + "probability": 0.4892 + }, + { + "start": 21977.86, + "end": 21983.64, + "probability": 0.7671 + }, + { + "start": 21983.66, + "end": 21984.01, + "probability": 0.4595 + }, + { + "start": 21984.58, + "end": 21986.2, + "probability": 0.7337 + }, + { + "start": 21986.2, + "end": 21990.36, + "probability": 0.4937 + }, + { + "start": 21992.94, + "end": 21993.52, + "probability": 0.0522 + }, + { + "start": 21993.52, + "end": 22000.44, + "probability": 0.0859 + }, + { + "start": 22000.44, + "end": 22001.28, + "probability": 0.09 + }, + { + "start": 22001.3, + "end": 22003.41, + "probability": 0.9685 + }, + { + "start": 22004.08, + "end": 22006.14, + "probability": 0.5064 + }, + { + "start": 22006.14, + "end": 22008.64, + "probability": 0.9474 + }, + { + "start": 22008.64, + "end": 22009.2, + "probability": 0.9378 + }, + { + "start": 22010.02, + "end": 22011.12, + "probability": 0.4294 + }, + { + "start": 22011.52, + "end": 22011.66, + "probability": 0.4786 + }, + { + "start": 22012.28, + "end": 22013.18, + "probability": 0.2336 + }, + { + "start": 22013.22, + "end": 22015.42, + "probability": 0.8162 + }, + { + "start": 22015.42, + "end": 22017.86, + "probability": 0.7996 + }, + { + "start": 22017.86, + "end": 22018.24, + "probability": 0.83 + }, + { + "start": 22018.28, + "end": 22018.44, + "probability": 0.0743 + }, + { + "start": 22018.98, + "end": 22020.3, + "probability": 0.5287 + }, + { + "start": 22020.56, + "end": 22022.64, + "probability": 0.7584 + }, + { + "start": 22022.86, + "end": 22023.96, + "probability": 0.8145 + }, + { + "start": 22024.0, + "end": 22025.64, + "probability": 0.7032 + }, + { + "start": 22025.8, + "end": 22027.58, + "probability": 0.9863 + }, + { + "start": 22027.82, + "end": 22030.26, + "probability": 0.978 + }, + { + "start": 22030.52, + "end": 22033.02, + "probability": 0.9596 + }, + { + "start": 22034.36, + "end": 22034.4, + "probability": 0.0012 + }, + { + "start": 22034.44, + "end": 22042.28, + "probability": 0.0182 + }, + { + "start": 22050.52, + "end": 22050.84, + "probability": 0.0209 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.0, + "end": 22149.0, + "probability": 0.0 + }, + { + "start": 22149.94, + "end": 22150.82, + "probability": 0.119 + }, + { + "start": 22151.5, + "end": 22151.86, + "probability": 0.0088 + }, + { + "start": 22152.14, + "end": 22153.02, + "probability": 0.1334 + }, + { + "start": 22154.42, + "end": 22156.3, + "probability": 0.0225 + }, + { + "start": 22160.8, + "end": 22161.66, + "probability": 0.0232 + }, + { + "start": 22161.66, + "end": 22164.86, + "probability": 0.0331 + }, + { + "start": 22165.02, + "end": 22166.2, + "probability": 0.1656 + }, + { + "start": 22166.94, + "end": 22171.2, + "probability": 0.2418 + }, + { + "start": 22171.48, + "end": 22175.3, + "probability": 0.017 + }, + { + "start": 22177.28, + "end": 22181.16, + "probability": 0.072 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.0, + "end": 22269.0, + "probability": 0.0 + }, + { + "start": 22269.36, + "end": 22270.33, + "probability": 0.0395 + }, + { + "start": 22271.78, + "end": 22273.28, + "probability": 0.1203 + }, + { + "start": 22273.28, + "end": 22273.34, + "probability": 0.1692 + }, + { + "start": 22274.08, + "end": 22276.1, + "probability": 0.0512 + }, + { + "start": 22276.14, + "end": 22277.53, + "probability": 0.0777 + }, + { + "start": 22277.84, + "end": 22281.65, + "probability": 0.0435 + }, + { + "start": 22281.92, + "end": 22285.6, + "probability": 0.0083 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.0, + "end": 22392.0, + "probability": 0.0 + }, + { + "start": 22392.02, + "end": 22393.32, + "probability": 0.185 + }, + { + "start": 22393.56, + "end": 22395.16, + "probability": 0.1778 + }, + { + "start": 22395.16, + "end": 22395.16, + "probability": 0.0405 + }, + { + "start": 22395.16, + "end": 22395.16, + "probability": 0.1204 + }, + { + "start": 22395.16, + "end": 22398.14, + "probability": 0.0197 + }, + { + "start": 22399.4, + "end": 22399.74, + "probability": 0.1187 + }, + { + "start": 22400.7, + "end": 22403.08, + "probability": 0.7495 + }, + { + "start": 22404.9, + "end": 22406.64, + "probability": 0.4152 + }, + { + "start": 22407.84, + "end": 22414.52, + "probability": 0.0316 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.0, + "end": 22514.0, + "probability": 0.0 + }, + { + "start": 22514.1, + "end": 22514.1, + "probability": 0.4435 + }, + { + "start": 22514.1, + "end": 22517.14, + "probability": 0.5488 + }, + { + "start": 22517.8, + "end": 22520.14, + "probability": 0.3041 + }, + { + "start": 22520.14, + "end": 22521.6, + "probability": 0.0905 + }, + { + "start": 22522.08, + "end": 22523.24, + "probability": 0.1465 + }, + { + "start": 22523.24, + "end": 22524.15, + "probability": 0.0179 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.0, + "end": 22634.0, + "probability": 0.0 + }, + { + "start": 22634.12, + "end": 22634.3, + "probability": 0.2393 + }, + { + "start": 22634.3, + "end": 22639.98, + "probability": 0.3885 + }, + { + "start": 22640.36, + "end": 22640.46, + "probability": 0.0199 + }, + { + "start": 22640.46, + "end": 22642.04, + "probability": 0.534 + }, + { + "start": 22642.14, + "end": 22642.64, + "probability": 0.413 + }, + { + "start": 22642.74, + "end": 22644.24, + "probability": 0.9651 + }, + { + "start": 22644.28, + "end": 22647.0, + "probability": 0.4586 + }, + { + "start": 22647.2, + "end": 22649.74, + "probability": 0.2928 + }, + { + "start": 22649.84, + "end": 22650.26, + "probability": 0.1273 + }, + { + "start": 22650.26, + "end": 22651.02, + "probability": 0.3089 + }, + { + "start": 22651.36, + "end": 22653.16, + "probability": 0.7491 + }, + { + "start": 22653.22, + "end": 22658.1, + "probability": 0.9573 + }, + { + "start": 22658.1, + "end": 22662.26, + "probability": 0.993 + }, + { + "start": 22662.48, + "end": 22663.12, + "probability": 0.0362 + }, + { + "start": 22663.12, + "end": 22663.12, + "probability": 0.2054 + }, + { + "start": 22663.12, + "end": 22663.86, + "probability": 0.6169 + }, + { + "start": 22664.1, + "end": 22664.28, + "probability": 0.4976 + }, + { + "start": 22664.4, + "end": 22665.46, + "probability": 0.7604 + }, + { + "start": 22665.9, + "end": 22666.7, + "probability": 0.4875 + }, + { + "start": 22667.44, + "end": 22668.4, + "probability": 0.6285 + }, + { + "start": 22669.1, + "end": 22671.22, + "probability": 0.1779 + }, + { + "start": 22671.98, + "end": 22673.46, + "probability": 0.7987 + }, + { + "start": 22673.8, + "end": 22674.04, + "probability": 0.3995 + }, + { + "start": 22674.14, + "end": 22675.98, + "probability": 0.6713 + }, + { + "start": 22676.02, + "end": 22680.96, + "probability": 0.9673 + }, + { + "start": 22681.46, + "end": 22681.56, + "probability": 0.0222 + }, + { + "start": 22681.56, + "end": 22681.62, + "probability": 0.3216 + }, + { + "start": 22681.62, + "end": 22683.3, + "probability": 0.8338 + }, + { + "start": 22683.5, + "end": 22685.08, + "probability": 0.4463 + }, + { + "start": 22685.44, + "end": 22686.82, + "probability": 0.9919 + }, + { + "start": 22687.56, + "end": 22688.3, + "probability": 0.7579 + }, + { + "start": 22688.46, + "end": 22689.92, + "probability": 0.9697 + }, + { + "start": 22690.1, + "end": 22690.54, + "probability": 0.7252 + }, + { + "start": 22690.96, + "end": 22692.16, + "probability": 0.9565 + }, + { + "start": 22692.66, + "end": 22693.64, + "probability": 0.9019 + }, + { + "start": 22693.82, + "end": 22698.18, + "probability": 0.936 + }, + { + "start": 22698.32, + "end": 22700.2, + "probability": 0.617 + }, + { + "start": 22700.28, + "end": 22703.11, + "probability": 0.9712 + }, + { + "start": 22703.74, + "end": 22705.08, + "probability": 0.7213 + }, + { + "start": 22705.48, + "end": 22706.9, + "probability": 0.9983 + }, + { + "start": 22707.02, + "end": 22710.54, + "probability": 0.975 + }, + { + "start": 22710.96, + "end": 22712.5, + "probability": 0.9747 + }, + { + "start": 22712.82, + "end": 22714.42, + "probability": 0.3041 + }, + { + "start": 22714.48, + "end": 22715.7, + "probability": 0.9879 + }, + { + "start": 22716.32, + "end": 22717.82, + "probability": 0.824 + }, + { + "start": 22717.94, + "end": 22719.1, + "probability": 0.6447 + }, + { + "start": 22719.26, + "end": 22723.44, + "probability": 0.0615 + }, + { + "start": 22723.72, + "end": 22724.34, + "probability": 0.0538 + }, + { + "start": 22724.34, + "end": 22724.74, + "probability": 0.2722 + }, + { + "start": 22725.92, + "end": 22726.68, + "probability": 0.3555 + }, + { + "start": 22726.68, + "end": 22726.74, + "probability": 0.6004 + }, + { + "start": 22726.86, + "end": 22727.48, + "probability": 0.5583 + }, + { + "start": 22727.5, + "end": 22728.28, + "probability": 0.2544 + }, + { + "start": 22728.38, + "end": 22729.62, + "probability": 0.873 + }, + { + "start": 22730.79, + "end": 22734.64, + "probability": 0.5996 + }, + { + "start": 22734.64, + "end": 22734.64, + "probability": 0.5562 + }, + { + "start": 22734.64, + "end": 22734.98, + "probability": 0.1109 + }, + { + "start": 22735.36, + "end": 22736.4, + "probability": 0.5361 + }, + { + "start": 22736.88, + "end": 22736.94, + "probability": 0.3343 + }, + { + "start": 22736.94, + "end": 22739.24, + "probability": 0.6947 + }, + { + "start": 22739.24, + "end": 22739.74, + "probability": 0.5321 + }, + { + "start": 22739.74, + "end": 22741.24, + "probability": 0.0449 + }, + { + "start": 22742.34, + "end": 22742.92, + "probability": 0.1161 + }, + { + "start": 22743.5, + "end": 22745.46, + "probability": 0.9119 + }, + { + "start": 22745.6, + "end": 22747.38, + "probability": 0.8654 + }, + { + "start": 22747.6, + "end": 22747.78, + "probability": 0.0022 + }, + { + "start": 22747.78, + "end": 22747.8, + "probability": 0.0126 + }, + { + "start": 22747.8, + "end": 22748.18, + "probability": 0.3403 + }, + { + "start": 22748.2, + "end": 22751.12, + "probability": 0.765 + }, + { + "start": 22751.22, + "end": 22751.76, + "probability": 0.3345 + }, + { + "start": 22752.14, + "end": 22753.26, + "probability": 0.636 + }, + { + "start": 22753.26, + "end": 22754.3, + "probability": 0.4084 + }, + { + "start": 22755.64, + "end": 22760.78, + "probability": 0.4223 + }, + { + "start": 22760.8, + "end": 22763.48, + "probability": 0.3458 + }, + { + "start": 22763.87, + "end": 22766.8, + "probability": 0.6777 + }, + { + "start": 22767.24, + "end": 22768.8, + "probability": 0.3405 + }, + { + "start": 22769.12, + "end": 22772.44, + "probability": 0.8062 + }, + { + "start": 22773.2, + "end": 22774.48, + "probability": 0.147 + }, + { + "start": 22774.7, + "end": 22777.34, + "probability": 0.6979 + }, + { + "start": 22786.08, + "end": 22790.02, + "probability": 0.3068 + }, + { + "start": 22791.4, + "end": 22794.72, + "probability": 0.3016 + }, + { + "start": 22795.26, + "end": 22795.98, + "probability": 0.4823 + }, + { + "start": 22797.26, + "end": 22800.4, + "probability": 0.4099 + }, + { + "start": 22800.7, + "end": 22800.94, + "probability": 0.1628 + }, + { + "start": 22800.94, + "end": 22801.74, + "probability": 0.1163 + }, + { + "start": 22802.04, + "end": 22803.78, + "probability": 0.7334 + }, + { + "start": 22804.34, + "end": 22809.18, + "probability": 0.3862 + }, + { + "start": 22809.18, + "end": 22810.16, + "probability": 0.0286 + }, + { + "start": 22810.16, + "end": 22811.22, + "probability": 0.2704 + }, + { + "start": 22812.02, + "end": 22813.26, + "probability": 0.0763 + }, + { + "start": 22813.26, + "end": 22814.68, + "probability": 0.0105 + }, + { + "start": 22814.9, + "end": 22815.28, + "probability": 0.0543 + }, + { + "start": 22815.28, + "end": 22818.22, + "probability": 0.3248 + }, + { + "start": 22818.7, + "end": 22819.7, + "probability": 0.218 + }, + { + "start": 22819.92, + "end": 22821.62, + "probability": 0.9248 + }, + { + "start": 22821.68, + "end": 22822.7, + "probability": 0.4464 + }, + { + "start": 22822.7, + "end": 22825.78, + "probability": 0.9863 + }, + { + "start": 22826.38, + "end": 22828.33, + "probability": 0.1113 + }, + { + "start": 22828.72, + "end": 22831.06, + "probability": 0.3942 + }, + { + "start": 22833.56, + "end": 22836.1, + "probability": 0.2699 + }, + { + "start": 22841.58, + "end": 22843.5, + "probability": 0.4373 + }, + { + "start": 22844.02, + "end": 22851.08, + "probability": 0.4247 + }, + { + "start": 22853.14, + "end": 22860.24, + "probability": 0.8491 + }, + { + "start": 22861.2, + "end": 22863.54, + "probability": 0.7354 + }, + { + "start": 22864.34, + "end": 22864.74, + "probability": 0.9336 + }, + { + "start": 22866.2, + "end": 22867.04, + "probability": 0.9458 + }, + { + "start": 22867.9, + "end": 22869.78, + "probability": 0.9818 + }, + { + "start": 22872.54, + "end": 22873.36, + "probability": 0.9894 + }, + { + "start": 22874.36, + "end": 22875.06, + "probability": 0.3882 + }, + { + "start": 22875.2, + "end": 22876.58, + "probability": 0.7484 + }, + { + "start": 22877.02, + "end": 22878.32, + "probability": 0.8367 + }, + { + "start": 22879.26, + "end": 22881.18, + "probability": 0.9352 + }, + { + "start": 22881.9, + "end": 22883.48, + "probability": 0.9507 + }, + { + "start": 22884.06, + "end": 22884.88, + "probability": 0.9075 + }, + { + "start": 22885.4, + "end": 22888.82, + "probability": 0.9834 + }, + { + "start": 22889.64, + "end": 22891.6, + "probability": 0.7205 + }, + { + "start": 22892.2, + "end": 22893.92, + "probability": 0.9212 + }, + { + "start": 22894.69, + "end": 22895.89, + "probability": 0.7124 + }, + { + "start": 22900.6, + "end": 22901.48, + "probability": 0.9385 + }, + { + "start": 22907.92, + "end": 22909.24, + "probability": 0.1706 + }, + { + "start": 22910.32, + "end": 22912.76, + "probability": 0.7291 + }, + { + "start": 22913.62, + "end": 22915.06, + "probability": 0.8708 + }, + { + "start": 22916.88, + "end": 22917.5, + "probability": 0.9642 + }, + { + "start": 22918.92, + "end": 22919.24, + "probability": 0.9513 + }, + { + "start": 22920.1, + "end": 22921.58, + "probability": 0.9418 + }, + { + "start": 22923.0, + "end": 22926.78, + "probability": 0.9898 + }, + { + "start": 22927.74, + "end": 22929.38, + "probability": 0.9613 + }, + { + "start": 22929.6, + "end": 22931.2, + "probability": 0.82 + }, + { + "start": 22931.6, + "end": 22933.6, + "probability": 0.7172 + }, + { + "start": 22934.18, + "end": 22937.88, + "probability": 0.8511 + }, + { + "start": 22938.78, + "end": 22939.22, + "probability": 0.9801 + }, + { + "start": 22939.84, + "end": 22940.76, + "probability": 0.8199 + }, + { + "start": 22941.96, + "end": 22945.94, + "probability": 0.9565 + }, + { + "start": 22947.1, + "end": 22950.76, + "probability": 0.5845 + }, + { + "start": 22954.5, + "end": 22957.92, + "probability": 0.6501 + }, + { + "start": 22959.22, + "end": 22962.24, + "probability": 0.9314 + }, + { + "start": 22963.32, + "end": 22966.14, + "probability": 0.8822 + }, + { + "start": 22966.6, + "end": 22969.02, + "probability": 0.7536 + }, + { + "start": 22970.56, + "end": 22973.36, + "probability": 0.7062 + }, + { + "start": 22973.82, + "end": 22975.08, + "probability": 0.6384 + }, + { + "start": 22976.66, + "end": 22978.5, + "probability": 0.6413 + }, + { + "start": 22981.86, + "end": 22983.56, + "probability": 0.8447 + }, + { + "start": 22984.52, + "end": 22986.1, + "probability": 0.7037 + }, + { + "start": 22986.66, + "end": 22988.3, + "probability": 0.9473 + }, + { + "start": 22990.48, + "end": 22991.3, + "probability": 0.9832 + }, + { + "start": 22991.92, + "end": 22993.0, + "probability": 0.9264 + }, + { + "start": 22994.02, + "end": 22996.94, + "probability": 0.9492 + }, + { + "start": 22998.86, + "end": 23001.6, + "probability": 0.9822 + }, + { + "start": 23003.5, + "end": 23004.66, + "probability": 0.8881 + }, + { + "start": 23006.22, + "end": 23008.32, + "probability": 0.9069 + }, + { + "start": 23008.54, + "end": 23010.14, + "probability": 0.9686 + }, + { + "start": 23010.58, + "end": 23012.48, + "probability": 0.9641 + }, + { + "start": 23013.18, + "end": 23014.92, + "probability": 0.9807 + }, + { + "start": 23015.76, + "end": 23017.32, + "probability": 0.9448 + }, + { + "start": 23017.98, + "end": 23023.36, + "probability": 0.9841 + }, + { + "start": 23024.12, + "end": 23027.34, + "probability": 0.7655 + }, + { + "start": 23028.74, + "end": 23029.14, + "probability": 0.0112 + }, + { + "start": 23036.42, + "end": 23040.5, + "probability": 0.5946 + }, + { + "start": 23042.42, + "end": 23044.54, + "probability": 0.8201 + }, + { + "start": 23045.26, + "end": 23047.88, + "probability": 0.9609 + }, + { + "start": 23048.28, + "end": 23049.88, + "probability": 0.9373 + }, + { + "start": 23050.32, + "end": 23052.52, + "probability": 0.9255 + }, + { + "start": 23053.88, + "end": 23054.38, + "probability": 0.9907 + }, + { + "start": 23057.9, + "end": 23058.9, + "probability": 0.8098 + }, + { + "start": 23059.44, + "end": 23061.34, + "probability": 0.8128 + }, + { + "start": 23063.44, + "end": 23063.9, + "probability": 0.9585 + }, + { + "start": 23064.48, + "end": 23065.5, + "probability": 0.8659 + }, + { + "start": 23066.12, + "end": 23067.94, + "probability": 0.9688 + }, + { + "start": 23069.1, + "end": 23071.3, + "probability": 0.9014 + }, + { + "start": 23072.12, + "end": 23073.48, + "probability": 0.9745 + }, + { + "start": 23075.7, + "end": 23076.22, + "probability": 0.9424 + }, + { + "start": 23076.96, + "end": 23077.82, + "probability": 0.88 + }, + { + "start": 23078.62, + "end": 23079.08, + "probability": 0.988 + }, + { + "start": 23079.88, + "end": 23080.72, + "probability": 0.8656 + }, + { + "start": 23081.76, + "end": 23083.24, + "probability": 0.7079 + }, + { + "start": 23084.62, + "end": 23086.74, + "probability": 0.9284 + }, + { + "start": 23087.66, + "end": 23088.74, + "probability": 0.984 + }, + { + "start": 23089.9, + "end": 23094.5, + "probability": 0.9095 + }, + { + "start": 23096.92, + "end": 23097.8, + "probability": 0.9076 + }, + { + "start": 23098.86, + "end": 23099.36, + "probability": 0.9961 + }, + { + "start": 23100.18, + "end": 23101.16, + "probability": 0.968 + }, + { + "start": 23102.36, + "end": 23102.72, + "probability": 0.7331 + }, + { + "start": 23103.94, + "end": 23104.9, + "probability": 0.4829 + }, + { + "start": 23105.98, + "end": 23107.3, + "probability": 0.772 + }, + { + "start": 23109.0, + "end": 23109.32, + "probability": 0.9906 + }, + { + "start": 23111.02, + "end": 23114.3, + "probability": 0.9468 + }, + { + "start": 23115.04, + "end": 23116.72, + "probability": 0.9549 + }, + { + "start": 23117.72, + "end": 23119.78, + "probability": 0.9746 + }, + { + "start": 23120.42, + "end": 23122.02, + "probability": 0.9813 + }, + { + "start": 23123.06, + "end": 23124.78, + "probability": 0.8048 + }, + { + "start": 23133.76, + "end": 23134.53, + "probability": 0.6216 + }, + { + "start": 23140.3, + "end": 23140.78, + "probability": 0.8473 + }, + { + "start": 23142.62, + "end": 23143.52, + "probability": 0.592 + }, + { + "start": 23145.04, + "end": 23145.86, + "probability": 0.9917 + }, + { + "start": 23146.6, + "end": 23149.16, + "probability": 0.9042 + }, + { + "start": 23149.88, + "end": 23151.2, + "probability": 0.9865 + }, + { + "start": 23152.0, + "end": 23153.56, + "probability": 0.9673 + }, + { + "start": 23155.44, + "end": 23155.92, + "probability": 0.9953 + }, + { + "start": 23156.78, + "end": 23157.64, + "probability": 0.9481 + }, + { + "start": 23158.98, + "end": 23159.52, + "probability": 0.9945 + }, + { + "start": 23160.84, + "end": 23161.88, + "probability": 0.9745 + }, + { + "start": 23162.66, + "end": 23163.06, + "probability": 0.9355 + }, + { + "start": 23164.44, + "end": 23165.56, + "probability": 0.6593 + }, + { + "start": 23167.22, + "end": 23171.46, + "probability": 0.7764 + }, + { + "start": 23174.64, + "end": 23176.68, + "probability": 0.9334 + }, + { + "start": 23178.54, + "end": 23179.02, + "probability": 0.988 + }, + { + "start": 23180.56, + "end": 23181.9, + "probability": 0.9245 + }, + { + "start": 23183.64, + "end": 23185.74, + "probability": 0.9611 + }, + { + "start": 23186.76, + "end": 23188.34, + "probability": 0.8279 + }, + { + "start": 23189.04, + "end": 23190.58, + "probability": 0.9904 + }, + { + "start": 23191.72, + "end": 23192.62, + "probability": 0.8684 + }, + { + "start": 23194.48, + "end": 23195.98, + "probability": 0.8128 + }, + { + "start": 23196.74, + "end": 23197.4, + "probability": 0.9147 + }, + { + "start": 23198.6, + "end": 23199.44, + "probability": 0.865 + }, + { + "start": 23200.44, + "end": 23202.54, + "probability": 0.8826 + }, + { + "start": 23207.12, + "end": 23208.88, + "probability": 0.723 + }, + { + "start": 23208.96, + "end": 23210.54, + "probability": 0.8793 + }, + { + "start": 23210.98, + "end": 23212.66, + "probability": 0.7446 + }, + { + "start": 23213.9, + "end": 23217.38, + "probability": 0.9291 + }, + { + "start": 23218.6, + "end": 23219.18, + "probability": 0.9468 + }, + { + "start": 23220.44, + "end": 23221.34, + "probability": 0.9492 + }, + { + "start": 23222.78, + "end": 23225.26, + "probability": 0.9215 + }, + { + "start": 23225.88, + "end": 23226.6, + "probability": 0.6471 + }, + { + "start": 23227.96, + "end": 23228.4, + "probability": 0.7651 + }, + { + "start": 23229.9, + "end": 23231.1, + "probability": 0.8414 + }, + { + "start": 23232.14, + "end": 23233.74, + "probability": 0.6678 + }, + { + "start": 23234.3, + "end": 23235.1, + "probability": 0.8978 + }, + { + "start": 23244.78, + "end": 23246.36, + "probability": 0.5248 + }, + { + "start": 23246.54, + "end": 23249.04, + "probability": 0.9623 + }, + { + "start": 23249.14, + "end": 23250.18, + "probability": 0.5394 + }, + { + "start": 23250.9, + "end": 23253.74, + "probability": 0.7453 + }, + { + "start": 23254.2, + "end": 23258.02, + "probability": 0.9609 + }, + { + "start": 23258.2, + "end": 23259.24, + "probability": 0.2669 + }, + { + "start": 23259.38, + "end": 23260.74, + "probability": 0.7292 + }, + { + "start": 23261.5, + "end": 23262.9, + "probability": 0.7676 + }, + { + "start": 23263.52, + "end": 23263.82, + "probability": 0.9341 + }, + { + "start": 23265.44, + "end": 23266.24, + "probability": 0.8264 + }, + { + "start": 23267.06, + "end": 23269.84, + "probability": 0.9324 + }, + { + "start": 23270.76, + "end": 23272.24, + "probability": 0.6263 + }, + { + "start": 23272.92, + "end": 23273.3, + "probability": 0.9092 + }, + { + "start": 23274.58, + "end": 23275.58, + "probability": 0.6893 + }, + { + "start": 23275.6, + "end": 23276.72, + "probability": 0.7696 + }, + { + "start": 23276.82, + "end": 23278.3, + "probability": 0.8785 + }, + { + "start": 23278.46, + "end": 23280.6, + "probability": 0.9248 + }, + { + "start": 23281.36, + "end": 23281.76, + "probability": 0.9894 + }, + { + "start": 23283.84, + "end": 23284.74, + "probability": 0.8458 + }, + { + "start": 23286.63, + "end": 23290.2, + "probability": 0.8504 + }, + { + "start": 23290.28, + "end": 23291.54, + "probability": 0.5153 + }, + { + "start": 23292.0, + "end": 23293.52, + "probability": 0.9376 + }, + { + "start": 23293.54, + "end": 23294.88, + "probability": 0.8149 + }, + { + "start": 23296.5, + "end": 23298.12, + "probability": 0.6793 + }, + { + "start": 23300.24, + "end": 23303.5, + "probability": 0.9645 + }, + { + "start": 23304.02, + "end": 23304.7, + "probability": 0.9953 + }, + { + "start": 23305.84, + "end": 23307.78, + "probability": 0.9366 + }, + { + "start": 23309.04, + "end": 23309.76, + "probability": 0.9976 + }, + { + "start": 23310.6, + "end": 23313.54, + "probability": 0.6643 + }, + { + "start": 23315.2, + "end": 23315.62, + "probability": 0.9185 + }, + { + "start": 23317.5, + "end": 23318.75, + "probability": 0.7858 + }, + { + "start": 23321.84, + "end": 23323.8, + "probability": 0.8511 + }, + { + "start": 23324.68, + "end": 23326.24, + "probability": 0.752 + }, + { + "start": 23326.32, + "end": 23327.6, + "probability": 0.6625 + }, + { + "start": 23328.0, + "end": 23329.82, + "probability": 0.9083 + }, + { + "start": 23330.2, + "end": 23330.44, + "probability": 0.5746 + }, + { + "start": 23331.2, + "end": 23332.86, + "probability": 0.8251 + }, + { + "start": 23333.96, + "end": 23335.06, + "probability": 0.9497 + }, + { + "start": 23336.06, + "end": 23338.06, + "probability": 0.775 + }, + { + "start": 23339.4, + "end": 23342.24, + "probability": 0.8862 + }, + { + "start": 23343.36, + "end": 23347.0, + "probability": 0.9777 + }, + { + "start": 23347.64, + "end": 23349.92, + "probability": 0.8019 + }, + { + "start": 23350.48, + "end": 23350.7, + "probability": 0.6091 + }, + { + "start": 23351.86, + "end": 23353.74, + "probability": 0.7185 + }, + { + "start": 23354.9, + "end": 23355.24, + "probability": 0.9673 + }, + { + "start": 23356.62, + "end": 23360.58, + "probability": 0.8302 + }, + { + "start": 23361.18, + "end": 23363.24, + "probability": 0.6032 + }, + { + "start": 23363.34, + "end": 23364.86, + "probability": 0.8951 + }, + { + "start": 23365.5, + "end": 23370.32, + "probability": 0.8341 + }, + { + "start": 23371.18, + "end": 23373.78, + "probability": 0.981 + }, + { + "start": 23374.56, + "end": 23374.92, + "probability": 0.9784 + }, + { + "start": 23375.64, + "end": 23378.46, + "probability": 0.9725 + }, + { + "start": 23379.24, + "end": 23381.2, + "probability": 0.9859 + }, + { + "start": 23381.84, + "end": 23383.22, + "probability": 0.9297 + }, + { + "start": 23383.76, + "end": 23385.22, + "probability": 0.797 + }, + { + "start": 23386.02, + "end": 23387.8, + "probability": 0.7043 + }, + { + "start": 23390.18, + "end": 23393.42, + "probability": 0.8997 + }, + { + "start": 23394.02, + "end": 23394.56, + "probability": 0.8506 + }, + { + "start": 23395.18, + "end": 23397.16, + "probability": 0.9432 + }, + { + "start": 23398.68, + "end": 23402.92, + "probability": 0.9218 + }, + { + "start": 23404.43, + "end": 23406.56, + "probability": 0.8801 + }, + { + "start": 23406.64, + "end": 23408.18, + "probability": 0.9819 + }, + { + "start": 23408.22, + "end": 23409.48, + "probability": 0.9633 + }, + { + "start": 23410.42, + "end": 23410.66, + "probability": 0.5689 + }, + { + "start": 23412.32, + "end": 23414.1, + "probability": 0.7002 + }, + { + "start": 23416.06, + "end": 23419.62, + "probability": 0.9882 + }, + { + "start": 23420.64, + "end": 23421.87, + "probability": 0.3183 + }, + { + "start": 23422.84, + "end": 23425.3, + "probability": 0.9223 + }, + { + "start": 23426.48, + "end": 23428.62, + "probability": 0.6436 + }, + { + "start": 23429.2, + "end": 23431.44, + "probability": 0.5418 + }, + { + "start": 23432.08, + "end": 23432.88, + "probability": 0.1291 + }, + { + "start": 23432.9, + "end": 23433.95, + "probability": 0.0441 + }, + { + "start": 23503.78, + "end": 23504.98, + "probability": 0.0883 + }, + { + "start": 23505.88, + "end": 23507.8, + "probability": 0.1164 + }, + { + "start": 23507.8, + "end": 23508.5, + "probability": 0.0557 + }, + { + "start": 23510.82, + "end": 23514.52, + "probability": 0.2634 + }, + { + "start": 23515.14, + "end": 23517.62, + "probability": 0.082 + }, + { + "start": 23517.96, + "end": 23519.5, + "probability": 0.1081 + }, + { + "start": 23519.5, + "end": 23520.0, + "probability": 0.0852 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.0, + "end": 23653.0, + "probability": 0.0 + }, + { + "start": 23653.18, + "end": 23653.28, + "probability": 0.1746 + }, + { + "start": 23653.28, + "end": 23657.42, + "probability": 0.8636 + }, + { + "start": 23657.44, + "end": 23660.14, + "probability": 0.6662 + }, + { + "start": 23664.74, + "end": 23666.94, + "probability": 0.8626 + }, + { + "start": 23667.1, + "end": 23667.92, + "probability": 0.7028 + }, + { + "start": 23668.0, + "end": 23669.8, + "probability": 0.8057 + }, + { + "start": 23692.92, + "end": 23694.24, + "probability": 0.9832 + }, + { + "start": 23697.52, + "end": 23699.56, + "probability": 0.6825 + }, + { + "start": 23700.14, + "end": 23702.44, + "probability": 0.7174 + }, + { + "start": 23703.3, + "end": 23708.62, + "probability": 0.9827 + }, + { + "start": 23708.84, + "end": 23714.66, + "probability": 0.9958 + }, + { + "start": 23714.84, + "end": 23715.95, + "probability": 0.9607 + }, + { + "start": 23716.2, + "end": 23717.64, + "probability": 0.9596 + }, + { + "start": 23718.34, + "end": 23720.86, + "probability": 0.8411 + }, + { + "start": 23720.94, + "end": 23722.92, + "probability": 0.6948 + }, + { + "start": 23723.04, + "end": 23725.5, + "probability": 0.9583 + }, + { + "start": 23726.26, + "end": 23728.26, + "probability": 0.9992 + }, + { + "start": 23728.42, + "end": 23731.86, + "probability": 0.9778 + }, + { + "start": 23732.04, + "end": 23736.0, + "probability": 0.9718 + }, + { + "start": 23736.72, + "end": 23740.74, + "probability": 0.9594 + }, + { + "start": 23741.04, + "end": 23744.84, + "probability": 0.981 + }, + { + "start": 23744.84, + "end": 23748.28, + "probability": 0.943 + }, + { + "start": 23749.1, + "end": 23753.8, + "probability": 0.9948 + }, + { + "start": 23754.34, + "end": 23756.36, + "probability": 0.8677 + }, + { + "start": 23757.24, + "end": 23757.64, + "probability": 0.6594 + }, + { + "start": 23757.7, + "end": 23759.4, + "probability": 0.616 + }, + { + "start": 23759.5, + "end": 23764.14, + "probability": 0.9839 + }, + { + "start": 23764.82, + "end": 23768.66, + "probability": 0.8281 + }, + { + "start": 23769.24, + "end": 23771.78, + "probability": 0.9976 + }, + { + "start": 23771.78, + "end": 23774.96, + "probability": 0.9697 + }, + { + "start": 23775.46, + "end": 23777.26, + "probability": 0.9868 + }, + { + "start": 23777.92, + "end": 23779.78, + "probability": 0.9902 + }, + { + "start": 23780.58, + "end": 23782.56, + "probability": 0.9404 + }, + { + "start": 23783.0, + "end": 23786.98, + "probability": 0.9966 + }, + { + "start": 23787.62, + "end": 23791.54, + "probability": 0.9847 + }, + { + "start": 23792.12, + "end": 23795.54, + "probability": 0.9829 + }, + { + "start": 23795.62, + "end": 23799.3, + "probability": 0.9979 + }, + { + "start": 23800.12, + "end": 23800.72, + "probability": 0.8387 + }, + { + "start": 23800.92, + "end": 23801.72, + "probability": 0.7654 + }, + { + "start": 23801.92, + "end": 23805.4, + "probability": 0.9751 + }, + { + "start": 23805.9, + "end": 23809.94, + "probability": 0.96 + }, + { + "start": 23810.9, + "end": 23812.03, + "probability": 0.6723 + }, + { + "start": 23812.2, + "end": 23813.04, + "probability": 0.9915 + }, + { + "start": 23813.14, + "end": 23814.8, + "probability": 0.98 + }, + { + "start": 23815.46, + "end": 23817.62, + "probability": 0.8159 + }, + { + "start": 23817.62, + "end": 23820.34, + "probability": 0.8904 + }, + { + "start": 23820.68, + "end": 23821.2, + "probability": 0.757 + }, + { + "start": 23822.04, + "end": 23822.72, + "probability": 0.5208 + }, + { + "start": 23822.74, + "end": 23823.0, + "probability": 0.4798 + }, + { + "start": 23823.1, + "end": 23824.34, + "probability": 0.9293 + }, + { + "start": 23824.36, + "end": 23824.86, + "probability": 0.4604 + }, + { + "start": 23824.86, + "end": 23828.22, + "probability": 0.9529 + }, + { + "start": 23828.3, + "end": 23829.5, + "probability": 0.8978 + }, + { + "start": 23830.46, + "end": 23833.26, + "probability": 0.99 + }, + { + "start": 23833.46, + "end": 23834.6, + "probability": 0.4247 + }, + { + "start": 23835.1, + "end": 23838.94, + "probability": 0.9977 + }, + { + "start": 23838.94, + "end": 23842.32, + "probability": 0.9984 + }, + { + "start": 23842.76, + "end": 23843.82, + "probability": 0.2729 + }, + { + "start": 23844.86, + "end": 23847.2, + "probability": 0.9504 + }, + { + "start": 23847.2, + "end": 23849.41, + "probability": 0.9963 + }, + { + "start": 23850.04, + "end": 23853.22, + "probability": 0.9673 + }, + { + "start": 23853.22, + "end": 23856.18, + "probability": 0.9886 + }, + { + "start": 23857.12, + "end": 23857.68, + "probability": 0.8366 + }, + { + "start": 23857.86, + "end": 23858.74, + "probability": 0.6957 + }, + { + "start": 23859.16, + "end": 23860.8, + "probability": 0.9382 + }, + { + "start": 23861.1, + "end": 23861.54, + "probability": 0.7753 + }, + { + "start": 23862.29, + "end": 23865.64, + "probability": 0.9543 + }, + { + "start": 23865.7, + "end": 23868.56, + "probability": 0.9821 + }, + { + "start": 23868.56, + "end": 23872.86, + "probability": 0.9847 + }, + { + "start": 23873.54, + "end": 23875.4, + "probability": 0.5836 + }, + { + "start": 23875.62, + "end": 23877.86, + "probability": 0.9163 + }, + { + "start": 23878.28, + "end": 23884.92, + "probability": 0.9297 + }, + { + "start": 23885.34, + "end": 23888.2, + "probability": 0.9866 + }, + { + "start": 23888.82, + "end": 23891.24, + "probability": 0.8795 + }, + { + "start": 23892.24, + "end": 23898.62, + "probability": 0.9891 + }, + { + "start": 23899.16, + "end": 23902.84, + "probability": 0.9812 + }, + { + "start": 23903.22, + "end": 23904.22, + "probability": 0.8428 + }, + { + "start": 23904.36, + "end": 23904.76, + "probability": 0.4475 + }, + { + "start": 23904.82, + "end": 23907.81, + "probability": 0.7945 + }, + { + "start": 23908.36, + "end": 23909.54, + "probability": 0.8225 + }, + { + "start": 23909.64, + "end": 23910.94, + "probability": 0.7477 + }, + { + "start": 23911.32, + "end": 23913.26, + "probability": 0.8714 + }, + { + "start": 23913.72, + "end": 23914.18, + "probability": 0.6593 + }, + { + "start": 23914.22, + "end": 23915.18, + "probability": 0.8698 + }, + { + "start": 23915.26, + "end": 23918.58, + "probability": 0.5145 + }, + { + "start": 23918.62, + "end": 23920.36, + "probability": 0.5849 + }, + { + "start": 23920.78, + "end": 23921.57, + "probability": 0.3263 + }, + { + "start": 23921.64, + "end": 23922.3, + "probability": 0.5561 + }, + { + "start": 23922.4, + "end": 23926.6, + "probability": 0.8341 + }, + { + "start": 23926.66, + "end": 23927.4, + "probability": 0.9783 + }, + { + "start": 23927.46, + "end": 23927.98, + "probability": 0.873 + }, + { + "start": 23928.48, + "end": 23928.96, + "probability": 0.9531 + }, + { + "start": 23929.1, + "end": 23929.54, + "probability": 0.9443 + }, + { + "start": 23929.64, + "end": 23934.02, + "probability": 0.9888 + }, + { + "start": 23934.48, + "end": 23934.82, + "probability": 0.4911 + }, + { + "start": 23935.34, + "end": 23936.02, + "probability": 0.7995 + }, + { + "start": 23938.52, + "end": 23941.28, + "probability": 0.9004 + }, + { + "start": 23942.16, + "end": 23944.96, + "probability": 0.964 + }, + { + "start": 23945.34, + "end": 23947.48, + "probability": 0.9734 + }, + { + "start": 23947.74, + "end": 23949.82, + "probability": 0.6606 + }, + { + "start": 23950.34, + "end": 23952.5, + "probability": 0.9316 + }, + { + "start": 23952.64, + "end": 23956.0, + "probability": 0.9653 + }, + { + "start": 23956.77, + "end": 23959.64, + "probability": 0.8641 + }, + { + "start": 23960.1, + "end": 23961.28, + "probability": 0.5473 + }, + { + "start": 23961.84, + "end": 23962.6, + "probability": 0.3761 + }, + { + "start": 23962.68, + "end": 23964.4, + "probability": 0.8685 + }, + { + "start": 23964.44, + "end": 23965.86, + "probability": 0.7648 + }, + { + "start": 23966.06, + "end": 23966.78, + "probability": 0.8033 + }, + { + "start": 23967.18, + "end": 23967.96, + "probability": 0.9629 + }, + { + "start": 23969.22, + "end": 23970.62, + "probability": 0.7939 + }, + { + "start": 23971.02, + "end": 23974.26, + "probability": 0.9834 + }, + { + "start": 23974.7, + "end": 23978.6, + "probability": 0.9517 + }, + { + "start": 23978.72, + "end": 23979.16, + "probability": 0.826 + }, + { + "start": 23979.92, + "end": 23980.84, + "probability": 0.8284 + }, + { + "start": 23981.88, + "end": 23985.64, + "probability": 0.8414 + }, + { + "start": 23986.6, + "end": 23987.88, + "probability": 0.7619 + }, + { + "start": 23998.88, + "end": 23999.66, + "probability": 0.6624 + }, + { + "start": 24000.2, + "end": 24002.68, + "probability": 0.7592 + }, + { + "start": 24002.72, + "end": 24003.8, + "probability": 0.9411 + }, + { + "start": 24004.34, + "end": 24005.76, + "probability": 0.028 + }, + { + "start": 24006.12, + "end": 24006.5, + "probability": 0.0841 + }, + { + "start": 24006.54, + "end": 24007.37, + "probability": 0.1445 + }, + { + "start": 24008.46, + "end": 24010.8, + "probability": 0.1502 + }, + { + "start": 24013.0, + "end": 24013.72, + "probability": 0.075 + }, + { + "start": 24013.92, + "end": 24014.58, + "probability": 0.1101 + }, + { + "start": 24014.58, + "end": 24015.7, + "probability": 0.4242 + }, + { + "start": 24015.76, + "end": 24018.37, + "probability": 0.3417 + }, + { + "start": 24018.38, + "end": 24019.46, + "probability": 0.0911 + }, + { + "start": 24020.86, + "end": 24021.6, + "probability": 0.0286 + }, + { + "start": 24022.62, + "end": 24023.58, + "probability": 0.3239 + }, + { + "start": 24023.64, + "end": 24024.79, + "probability": 0.1054 + }, + { + "start": 24024.98, + "end": 24026.32, + "probability": 0.0546 + }, + { + "start": 24030.24, + "end": 24030.44, + "probability": 0.0047 + }, + { + "start": 24030.44, + "end": 24031.64, + "probability": 0.0577 + }, + { + "start": 24031.78, + "end": 24032.96, + "probability": 0.0508 + }, + { + "start": 24034.36, + "end": 24034.56, + "probability": 0.0194 + }, + { + "start": 24034.56, + "end": 24035.82, + "probability": 0.1176 + }, + { + "start": 24036.12, + "end": 24037.0, + "probability": 0.2704 + }, + { + "start": 24053.28, + "end": 24055.08, + "probability": 0.6674 + }, + { + "start": 24055.74, + "end": 24057.3, + "probability": 0.8809 + }, + { + "start": 24057.5, + "end": 24057.88, + "probability": 0.1977 + }, + { + "start": 24057.88, + "end": 24058.5, + "probability": 0.4864 + }, + { + "start": 24059.78, + "end": 24062.16, + "probability": 0.141 + }, + { + "start": 24063.48, + "end": 24068.24, + "probability": 0.1113 + }, + { + "start": 24069.02, + "end": 24071.26, + "probability": 0.0565 + }, + { + "start": 24072.17, + "end": 24072.82, + "probability": 0.0947 + }, + { + "start": 24075.56, + "end": 24075.56, + "probability": 0.0929 + }, + { + "start": 24075.56, + "end": 24075.98, + "probability": 0.0365 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.0, + "end": 24076.0, + "probability": 0.0 + }, + { + "start": 24076.14, + "end": 24076.6, + "probability": 0.264 + }, + { + "start": 24078.08, + "end": 24080.76, + "probability": 0.8232 + }, + { + "start": 24080.8, + "end": 24082.22, + "probability": 0.6305 + }, + { + "start": 24082.4, + "end": 24083.94, + "probability": 0.8405 + }, + { + "start": 24084.04, + "end": 24086.2, + "probability": 0.5352 + }, + { + "start": 24086.32, + "end": 24089.28, + "probability": 0.9347 + }, + { + "start": 24089.58, + "end": 24094.44, + "probability": 0.9967 + }, + { + "start": 24094.44, + "end": 24099.14, + "probability": 0.9962 + }, + { + "start": 24099.92, + "end": 24101.88, + "probability": 0.4555 + }, + { + "start": 24102.8, + "end": 24105.04, + "probability": 0.9992 + }, + { + "start": 24105.04, + "end": 24108.1, + "probability": 0.9927 + }, + { + "start": 24108.72, + "end": 24113.16, + "probability": 0.7611 + }, + { + "start": 24114.2, + "end": 24119.34, + "probability": 0.9861 + }, + { + "start": 24120.62, + "end": 24125.46, + "probability": 0.958 + }, + { + "start": 24125.46, + "end": 24128.82, + "probability": 0.9165 + }, + { + "start": 24129.36, + "end": 24130.8, + "probability": 0.8203 + }, + { + "start": 24131.44, + "end": 24135.58, + "probability": 0.9798 + }, + { + "start": 24135.58, + "end": 24139.94, + "probability": 0.9832 + }, + { + "start": 24140.36, + "end": 24145.46, + "probability": 0.9894 + }, + { + "start": 24145.52, + "end": 24150.1, + "probability": 0.9746 + }, + { + "start": 24151.26, + "end": 24152.68, + "probability": 0.5878 + }, + { + "start": 24153.2, + "end": 24155.54, + "probability": 0.9895 + }, + { + "start": 24155.54, + "end": 24159.2, + "probability": 0.9924 + }, + { + "start": 24159.3, + "end": 24161.26, + "probability": 0.7246 + }, + { + "start": 24161.34, + "end": 24164.0, + "probability": 0.9831 + }, + { + "start": 24164.4, + "end": 24170.86, + "probability": 0.9772 + }, + { + "start": 24171.32, + "end": 24174.72, + "probability": 0.9648 + }, + { + "start": 24175.34, + "end": 24179.34, + "probability": 0.9829 + }, + { + "start": 24179.34, + "end": 24184.51, + "probability": 0.8817 + }, + { + "start": 24184.98, + "end": 24187.2, + "probability": 0.9807 + }, + { + "start": 24187.62, + "end": 24189.07, + "probability": 0.9905 + }, + { + "start": 24189.28, + "end": 24190.56, + "probability": 0.6958 + }, + { + "start": 24191.28, + "end": 24195.0, + "probability": 0.9634 + }, + { + "start": 24195.0, + "end": 24199.74, + "probability": 0.9268 + }, + { + "start": 24200.16, + "end": 24205.04, + "probability": 0.9639 + }, + { + "start": 24205.88, + "end": 24206.62, + "probability": 0.5162 + }, + { + "start": 24206.68, + "end": 24212.32, + "probability": 0.9375 + }, + { + "start": 24212.68, + "end": 24215.14, + "probability": 0.9967 + }, + { + "start": 24215.14, + "end": 24218.72, + "probability": 0.9904 + }, + { + "start": 24219.86, + "end": 24222.5, + "probability": 0.9905 + }, + { + "start": 24223.12, + "end": 24225.84, + "probability": 0.9746 + }, + { + "start": 24226.02, + "end": 24229.38, + "probability": 0.996 + }, + { + "start": 24229.84, + "end": 24233.96, + "probability": 0.968 + }, + { + "start": 24234.8, + "end": 24236.94, + "probability": 0.8225 + }, + { + "start": 24237.08, + "end": 24241.82, + "probability": 0.9072 + }, + { + "start": 24242.26, + "end": 24248.1, + "probability": 0.6881 + }, + { + "start": 24248.38, + "end": 24248.5, + "probability": 0.2546 + }, + { + "start": 24248.64, + "end": 24254.6, + "probability": 0.9857 + }, + { + "start": 24254.6, + "end": 24259.0, + "probability": 0.9832 + }, + { + "start": 24261.1, + "end": 24263.26, + "probability": 0.2565 + }, + { + "start": 24264.7, + "end": 24266.74, + "probability": 0.835 + }, + { + "start": 24281.56, + "end": 24285.02, + "probability": 0.1167 + }, + { + "start": 24286.18, + "end": 24289.02, + "probability": 0.2156 + }, + { + "start": 24289.02, + "end": 24293.32, + "probability": 0.0418 + }, + { + "start": 24298.9, + "end": 24300.6, + "probability": 0.1333 + }, + { + "start": 24301.12, + "end": 24306.48, + "probability": 0.2272 + }, + { + "start": 24306.48, + "end": 24308.3, + "probability": 0.0199 + }, + { + "start": 24308.46, + "end": 24309.42, + "probability": 0.0401 + }, + { + "start": 24309.46, + "end": 24311.0, + "probability": 0.0771 + }, + { + "start": 24311.0, + "end": 24316.94, + "probability": 0.0176 + }, + { + "start": 24317.18, + "end": 24317.92, + "probability": 0.1672 + }, + { + "start": 24317.98, + "end": 24323.18, + "probability": 0.0344 + }, + { + "start": 24323.18, + "end": 24323.38, + "probability": 0.101 + }, + { + "start": 24323.38, + "end": 24323.86, + "probability": 0.0262 + }, + { + "start": 24323.86, + "end": 24324.06, + "probability": 0.2229 + }, + { + "start": 24324.74, + "end": 24326.96, + "probability": 0.5345 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.0, + "probability": 0.0 + }, + { + "start": 24339.0, + "end": 24339.16, + "probability": 0.2076 + }, + { + "start": 24339.16, + "end": 24340.16, + "probability": 0.0318 + }, + { + "start": 24340.52, + "end": 24341.08, + "probability": 0.1613 + }, + { + "start": 24341.86, + "end": 24345.94, + "probability": 0.063 + }, + { + "start": 24346.74, + "end": 24351.9, + "probability": 0.1754 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.0, + "end": 24459.0, + "probability": 0.0 + }, + { + "start": 24459.06, + "end": 24462.72, + "probability": 0.4465 + }, + { + "start": 24463.76, + "end": 24468.2, + "probability": 0.3089 + }, + { + "start": 24468.36, + "end": 24471.06, + "probability": 0.8634 + }, + { + "start": 24473.1, + "end": 24478.0, + "probability": 0.0256 + }, + { + "start": 24481.08, + "end": 24486.84, + "probability": 0.0896 + }, + { + "start": 24487.48, + "end": 24488.64, + "probability": 0.2285 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.0, + "end": 24581.0, + "probability": 0.0 + }, + { + "start": 24581.36, + "end": 24582.46, + "probability": 0.0387 + }, + { + "start": 24582.46, + "end": 24586.17, + "probability": 0.2949 + }, + { + "start": 24586.88, + "end": 24589.08, + "probability": 0.2062 + }, + { + "start": 24589.36, + "end": 24591.5, + "probability": 0.1858 + }, + { + "start": 24591.5, + "end": 24591.52, + "probability": 0.0955 + }, + { + "start": 24591.52, + "end": 24593.42, + "probability": 0.109 + }, + { + "start": 24594.1, + "end": 24595.64, + "probability": 0.1181 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24702.0, + "end": 24702.0, + "probability": 0.0 + }, + { + "start": 24703.14, + "end": 24706.66, + "probability": 0.0355 + }, + { + "start": 24710.66, + "end": 24716.24, + "probability": 0.0508 + }, + { + "start": 24716.24, + "end": 24718.41, + "probability": 0.038 + }, + { + "start": 24719.36, + "end": 24724.55, + "probability": 0.0277 + }, + { + "start": 24725.34, + "end": 24731.94, + "probability": 0.5679 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.0, + "end": 24829.0, + "probability": 0.0 + }, + { + "start": 24829.52, + "end": 24830.94, + "probability": 0.046 + }, + { + "start": 24830.94, + "end": 24833.1, + "probability": 0.0428 + }, + { + "start": 24833.1, + "end": 24836.8, + "probability": 0.2143 + }, + { + "start": 24836.86, + "end": 24840.84, + "probability": 0.6264 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24953.0, + "end": 24953.0, + "probability": 0.0 + }, + { + "start": 24954.28, + "end": 24955.96, + "probability": 0.0509 + }, + { + "start": 24955.96, + "end": 24956.66, + "probability": 0.4804 + }, + { + "start": 24956.66, + "end": 24956.76, + "probability": 0.6319 + }, + { + "start": 24957.54, + "end": 24958.9, + "probability": 0.684 + }, + { + "start": 24960.6, + "end": 24963.38, + "probability": 0.8065 + }, + { + "start": 24966.42, + "end": 24970.9, + "probability": 0.917 + }, + { + "start": 24972.78, + "end": 24973.76, + "probability": 0.8135 + }, + { + "start": 24974.56, + "end": 24976.7, + "probability": 0.9132 + }, + { + "start": 24977.42, + "end": 24979.88, + "probability": 0.9708 + }, + { + "start": 24980.0, + "end": 24981.82, + "probability": 0.988 + }, + { + "start": 24982.56, + "end": 24986.68, + "probability": 0.9813 + }, + { + "start": 24987.18, + "end": 24992.68, + "probability": 0.9748 + }, + { + "start": 24993.74, + "end": 24995.3, + "probability": 0.93 + }, + { + "start": 24995.78, + "end": 24997.06, + "probability": 0.9946 + }, + { + "start": 24997.24, + "end": 24999.54, + "probability": 0.9916 + }, + { + "start": 24999.68, + "end": 25002.38, + "probability": 0.9927 + }, + { + "start": 25005.26, + "end": 25006.86, + "probability": 0.6012 + }, + { + "start": 25006.92, + "end": 25008.69, + "probability": 0.7064 + }, + { + "start": 25009.02, + "end": 25012.92, + "probability": 0.8491 + }, + { + "start": 25013.42, + "end": 25015.44, + "probability": 0.9298 + }, + { + "start": 25015.56, + "end": 25017.68, + "probability": 0.9808 + }, + { + "start": 25019.18, + "end": 25024.54, + "probability": 0.9974 + }, + { + "start": 25025.26, + "end": 25027.42, + "probability": 0.8015 + }, + { + "start": 25028.42, + "end": 25029.52, + "probability": 0.5898 + }, + { + "start": 25030.18, + "end": 25036.5, + "probability": 0.8886 + }, + { + "start": 25037.06, + "end": 25039.76, + "probability": 0.9976 + }, + { + "start": 25039.94, + "end": 25042.26, + "probability": 0.7782 + }, + { + "start": 25043.08, + "end": 25049.42, + "probability": 0.8732 + }, + { + "start": 25050.28, + "end": 25058.42, + "probability": 0.9595 + }, + { + "start": 25058.98, + "end": 25060.5, + "probability": 0.7303 + }, + { + "start": 25061.42, + "end": 25066.02, + "probability": 0.6926 + }, + { + "start": 25066.9, + "end": 25068.34, + "probability": 0.9764 + }, + { + "start": 25069.84, + "end": 25071.6, + "probability": 0.8568 + }, + { + "start": 25072.86, + "end": 25076.76, + "probability": 0.9833 + }, + { + "start": 25078.32, + "end": 25082.0, + "probability": 0.981 + }, + { + "start": 25082.88, + "end": 25086.5, + "probability": 0.8499 + }, + { + "start": 25087.06, + "end": 25088.58, + "probability": 0.9587 + }, + { + "start": 25088.66, + "end": 25092.86, + "probability": 0.9795 + }, + { + "start": 25093.36, + "end": 25096.16, + "probability": 0.9346 + }, + { + "start": 25096.58, + "end": 25102.86, + "probability": 0.9932 + }, + { + "start": 25103.84, + "end": 25106.54, + "probability": 0.9263 + }, + { + "start": 25108.36, + "end": 25110.05, + "probability": 0.9956 + }, + { + "start": 25110.28, + "end": 25114.64, + "probability": 0.9891 + }, + { + "start": 25114.68, + "end": 25114.94, + "probability": 0.5508 + }, + { + "start": 25115.94, + "end": 25116.6, + "probability": 0.7365 + }, + { + "start": 25116.8, + "end": 25118.72, + "probability": 0.9205 + }, + { + "start": 25119.34, + "end": 25120.06, + "probability": 0.9759 + }, + { + "start": 25121.02, + "end": 25122.04, + "probability": 0.7758 + }, + { + "start": 25122.08, + "end": 25124.72, + "probability": 0.9843 + }, + { + "start": 25124.76, + "end": 25126.24, + "probability": 0.9564 + }, + { + "start": 25126.3, + "end": 25127.32, + "probability": 0.8595 + }, + { + "start": 25127.94, + "end": 25131.21, + "probability": 0.9929 + }, + { + "start": 25131.72, + "end": 25133.96, + "probability": 0.8899 + }, + { + "start": 25134.63, + "end": 25136.42, + "probability": 0.9902 + }, + { + "start": 25136.42, + "end": 25136.56, + "probability": 0.0071 + }, + { + "start": 25136.56, + "end": 25138.02, + "probability": 0.0648 + }, + { + "start": 25139.86, + "end": 25141.8, + "probability": 0.6958 + }, + { + "start": 25141.98, + "end": 25141.98, + "probability": 0.0982 + }, + { + "start": 25141.98, + "end": 25144.34, + "probability": 0.9398 + }, + { + "start": 25144.5, + "end": 25148.14, + "probability": 0.9899 + }, + { + "start": 25149.02, + "end": 25152.63, + "probability": 0.9639 + }, + { + "start": 25153.82, + "end": 25156.62, + "probability": 0.9709 + }, + { + "start": 25157.58, + "end": 25161.78, + "probability": 0.8579 + }, + { + "start": 25162.78, + "end": 25163.78, + "probability": 0.9727 + }, + { + "start": 25163.88, + "end": 25166.42, + "probability": 0.9904 + }, + { + "start": 25167.8, + "end": 25168.8, + "probability": 0.7979 + }, + { + "start": 25169.32, + "end": 25171.28, + "probability": 0.9328 + }, + { + "start": 25171.8, + "end": 25176.38, + "probability": 0.9816 + }, + { + "start": 25176.92, + "end": 25179.7, + "probability": 0.1489 + }, + { + "start": 25180.04, + "end": 25180.04, + "probability": 0.0163 + }, + { + "start": 25180.04, + "end": 25183.34, + "probability": 0.2496 + }, + { + "start": 25183.5, + "end": 25185.12, + "probability": 0.1426 + }, + { + "start": 25185.12, + "end": 25185.12, + "probability": 0.2202 + }, + { + "start": 25185.12, + "end": 25185.12, + "probability": 0.1555 + }, + { + "start": 25185.12, + "end": 25185.72, + "probability": 0.0687 + }, + { + "start": 25186.1, + "end": 25189.52, + "probability": 0.9303 + }, + { + "start": 25189.94, + "end": 25194.52, + "probability": 0.9685 + }, + { + "start": 25194.6, + "end": 25194.92, + "probability": 0.6131 + }, + { + "start": 25196.5, + "end": 25197.44, + "probability": 0.6934 + }, + { + "start": 25197.44, + "end": 25199.24, + "probability": 0.1656 + }, + { + "start": 25199.28, + "end": 25200.72, + "probability": 0.0285 + }, + { + "start": 25200.98, + "end": 25202.94, + "probability": 0.2921 + }, + { + "start": 25202.94, + "end": 25208.56, + "probability": 0.808 + }, + { + "start": 25208.62, + "end": 25209.52, + "probability": 0.657 + }, + { + "start": 25209.8, + "end": 25211.74, + "probability": 0.785 + }, + { + "start": 25212.56, + "end": 25215.36, + "probability": 0.5182 + }, + { + "start": 25215.92, + "end": 25219.62, + "probability": 0.9881 + }, + { + "start": 25219.64, + "end": 25221.16, + "probability": 0.344 + }, + { + "start": 25221.86, + "end": 25226.02, + "probability": 0.7349 + }, + { + "start": 25226.14, + "end": 25228.32, + "probability": 0.5985 + }, + { + "start": 25228.42, + "end": 25229.84, + "probability": 0.4119 + }, + { + "start": 25230.22, + "end": 25234.26, + "probability": 0.7448 + }, + { + "start": 25235.28, + "end": 25239.34, + "probability": 0.8591 + }, + { + "start": 25240.54, + "end": 25242.52, + "probability": 0.5969 + }, + { + "start": 25245.98, + "end": 25249.48, + "probability": 0.7188 + }, + { + "start": 25250.9, + "end": 25253.54, + "probability": 0.9524 + }, + { + "start": 25254.6, + "end": 25257.0, + "probability": 0.5725 + }, + { + "start": 25257.0, + "end": 25260.28, + "probability": 0.5599 + }, + { + "start": 25260.46, + "end": 25263.12, + "probability": 0.8269 + }, + { + "start": 25264.86, + "end": 25266.8, + "probability": 0.9485 + }, + { + "start": 25268.09, + "end": 25271.3, + "probability": 0.8876 + }, + { + "start": 25271.54, + "end": 25275.0, + "probability": 0.8167 + }, + { + "start": 25275.08, + "end": 25276.38, + "probability": 0.7285 + }, + { + "start": 25276.5, + "end": 25278.8, + "probability": 0.8796 + }, + { + "start": 25279.22, + "end": 25283.14, + "probability": 0.7742 + }, + { + "start": 25283.52, + "end": 25285.33, + "probability": 0.9341 + }, + { + "start": 25285.84, + "end": 25288.34, + "probability": 0.9619 + }, + { + "start": 25288.76, + "end": 25291.24, + "probability": 0.9747 + }, + { + "start": 25291.28, + "end": 25293.9, + "probability": 0.9385 + }, + { + "start": 25294.36, + "end": 25297.18, + "probability": 0.8241 + }, + { + "start": 25297.18, + "end": 25300.22, + "probability": 0.7581 + }, + { + "start": 25300.6, + "end": 25302.58, + "probability": 0.8715 + }, + { + "start": 25304.8, + "end": 25312.16, + "probability": 0.7896 + }, + { + "start": 25315.18, + "end": 25319.9, + "probability": 0.5964 + }, + { + "start": 25320.36, + "end": 25322.18, + "probability": 0.92 + }, + { + "start": 25322.26, + "end": 25323.78, + "probability": 0.7607 + }, + { + "start": 25325.88, + "end": 25327.48, + "probability": 0.9443 + }, + { + "start": 25327.54, + "end": 25328.94, + "probability": 0.8772 + }, + { + "start": 25329.18, + "end": 25330.88, + "probability": 0.911 + }, + { + "start": 25331.66, + "end": 25333.9, + "probability": 0.9932 + }, + { + "start": 25333.92, + "end": 25335.7, + "probability": 0.3271 + }, + { + "start": 25336.38, + "end": 25339.58, + "probability": 0.6871 + }, + { + "start": 25340.02, + "end": 25341.42, + "probability": 0.8629 + }, + { + "start": 25341.54, + "end": 25344.06, + "probability": 0.6303 + }, + { + "start": 25344.16, + "end": 25345.64, + "probability": 0.8818 + }, + { + "start": 25345.96, + "end": 25348.98, + "probability": 0.597 + }, + { + "start": 25352.96, + "end": 25356.16, + "probability": 0.6857 + }, + { + "start": 25357.57, + "end": 25366.74, + "probability": 0.806 + }, + { + "start": 25367.36, + "end": 25370.48, + "probability": 0.8005 + }, + { + "start": 25371.04, + "end": 25372.54, + "probability": 0.5146 + }, + { + "start": 25372.58, + "end": 25374.64, + "probability": 0.5443 + }, + { + "start": 25374.64, + "end": 25376.45, + "probability": 0.7394 + }, + { + "start": 25377.92, + "end": 25380.16, + "probability": 0.5836 + }, + { + "start": 25380.88, + "end": 25384.46, + "probability": 0.8279 + }, + { + "start": 25385.4, + "end": 25387.44, + "probability": 0.7923 + }, + { + "start": 25388.44, + "end": 25390.64, + "probability": 0.7527 + }, + { + "start": 25391.54, + "end": 25393.42, + "probability": 0.8814 + }, + { + "start": 25395.16, + "end": 25398.66, + "probability": 0.9622 + }, + { + "start": 25399.64, + "end": 25404.5, + "probability": 0.9757 + }, + { + "start": 25406.95, + "end": 25410.24, + "probability": 0.8982 + }, + { + "start": 25411.46, + "end": 25413.78, + "probability": 0.7891 + }, + { + "start": 25414.86, + "end": 25418.78, + "probability": 0.9076 + }, + { + "start": 25418.94, + "end": 25421.44, + "probability": 0.9742 + }, + { + "start": 25421.52, + "end": 25428.12, + "probability": 0.6075 + }, + { + "start": 25430.08, + "end": 25433.72, + "probability": 0.9458 + }, + { + "start": 25435.58, + "end": 25437.54, + "probability": 0.6627 + }, + { + "start": 25438.52, + "end": 25438.76, + "probability": 0.2314 + }, + { + "start": 25454.58, + "end": 25457.32, + "probability": 0.6612 + }, + { + "start": 25458.22, + "end": 25459.82, + "probability": 0.739 + }, + { + "start": 25462.28, + "end": 25466.68, + "probability": 0.9307 + }, + { + "start": 25467.2, + "end": 25468.46, + "probability": 0.5076 + }, + { + "start": 25470.68, + "end": 25472.56, + "probability": 0.5563 + }, + { + "start": 25472.74, + "end": 25475.8, + "probability": 0.7374 + }, + { + "start": 25475.9, + "end": 25477.56, + "probability": 0.6539 + }, + { + "start": 25479.56, + "end": 25482.16, + "probability": 0.9407 + }, + { + "start": 25483.08, + "end": 25483.64, + "probability": 0.9393 + }, + { + "start": 25485.05, + "end": 25488.7, + "probability": 0.6915 + }, + { + "start": 25489.5, + "end": 25492.08, + "probability": 0.9812 + }, + { + "start": 25493.82, + "end": 25494.98, + "probability": 0.906 + }, + { + "start": 25498.9, + "end": 25499.92, + "probability": 0.5629 + }, + { + "start": 25501.14, + "end": 25502.26, + "probability": 0.5156 + }, + { + "start": 25503.08, + "end": 25505.84, + "probability": 0.7819 + }, + { + "start": 25506.6, + "end": 25508.08, + "probability": 0.6348 + }, + { + "start": 25508.98, + "end": 25510.06, + "probability": 0.9592 + }, + { + "start": 25510.68, + "end": 25511.38, + "probability": 0.9467 + }, + { + "start": 25512.06, + "end": 25513.9, + "probability": 0.9746 + }, + { + "start": 25516.44, + "end": 25519.2, + "probability": 0.9115 + }, + { + "start": 25519.78, + "end": 25520.74, + "probability": 0.8369 + }, + { + "start": 25521.84, + "end": 25523.4, + "probability": 0.993 + }, + { + "start": 25524.64, + "end": 25525.72, + "probability": 0.7333 + }, + { + "start": 25527.72, + "end": 25529.52, + "probability": 0.6682 + }, + { + "start": 25531.1, + "end": 25531.38, + "probability": 0.772 + }, + { + "start": 25532.04, + "end": 25534.08, + "probability": 0.7132 + }, + { + "start": 25535.59, + "end": 25537.66, + "probability": 0.9131 + }, + { + "start": 25538.52, + "end": 25540.36, + "probability": 0.9531 + }, + { + "start": 25541.68, + "end": 25546.3, + "probability": 0.9284 + }, + { + "start": 25550.11, + "end": 25554.96, + "probability": 0.747 + }, + { + "start": 25555.58, + "end": 25556.88, + "probability": 0.9103 + }, + { + "start": 25561.08, + "end": 25561.76, + "probability": 0.8217 + }, + { + "start": 25564.14, + "end": 25565.06, + "probability": 0.5808 + }, + { + "start": 25565.78, + "end": 25566.4, + "probability": 0.978 + }, + { + "start": 25567.02, + "end": 25567.7, + "probability": 0.3766 + }, + { + "start": 25568.48, + "end": 25569.04, + "probability": 0.6725 + }, + { + "start": 25569.68, + "end": 25573.04, + "probability": 0.9454 + }, + { + "start": 25574.78, + "end": 25575.68, + "probability": 0.9754 + }, + { + "start": 25576.24, + "end": 25580.0, + "probability": 0.9475 + }, + { + "start": 25583.12, + "end": 25584.5, + "probability": 0.4744 + }, + { + "start": 25587.76, + "end": 25589.7, + "probability": 0.4202 + }, + { + "start": 25591.84, + "end": 25594.44, + "probability": 0.8558 + }, + { + "start": 25596.08, + "end": 25598.08, + "probability": 0.9177 + }, + { + "start": 25599.28, + "end": 25602.62, + "probability": 0.9847 + }, + { + "start": 25603.46, + "end": 25604.04, + "probability": 0.6575 + }, + { + "start": 25605.14, + "end": 25606.32, + "probability": 0.9257 + }, + { + "start": 25606.98, + "end": 25607.5, + "probability": 0.8674 + }, + { + "start": 25608.18, + "end": 25609.08, + "probability": 0.8173 + }, + { + "start": 25611.06, + "end": 25612.98, + "probability": 0.5207 + }, + { + "start": 25614.48, + "end": 25615.3, + "probability": 0.4019 + }, + { + "start": 25616.58, + "end": 25617.66, + "probability": 0.6244 + }, + { + "start": 25619.76, + "end": 25620.7, + "probability": 0.8872 + }, + { + "start": 25621.7, + "end": 25622.24, + "probability": 0.9548 + }, + { + "start": 25622.86, + "end": 25623.44, + "probability": 0.6955 + }, + { + "start": 25625.08, + "end": 25627.38, + "probability": 0.9837 + }, + { + "start": 25628.58, + "end": 25632.36, + "probability": 0.9663 + }, + { + "start": 25634.22, + "end": 25636.32, + "probability": 0.9453 + }, + { + "start": 25637.16, + "end": 25641.74, + "probability": 0.8091 + }, + { + "start": 25643.42, + "end": 25646.14, + "probability": 0.5951 + }, + { + "start": 25648.42, + "end": 25652.76, + "probability": 0.9069 + }, + { + "start": 25654.52, + "end": 25655.2, + "probability": 0.9847 + }, + { + "start": 25656.38, + "end": 25657.2, + "probability": 0.8623 + }, + { + "start": 25658.36, + "end": 25658.98, + "probability": 0.984 + }, + { + "start": 25659.86, + "end": 25660.76, + "probability": 0.9268 + }, + { + "start": 25661.5, + "end": 25663.62, + "probability": 0.7323 + }, + { + "start": 25664.88, + "end": 25665.44, + "probability": 0.9884 + }, + { + "start": 25666.84, + "end": 25668.35, + "probability": 0.6925 + }, + { + "start": 25672.94, + "end": 25675.06, + "probability": 0.9434 + }, + { + "start": 25676.26, + "end": 25677.25, + "probability": 0.0711 + }, + { + "start": 25677.72, + "end": 25678.96, + "probability": 0.7775 + }, + { + "start": 25679.0, + "end": 25679.54, + "probability": 0.7467 + }, + { + "start": 25680.14, + "end": 25681.08, + "probability": 0.7457 + }, + { + "start": 25682.48, + "end": 25684.14, + "probability": 0.725 + }, + { + "start": 25685.22, + "end": 25690.5, + "probability": 0.6679 + }, + { + "start": 25691.7, + "end": 25693.18, + "probability": 0.7359 + }, + { + "start": 25694.14, + "end": 25695.72, + "probability": 0.961 + }, + { + "start": 25697.16, + "end": 25703.82, + "probability": 0.8897 + }, + { + "start": 25705.96, + "end": 25706.76, + "probability": 0.9549 + }, + { + "start": 25707.4, + "end": 25710.4, + "probability": 0.8118 + }, + { + "start": 25710.94, + "end": 25711.92, + "probability": 0.7756 + }, + { + "start": 25713.76, + "end": 25715.22, + "probability": 0.7878 + }, + { + "start": 25716.48, + "end": 25717.04, + "probability": 0.9492 + }, + { + "start": 25719.5, + "end": 25720.58, + "probability": 0.8336 + }, + { + "start": 25722.32, + "end": 25724.18, + "probability": 0.9967 + }, + { + "start": 25724.8, + "end": 25725.72, + "probability": 0.8668 + }, + { + "start": 25727.38, + "end": 25728.28, + "probability": 0.9943 + }, + { + "start": 25729.22, + "end": 25730.62, + "probability": 0.428 + }, + { + "start": 25731.7, + "end": 25734.52, + "probability": 0.9032 + }, + { + "start": 25735.42, + "end": 25736.64, + "probability": 0.5549 + }, + { + "start": 25741.5, + "end": 25742.56, + "probability": 0.7854 + }, + { + "start": 25742.66, + "end": 25743.84, + "probability": 0.7432 + }, + { + "start": 25743.88, + "end": 25745.68, + "probability": 0.7045 + }, + { + "start": 25746.14, + "end": 25746.58, + "probability": 0.9644 + }, + { + "start": 25748.42, + "end": 25750.46, + "probability": 0.896 + }, + { + "start": 25751.8, + "end": 25753.02, + "probability": 0.9147 + }, + { + "start": 25753.56, + "end": 25753.84, + "probability": 0.7052 + }, + { + "start": 25754.79, + "end": 25758.55, + "probability": 0.7355 + }, + { + "start": 25761.7, + "end": 25762.24, + "probability": 0.5952 + }, + { + "start": 25765.1, + "end": 25765.88, + "probability": 0.6396 + }, + { + "start": 25766.88, + "end": 25767.54, + "probability": 0.6553 + }, + { + "start": 25768.06, + "end": 25770.58, + "probability": 0.5543 + }, + { + "start": 25771.38, + "end": 25773.04, + "probability": 0.8043 + }, + { + "start": 25774.38, + "end": 25774.88, + "probability": 0.991 + }, + { + "start": 25777.0, + "end": 25777.6, + "probability": 0.6438 + }, + { + "start": 25778.12, + "end": 25779.76, + "probability": 0.9632 + }, + { + "start": 25781.3, + "end": 25782.88, + "probability": 0.7684 + }, + { + "start": 25785.24, + "end": 25786.14, + "probability": 0.9617 + }, + { + "start": 25786.98, + "end": 25789.62, + "probability": 0.919 + }, + { + "start": 25790.48, + "end": 25791.02, + "probability": 0.9823 + }, + { + "start": 25792.92, + "end": 25793.88, + "probability": 0.7859 + }, + { + "start": 25796.06, + "end": 25797.52, + "probability": 0.9854 + }, + { + "start": 25798.52, + "end": 25799.7, + "probability": 0.968 + }, + { + "start": 25801.76, + "end": 25803.06, + "probability": 0.9912 + }, + { + "start": 25805.74, + "end": 25806.62, + "probability": 0.8824 + }, + { + "start": 25806.68, + "end": 25807.94, + "probability": 0.8828 + }, + { + "start": 25809.03, + "end": 25810.48, + "probability": 0.3193 + }, + { + "start": 25810.48, + "end": 25811.53, + "probability": 0.7079 + }, + { + "start": 25812.14, + "end": 25813.64, + "probability": 0.589 + }, + { + "start": 25817.22, + "end": 25818.32, + "probability": 0.4065 + }, + { + "start": 25820.58, + "end": 25823.32, + "probability": 0.6163 + }, + { + "start": 25824.48, + "end": 25828.04, + "probability": 0.9167 + }, + { + "start": 25829.96, + "end": 25834.12, + "probability": 0.6428 + }, + { + "start": 25835.7, + "end": 25837.62, + "probability": 0.9593 + }, + { + "start": 25838.36, + "end": 25842.0, + "probability": 0.8716 + }, + { + "start": 25842.76, + "end": 25843.94, + "probability": 0.8394 + }, + { + "start": 25843.96, + "end": 25846.88, + "probability": 0.7608 + }, + { + "start": 25848.06, + "end": 25852.38, + "probability": 0.8997 + }, + { + "start": 25853.96, + "end": 25857.04, + "probability": 0.8521 + }, + { + "start": 25858.66, + "end": 25859.06, + "probability": 0.6751 + }, + { + "start": 25860.56, + "end": 25861.5, + "probability": 0.516 + }, + { + "start": 25862.9, + "end": 25863.94, + "probability": 0.9876 + }, + { + "start": 25865.67, + "end": 25868.88, + "probability": 0.728 + }, + { + "start": 25870.12, + "end": 25872.0, + "probability": 0.5705 + }, + { + "start": 25872.41, + "end": 25875.1, + "probability": 0.9401 + }, + { + "start": 25875.12, + "end": 25876.88, + "probability": 0.8037 + }, + { + "start": 25877.02, + "end": 25882.84, + "probability": 0.9781 + }, + { + "start": 25884.44, + "end": 25886.36, + "probability": 0.7539 + }, + { + "start": 25886.76, + "end": 25887.66, + "probability": 0.2785 + }, + { + "start": 25888.24, + "end": 25889.78, + "probability": 0.958 + }, + { + "start": 25894.96, + "end": 25895.82, + "probability": 0.2995 + }, + { + "start": 25897.68, + "end": 25897.92, + "probability": 0.0205 + }, + { + "start": 25910.79, + "end": 25916.67, + "probability": 0.0244 + }, + { + "start": 25965.24, + "end": 25966.58, + "probability": 0.0193 + }, + { + "start": 25967.78, + "end": 25968.18, + "probability": 0.09 + }, + { + "start": 25968.46, + "end": 25968.46, + "probability": 0.033 + }, + { + "start": 25968.78, + "end": 25968.78, + "probability": 0.0452 + }, + { + "start": 25969.46, + "end": 25969.81, + "probability": 0.0312 + }, + { + "start": 25971.38, + "end": 25972.58, + "probability": 0.2123 + }, + { + "start": 25973.0, + "end": 25973.64, + "probability": 0.0259 + }, + { + "start": 25973.64, + "end": 25975.68, + "probability": 0.0405 + }, + { + "start": 25976.48, + "end": 25978.96, + "probability": 0.0247 + }, + { + "start": 25979.48, + "end": 25980.0, + "probability": 0.0325 + }, + { + "start": 25988.62, + "end": 25994.12, + "probability": 0.0568 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.0, + "end": 26088.0, + "probability": 0.0 + }, + { + "start": 26088.24, + "end": 26091.08, + "probability": 0.0746 + }, + { + "start": 26091.08, + "end": 26092.98, + "probability": 0.8826 + }, + { + "start": 26092.98, + "end": 26096.1, + "probability": 0.7737 + }, + { + "start": 26096.18, + "end": 26096.96, + "probability": 0.6538 + }, + { + "start": 26097.6, + "end": 26100.18, + "probability": 0.8405 + }, + { + "start": 26100.3, + "end": 26104.36, + "probability": 0.9795 + }, + { + "start": 26117.5, + "end": 26119.56, + "probability": 0.655 + }, + { + "start": 26121.26, + "end": 26123.2, + "probability": 0.995 + }, + { + "start": 26123.78, + "end": 26126.06, + "probability": 0.9707 + }, + { + "start": 26126.66, + "end": 26127.36, + "probability": 0.9832 + }, + { + "start": 26128.16, + "end": 26128.9, + "probability": 0.4315 + }, + { + "start": 26129.68, + "end": 26131.84, + "probability": 0.819 + }, + { + "start": 26132.38, + "end": 26135.94, + "probability": 0.9928 + }, + { + "start": 26136.68, + "end": 26139.66, + "probability": 0.9799 + }, + { + "start": 26141.66, + "end": 26145.6, + "probability": 0.9957 + }, + { + "start": 26147.74, + "end": 26150.84, + "probability": 0.2467 + }, + { + "start": 26150.92, + "end": 26152.1, + "probability": 0.9755 + }, + { + "start": 26152.5, + "end": 26156.16, + "probability": 0.9959 + }, + { + "start": 26157.3, + "end": 26159.16, + "probability": 0.7351 + }, + { + "start": 26159.24, + "end": 26159.66, + "probability": 0.9348 + }, + { + "start": 26160.34, + "end": 26161.84, + "probability": 0.9546 + }, + { + "start": 26162.88, + "end": 26165.86, + "probability": 0.9989 + }, + { + "start": 26167.34, + "end": 26169.3, + "probability": 0.999 + }, + { + "start": 26169.32, + "end": 26171.98, + "probability": 0.9954 + }, + { + "start": 26172.82, + "end": 26175.26, + "probability": 0.8521 + }, + { + "start": 26176.86, + "end": 26178.1, + "probability": 0.9797 + }, + { + "start": 26178.22, + "end": 26179.77, + "probability": 0.9968 + }, + { + "start": 26180.02, + "end": 26183.38, + "probability": 0.9968 + }, + { + "start": 26184.0, + "end": 26185.12, + "probability": 0.8913 + }, + { + "start": 26185.26, + "end": 26187.22, + "probability": 0.9951 + }, + { + "start": 26187.66, + "end": 26189.74, + "probability": 0.9852 + }, + { + "start": 26191.22, + "end": 26192.98, + "probability": 0.9927 + }, + { + "start": 26193.1, + "end": 26195.28, + "probability": 0.9109 + }, + { + "start": 26195.34, + "end": 26195.44, + "probability": 0.9237 + }, + { + "start": 26195.84, + "end": 26196.6, + "probability": 0.9785 + }, + { + "start": 26196.62, + "end": 26196.88, + "probability": 0.4987 + }, + { + "start": 26196.9, + "end": 26197.28, + "probability": 0.7358 + }, + { + "start": 26197.52, + "end": 26198.22, + "probability": 0.9727 + }, + { + "start": 26198.72, + "end": 26200.9, + "probability": 0.9788 + }, + { + "start": 26201.28, + "end": 26202.1, + "probability": 0.7269 + }, + { + "start": 26202.52, + "end": 26204.22, + "probability": 0.8882 + }, + { + "start": 26204.92, + "end": 26206.84, + "probability": 0.8169 + }, + { + "start": 26206.94, + "end": 26212.1, + "probability": 0.9863 + }, + { + "start": 26212.24, + "end": 26213.1, + "probability": 0.7306 + }, + { + "start": 26213.6, + "end": 26214.84, + "probability": 0.9952 + }, + { + "start": 26215.24, + "end": 26216.2, + "probability": 0.9878 + }, + { + "start": 26216.6, + "end": 26217.34, + "probability": 0.9485 + }, + { + "start": 26217.62, + "end": 26218.46, + "probability": 0.9391 + }, + { + "start": 26218.64, + "end": 26219.14, + "probability": 0.836 + }, + { + "start": 26220.42, + "end": 26221.9, + "probability": 0.9952 + }, + { + "start": 26222.0, + "end": 26224.54, + "probability": 0.9347 + }, + { + "start": 26225.14, + "end": 26229.02, + "probability": 0.9805 + }, + { + "start": 26229.42, + "end": 26233.94, + "probability": 0.998 + }, + { + "start": 26234.16, + "end": 26235.6, + "probability": 0.9957 + }, + { + "start": 26235.86, + "end": 26240.58, + "probability": 0.9887 + }, + { + "start": 26241.58, + "end": 26243.56, + "probability": 0.9808 + }, + { + "start": 26243.62, + "end": 26246.48, + "probability": 0.9961 + }, + { + "start": 26246.9, + "end": 26247.96, + "probability": 0.981 + }, + { + "start": 26248.48, + "end": 26252.56, + "probability": 0.9976 + }, + { + "start": 26252.68, + "end": 26255.62, + "probability": 0.992 + }, + { + "start": 26255.96, + "end": 26258.26, + "probability": 0.9938 + }, + { + "start": 26258.26, + "end": 26260.66, + "probability": 0.9957 + }, + { + "start": 26261.12, + "end": 26262.38, + "probability": 0.9481 + }, + { + "start": 26262.92, + "end": 26265.18, + "probability": 0.9777 + }, + { + "start": 26265.68, + "end": 26267.64, + "probability": 0.98 + }, + { + "start": 26269.2, + "end": 26271.14, + "probability": 0.8268 + }, + { + "start": 26271.54, + "end": 26277.16, + "probability": 0.9691 + }, + { + "start": 26278.48, + "end": 26279.55, + "probability": 0.9683 + }, + { + "start": 26280.22, + "end": 26282.2, + "probability": 0.9463 + }, + { + "start": 26282.54, + "end": 26287.22, + "probability": 0.9552 + }, + { + "start": 26287.52, + "end": 26287.9, + "probability": 0.5048 + }, + { + "start": 26287.98, + "end": 26289.14, + "probability": 0.9973 + }, + { + "start": 26289.56, + "end": 26294.4, + "probability": 0.9536 + }, + { + "start": 26295.12, + "end": 26295.82, + "probability": 0.9791 + }, + { + "start": 26296.46, + "end": 26298.86, + "probability": 0.7738 + }, + { + "start": 26299.34, + "end": 26300.04, + "probability": 0.7732 + }, + { + "start": 26300.6, + "end": 26301.76, + "probability": 0.9843 + }, + { + "start": 26302.18, + "end": 26304.42, + "probability": 0.9024 + }, + { + "start": 26304.94, + "end": 26307.26, + "probability": 0.9934 + }, + { + "start": 26307.26, + "end": 26311.42, + "probability": 0.9186 + }, + { + "start": 26311.5, + "end": 26312.45, + "probability": 0.9839 + }, + { + "start": 26313.1, + "end": 26315.62, + "probability": 0.9892 + }, + { + "start": 26315.62, + "end": 26318.28, + "probability": 0.9949 + }, + { + "start": 26318.72, + "end": 26320.64, + "probability": 0.9893 + }, + { + "start": 26320.66, + "end": 26322.0, + "probability": 0.9951 + }, + { + "start": 26322.78, + "end": 26327.22, + "probability": 0.9937 + }, + { + "start": 26327.22, + "end": 26330.52, + "probability": 0.9922 + }, + { + "start": 26330.64, + "end": 26332.26, + "probability": 0.9699 + }, + { + "start": 26332.84, + "end": 26335.09, + "probability": 0.9754 + }, + { + "start": 26335.36, + "end": 26336.46, + "probability": 0.7865 + }, + { + "start": 26337.2, + "end": 26340.76, + "probability": 0.8761 + }, + { + "start": 26341.24, + "end": 26341.98, + "probability": 0.8625 + }, + { + "start": 26342.06, + "end": 26344.28, + "probability": 0.9882 + }, + { + "start": 26344.6, + "end": 26346.04, + "probability": 0.9733 + }, + { + "start": 26346.52, + "end": 26351.34, + "probability": 0.978 + }, + { + "start": 26352.0, + "end": 26352.48, + "probability": 0.5042 + }, + { + "start": 26352.58, + "end": 26352.92, + "probability": 0.354 + }, + { + "start": 26352.96, + "end": 26353.24, + "probability": 0.8566 + }, + { + "start": 26353.34, + "end": 26354.22, + "probability": 0.6842 + }, + { + "start": 26354.68, + "end": 26355.82, + "probability": 0.8896 + }, + { + "start": 26356.38, + "end": 26357.88, + "probability": 0.9503 + }, + { + "start": 26359.08, + "end": 26361.9, + "probability": 0.9771 + }, + { + "start": 26362.72, + "end": 26365.84, + "probability": 0.8337 + }, + { + "start": 26366.32, + "end": 26370.24, + "probability": 0.9141 + }, + { + "start": 26370.26, + "end": 26372.98, + "probability": 0.9872 + }, + { + "start": 26373.66, + "end": 26376.02, + "probability": 0.9461 + }, + { + "start": 26376.48, + "end": 26379.76, + "probability": 0.8667 + }, + { + "start": 26380.14, + "end": 26383.32, + "probability": 0.9421 + }, + { + "start": 26383.38, + "end": 26386.9, + "probability": 0.994 + }, + { + "start": 26387.48, + "end": 26388.72, + "probability": 0.9966 + }, + { + "start": 26390.7, + "end": 26391.86, + "probability": 0.8807 + }, + { + "start": 26392.44, + "end": 26394.96, + "probability": 0.8645 + }, + { + "start": 26394.96, + "end": 26397.72, + "probability": 0.995 + }, + { + "start": 26398.18, + "end": 26401.38, + "probability": 0.9921 + }, + { + "start": 26401.8, + "end": 26404.62, + "probability": 0.9985 + }, + { + "start": 26404.62, + "end": 26408.68, + "probability": 0.9565 + }, + { + "start": 26409.38, + "end": 26413.34, + "probability": 0.9901 + }, + { + "start": 26413.76, + "end": 26417.76, + "probability": 0.9901 + }, + { + "start": 26418.4, + "end": 26419.96, + "probability": 0.9966 + }, + { + "start": 26420.7, + "end": 26424.84, + "probability": 0.9692 + }, + { + "start": 26425.32, + "end": 26429.72, + "probability": 0.9762 + }, + { + "start": 26429.72, + "end": 26435.6, + "probability": 0.9957 + }, + { + "start": 26436.5, + "end": 26437.86, + "probability": 0.9257 + }, + { + "start": 26437.94, + "end": 26440.04, + "probability": 0.7233 + }, + { + "start": 26440.48, + "end": 26443.58, + "probability": 0.8896 + }, + { + "start": 26443.64, + "end": 26448.28, + "probability": 0.9778 + }, + { + "start": 26450.52, + "end": 26451.54, + "probability": 0.9901 + }, + { + "start": 26452.1, + "end": 26453.24, + "probability": 0.9254 + }, + { + "start": 26453.32, + "end": 26456.86, + "probability": 0.8091 + }, + { + "start": 26456.94, + "end": 26460.16, + "probability": 0.8721 + }, + { + "start": 26460.64, + "end": 26466.24, + "probability": 0.989 + }, + { + "start": 26466.84, + "end": 26468.42, + "probability": 0.6882 + }, + { + "start": 26469.18, + "end": 26472.1, + "probability": 0.9292 + }, + { + "start": 26472.38, + "end": 26474.24, + "probability": 0.9805 + }, + { + "start": 26475.02, + "end": 26475.96, + "probability": 0.9659 + }, + { + "start": 26476.4, + "end": 26482.16, + "probability": 0.97 + }, + { + "start": 26482.62, + "end": 26483.96, + "probability": 0.9824 + }, + { + "start": 26484.34, + "end": 26485.2, + "probability": 0.9657 + }, + { + "start": 26485.54, + "end": 26486.08, + "probability": 0.5384 + }, + { + "start": 26486.3, + "end": 26487.1, + "probability": 0.5964 + }, + { + "start": 26487.24, + "end": 26488.38, + "probability": 0.9041 + }, + { + "start": 26488.86, + "end": 26491.02, + "probability": 0.9806 + }, + { + "start": 26492.7, + "end": 26494.88, + "probability": 0.9587 + }, + { + "start": 26495.0, + "end": 26496.4, + "probability": 0.9662 + }, + { + "start": 26498.68, + "end": 26500.94, + "probability": 0.9707 + }, + { + "start": 26501.24, + "end": 26502.04, + "probability": 0.9798 + }, + { + "start": 26502.94, + "end": 26504.42, + "probability": 0.8291 + }, + { + "start": 26504.48, + "end": 26505.48, + "probability": 0.7034 + }, + { + "start": 26505.56, + "end": 26506.08, + "probability": 0.9115 + }, + { + "start": 26506.2, + "end": 26506.72, + "probability": 0.9746 + }, + { + "start": 26506.78, + "end": 26510.7, + "probability": 0.992 + }, + { + "start": 26510.7, + "end": 26515.02, + "probability": 0.9733 + }, + { + "start": 26515.58, + "end": 26516.64, + "probability": 0.9729 + }, + { + "start": 26517.28, + "end": 26518.78, + "probability": 0.6921 + }, + { + "start": 26519.4, + "end": 26521.42, + "probability": 0.9291 + }, + { + "start": 26521.6, + "end": 26521.96, + "probability": 0.8001 + }, + { + "start": 26525.58, + "end": 26528.18, + "probability": 0.9253 + }, + { + "start": 26534.68, + "end": 26535.98, + "probability": 0.174 + }, + { + "start": 26538.28, + "end": 26539.32, + "probability": 0.1119 + }, + { + "start": 26541.8, + "end": 26543.9, + "probability": 0.2113 + }, + { + "start": 26558.54, + "end": 26563.92, + "probability": 0.9967 + }, + { + "start": 26564.96, + "end": 26568.72, + "probability": 0.972 + }, + { + "start": 26568.72, + "end": 26572.24, + "probability": 0.9953 + }, + { + "start": 26572.78, + "end": 26575.18, + "probability": 0.9945 + }, + { + "start": 26575.44, + "end": 26579.84, + "probability": 0.9655 + }, + { + "start": 26580.32, + "end": 26583.3, + "probability": 0.988 + }, + { + "start": 26583.68, + "end": 26585.7, + "probability": 0.9803 + }, + { + "start": 26586.02, + "end": 26587.52, + "probability": 0.8021 + }, + { + "start": 26587.9, + "end": 26591.83, + "probability": 0.8744 + }, + { + "start": 26592.04, + "end": 26596.5, + "probability": 0.9881 + }, + { + "start": 26597.88, + "end": 26602.94, + "probability": 0.9421 + }, + { + "start": 26603.04, + "end": 26606.4, + "probability": 0.9967 + }, + { + "start": 26606.96, + "end": 26607.38, + "probability": 0.9689 + }, + { + "start": 26607.5, + "end": 26607.8, + "probability": 0.9792 + }, + { + "start": 26607.9, + "end": 26611.84, + "probability": 0.9739 + }, + { + "start": 26612.3, + "end": 26615.48, + "probability": 0.9775 + }, + { + "start": 26616.66, + "end": 26617.1, + "probability": 0.2604 + }, + { + "start": 26617.78, + "end": 26619.36, + "probability": 0.7489 + }, + { + "start": 26619.97, + "end": 26623.28, + "probability": 0.9268 + }, + { + "start": 26623.28, + "end": 26627.1, + "probability": 0.9952 + }, + { + "start": 26627.48, + "end": 26631.74, + "probability": 0.9904 + }, + { + "start": 26632.52, + "end": 26635.84, + "probability": 0.9637 + }, + { + "start": 26635.84, + "end": 26639.2, + "probability": 0.9217 + }, + { + "start": 26639.64, + "end": 26643.68, + "probability": 0.9785 + }, + { + "start": 26643.68, + "end": 26648.0, + "probability": 0.9816 + }, + { + "start": 26648.52, + "end": 26652.14, + "probability": 0.9558 + }, + { + "start": 26652.56, + "end": 26654.24, + "probability": 0.7262 + }, + { + "start": 26655.58, + "end": 26659.34, + "probability": 0.9846 + }, + { + "start": 26660.6, + "end": 26664.38, + "probability": 0.9993 + }, + { + "start": 26664.4, + "end": 26667.22, + "probability": 0.9826 + }, + { + "start": 26667.76, + "end": 26671.46, + "probability": 0.9912 + }, + { + "start": 26671.46, + "end": 26674.72, + "probability": 0.9972 + }, + { + "start": 26675.12, + "end": 26678.08, + "probability": 0.9814 + }, + { + "start": 26678.54, + "end": 26680.04, + "probability": 0.9664 + }, + { + "start": 26681.14, + "end": 26684.9, + "probability": 0.9718 + }, + { + "start": 26685.42, + "end": 26688.46, + "probability": 0.9827 + }, + { + "start": 26688.46, + "end": 26692.18, + "probability": 0.9934 + }, + { + "start": 26693.02, + "end": 26695.82, + "probability": 0.9662 + }, + { + "start": 26696.46, + "end": 26703.08, + "probability": 0.9156 + }, + { + "start": 26703.2, + "end": 26704.4, + "probability": 0.9608 + }, + { + "start": 26704.96, + "end": 26706.78, + "probability": 0.9882 + }, + { + "start": 26707.6, + "end": 26710.6, + "probability": 0.8995 + }, + { + "start": 26710.7, + "end": 26712.49, + "probability": 0.9021 + }, + { + "start": 26712.82, + "end": 26714.16, + "probability": 0.9443 + }, + { + "start": 26715.84, + "end": 26717.86, + "probability": 0.2705 + }, + { + "start": 26717.98, + "end": 26722.58, + "probability": 0.7972 + }, + { + "start": 26723.42, + "end": 26724.02, + "probability": 0.7839 + }, + { + "start": 26725.87, + "end": 26728.99, + "probability": 0.8541 + }, + { + "start": 26730.02, + "end": 26732.56, + "probability": 0.7959 + }, + { + "start": 26733.08, + "end": 26734.33, + "probability": 0.9805 + }, + { + "start": 26735.12, + "end": 26736.02, + "probability": 0.8293 + }, + { + "start": 26737.16, + "end": 26737.42, + "probability": 0.6762 + }, + { + "start": 26737.54, + "end": 26740.02, + "probability": 0.8408 + }, + { + "start": 26740.09, + "end": 26746.74, + "probability": 0.9702 + }, + { + "start": 26747.94, + "end": 26748.74, + "probability": 0.9582 + }, + { + "start": 26748.86, + "end": 26750.5, + "probability": 0.974 + }, + { + "start": 26750.68, + "end": 26752.38, + "probability": 0.9883 + }, + { + "start": 26752.88, + "end": 26756.28, + "probability": 0.9878 + }, + { + "start": 26756.8, + "end": 26759.12, + "probability": 0.7761 + }, + { + "start": 26760.5, + "end": 26761.32, + "probability": 0.9683 + }, + { + "start": 26762.08, + "end": 26763.9, + "probability": 0.9858 + }, + { + "start": 26764.02, + "end": 26765.06, + "probability": 0.9627 + }, + { + "start": 26765.18, + "end": 26768.68, + "probability": 0.9867 + }, + { + "start": 26769.96, + "end": 26773.92, + "probability": 0.9276 + }, + { + "start": 26774.3, + "end": 26778.28, + "probability": 0.944 + }, + { + "start": 26779.18, + "end": 26784.46, + "probability": 0.9665 + }, + { + "start": 26784.78, + "end": 26788.96, + "probability": 0.9579 + }, + { + "start": 26789.5, + "end": 26792.74, + "probability": 0.9856 + }, + { + "start": 26793.46, + "end": 26797.86, + "probability": 0.9591 + }, + { + "start": 26798.68, + "end": 26799.08, + "probability": 0.9705 + }, + { + "start": 26799.2, + "end": 26800.12, + "probability": 0.9055 + }, + { + "start": 26800.18, + "end": 26801.56, + "probability": 0.8694 + }, + { + "start": 26801.92, + "end": 26803.84, + "probability": 0.9367 + }, + { + "start": 26804.34, + "end": 26806.92, + "probability": 0.8776 + }, + { + "start": 26807.48, + "end": 26811.86, + "probability": 0.9986 + }, + { + "start": 26812.26, + "end": 26815.68, + "probability": 0.9637 + }, + { + "start": 26816.06, + "end": 26819.62, + "probability": 0.4698 + }, + { + "start": 26819.7, + "end": 26820.34, + "probability": 0.6368 + }, + { + "start": 26820.74, + "end": 26822.82, + "probability": 0.9688 + }, + { + "start": 26822.9, + "end": 26824.75, + "probability": 0.585 + }, + { + "start": 26825.64, + "end": 26828.52, + "probability": 0.7295 + }, + { + "start": 26828.76, + "end": 26829.22, + "probability": 0.3493 + }, + { + "start": 26829.44, + "end": 26835.04, + "probability": 0.9478 + }, + { + "start": 26835.52, + "end": 26840.56, + "probability": 0.9497 + }, + { + "start": 26840.92, + "end": 26847.06, + "probability": 0.9988 + }, + { + "start": 26847.56, + "end": 26849.44, + "probability": 0.9927 + }, + { + "start": 26849.6, + "end": 26851.08, + "probability": 0.8782 + }, + { + "start": 26851.85, + "end": 26854.2, + "probability": 0.1013 + }, + { + "start": 26854.2, + "end": 26855.59, + "probability": 0.5303 + }, + { + "start": 26856.69, + "end": 26863.08, + "probability": 0.9941 + }, + { + "start": 26863.08, + "end": 26869.06, + "probability": 0.9992 + }, + { + "start": 26869.62, + "end": 26873.12, + "probability": 0.9966 + }, + { + "start": 26873.58, + "end": 26878.92, + "probability": 0.9841 + }, + { + "start": 26879.62, + "end": 26883.46, + "probability": 0.9888 + }, + { + "start": 26884.02, + "end": 26889.54, + "probability": 0.9941 + }, + { + "start": 26890.26, + "end": 26891.32, + "probability": 0.757 + }, + { + "start": 26891.78, + "end": 26896.18, + "probability": 0.9854 + }, + { + "start": 26897.08, + "end": 26901.44, + "probability": 0.9965 + }, + { + "start": 26901.78, + "end": 26905.98, + "probability": 0.9955 + }, + { + "start": 26905.98, + "end": 26910.84, + "probability": 0.9993 + }, + { + "start": 26911.66, + "end": 26916.62, + "probability": 0.9873 + }, + { + "start": 26918.02, + "end": 26919.1, + "probability": 0.6143 + }, + { + "start": 26919.28, + "end": 26919.5, + "probability": 0.5693 + }, + { + "start": 26919.78, + "end": 26923.94, + "probability": 0.9746 + }, + { + "start": 26925.98, + "end": 26926.56, + "probability": 0.8499 + }, + { + "start": 26926.62, + "end": 26928.0, + "probability": 0.9658 + }, + { + "start": 26928.04, + "end": 26928.76, + "probability": 0.9569 + }, + { + "start": 26928.88, + "end": 26931.6, + "probability": 0.968 + }, + { + "start": 26932.02, + "end": 26933.46, + "probability": 0.9563 + }, + { + "start": 26934.1, + "end": 26939.8, + "probability": 0.9951 + }, + { + "start": 26939.82, + "end": 26944.12, + "probability": 0.9458 + }, + { + "start": 26944.72, + "end": 26950.57, + "probability": 0.9946 + }, + { + "start": 26950.64, + "end": 26954.18, + "probability": 0.9932 + }, + { + "start": 26954.26, + "end": 26957.52, + "probability": 0.945 + }, + { + "start": 26957.84, + "end": 26958.7, + "probability": 0.7599 + }, + { + "start": 26959.22, + "end": 26963.4, + "probability": 0.9929 + }, + { + "start": 26964.02, + "end": 26964.86, + "probability": 0.7693 + }, + { + "start": 26968.66, + "end": 26972.68, + "probability": 0.9423 + }, + { + "start": 26972.78, + "end": 26975.74, + "probability": 0.7815 + }, + { + "start": 26976.12, + "end": 26980.94, + "probability": 0.9927 + }, + { + "start": 26981.08, + "end": 26981.3, + "probability": 0.7056 + }, + { + "start": 26982.92, + "end": 26983.48, + "probability": 0.7031 + }, + { + "start": 26983.58, + "end": 26985.84, + "probability": 0.5973 + }, + { + "start": 26997.68, + "end": 26997.96, + "probability": 0.6264 + }, + { + "start": 26999.8, + "end": 27002.28, + "probability": 0.0685 + }, + { + "start": 27006.34, + "end": 27006.86, + "probability": 0.9696 + }, + { + "start": 27008.0, + "end": 27011.52, + "probability": 0.8022 + }, + { + "start": 27016.8, + "end": 27020.2, + "probability": 0.8081 + }, + { + "start": 27020.78, + "end": 27021.78, + "probability": 0.9657 + }, + { + "start": 27021.94, + "end": 27024.38, + "probability": 0.6811 + }, + { + "start": 27024.6, + "end": 27026.28, + "probability": 0.8362 + }, + { + "start": 27026.5, + "end": 27028.12, + "probability": 0.884 + }, + { + "start": 27028.44, + "end": 27029.54, + "probability": 0.6691 + }, + { + "start": 27031.98, + "end": 27032.52, + "probability": 0.1726 + }, + { + "start": 27032.9, + "end": 27033.2, + "probability": 0.0035 + }, + { + "start": 27033.74, + "end": 27033.88, + "probability": 0.1091 + }, + { + "start": 27033.88, + "end": 27034.4, + "probability": 0.3505 + }, + { + "start": 27034.48, + "end": 27034.52, + "probability": 0.6247 + }, + { + "start": 27034.52, + "end": 27036.38, + "probability": 0.8875 + }, + { + "start": 27036.4, + "end": 27036.84, + "probability": 0.805 + }, + { + "start": 27037.04, + "end": 27037.44, + "probability": 0.3661 + }, + { + "start": 27037.9, + "end": 27043.1, + "probability": 0.6251 + }, + { + "start": 27043.88, + "end": 27044.5, + "probability": 0.3429 + }, + { + "start": 27044.5, + "end": 27045.61, + "probability": 0.4992 + }, + { + "start": 27046.04, + "end": 27047.02, + "probability": 0.8064 + }, + { + "start": 27047.92, + "end": 27048.36, + "probability": 0.4504 + }, + { + "start": 27049.76, + "end": 27051.06, + "probability": 0.704 + }, + { + "start": 27051.22, + "end": 27053.44, + "probability": 0.5659 + }, + { + "start": 27053.62, + "end": 27054.12, + "probability": 0.3162 + }, + { + "start": 27054.6, + "end": 27055.48, + "probability": 0.5296 + }, + { + "start": 27056.14, + "end": 27057.96, + "probability": 0.5535 + }, + { + "start": 27058.72, + "end": 27060.44, + "probability": 0.9868 + }, + { + "start": 27061.0, + "end": 27068.04, + "probability": 0.8878 + }, + { + "start": 27068.26, + "end": 27072.72, + "probability": 0.963 + }, + { + "start": 27073.6, + "end": 27073.8, + "probability": 0.6293 + }, + { + "start": 27073.8, + "end": 27075.4, + "probability": 0.4994 + }, + { + "start": 27076.48, + "end": 27077.96, + "probability": 0.5931 + }, + { + "start": 27078.82, + "end": 27082.58, + "probability": 0.9689 + }, + { + "start": 27083.42, + "end": 27087.22, + "probability": 0.9789 + }, + { + "start": 27087.6, + "end": 27090.24, + "probability": 0.8686 + }, + { + "start": 27091.0, + "end": 27092.38, + "probability": 0.9847 + }, + { + "start": 27092.74, + "end": 27099.14, + "probability": 0.9818 + }, + { + "start": 27099.76, + "end": 27103.58, + "probability": 0.9502 + }, + { + "start": 27104.76, + "end": 27105.94, + "probability": 0.9756 + }, + { + "start": 27106.34, + "end": 27109.5, + "probability": 0.8492 + }, + { + "start": 27109.64, + "end": 27111.28, + "probability": 0.9253 + }, + { + "start": 27111.64, + "end": 27116.04, + "probability": 0.363 + }, + { + "start": 27116.4, + "end": 27116.44, + "probability": 0.0039 + }, + { + "start": 27116.44, + "end": 27117.44, + "probability": 0.5338 + }, + { + "start": 27117.44, + "end": 27120.44, + "probability": 0.6755 + }, + { + "start": 27120.96, + "end": 27122.46, + "probability": 0.5857 + }, + { + "start": 27123.22, + "end": 27123.74, + "probability": 0.4786 + }, + { + "start": 27123.74, + "end": 27125.34, + "probability": 0.7708 + }, + { + "start": 27125.56, + "end": 27127.75, + "probability": 0.6663 + }, + { + "start": 27128.08, + "end": 27128.63, + "probability": 0.5806 + }, + { + "start": 27128.78, + "end": 27129.36, + "probability": 0.5145 + }, + { + "start": 27129.36, + "end": 27130.94, + "probability": 0.9279 + }, + { + "start": 27130.98, + "end": 27131.75, + "probability": 0.6431 + }, + { + "start": 27131.86, + "end": 27132.26, + "probability": 0.8616 + }, + { + "start": 27132.34, + "end": 27133.12, + "probability": 0.9066 + }, + { + "start": 27133.42, + "end": 27134.46, + "probability": 0.0259 + }, + { + "start": 27134.72, + "end": 27136.5, + "probability": 0.6923 + }, + { + "start": 27136.66, + "end": 27137.21, + "probability": 0.5987 + }, + { + "start": 27137.58, + "end": 27138.98, + "probability": 0.7491 + }, + { + "start": 27139.72, + "end": 27141.7, + "probability": 0.7021 + }, + { + "start": 27141.7, + "end": 27142.5, + "probability": 0.381 + }, + { + "start": 27143.4, + "end": 27144.17, + "probability": 0.6231 + }, + { + "start": 27145.0, + "end": 27147.22, + "probability": 0.8639 + }, + { + "start": 27147.7, + "end": 27148.72, + "probability": 0.5074 + }, + { + "start": 27149.12, + "end": 27152.18, + "probability": 0.0452 + }, + { + "start": 27152.18, + "end": 27152.18, + "probability": 0.3592 + }, + { + "start": 27152.18, + "end": 27152.92, + "probability": 0.2179 + }, + { + "start": 27152.92, + "end": 27154.36, + "probability": 0.6449 + }, + { + "start": 27154.36, + "end": 27157.12, + "probability": 0.4647 + }, + { + "start": 27157.76, + "end": 27157.76, + "probability": 0.323 + }, + { + "start": 27157.78, + "end": 27159.98, + "probability": 0.5457 + }, + { + "start": 27159.98, + "end": 27169.64, + "probability": 0.7809 + }, + { + "start": 27170.14, + "end": 27171.16, + "probability": 0.6687 + }, + { + "start": 27171.8, + "end": 27172.98, + "probability": 0.792 + }, + { + "start": 27173.48, + "end": 27175.56, + "probability": 0.4779 + }, + { + "start": 27176.16, + "end": 27178.28, + "probability": 0.8028 + }, + { + "start": 27178.28, + "end": 27180.61, + "probability": 0.7661 + }, + { + "start": 27181.46, + "end": 27183.72, + "probability": 0.9137 + }, + { + "start": 27183.92, + "end": 27188.7, + "probability": 0.5224 + }, + { + "start": 27189.1, + "end": 27193.94, + "probability": 0.7646 + }, + { + "start": 27194.24, + "end": 27196.66, + "probability": 0.5423 + }, + { + "start": 27197.0, + "end": 27201.02, + "probability": 0.6294 + }, + { + "start": 27201.52, + "end": 27203.12, + "probability": 0.9414 + }, + { + "start": 27203.66, + "end": 27205.84, + "probability": 0.5713 + }, + { + "start": 27206.0, + "end": 27207.82, + "probability": 0.4479 + }, + { + "start": 27208.08, + "end": 27209.18, + "probability": 0.4454 + }, + { + "start": 27209.22, + "end": 27209.22, + "probability": 0.52 + }, + { + "start": 27209.24, + "end": 27210.44, + "probability": 0.4924 + }, + { + "start": 27210.48, + "end": 27211.24, + "probability": 0.8318 + }, + { + "start": 27211.42, + "end": 27212.04, + "probability": 0.6929 + }, + { + "start": 27212.62, + "end": 27213.3, + "probability": 0.545 + }, + { + "start": 27213.74, + "end": 27217.2, + "probability": 0.4971 + }, + { + "start": 27217.86, + "end": 27222.26, + "probability": 0.501 + }, + { + "start": 27222.72, + "end": 27223.56, + "probability": 0.7915 + }, + { + "start": 27224.03, + "end": 27224.48, + "probability": 0.6963 + }, + { + "start": 27224.48, + "end": 27225.8, + "probability": 0.5436 + }, + { + "start": 27226.14, + "end": 27227.56, + "probability": 0.7003 + }, + { + "start": 27227.6, + "end": 27229.32, + "probability": 0.9435 + }, + { + "start": 27229.72, + "end": 27230.44, + "probability": 0.6543 + }, + { + "start": 27230.48, + "end": 27231.0, + "probability": 0.5602 + }, + { + "start": 27231.0, + "end": 27231.76, + "probability": 0.1291 + }, + { + "start": 27231.76, + "end": 27232.04, + "probability": 0.6951 + }, + { + "start": 27232.04, + "end": 27232.36, + "probability": 0.3412 + }, + { + "start": 27232.92, + "end": 27238.12, + "probability": 0.2481 + }, + { + "start": 27238.12, + "end": 27239.72, + "probability": 0.4728 + }, + { + "start": 27239.78, + "end": 27240.96, + "probability": 0.4592 + }, + { + "start": 27242.1, + "end": 27243.58, + "probability": 0.0343 + }, + { + "start": 27243.58, + "end": 27243.8, + "probability": 0.2485 + }, + { + "start": 27243.8, + "end": 27245.52, + "probability": 0.5371 + }, + { + "start": 27246.9, + "end": 27248.24, + "probability": 0.2116 + }, + { + "start": 27248.56, + "end": 27250.49, + "probability": 0.4842 + }, + { + "start": 27250.54, + "end": 27251.79, + "probability": 0.2508 + }, + { + "start": 27252.52, + "end": 27254.12, + "probability": 0.6731 + }, + { + "start": 27254.28, + "end": 27255.22, + "probability": 0.2222 + }, + { + "start": 27256.84, + "end": 27259.02, + "probability": 0.2202 + }, + { + "start": 27259.14, + "end": 27259.98, + "probability": 0.3359 + }, + { + "start": 27260.34, + "end": 27261.0, + "probability": 0.5276 + }, + { + "start": 27261.12, + "end": 27262.04, + "probability": 0.258 + }, + { + "start": 27262.24, + "end": 27263.7, + "probability": 0.0489 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.0, + "end": 27333.0, + "probability": 0.0 + }, + { + "start": 27333.56, + "end": 27336.42, + "probability": 0.0294 + }, + { + "start": 27336.78, + "end": 27338.16, + "probability": 0.0843 + }, + { + "start": 27339.26, + "end": 27339.42, + "probability": 0.1323 + }, + { + "start": 27340.24, + "end": 27341.76, + "probability": 0.4258 + }, + { + "start": 27342.12, + "end": 27344.98, + "probability": 0.1357 + }, + { + "start": 27347.8, + "end": 27348.64, + "probability": 0.4508 + }, + { + "start": 27349.42, + "end": 27349.68, + "probability": 0.477 + }, + { + "start": 27349.84, + "end": 27352.92, + "probability": 0.5447 + }, + { + "start": 27352.92, + "end": 27353.14, + "probability": 0.4998 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.0, + "end": 28091.0, + "probability": 0.0 + }, + { + "start": 28091.94, + "end": 28092.36, + "probability": 0.0361 + }, + { + "start": 28092.36, + "end": 28092.8, + "probability": 0.5246 + }, + { + "start": 28092.9, + "end": 28094.3, + "probability": 0.7264 + }, + { + "start": 28094.98, + "end": 28101.98, + "probability": 0.863 + }, + { + "start": 28103.38, + "end": 28105.2, + "probability": 0.844 + }, + { + "start": 28105.34, + "end": 28107.46, + "probability": 0.2172 + }, + { + "start": 28108.02, + "end": 28108.64, + "probability": 0.3666 + }, + { + "start": 28108.64, + "end": 28109.38, + "probability": 0.5783 + }, + { + "start": 28109.42, + "end": 28110.44, + "probability": 0.579 + }, + { + "start": 28110.48, + "end": 28112.16, + "probability": 0.752 + }, + { + "start": 28112.24, + "end": 28113.62, + "probability": 0.8276 + }, + { + "start": 28115.26, + "end": 28118.34, + "probability": 0.846 + }, + { + "start": 28119.7, + "end": 28120.5, + "probability": 0.7765 + }, + { + "start": 28121.54, + "end": 28124.68, + "probability": 0.7812 + }, + { + "start": 28125.34, + "end": 28126.1, + "probability": 0.9748 + }, + { + "start": 28127.16, + "end": 28127.32, + "probability": 0.8533 + }, + { + "start": 28127.92, + "end": 28130.12, + "probability": 0.9255 + }, + { + "start": 28130.74, + "end": 28132.42, + "probability": 0.9587 + }, + { + "start": 28133.74, + "end": 28134.36, + "probability": 0.7255 + }, + { + "start": 28135.8, + "end": 28137.14, + "probability": 0.9614 + }, + { + "start": 28137.24, + "end": 28138.5, + "probability": 0.0149 + }, + { + "start": 28139.84, + "end": 28141.36, + "probability": 0.77 + }, + { + "start": 28142.42, + "end": 28144.82, + "probability": 0.869 + }, + { + "start": 28145.58, + "end": 28148.14, + "probability": 0.4886 + }, + { + "start": 28148.34, + "end": 28151.02, + "probability": 0.6971 + }, + { + "start": 28152.1, + "end": 28153.26, + "probability": 0.7534 + }, + { + "start": 28153.38, + "end": 28154.74, + "probability": 0.823 + }, + { + "start": 28154.84, + "end": 28155.94, + "probability": 0.8689 + }, + { + "start": 28155.98, + "end": 28158.36, + "probability": 0.9272 + }, + { + "start": 28159.64, + "end": 28161.32, + "probability": 0.8724 + }, + { + "start": 28161.58, + "end": 28162.7, + "probability": 0.5962 + }, + { + "start": 28162.76, + "end": 28164.36, + "probability": 0.8697 + }, + { + "start": 28164.78, + "end": 28165.92, + "probability": 0.8999 + }, + { + "start": 28166.78, + "end": 28168.6, + "probability": 0.9419 + }, + { + "start": 28169.54, + "end": 28170.6, + "probability": 0.9075 + }, + { + "start": 28170.62, + "end": 28171.62, + "probability": 0.9483 + }, + { + "start": 28171.7, + "end": 28172.92, + "probability": 0.9454 + }, + { + "start": 28173.25, + "end": 28174.58, + "probability": 0.4242 + }, + { + "start": 28174.64, + "end": 28176.54, + "probability": 0.7481 + }, + { + "start": 28176.62, + "end": 28178.04, + "probability": 0.5365 + }, + { + "start": 28178.2, + "end": 28179.66, + "probability": 0.8167 + }, + { + "start": 28179.84, + "end": 28180.36, + "probability": 0.8889 + }, + { + "start": 28180.9, + "end": 28183.26, + "probability": 0.9458 + }, + { + "start": 28183.84, + "end": 28185.9, + "probability": 0.492 + }, + { + "start": 28185.98, + "end": 28187.1, + "probability": 0.8389 + }, + { + "start": 28187.18, + "end": 28190.46, + "probability": 0.8499 + }, + { + "start": 28190.54, + "end": 28196.68, + "probability": 0.6763 + }, + { + "start": 28198.26, + "end": 28201.08, + "probability": 0.9544 + }, + { + "start": 28201.54, + "end": 28204.46, + "probability": 0.4293 + }, + { + "start": 28205.28, + "end": 28208.6, + "probability": 0.9478 + }, + { + "start": 28208.64, + "end": 28209.64, + "probability": 0.9214 + }, + { + "start": 28209.74, + "end": 28211.52, + "probability": 0.8658 + }, + { + "start": 28212.4, + "end": 28214.12, + "probability": 0.895 + }, + { + "start": 28214.12, + "end": 28216.62, + "probability": 0.7949 + }, + { + "start": 28216.74, + "end": 28218.22, + "probability": 0.7288 + }, + { + "start": 28218.62, + "end": 28219.02, + "probability": 0.6732 + }, + { + "start": 28220.64, + "end": 28222.3, + "probability": 0.9318 + }, + { + "start": 28225.15, + "end": 28226.58, + "probability": 0.979 + }, + { + "start": 28226.66, + "end": 28228.1, + "probability": 0.9059 + }, + { + "start": 28228.12, + "end": 28230.34, + "probability": 0.7587 + }, + { + "start": 28230.92, + "end": 28232.66, + "probability": 0.9607 + }, + { + "start": 28232.72, + "end": 28233.84, + "probability": 0.3455 + }, + { + "start": 28235.08, + "end": 28236.4, + "probability": 0.6047 + }, + { + "start": 28236.4, + "end": 28237.76, + "probability": 0.8272 + }, + { + "start": 28237.8, + "end": 28239.4, + "probability": 0.911 + }, + { + "start": 28239.4, + "end": 28241.0, + "probability": 0.7563 + }, + { + "start": 28241.02, + "end": 28241.76, + "probability": 0.7601 + }, + { + "start": 28245.38, + "end": 28248.38, + "probability": 0.9961 + }, + { + "start": 28250.66, + "end": 28255.08, + "probability": 0.5101 + }, + { + "start": 28255.9, + "end": 28257.02, + "probability": 0.8572 + }, + { + "start": 28258.33, + "end": 28262.32, + "probability": 0.1106 + }, + { + "start": 28264.1, + "end": 28264.16, + "probability": 0.0009 + }, + { + "start": 28265.52, + "end": 28266.76, + "probability": 0.0637 + }, + { + "start": 28387.16, + "end": 28389.38, + "probability": 0.9148 + }, + { + "start": 28389.5, + "end": 28391.92, + "probability": 0.7515 + }, + { + "start": 28391.98, + "end": 28392.96, + "probability": 0.5954 + }, + { + "start": 28393.12, + "end": 28394.78, + "probability": 0.8039 + }, + { + "start": 28395.38, + "end": 28397.9, + "probability": 0.9293 + }, + { + "start": 28398.42, + "end": 28400.32, + "probability": 0.1885 + }, + { + "start": 28400.76, + "end": 28401.7, + "probability": 0.1457 + }, + { + "start": 28401.7, + "end": 28404.64, + "probability": 0.6569 + }, + { + "start": 28409.22, + "end": 28411.06, + "probability": 0.7975 + }, + { + "start": 28411.66, + "end": 28414.36, + "probability": 0.6934 + }, + { + "start": 28415.12, + "end": 28417.92, + "probability": 0.985 + }, + { + "start": 28418.02, + "end": 28420.18, + "probability": 0.9758 + }, + { + "start": 28420.22, + "end": 28420.62, + "probability": 0.8986 + }, + { + "start": 28422.14, + "end": 28423.42, + "probability": 0.9456 + }, + { + "start": 28423.54, + "end": 28425.6, + "probability": 0.9235 + }, + { + "start": 28425.66, + "end": 28427.66, + "probability": 0.8389 + }, + { + "start": 28427.76, + "end": 28428.6, + "probability": 0.6563 + }, + { + "start": 28428.76, + "end": 28430.34, + "probability": 0.9839 + }, + { + "start": 28431.36, + "end": 28434.64, + "probability": 0.9981 + }, + { + "start": 28466.58, + "end": 28468.36, + "probability": 0.632 + }, + { + "start": 28469.88, + "end": 28474.16, + "probability": 0.9863 + }, + { + "start": 28474.16, + "end": 28477.08, + "probability": 0.956 + }, + { + "start": 28478.28, + "end": 28482.22, + "probability": 0.8916 + }, + { + "start": 28483.08, + "end": 28488.36, + "probability": 0.9908 + }, + { + "start": 28488.94, + "end": 28493.38, + "probability": 0.9839 + }, + { + "start": 28494.18, + "end": 28496.0, + "probability": 0.9541 + }, + { + "start": 28496.76, + "end": 28499.66, + "probability": 0.9611 + }, + { + "start": 28500.52, + "end": 28506.42, + "probability": 0.9559 + }, + { + "start": 28507.26, + "end": 28508.22, + "probability": 0.9808 + }, + { + "start": 28509.14, + "end": 28510.38, + "probability": 0.9893 + }, + { + "start": 28511.34, + "end": 28513.86, + "probability": 0.5788 + }, + { + "start": 28515.12, + "end": 28516.98, + "probability": 0.991 + }, + { + "start": 28521.32, + "end": 28524.84, + "probability": 0.8175 + }, + { + "start": 28525.82, + "end": 28527.3, + "probability": 0.3497 + }, + { + "start": 28527.3, + "end": 28531.74, + "probability": 0.8821 + }, + { + "start": 28532.58, + "end": 28536.14, + "probability": 0.892 + }, + { + "start": 28536.66, + "end": 28540.36, + "probability": 0.9937 + }, + { + "start": 28540.6, + "end": 28541.05, + "probability": 0.9683 + }, + { + "start": 28543.3, + "end": 28544.14, + "probability": 0.7579 + }, + { + "start": 28544.42, + "end": 28547.16, + "probability": 0.9385 + }, + { + "start": 28547.42, + "end": 28549.04, + "probability": 0.7109 + }, + { + "start": 28549.86, + "end": 28552.36, + "probability": 0.9544 + }, + { + "start": 28552.84, + "end": 28554.34, + "probability": 0.9338 + }, + { + "start": 28554.44, + "end": 28556.16, + "probability": 0.6485 + }, + { + "start": 28556.22, + "end": 28560.06, + "probability": 0.9473 + }, + { + "start": 28560.96, + "end": 28564.46, + "probability": 0.8188 + }, + { + "start": 28565.5, + "end": 28566.34, + "probability": 0.7722 + }, + { + "start": 28566.5, + "end": 28567.1, + "probability": 0.6296 + }, + { + "start": 28567.38, + "end": 28570.06, + "probability": 0.9443 + }, + { + "start": 28570.78, + "end": 28571.38, + "probability": 0.8292 + }, + { + "start": 28572.04, + "end": 28574.58, + "probability": 0.9777 + }, + { + "start": 28575.1, + "end": 28577.66, + "probability": 0.9435 + }, + { + "start": 28578.26, + "end": 28581.34, + "probability": 0.9932 + }, + { + "start": 28581.46, + "end": 28582.34, + "probability": 0.5388 + }, + { + "start": 28582.58, + "end": 28587.16, + "probability": 0.991 + }, + { + "start": 28587.74, + "end": 28588.42, + "probability": 0.8145 + }, + { + "start": 28590.04, + "end": 28592.74, + "probability": 0.7877 + }, + { + "start": 28594.9, + "end": 28599.22, + "probability": 0.9972 + }, + { + "start": 28599.76, + "end": 28602.28, + "probability": 0.9019 + }, + { + "start": 28603.24, + "end": 28604.32, + "probability": 0.649 + }, + { + "start": 28605.64, + "end": 28608.26, + "probability": 0.7289 + }, + { + "start": 28608.5, + "end": 28610.9, + "probability": 0.9873 + }, + { + "start": 28611.5, + "end": 28614.6, + "probability": 0.9967 + }, + { + "start": 28615.82, + "end": 28617.76, + "probability": 0.9444 + }, + { + "start": 28618.58, + "end": 28621.26, + "probability": 0.9982 + }, + { + "start": 28622.0, + "end": 28624.56, + "probability": 0.9847 + }, + { + "start": 28624.78, + "end": 28627.92, + "probability": 0.9814 + }, + { + "start": 28628.6, + "end": 28630.26, + "probability": 0.9131 + }, + { + "start": 28630.56, + "end": 28631.3, + "probability": 0.5926 + }, + { + "start": 28631.96, + "end": 28633.64, + "probability": 0.7202 + }, + { + "start": 28634.34, + "end": 28639.78, + "probability": 0.9331 + }, + { + "start": 28640.5, + "end": 28642.56, + "probability": 0.9706 + }, + { + "start": 28643.48, + "end": 28645.54, + "probability": 0.9939 + }, + { + "start": 28645.82, + "end": 28646.58, + "probability": 0.5285 + }, + { + "start": 28646.64, + "end": 28647.73, + "probability": 0.9679 + }, + { + "start": 28648.18, + "end": 28649.22, + "probability": 0.9808 + }, + { + "start": 28649.46, + "end": 28650.84, + "probability": 0.9778 + }, + { + "start": 28651.3, + "end": 28655.98, + "probability": 0.8193 + }, + { + "start": 28656.34, + "end": 28658.06, + "probability": 0.9904 + }, + { + "start": 28658.12, + "end": 28659.78, + "probability": 0.9235 + }, + { + "start": 28659.84, + "end": 28660.18, + "probability": 0.7371 + }, + { + "start": 28660.66, + "end": 28663.06, + "probability": 0.986 + }, + { + "start": 28663.6, + "end": 28666.58, + "probability": 0.959 + }, + { + "start": 28667.04, + "end": 28668.18, + "probability": 0.6589 + }, + { + "start": 28668.3, + "end": 28669.62, + "probability": 0.9051 + }, + { + "start": 28670.26, + "end": 28671.94, + "probability": 0.7523 + }, + { + "start": 28672.54, + "end": 28676.7, + "probability": 0.8644 + }, + { + "start": 28676.88, + "end": 28677.58, + "probability": 0.764 + }, + { + "start": 28677.82, + "end": 28680.34, + "probability": 0.9688 + }, + { + "start": 28680.74, + "end": 28681.64, + "probability": 0.8312 + }, + { + "start": 28681.8, + "end": 28683.2, + "probability": 0.9617 + }, + { + "start": 28683.98, + "end": 28685.7, + "probability": 0.9764 + }, + { + "start": 28687.72, + "end": 28691.02, + "probability": 0.9805 + }, + { + "start": 28691.08, + "end": 28692.56, + "probability": 0.9742 + }, + { + "start": 28693.18, + "end": 28694.92, + "probability": 0.9625 + }, + { + "start": 28695.0, + "end": 28697.26, + "probability": 0.9786 + }, + { + "start": 28697.62, + "end": 28699.6, + "probability": 0.8807 + }, + { + "start": 28699.6, + "end": 28704.28, + "probability": 0.9026 + }, + { + "start": 28705.28, + "end": 28707.28, + "probability": 0.9404 + }, + { + "start": 28708.58, + "end": 28712.78, + "probability": 0.9903 + }, + { + "start": 28713.2, + "end": 28714.86, + "probability": 0.7986 + }, + { + "start": 28715.72, + "end": 28718.43, + "probability": 0.9377 + }, + { + "start": 28718.78, + "end": 28719.38, + "probability": 0.7724 + }, + { + "start": 28719.78, + "end": 28721.86, + "probability": 0.7031 + }, + { + "start": 28722.62, + "end": 28724.12, + "probability": 0.9075 + }, + { + "start": 28725.32, + "end": 28729.08, + "probability": 0.8538 + }, + { + "start": 28729.28, + "end": 28734.13, + "probability": 0.9753 + }, + { + "start": 28734.72, + "end": 28735.63, + "probability": 0.9706 + }, + { + "start": 28736.74, + "end": 28736.96, + "probability": 0.5192 + }, + { + "start": 28737.08, + "end": 28737.84, + "probability": 0.7584 + }, + { + "start": 28738.1, + "end": 28739.84, + "probability": 0.9666 + }, + { + "start": 28740.26, + "end": 28742.98, + "probability": 0.9928 + }, + { + "start": 28743.16, + "end": 28744.14, + "probability": 0.908 + }, + { + "start": 28744.62, + "end": 28749.7, + "probability": 0.9941 + }, + { + "start": 28749.7, + "end": 28755.8, + "probability": 0.9945 + }, + { + "start": 28755.8, + "end": 28760.7, + "probability": 0.9656 + }, + { + "start": 28760.86, + "end": 28761.26, + "probability": 0.4864 + }, + { + "start": 28761.34, + "end": 28763.0, + "probability": 0.9668 + }, + { + "start": 28763.58, + "end": 28766.62, + "probability": 0.9044 + }, + { + "start": 28766.64, + "end": 28768.64, + "probability": 0.8699 + }, + { + "start": 28769.2, + "end": 28770.14, + "probability": 0.4223 + }, + { + "start": 28770.2, + "end": 28773.84, + "probability": 0.9958 + }, + { + "start": 28773.9, + "end": 28776.56, + "probability": 0.5355 + }, + { + "start": 28777.42, + "end": 28782.46, + "probability": 0.9124 + }, + { + "start": 28782.56, + "end": 28785.66, + "probability": 0.9876 + }, + { + "start": 28785.78, + "end": 28788.54, + "probability": 0.8794 + }, + { + "start": 28788.68, + "end": 28789.02, + "probability": 0.705 + }, + { + "start": 28789.4, + "end": 28790.37, + "probability": 0.9391 + }, + { + "start": 28791.08, + "end": 28792.06, + "probability": 0.8949 + }, + { + "start": 28792.82, + "end": 28793.02, + "probability": 0.4163 + }, + { + "start": 28793.18, + "end": 28793.66, + "probability": 0.4767 + }, + { + "start": 28793.82, + "end": 28797.6, + "probability": 0.903 + }, + { + "start": 28797.72, + "end": 28799.84, + "probability": 0.8844 + }, + { + "start": 28800.78, + "end": 28806.06, + "probability": 0.9706 + }, + { + "start": 28806.78, + "end": 28813.52, + "probability": 0.8698 + }, + { + "start": 28813.52, + "end": 28817.42, + "probability": 0.9947 + }, + { + "start": 28818.44, + "end": 28823.14, + "probability": 0.9802 + }, + { + "start": 28823.38, + "end": 28824.46, + "probability": 0.6834 + }, + { + "start": 28825.46, + "end": 28826.68, + "probability": 0.924 + }, + { + "start": 28827.7, + "end": 28830.5, + "probability": 0.9806 + }, + { + "start": 28830.5, + "end": 28833.1, + "probability": 0.8489 + }, + { + "start": 28833.14, + "end": 28835.4, + "probability": 0.9169 + }, + { + "start": 28835.92, + "end": 28836.82, + "probability": 0.7532 + }, + { + "start": 28836.92, + "end": 28839.58, + "probability": 0.9948 + }, + { + "start": 28840.26, + "end": 28843.66, + "probability": 0.9772 + }, + { + "start": 28844.22, + "end": 28846.2, + "probability": 0.9896 + }, + { + "start": 28846.48, + "end": 28846.6, + "probability": 0.5726 + }, + { + "start": 28847.34, + "end": 28848.72, + "probability": 0.785 + }, + { + "start": 28849.14, + "end": 28852.18, + "probability": 0.9982 + }, + { + "start": 28852.78, + "end": 28854.18, + "probability": 0.8976 + }, + { + "start": 28854.82, + "end": 28856.32, + "probability": 0.9416 + }, + { + "start": 28857.38, + "end": 28861.6, + "probability": 0.8535 + }, + { + "start": 28861.98, + "end": 28866.0, + "probability": 0.9749 + }, + { + "start": 28866.38, + "end": 28869.76, + "probability": 0.989 + }, + { + "start": 28869.86, + "end": 28878.68, + "probability": 0.6795 + }, + { + "start": 28880.18, + "end": 28881.28, + "probability": 0.9944 + }, + { + "start": 28882.06, + "end": 28884.92, + "probability": 0.9803 + }, + { + "start": 28886.04, + "end": 28889.18, + "probability": 0.9365 + }, + { + "start": 28889.72, + "end": 28894.3, + "probability": 0.9927 + }, + { + "start": 28895.46, + "end": 28897.28, + "probability": 0.7202 + }, + { + "start": 28898.0, + "end": 28898.7, + "probability": 0.9597 + }, + { + "start": 28899.32, + "end": 28901.84, + "probability": 0.7003 + }, + { + "start": 28902.68, + "end": 28905.08, + "probability": 0.7485 + }, + { + "start": 28906.5, + "end": 28907.72, + "probability": 0.9099 + }, + { + "start": 28907.78, + "end": 28910.32, + "probability": 0.7674 + }, + { + "start": 28910.78, + "end": 28912.09, + "probability": 0.934 + }, + { + "start": 28912.18, + "end": 28912.8, + "probability": 0.9362 + }, + { + "start": 28915.84, + "end": 28918.64, + "probability": 0.9054 + }, + { + "start": 28919.42, + "end": 28922.16, + "probability": 0.963 + }, + { + "start": 28922.7, + "end": 28923.58, + "probability": 0.7509 + }, + { + "start": 28924.22, + "end": 28926.04, + "probability": 0.7924 + }, + { + "start": 28926.5, + "end": 28927.68, + "probability": 0.8135 + }, + { + "start": 28927.8, + "end": 28931.5, + "probability": 0.9148 + }, + { + "start": 28932.08, + "end": 28933.02, + "probability": 0.947 + }, + { + "start": 28933.4, + "end": 28936.02, + "probability": 0.9857 + }, + { + "start": 28936.62, + "end": 28938.18, + "probability": 0.7996 + }, + { + "start": 28938.3, + "end": 28939.04, + "probability": 0.8422 + }, + { + "start": 28939.64, + "end": 28941.86, + "probability": 0.9292 + }, + { + "start": 28942.62, + "end": 28944.92, + "probability": 0.8131 + }, + { + "start": 28945.04, + "end": 28947.06, + "probability": 0.8755 + }, + { + "start": 28947.18, + "end": 28950.32, + "probability": 0.9137 + }, + { + "start": 28950.94, + "end": 28951.18, + "probability": 0.2908 + }, + { + "start": 28951.44, + "end": 28952.32, + "probability": 0.852 + }, + { + "start": 28952.7, + "end": 28956.53, + "probability": 0.9774 + }, + { + "start": 28956.98, + "end": 28957.76, + "probability": 0.1325 + }, + { + "start": 28958.1, + "end": 28961.88, + "probability": 0.6935 + }, + { + "start": 28962.58, + "end": 28964.46, + "probability": 0.8748 + }, + { + "start": 28964.7, + "end": 28967.92, + "probability": 0.8547 + }, + { + "start": 28968.7, + "end": 28970.1, + "probability": 0.7974 + }, + { + "start": 28970.74, + "end": 28973.12, + "probability": 0.5962 + }, + { + "start": 28973.12, + "end": 28976.14, + "probability": 0.9648 + }, + { + "start": 28976.94, + "end": 28977.96, + "probability": 0.7321 + }, + { + "start": 28978.56, + "end": 28979.66, + "probability": 0.0825 + }, + { + "start": 28979.98, + "end": 28980.9, + "probability": 0.6222 + }, + { + "start": 28981.08, + "end": 28982.78, + "probability": 0.7819 + }, + { + "start": 28983.14, + "end": 28986.68, + "probability": 0.9941 + }, + { + "start": 28986.68, + "end": 28988.61, + "probability": 0.9583 + }, + { + "start": 28989.5, + "end": 28991.48, + "probability": 0.7065 + }, + { + "start": 28991.54, + "end": 28992.42, + "probability": 0.9382 + }, + { + "start": 28992.76, + "end": 28998.18, + "probability": 0.6608 + }, + { + "start": 28998.62, + "end": 29000.4, + "probability": 0.8319 + }, + { + "start": 29000.6, + "end": 29001.72, + "probability": 0.9815 + }, + { + "start": 29002.1, + "end": 29005.24, + "probability": 0.5861 + }, + { + "start": 29005.42, + "end": 29009.28, + "probability": 0.9674 + }, + { + "start": 29010.06, + "end": 29011.72, + "probability": 0.7083 + }, + { + "start": 29012.16, + "end": 29014.22, + "probability": 0.7529 + }, + { + "start": 29014.28, + "end": 29016.04, + "probability": 0.9087 + }, + { + "start": 29016.48, + "end": 29017.48, + "probability": 0.5917 + }, + { + "start": 29017.48, + "end": 29018.04, + "probability": 0.3607 + }, + { + "start": 29018.64, + "end": 29021.48, + "probability": 0.9932 + }, + { + "start": 29021.48, + "end": 29024.68, + "probability": 0.9959 + }, + { + "start": 29025.06, + "end": 29026.12, + "probability": 0.6541 + }, + { + "start": 29026.18, + "end": 29030.44, + "probability": 0.9572 + }, + { + "start": 29030.5, + "end": 29031.76, + "probability": 0.5938 + }, + { + "start": 29033.28, + "end": 29034.36, + "probability": 0.7706 + }, + { + "start": 29034.54, + "end": 29035.16, + "probability": 0.0354 + }, + { + "start": 29035.16, + "end": 29035.24, + "probability": 0.2587 + }, + { + "start": 29035.32, + "end": 29036.05, + "probability": 0.7495 + }, + { + "start": 29036.32, + "end": 29036.76, + "probability": 0.3119 + }, + { + "start": 29036.98, + "end": 29042.64, + "probability": 0.0526 + }, + { + "start": 29042.94, + "end": 29046.01, + "probability": 0.3003 + }, + { + "start": 29046.44, + "end": 29049.26, + "probability": 0.449 + }, + { + "start": 29049.66, + "end": 29051.68, + "probability": 0.7551 + }, + { + "start": 29051.9, + "end": 29056.0, + "probability": 0.9277 + }, + { + "start": 29056.44, + "end": 29059.7, + "probability": 0.8464 + }, + { + "start": 29059.94, + "end": 29060.82, + "probability": 0.6621 + }, + { + "start": 29061.18, + "end": 29062.94, + "probability": 0.7709 + }, + { + "start": 29064.3, + "end": 29064.4, + "probability": 0.4295 + }, + { + "start": 29064.4, + "end": 29065.72, + "probability": 0.6885 + }, + { + "start": 29066.64, + "end": 29068.14, + "probability": 0.2915 + }, + { + "start": 29072.84, + "end": 29073.76, + "probability": 0.4784 + }, + { + "start": 29073.84, + "end": 29074.7, + "probability": 0.5871 + }, + { + "start": 29074.82, + "end": 29075.36, + "probability": 0.8518 + }, + { + "start": 29075.44, + "end": 29075.58, + "probability": 0.1432 + }, + { + "start": 29075.58, + "end": 29077.24, + "probability": 0.0744 + }, + { + "start": 29077.24, + "end": 29078.44, + "probability": 0.622 + }, + { + "start": 29079.08, + "end": 29082.76, + "probability": 0.0613 + }, + { + "start": 29093.34, + "end": 29096.64, + "probability": 0.3543 + }, + { + "start": 29096.72, + "end": 29097.4, + "probability": 0.0644 + }, + { + "start": 29098.34, + "end": 29101.74, + "probability": 0.2096 + }, + { + "start": 29102.78, + "end": 29103.5, + "probability": 0.3761 + }, + { + "start": 29103.5, + "end": 29104.52, + "probability": 0.7562 + }, + { + "start": 29105.24, + "end": 29105.72, + "probability": 0.9696 + }, + { + "start": 29107.5, + "end": 29109.1, + "probability": 0.3845 + }, + { + "start": 29109.1, + "end": 29113.12, + "probability": 0.0513 + }, + { + "start": 29115.86, + "end": 29117.4, + "probability": 0.8674 + }, + { + "start": 29117.5, + "end": 29122.26, + "probability": 0.9968 + }, + { + "start": 29122.42, + "end": 29123.84, + "probability": 0.5306 + }, + { + "start": 29124.68, + "end": 29127.92, + "probability": 0.9152 + }, + { + "start": 29128.36, + "end": 29133.42, + "probability": 0.9962 + }, + { + "start": 29133.42, + "end": 29137.46, + "probability": 0.998 + }, + { + "start": 29138.2, + "end": 29141.2, + "probability": 0.9722 + }, + { + "start": 29141.3, + "end": 29142.04, + "probability": 0.8135 + }, + { + "start": 29142.04, + "end": 29144.44, + "probability": 0.7723 + }, + { + "start": 29145.5, + "end": 29149.72, + "probability": 0.9916 + }, + { + "start": 29150.64, + "end": 29156.5, + "probability": 0.9805 + }, + { + "start": 29156.5, + "end": 29162.68, + "probability": 0.9954 + }, + { + "start": 29163.68, + "end": 29165.12, + "probability": 0.769 + }, + { + "start": 29165.2, + "end": 29169.04, + "probability": 0.9946 + }, + { + "start": 29169.56, + "end": 29172.46, + "probability": 0.9931 + }, + { + "start": 29172.46, + "end": 29175.32, + "probability": 0.9979 + }, + { + "start": 29175.98, + "end": 29178.54, + "probability": 0.9732 + }, + { + "start": 29179.14, + "end": 29183.4, + "probability": 0.9913 + }, + { + "start": 29184.08, + "end": 29186.4, + "probability": 0.9753 + }, + { + "start": 29186.82, + "end": 29191.46, + "probability": 0.9833 + }, + { + "start": 29192.16, + "end": 29195.38, + "probability": 0.9967 + }, + { + "start": 29195.86, + "end": 29197.88, + "probability": 0.9473 + }, + { + "start": 29197.88, + "end": 29200.96, + "probability": 0.9958 + }, + { + "start": 29201.38, + "end": 29201.5, + "probability": 0.3861 + }, + { + "start": 29201.72, + "end": 29205.8, + "probability": 0.9805 + }, + { + "start": 29205.8, + "end": 29209.56, + "probability": 0.9971 + }, + { + "start": 29211.04, + "end": 29211.67, + "probability": 0.9705 + }, + { + "start": 29212.44, + "end": 29216.9, + "probability": 0.9902 + }, + { + "start": 29217.04, + "end": 29223.22, + "probability": 0.9841 + }, + { + "start": 29223.28, + "end": 29229.58, + "probability": 0.9938 + }, + { + "start": 29230.28, + "end": 29234.58, + "probability": 0.9561 + }, + { + "start": 29236.49, + "end": 29242.76, + "probability": 0.9844 + }, + { + "start": 29242.76, + "end": 29247.7, + "probability": 0.984 + }, + { + "start": 29247.84, + "end": 29248.28, + "probability": 0.7521 + }, + { + "start": 29250.28, + "end": 29251.98, + "probability": 0.7662 + }, + { + "start": 29252.1, + "end": 29255.46, + "probability": 0.8256 + }, + { + "start": 29258.8, + "end": 29260.3, + "probability": 0.2201 + }, + { + "start": 29261.96, + "end": 29265.1, + "probability": 0.0443 + }, + { + "start": 29266.84, + "end": 29266.84, + "probability": 0.0638 + }, + { + "start": 29266.84, + "end": 29267.68, + "probability": 0.6118 + }, + { + "start": 29267.88, + "end": 29268.84, + "probability": 0.0914 + }, + { + "start": 29268.96, + "end": 29271.1, + "probability": 0.6637 + }, + { + "start": 29271.22, + "end": 29274.98, + "probability": 0.4987 + }, + { + "start": 29292.16, + "end": 29295.52, + "probability": 0.8157 + }, + { + "start": 29296.62, + "end": 29303.24, + "probability": 0.9597 + }, + { + "start": 29303.48, + "end": 29306.08, + "probability": 0.9961 + }, + { + "start": 29307.4, + "end": 29314.38, + "probability": 0.995 + }, + { + "start": 29315.1, + "end": 29320.4, + "probability": 0.9983 + }, + { + "start": 29320.96, + "end": 29325.12, + "probability": 0.9967 + }, + { + "start": 29325.84, + "end": 29329.06, + "probability": 0.9941 + }, + { + "start": 29329.5, + "end": 29333.3, + "probability": 0.9877 + }, + { + "start": 29334.42, + "end": 29338.46, + "probability": 0.965 + }, + { + "start": 29339.18, + "end": 29343.44, + "probability": 0.9928 + }, + { + "start": 29344.04, + "end": 29347.94, + "probability": 0.8518 + }, + { + "start": 29348.26, + "end": 29351.48, + "probability": 0.9878 + }, + { + "start": 29352.06, + "end": 29356.84, + "probability": 0.9425 + }, + { + "start": 29356.84, + "end": 29362.5, + "probability": 0.9938 + }, + { + "start": 29363.06, + "end": 29366.58, + "probability": 0.9692 + }, + { + "start": 29366.58, + "end": 29372.64, + "probability": 0.987 + }, + { + "start": 29372.76, + "end": 29378.58, + "probability": 0.9942 + }, + { + "start": 29379.4, + "end": 29381.26, + "probability": 0.9927 + }, + { + "start": 29381.7, + "end": 29382.82, + "probability": 0.6982 + }, + { + "start": 29382.92, + "end": 29387.79, + "probability": 0.9312 + }, + { + "start": 29389.62, + "end": 29391.62, + "probability": 0.9188 + }, + { + "start": 29392.38, + "end": 29393.1, + "probability": 0.8676 + }, + { + "start": 29394.62, + "end": 29397.54, + "probability": 0.9971 + }, + { + "start": 29398.94, + "end": 29402.5, + "probability": 0.879 + }, + { + "start": 29402.5, + "end": 29405.76, + "probability": 0.9773 + }, + { + "start": 29406.28, + "end": 29408.36, + "probability": 0.7743 + }, + { + "start": 29408.98, + "end": 29411.56, + "probability": 0.9951 + }, + { + "start": 29413.14, + "end": 29413.7, + "probability": 0.8038 + }, + { + "start": 29415.52, + "end": 29419.22, + "probability": 0.8887 + }, + { + "start": 29419.76, + "end": 29421.28, + "probability": 0.9008 + }, + { + "start": 29421.72, + "end": 29425.52, + "probability": 0.9554 + }, + { + "start": 29426.04, + "end": 29427.26, + "probability": 0.8175 + }, + { + "start": 29427.94, + "end": 29430.18, + "probability": 0.9644 + }, + { + "start": 29432.54, + "end": 29436.64, + "probability": 0.9904 + }, + { + "start": 29437.26, + "end": 29438.32, + "probability": 0.7055 + }, + { + "start": 29439.34, + "end": 29441.06, + "probability": 0.9978 + }, + { + "start": 29441.42, + "end": 29443.68, + "probability": 0.9978 + }, + { + "start": 29443.78, + "end": 29444.68, + "probability": 0.9756 + }, + { + "start": 29445.74, + "end": 29453.04, + "probability": 0.9705 + }, + { + "start": 29453.32, + "end": 29454.94, + "probability": 0.9164 + }, + { + "start": 29455.52, + "end": 29458.26, + "probability": 0.9623 + }, + { + "start": 29459.06, + "end": 29462.58, + "probability": 0.9472 + }, + { + "start": 29463.28, + "end": 29464.88, + "probability": 0.6506 + }, + { + "start": 29466.6, + "end": 29467.78, + "probability": 0.8361 + }, + { + "start": 29469.25, + "end": 29474.84, + "probability": 0.8753 + }, + { + "start": 29475.7, + "end": 29480.34, + "probability": 0.9897 + }, + { + "start": 29480.96, + "end": 29483.8, + "probability": 0.8895 + }, + { + "start": 29484.46, + "end": 29484.84, + "probability": 0.6683 + }, + { + "start": 29484.92, + "end": 29488.36, + "probability": 0.9771 + }, + { + "start": 29489.14, + "end": 29490.52, + "probability": 0.7313 + }, + { + "start": 29491.02, + "end": 29498.0, + "probability": 0.9124 + }, + { + "start": 29498.16, + "end": 29499.44, + "probability": 0.7592 + }, + { + "start": 29500.0, + "end": 29501.15, + "probability": 0.963 + }, + { + "start": 29502.16, + "end": 29505.94, + "probability": 0.9971 + }, + { + "start": 29505.94, + "end": 29510.88, + "probability": 0.9948 + }, + { + "start": 29511.74, + "end": 29512.78, + "probability": 0.9783 + }, + { + "start": 29515.22, + "end": 29515.3, + "probability": 0.4569 + }, + { + "start": 29515.3, + "end": 29517.68, + "probability": 0.7923 + }, + { + "start": 29519.4, + "end": 29521.3, + "probability": 0.9693 + }, + { + "start": 29521.84, + "end": 29523.7, + "probability": 0.4931 + }, + { + "start": 29524.64, + "end": 29526.04, + "probability": 0.3153 + }, + { + "start": 29526.04, + "end": 29528.32, + "probability": 0.1805 + }, + { + "start": 29528.32, + "end": 29528.88, + "probability": 0.4036 + }, + { + "start": 29529.64, + "end": 29530.58, + "probability": 0.5444 + }, + { + "start": 29531.2, + "end": 29533.48, + "probability": 0.6473 + }, + { + "start": 29535.08, + "end": 29536.42, + "probability": 0.8341 + }, + { + "start": 29537.2, + "end": 29538.88, + "probability": 0.6298 + }, + { + "start": 29540.52, + "end": 29544.06, + "probability": 0.6561 + }, + { + "start": 29544.08, + "end": 29545.02, + "probability": 0.678 + }, + { + "start": 29545.1, + "end": 29546.06, + "probability": 0.6862 + }, + { + "start": 29546.14, + "end": 29547.94, + "probability": 0.8534 + }, + { + "start": 29549.12, + "end": 29550.98, + "probability": 0.9452 + }, + { + "start": 29551.72, + "end": 29553.16, + "probability": 0.9812 + }, + { + "start": 29554.32, + "end": 29555.62, + "probability": 0.8935 + }, + { + "start": 29555.74, + "end": 29557.58, + "probability": 0.8963 + }, + { + "start": 29557.85, + "end": 29559.96, + "probability": 0.6904 + }, + { + "start": 29560.0, + "end": 29561.44, + "probability": 0.7355 + }, + { + "start": 29564.22, + "end": 29565.66, + "probability": 0.576 + }, + { + "start": 29566.52, + "end": 29567.2, + "probability": 0.765 + }, + { + "start": 29567.32, + "end": 29568.36, + "probability": 0.9231 + }, + { + "start": 29568.38, + "end": 29569.46, + "probability": 0.9666 + }, + { + "start": 29569.46, + "end": 29570.76, + "probability": 0.9727 + }, + { + "start": 29571.86, + "end": 29573.28, + "probability": 0.9593 + }, + { + "start": 29574.0, + "end": 29578.62, + "probability": 0.8133 + }, + { + "start": 29579.14, + "end": 29579.8, + "probability": 0.6733 + }, + { + "start": 29581.22, + "end": 29581.9, + "probability": 0.6863 + }, + { + "start": 29582.6, + "end": 29585.02, + "probability": 0.626 + }, + { + "start": 29586.78, + "end": 29588.28, + "probability": 0.8504 + }, + { + "start": 29590.19, + "end": 29594.7, + "probability": 0.8156 + }, + { + "start": 29595.72, + "end": 29597.32, + "probability": 0.7846 + }, + { + "start": 29597.4, + "end": 29598.32, + "probability": 0.7543 + }, + { + "start": 29598.38, + "end": 29599.5, + "probability": 0.8335 + }, + { + "start": 29599.56, + "end": 29600.56, + "probability": 0.9612 + }, + { + "start": 29600.56, + "end": 29602.26, + "probability": 0.905 + }, + { + "start": 29602.56, + "end": 29604.8, + "probability": 0.9729 + }, + { + "start": 29604.8, + "end": 29606.18, + "probability": 0.5683 + }, + { + "start": 29606.8, + "end": 29608.88, + "probability": 0.1242 + }, + { + "start": 29608.94, + "end": 29610.2, + "probability": 0.9133 + }, + { + "start": 29610.7, + "end": 29611.46, + "probability": 0.5107 + }, + { + "start": 29611.98, + "end": 29612.84, + "probability": 0.3866 + }, + { + "start": 29613.28, + "end": 29616.42, + "probability": 0.7375 + }, + { + "start": 29616.66, + "end": 29619.28, + "probability": 0.6621 + }, + { + "start": 29620.92, + "end": 29621.88, + "probability": 0.84 + }, + { + "start": 29623.44, + "end": 29624.54, + "probability": 0.7819 + }, + { + "start": 29627.3, + "end": 29629.72, + "probability": 0.7196 + }, + { + "start": 29630.72, + "end": 29632.04, + "probability": 0.4523 + }, + { + "start": 29632.14, + "end": 29633.68, + "probability": 0.3493 + }, + { + "start": 29633.74, + "end": 29635.9, + "probability": 0.6837 + }, + { + "start": 29635.92, + "end": 29637.16, + "probability": 0.7269 + }, + { + "start": 29637.28, + "end": 29638.72, + "probability": 0.9691 + }, + { + "start": 29640.18, + "end": 29641.34, + "probability": 0.639 + }, + { + "start": 29645.86, + "end": 29650.44, + "probability": 0.6288 + }, + { + "start": 29654.72, + "end": 29655.6, + "probability": 0.5254 + }, + { + "start": 29656.82, + "end": 29658.22, + "probability": 0.6926 + }, + { + "start": 29658.9, + "end": 29659.76, + "probability": 0.8159 + }, + { + "start": 29661.28, + "end": 29662.46, + "probability": 0.867 + }, + { + "start": 29662.5, + "end": 29663.42, + "probability": 0.7565 + }, + { + "start": 29663.46, + "end": 29665.32, + "probability": 0.9681 + }, + { + "start": 29665.4, + "end": 29666.62, + "probability": 0.8428 + }, + { + "start": 29668.18, + "end": 29669.54, + "probability": 0.967 + }, + { + "start": 29671.8, + "end": 29672.24, + "probability": 0.968 + }, + { + "start": 29673.56, + "end": 29674.22, + "probability": 0.5672 + }, + { + "start": 29678.6, + "end": 29679.04, + "probability": 0.5003 + }, + { + "start": 29679.88, + "end": 29680.36, + "probability": 0.6255 + }, + { + "start": 29680.44, + "end": 29681.74, + "probability": 0.4057 + }, + { + "start": 29681.82, + "end": 29682.68, + "probability": 0.7524 + }, + { + "start": 29682.68, + "end": 29683.62, + "probability": 0.8464 + }, + { + "start": 29683.72, + "end": 29685.16, + "probability": 0.894 + }, + { + "start": 29685.22, + "end": 29687.46, + "probability": 0.9592 + }, + { + "start": 29687.48, + "end": 29688.36, + "probability": 0.9925 + }, + { + "start": 29688.44, + "end": 29689.04, + "probability": 0.7236 + }, + { + "start": 29691.42, + "end": 29692.22, + "probability": 0.29 + }, + { + "start": 29693.26, + "end": 29695.72, + "probability": 0.5559 + }, + { + "start": 29696.84, + "end": 29698.48, + "probability": 0.7465 + }, + { + "start": 29702.16, + "end": 29703.4, + "probability": 0.5805 + }, + { + "start": 29704.2, + "end": 29705.02, + "probability": 0.5308 + }, + { + "start": 29705.52, + "end": 29706.76, + "probability": 0.6605 + }, + { + "start": 29706.86, + "end": 29708.23, + "probability": 0.855 + }, + { + "start": 29710.34, + "end": 29711.82, + "probability": 0.9469 + }, + { + "start": 29713.28, + "end": 29715.1, + "probability": 0.9286 + }, + { + "start": 29716.36, + "end": 29718.6, + "probability": 0.6545 + }, + { + "start": 29719.7, + "end": 29721.34, + "probability": 0.7669 + }, + { + "start": 29721.82, + "end": 29723.4, + "probability": 0.8704 + }, + { + "start": 29723.46, + "end": 29724.66, + "probability": 0.8376 + }, + { + "start": 29724.68, + "end": 29725.2, + "probability": 0.8604 + }, + { + "start": 29725.76, + "end": 29726.04, + "probability": 0.7444 + }, + { + "start": 29726.56, + "end": 29727.64, + "probability": 0.8459 + }, + { + "start": 29727.66, + "end": 29729.12, + "probability": 0.9089 + }, + { + "start": 29730.84, + "end": 29732.56, + "probability": 0.4504 + }, + { + "start": 29734.48, + "end": 29736.32, + "probability": 0.7326 + }, + { + "start": 29738.7, + "end": 29739.14, + "probability": 0.9119 + }, + { + "start": 29740.72, + "end": 29743.42, + "probability": 0.6973 + }, + { + "start": 29744.86, + "end": 29745.76, + "probability": 0.9056 + }, + { + "start": 29746.36, + "end": 29747.32, + "probability": 0.7582 + }, + { + "start": 29751.48, + "end": 29751.92, + "probability": 0.6742 + }, + { + "start": 29752.46, + "end": 29754.76, + "probability": 0.7642 + }, + { + "start": 29755.32, + "end": 29756.1, + "probability": 0.7602 + }, + { + "start": 29757.76, + "end": 29758.3, + "probability": 0.9814 + }, + { + "start": 29759.2, + "end": 29761.08, + "probability": 0.729 + }, + { + "start": 29762.74, + "end": 29764.07, + "probability": 0.4849 + }, + { + "start": 29765.86, + "end": 29768.46, + "probability": 0.9338 + }, + { + "start": 29776.06, + "end": 29776.8, + "probability": 0.3456 + }, + { + "start": 29777.58, + "end": 29778.56, + "probability": 0.5473 + }, + { + "start": 29780.12, + "end": 29781.54, + "probability": 0.7891 + }, + { + "start": 29785.12, + "end": 29785.96, + "probability": 0.3838 + }, + { + "start": 29788.16, + "end": 29788.62, + "probability": 0.5782 + }, + { + "start": 29789.68, + "end": 29790.5, + "probability": 0.7293 + }, + { + "start": 29791.56, + "end": 29792.24, + "probability": 0.5839 + }, + { + "start": 29792.86, + "end": 29793.88, + "probability": 0.8459 + }, + { + "start": 29794.84, + "end": 29796.44, + "probability": 0.8932 + }, + { + "start": 29796.44, + "end": 29797.86, + "probability": 0.6963 + }, + { + "start": 29797.92, + "end": 29799.26, + "probability": 0.9611 + }, + { + "start": 29801.96, + "end": 29802.72, + "probability": 0.9753 + }, + { + "start": 29803.7, + "end": 29804.56, + "probability": 0.8414 + }, + { + "start": 29809.28, + "end": 29809.6, + "probability": 0.5195 + }, + { + "start": 29810.42, + "end": 29812.26, + "probability": 0.6449 + }, + { + "start": 29813.16, + "end": 29814.16, + "probability": 0.7048 + }, + { + "start": 29815.56, + "end": 29818.0, + "probability": 0.9382 + }, + { + "start": 29820.3, + "end": 29821.68, + "probability": 0.7178 + }, + { + "start": 29823.16, + "end": 29824.04, + "probability": 0.9858 + }, + { + "start": 29824.6, + "end": 29829.5, + "probability": 0.9806 + }, + { + "start": 29830.34, + "end": 29833.04, + "probability": 0.9079 + }, + { + "start": 29833.54, + "end": 29834.9, + "probability": 0.7039 + }, + { + "start": 29835.02, + "end": 29836.04, + "probability": 0.5656 + }, + { + "start": 29836.08, + "end": 29837.8, + "probability": 0.5331 + }, + { + "start": 29837.84, + "end": 29839.12, + "probability": 0.9179 + }, + { + "start": 29839.14, + "end": 29840.38, + "probability": 0.7833 + }, + { + "start": 29840.46, + "end": 29842.12, + "probability": 0.8977 + }, + { + "start": 29842.2, + "end": 29843.18, + "probability": 0.77 + }, + { + "start": 29845.0, + "end": 29845.46, + "probability": 0.5613 + }, + { + "start": 29846.28, + "end": 29847.39, + "probability": 0.6827 + }, + { + "start": 29855.98, + "end": 29860.22, + "probability": 0.594 + }, + { + "start": 29863.36, + "end": 29865.72, + "probability": 0.9489 + }, + { + "start": 29867.36, + "end": 29868.1, + "probability": 0.5019 + }, + { + "start": 29874.46, + "end": 29875.84, + "probability": 0.2994 + }, + { + "start": 29877.68, + "end": 29880.1, + "probability": 0.4196 + }, + { + "start": 29880.16, + "end": 29881.22, + "probability": 0.7983 + }, + { + "start": 29881.28, + "end": 29883.08, + "probability": 0.6596 + }, + { + "start": 29883.1, + "end": 29884.54, + "probability": 0.9244 + }, + { + "start": 29885.08, + "end": 29886.66, + "probability": 0.8835 + }, + { + "start": 29887.46, + "end": 29888.38, + "probability": 0.6872 + }, + { + "start": 29889.84, + "end": 29890.3, + "probability": 0.9797 + }, + { + "start": 29891.6, + "end": 29893.2, + "probability": 0.708 + }, + { + "start": 29894.36, + "end": 29894.82, + "probability": 0.4128 + }, + { + "start": 29894.94, + "end": 29895.96, + "probability": 0.6 + }, + { + "start": 29895.98, + "end": 29897.4, + "probability": 0.7329 + }, + { + "start": 29899.06, + "end": 29901.48, + "probability": 0.8635 + }, + { + "start": 29902.92, + "end": 29904.14, + "probability": 0.9487 + }, + { + "start": 29904.26, + "end": 29905.3, + "probability": 0.904 + }, + { + "start": 29905.32, + "end": 29906.46, + "probability": 0.5037 + }, + { + "start": 29906.46, + "end": 29907.48, + "probability": 0.716 + }, + { + "start": 29907.56, + "end": 29908.0, + "probability": 0.8025 + }, + { + "start": 29908.68, + "end": 29909.44, + "probability": 0.6477 + }, + { + "start": 29909.46, + "end": 29910.48, + "probability": 0.6197 + }, + { + "start": 29910.52, + "end": 29911.85, + "probability": 0.9163 + }, + { + "start": 29912.54, + "end": 29913.42, + "probability": 0.9154 + }, + { + "start": 29914.24, + "end": 29915.82, + "probability": 0.9601 + }, + { + "start": 29916.54, + "end": 29918.34, + "probability": 0.6262 + }, + { + "start": 29920.24, + "end": 29922.58, + "probability": 0.587 + }, + { + "start": 29924.76, + "end": 29925.24, + "probability": 0.6322 + }, + { + "start": 29926.86, + "end": 29928.7, + "probability": 0.8765 + }, + { + "start": 29930.1, + "end": 29931.26, + "probability": 0.8677 + }, + { + "start": 29931.38, + "end": 29932.22, + "probability": 0.4966 + }, + { + "start": 29932.34, + "end": 29933.34, + "probability": 0.7083 + }, + { + "start": 29933.38, + "end": 29934.38, + "probability": 0.952 + }, + { + "start": 29935.02, + "end": 29935.66, + "probability": 0.9362 + }, + { + "start": 29935.7, + "end": 29936.6, + "probability": 0.8993 + }, + { + "start": 29936.72, + "end": 29937.94, + "probability": 0.8999 + }, + { + "start": 29938.52, + "end": 29940.02, + "probability": 0.9436 + }, + { + "start": 29940.02, + "end": 29941.68, + "probability": 0.5269 + }, + { + "start": 29941.84, + "end": 29942.6, + "probability": 0.6848 + }, + { + "start": 29943.12, + "end": 29944.07, + "probability": 0.3929 + }, + { + "start": 29945.32, + "end": 29946.76, + "probability": 0.8076 + }, + { + "start": 29948.0, + "end": 29949.32, + "probability": 0.4954 + }, + { + "start": 29949.38, + "end": 29950.4, + "probability": 0.4243 + }, + { + "start": 29951.34, + "end": 29953.08, + "probability": 0.7017 + }, + { + "start": 29953.54, + "end": 29955.2, + "probability": 0.5389 + }, + { + "start": 29955.32, + "end": 29956.5, + "probability": 0.6771 + }, + { + "start": 29958.04, + "end": 29959.08, + "probability": 0.8876 + }, + { + "start": 29959.2, + "end": 29960.8, + "probability": 0.9453 + }, + { + "start": 29960.9, + "end": 29962.8, + "probability": 0.9085 + }, + { + "start": 29966.92, + "end": 29967.36, + "probability": 0.5681 + }, + { + "start": 29968.38, + "end": 29968.74, + "probability": 0.681 + }, + { + "start": 29968.76, + "end": 29969.72, + "probability": 0.6367 + }, + { + "start": 29969.72, + "end": 29970.88, + "probability": 0.8267 + }, + { + "start": 29970.98, + "end": 29972.56, + "probability": 0.8727 + }, + { + "start": 29973.64, + "end": 29974.92, + "probability": 0.944 + }, + { + "start": 29975.74, + "end": 29977.2, + "probability": 0.6133 + }, + { + "start": 29977.26, + "end": 29978.16, + "probability": 0.9568 + }, + { + "start": 29978.16, + "end": 29979.04, + "probability": 0.8082 + }, + { + "start": 29979.14, + "end": 29980.5, + "probability": 0.7045 + }, + { + "start": 29982.54, + "end": 29983.56, + "probability": 0.9215 + }, + { + "start": 29984.52, + "end": 29985.44, + "probability": 0.9481 + }, + { + "start": 29985.54, + "end": 29986.72, + "probability": 0.949 + }, + { + "start": 29986.76, + "end": 29988.42, + "probability": 0.8655 + }, + { + "start": 29988.46, + "end": 29989.66, + "probability": 0.2556 + }, + { + "start": 29989.78, + "end": 29990.86, + "probability": 0.5655 + }, + { + "start": 29990.88, + "end": 29992.22, + "probability": 0.5495 + }, + { + "start": 29993.88, + "end": 29995.14, + "probability": 0.8116 + }, + { + "start": 29995.74, + "end": 29996.18, + "probability": 0.7891 + }, + { + "start": 29997.76, + "end": 29998.6, + "probability": 0.7346 + }, + { + "start": 29998.66, + "end": 30000.22, + "probability": 0.8528 + }, + { + "start": 30000.26, + "end": 30001.62, + "probability": 0.7574 + }, + { + "start": 30003.28, + "end": 30004.62, + "probability": 0.9372 + }, + { + "start": 30004.74, + "end": 30005.82, + "probability": 0.7541 + }, + { + "start": 30005.88, + "end": 30007.54, + "probability": 0.7093 + }, + { + "start": 30008.24, + "end": 30010.06, + "probability": 0.6887 + }, + { + "start": 30010.76, + "end": 30011.18, + "probability": 0.8274 + }, + { + "start": 30012.4, + "end": 30013.2, + "probability": 0.517 + }, + { + "start": 30014.72, + "end": 30016.58, + "probability": 0.8153 + }, + { + "start": 30017.76, + "end": 30018.82, + "probability": 0.8498 + }, + { + "start": 30019.9, + "end": 30021.08, + "probability": 0.6711 + }, + { + "start": 30021.74, + "end": 30022.32, + "probability": 0.3786 + }, + { + "start": 30022.32, + "end": 30023.48, + "probability": 0.8128 + }, + { + "start": 30023.5, + "end": 30024.92, + "probability": 0.713 + }, + { + "start": 30026.16, + "end": 30026.68, + "probability": 0.908 + }, + { + "start": 30028.3, + "end": 30028.91, + "probability": 0.4207 + }, + { + "start": 30031.11, + "end": 30032.8, + "probability": 0.4117 + }, + { + "start": 30032.8, + "end": 30033.01, + "probability": 0.481 + }, + { + "start": 30033.76, + "end": 30035.18, + "probability": 0.8728 + }, + { + "start": 30035.94, + "end": 30037.44, + "probability": 0.8725 + }, + { + "start": 30038.26, + "end": 30039.8, + "probability": 0.8131 + }, + { + "start": 30039.8, + "end": 30041.2, + "probability": 0.6221 + }, + { + "start": 30042.93, + "end": 30045.22, + "probability": 0.361 + }, + { + "start": 30045.22, + "end": 30045.54, + "probability": 0.4088 + }, + { + "start": 30045.72, + "end": 30047.1, + "probability": 0.6307 + }, + { + "start": 30047.96, + "end": 30050.04, + "probability": 0.7812 + }, + { + "start": 30050.98, + "end": 30051.62, + "probability": 0.8675 + }, + { + "start": 30051.7, + "end": 30052.6, + "probability": 0.2604 + }, + { + "start": 30052.76, + "end": 30053.84, + "probability": 0.6239 + }, + { + "start": 30053.86, + "end": 30054.8, + "probability": 0.7727 + }, + { + "start": 30055.22, + "end": 30056.24, + "probability": 0.8019 + }, + { + "start": 30056.3, + "end": 30057.28, + "probability": 0.6419 + }, + { + "start": 30057.3, + "end": 30057.94, + "probability": 0.9606 + }, + { + "start": 30060.01, + "end": 30062.66, + "probability": 0.998 + }, + { + "start": 30064.68, + "end": 30065.6, + "probability": 0.6264 + }, + { + "start": 30065.7, + "end": 30068.4, + "probability": 0.9154 + }, + { + "start": 30070.58, + "end": 30072.14, + "probability": 0.0243 + }, + { + "start": 30083.6, + "end": 30085.3, + "probability": 0.1763 + }, + { + "start": 30085.92, + "end": 30086.0, + "probability": 0.0284 + }, + { + "start": 30089.06, + "end": 30090.3, + "probability": 0.1149 + }, + { + "start": 30091.52, + "end": 30091.52, + "probability": 0.001 + }, + { + "start": 30092.88, + "end": 30093.56, + "probability": 0.015 + }, + { + "start": 30093.56, + "end": 30094.1, + "probability": 0.0189 + }, + { + "start": 30107.47, + "end": 30107.85, + "probability": 0.0685 + }, + { + "start": 30141.2, + "end": 30144.16, + "probability": 0.6414 + }, + { + "start": 30147.18, + "end": 30147.4, + "probability": 0.5947 + }, + { + "start": 30148.28, + "end": 30148.78, + "probability": 0.2134 + }, + { + "start": 30149.02, + "end": 30149.12, + "probability": 0.1824 + }, + { + "start": 30152.48, + "end": 30152.52, + "probability": 0.2147 + }, + { + "start": 30152.52, + "end": 30156.2, + "probability": 0.7862 + }, + { + "start": 30156.28, + "end": 30156.52, + "probability": 0.7432 + }, + { + "start": 30158.16, + "end": 30159.1, + "probability": 0.8112 + }, + { + "start": 30159.16, + "end": 30160.86, + "probability": 0.7708 + }, + { + "start": 30161.1, + "end": 30162.94, + "probability": 0.7369 + }, + { + "start": 30162.94, + "end": 30163.7, + "probability": 0.2624 + }, + { + "start": 30163.96, + "end": 30165.76, + "probability": 0.9691 + }, + { + "start": 30166.32, + "end": 30168.98, + "probability": 0.9509 + }, + { + "start": 30185.4, + "end": 30188.32, + "probability": 0.0574 + }, + { + "start": 30189.16, + "end": 30190.24, + "probability": 0.9769 + }, + { + "start": 30190.86, + "end": 30191.28, + "probability": 0.4749 + }, + { + "start": 30191.34, + "end": 30192.44, + "probability": 0.9329 + }, + { + "start": 30192.48, + "end": 30195.8, + "probability": 0.9479 + }, + { + "start": 30195.86, + "end": 30196.36, + "probability": 0.9353 + }, + { + "start": 30196.4, + "end": 30197.12, + "probability": 0.9716 + }, + { + "start": 30197.14, + "end": 30198.24, + "probability": 0.8276 + }, + { + "start": 30198.48, + "end": 30201.78, + "probability": 0.8659 + }, + { + "start": 30203.04, + "end": 30203.04, + "probability": 0.2363 + }, + { + "start": 30203.04, + "end": 30203.3, + "probability": 0.2524 + }, + { + "start": 30204.06, + "end": 30206.33, + "probability": 0.5221 + }, + { + "start": 30206.4, + "end": 30207.58, + "probability": 0.9841 + }, + { + "start": 30208.0, + "end": 30208.62, + "probability": 0.2907 + }, + { + "start": 30209.3, + "end": 30212.56, + "probability": 0.5955 + }, + { + "start": 30213.2, + "end": 30213.59, + "probability": 0.6007 + }, + { + "start": 30213.64, + "end": 30214.46, + "probability": 0.7372 + }, + { + "start": 30214.54, + "end": 30215.88, + "probability": 0.7372 + }, + { + "start": 30216.22, + "end": 30216.78, + "probability": 0.916 + }, + { + "start": 30216.84, + "end": 30220.16, + "probability": 0.8844 + }, + { + "start": 30220.26, + "end": 30221.06, + "probability": 0.7961 + }, + { + "start": 30221.16, + "end": 30223.48, + "probability": 0.9431 + }, + { + "start": 30223.7, + "end": 30224.32, + "probability": 0.8997 + }, + { + "start": 30224.78, + "end": 30225.78, + "probability": 0.2914 + }, + { + "start": 30225.82, + "end": 30226.44, + "probability": 0.6322 + }, + { + "start": 30227.18, + "end": 30227.4, + "probability": 0.321 + }, + { + "start": 30227.4, + "end": 30227.98, + "probability": 0.428 + }, + { + "start": 30228.2, + "end": 30228.82, + "probability": 0.8022 + }, + { + "start": 30228.98, + "end": 30229.76, + "probability": 0.7412 + }, + { + "start": 30229.84, + "end": 30230.43, + "probability": 0.7178 + }, + { + "start": 30230.8, + "end": 30231.72, + "probability": 0.8238 + }, + { + "start": 30231.98, + "end": 30232.54, + "probability": 0.8817 + }, + { + "start": 30247.44, + "end": 30248.16, + "probability": 0.8011 + }, + { + "start": 30248.7, + "end": 30249.16, + "probability": 0.7566 + }, + { + "start": 30249.5, + "end": 30249.74, + "probability": 0.2207 + }, + { + "start": 30250.84, + "end": 30253.88, + "probability": 0.8328 + }, + { + "start": 30254.44, + "end": 30255.66, + "probability": 0.7832 + }, + { + "start": 30256.56, + "end": 30262.68, + "probability": 0.9635 + }, + { + "start": 30263.95, + "end": 30267.12, + "probability": 0.9811 + }, + { + "start": 30268.92, + "end": 30268.92, + "probability": 0.0888 + }, + { + "start": 30268.92, + "end": 30272.14, + "probability": 0.9867 + }, + { + "start": 30272.28, + "end": 30274.04, + "probability": 0.3693 + }, + { + "start": 30274.2, + "end": 30275.08, + "probability": 0.7083 + }, + { + "start": 30275.5, + "end": 30276.36, + "probability": 0.2627 + }, + { + "start": 30280.28, + "end": 30281.3, + "probability": 0.0076 + }, + { + "start": 30281.3, + "end": 30282.32, + "probability": 0.0909 + }, + { + "start": 30282.32, + "end": 30284.26, + "probability": 0.0024 + }, + { + "start": 30284.6, + "end": 30284.7, + "probability": 0.1316 + }, + { + "start": 30284.98, + "end": 30285.4, + "probability": 0.2224 + }, + { + "start": 30286.44, + "end": 30289.1, + "probability": 0.5018 + }, + { + "start": 30290.1, + "end": 30292.9, + "probability": 0.6643 + }, + { + "start": 30293.64, + "end": 30295.78, + "probability": 0.4635 + }, + { + "start": 30297.42, + "end": 30298.38, + "probability": 0.5792 + }, + { + "start": 30299.06, + "end": 30302.04, + "probability": 0.4583 + }, + { + "start": 30302.78, + "end": 30304.6, + "probability": 0.1114 + }, + { + "start": 30304.66, + "end": 30305.46, + "probability": 0.0179 + }, + { + "start": 30305.56, + "end": 30305.68, + "probability": 0.1498 + }, + { + "start": 30305.8, + "end": 30306.22, + "probability": 0.3614 + }, + { + "start": 30306.22, + "end": 30306.22, + "probability": 0.2054 + }, + { + "start": 30306.64, + "end": 30307.78, + "probability": 0.1776 + }, + { + "start": 30309.04, + "end": 30309.88, + "probability": 0.1428 + }, + { + "start": 30310.6, + "end": 30312.46, + "probability": 0.1549 + }, + { + "start": 30314.2, + "end": 30314.2, + "probability": 0.246 + }, + { + "start": 30319.32, + "end": 30320.7, + "probability": 0.1652 + }, + { + "start": 30321.76, + "end": 30322.78, + "probability": 0.0864 + }, + { + "start": 30322.78, + "end": 30322.82, + "probability": 0.0765 + }, + { + "start": 30322.84, + "end": 30323.38, + "probability": 0.0717 + }, + { + "start": 30324.04, + "end": 30324.9, + "probability": 0.0191 + }, + { + "start": 30325.02, + "end": 30327.83, + "probability": 0.2404 + }, + { + "start": 30329.26, + "end": 30331.4, + "probability": 0.0234 + }, + { + "start": 30331.4, + "end": 30331.46, + "probability": 0.014 + }, + { + "start": 30331.46, + "end": 30331.85, + "probability": 0.0907 + }, + { + "start": 30333.65, + "end": 30333.86, + "probability": 0.1121 + }, + { + "start": 30334.04, + "end": 30334.7, + "probability": 0.3794 + }, + { + "start": 30335.2, + "end": 30335.36, + "probability": 0.2255 + }, + { + "start": 30335.66, + "end": 30336.5, + "probability": 0.0473 + }, + { + "start": 30338.74, + "end": 30338.74, + "probability": 0.1991 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.0, + "end": 30370.0, + "probability": 0.0 + }, + { + "start": 30370.88, + "end": 30371.5, + "probability": 0.2998 + }, + { + "start": 30371.64, + "end": 30371.68, + "probability": 0.1674 + }, + { + "start": 30371.68, + "end": 30372.38, + "probability": 0.8144 + }, + { + "start": 30372.54, + "end": 30374.46, + "probability": 0.8849 + }, + { + "start": 30374.72, + "end": 30377.68, + "probability": 0.3967 + }, + { + "start": 30377.8, + "end": 30378.64, + "probability": 0.3407 + }, + { + "start": 30378.96, + "end": 30380.3, + "probability": 0.1534 + }, + { + "start": 30380.3, + "end": 30380.58, + "probability": 0.0109 + }, + { + "start": 30381.06, + "end": 30383.16, + "probability": 0.1593 + }, + { + "start": 30383.2, + "end": 30384.66, + "probability": 0.1764 + }, + { + "start": 30385.7, + "end": 30386.26, + "probability": 0.433 + }, + { + "start": 30386.84, + "end": 30387.34, + "probability": 0.5899 + }, + { + "start": 30387.34, + "end": 30388.04, + "probability": 0.2604 + }, + { + "start": 30388.2, + "end": 30390.2, + "probability": 0.0242 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30491.0, + "end": 30491.0, + "probability": 0.0 + }, + { + "start": 30494.7, + "end": 30498.32, + "probability": 0.5181 + }, + { + "start": 30500.1, + "end": 30501.02, + "probability": 0.0721 + }, + { + "start": 30501.02, + "end": 30505.14, + "probability": 0.8945 + }, + { + "start": 30505.56, + "end": 30510.14, + "probability": 0.8706 + }, + { + "start": 30510.52, + "end": 30516.91, + "probability": 0.8181 + }, + { + "start": 30517.99, + "end": 30521.63, + "probability": 0.9639 + }, + { + "start": 30522.22, + "end": 30524.77, + "probability": 0.9753 + }, + { + "start": 30525.02, + "end": 30526.14, + "probability": 0.8235 + }, + { + "start": 30526.7, + "end": 30530.68, + "probability": 0.8298 + }, + { + "start": 30533.36, + "end": 30535.04, + "probability": 0.9937 + }, + { + "start": 30535.14, + "end": 30539.8, + "probability": 0.9734 + }, + { + "start": 30540.26, + "end": 30541.39, + "probability": 0.8398 + }, + { + "start": 30541.88, + "end": 30544.98, + "probability": 0.9819 + }, + { + "start": 30546.0, + "end": 30546.86, + "probability": 0.534 + }, + { + "start": 30547.46, + "end": 30548.44, + "probability": 0.5831 + }, + { + "start": 30549.78, + "end": 30550.18, + "probability": 0.3312 + }, + { + "start": 30551.18, + "end": 30558.34, + "probability": 0.7842 + }, + { + "start": 30558.98, + "end": 30563.82, + "probability": 0.7168 + }, + { + "start": 30564.42, + "end": 30565.36, + "probability": 0.9072 + }, + { + "start": 30566.32, + "end": 30567.23, + "probability": 0.9473 + }, + { + "start": 30568.55, + "end": 30576.78, + "probability": 0.9648 + }, + { + "start": 30577.18, + "end": 30578.08, + "probability": 0.3165 + }, + { + "start": 30578.86, + "end": 30580.44, + "probability": 0.8053 + }, + { + "start": 30581.64, + "end": 30582.4, + "probability": 0.9697 + }, + { + "start": 30583.16, + "end": 30587.72, + "probability": 0.7194 + }, + { + "start": 30588.8, + "end": 30591.31, + "probability": 0.7717 + }, + { + "start": 30592.16, + "end": 30595.12, + "probability": 0.9478 + }, + { + "start": 30596.08, + "end": 30598.24, + "probability": 0.3593 + }, + { + "start": 30598.24, + "end": 30602.44, + "probability": 0.528 + }, + { + "start": 30602.76, + "end": 30605.76, + "probability": 0.5455 + }, + { + "start": 30606.28, + "end": 30611.24, + "probability": 0.4066 + }, + { + "start": 30612.0, + "end": 30613.47, + "probability": 0.2416 + }, + { + "start": 30614.7, + "end": 30617.46, + "probability": 0.3372 + }, + { + "start": 30617.46, + "end": 30620.84, + "probability": 0.7141 + }, + { + "start": 30621.48, + "end": 30625.48, + "probability": 0.8811 + }, + { + "start": 30627.06, + "end": 30627.99, + "probability": 0.7083 + }, + { + "start": 30629.9, + "end": 30632.66, + "probability": 0.8749 + }, + { + "start": 30632.66, + "end": 30635.72, + "probability": 0.981 + }, + { + "start": 30636.18, + "end": 30638.64, + "probability": 0.9959 + }, + { + "start": 30639.74, + "end": 30642.28, + "probability": 0.9949 + }, + { + "start": 30643.84, + "end": 30645.14, + "probability": 0.5129 + }, + { + "start": 30645.58, + "end": 30646.64, + "probability": 0.5021 + }, + { + "start": 30646.68, + "end": 30650.2, + "probability": 0.9323 + }, + { + "start": 30650.32, + "end": 30651.88, + "probability": 0.8221 + }, + { + "start": 30652.06, + "end": 30656.08, + "probability": 0.9956 + }, + { + "start": 30656.6, + "end": 30661.6, + "probability": 0.9987 + }, + { + "start": 30661.6, + "end": 30665.2, + "probability": 0.9981 + }, + { + "start": 30668.74, + "end": 30669.66, + "probability": 0.858 + }, + { + "start": 30670.42, + "end": 30671.18, + "probability": 0.9683 + }, + { + "start": 30671.28, + "end": 30673.3, + "probability": 0.5703 + }, + { + "start": 30673.3, + "end": 30674.4, + "probability": 0.9888 + }, + { + "start": 30675.62, + "end": 30682.18, + "probability": 0.9977 + }, + { + "start": 30682.18, + "end": 30688.24, + "probability": 0.9996 + }, + { + "start": 30688.86, + "end": 30689.46, + "probability": 0.8817 + }, + { + "start": 30690.12, + "end": 30691.22, + "probability": 0.9944 + }, + { + "start": 30691.94, + "end": 30694.06, + "probability": 0.9718 + }, + { + "start": 30694.06, + "end": 30696.72, + "probability": 0.9995 + }, + { + "start": 30697.24, + "end": 30700.16, + "probability": 0.9984 + }, + { + "start": 30700.16, + "end": 30703.62, + "probability": 0.9991 + }, + { + "start": 30704.18, + "end": 30707.28, + "probability": 0.9933 + }, + { + "start": 30707.5, + "end": 30708.38, + "probability": 0.7384 + }, + { + "start": 30708.88, + "end": 30711.4, + "probability": 0.9917 + }, + { + "start": 30711.4, + "end": 30714.76, + "probability": 0.9668 + }, + { + "start": 30715.34, + "end": 30717.52, + "probability": 0.9764 + }, + { + "start": 30717.68, + "end": 30718.68, + "probability": 0.9972 + }, + { + "start": 30719.4, + "end": 30723.92, + "probability": 0.9988 + }, + { + "start": 30723.92, + "end": 30729.3, + "probability": 0.9992 + }, + { + "start": 30729.48, + "end": 30732.04, + "probability": 0.983 + }, + { + "start": 30732.1, + "end": 30733.7, + "probability": 0.6047 + }, + { + "start": 30736.2, + "end": 30740.6, + "probability": 0.9854 + }, + { + "start": 30741.0, + "end": 30745.52, + "probability": 0.9974 + }, + { + "start": 30745.84, + "end": 30748.28, + "probability": 0.9899 + }, + { + "start": 30748.38, + "end": 30755.03, + "probability": 0.9775 + }, + { + "start": 30755.3, + "end": 30758.14, + "probability": 0.9871 + }, + { + "start": 30758.24, + "end": 30760.38, + "probability": 0.9042 + }, + { + "start": 30760.98, + "end": 30764.82, + "probability": 0.3122 + }, + { + "start": 30765.28, + "end": 30766.04, + "probability": 0.8519 + }, + { + "start": 30766.16, + "end": 30766.44, + "probability": 0.2489 + }, + { + "start": 30766.44, + "end": 30769.76, + "probability": 0.1434 + }, + { + "start": 30769.76, + "end": 30769.96, + "probability": 0.6813 + }, + { + "start": 30770.08, + "end": 30770.08, + "probability": 0.5102 + }, + { + "start": 30770.2, + "end": 30773.08, + "probability": 0.9116 + }, + { + "start": 30773.92, + "end": 30775.0, + "probability": 0.9794 + }, + { + "start": 30776.34, + "end": 30778.46, + "probability": 0.9731 + }, + { + "start": 30779.38, + "end": 30781.64, + "probability": 0.9563 + }, + { + "start": 30781.78, + "end": 30783.98, + "probability": 0.9209 + }, + { + "start": 30785.14, + "end": 30788.62, + "probability": 0.7312 + }, + { + "start": 30788.72, + "end": 30790.08, + "probability": 0.9609 + }, + { + "start": 30790.08, + "end": 30792.28, + "probability": 0.9961 + }, + { + "start": 30792.64, + "end": 30795.88, + "probability": 0.9604 + }, + { + "start": 30795.96, + "end": 30797.52, + "probability": 0.8026 + }, + { + "start": 30797.84, + "end": 30799.14, + "probability": 0.9961 + }, + { + "start": 30799.56, + "end": 30802.34, + "probability": 0.9922 + }, + { + "start": 30802.64, + "end": 30803.74, + "probability": 0.9023 + }, + { + "start": 30804.92, + "end": 30805.5, + "probability": 0.9307 + }, + { + "start": 30805.99, + "end": 30810.42, + "probability": 0.9909 + }, + { + "start": 30810.5, + "end": 30811.64, + "probability": 0.7852 + }, + { + "start": 30812.28, + "end": 30812.8, + "probability": 0.8231 + }, + { + "start": 30812.84, + "end": 30815.6, + "probability": 0.8579 + }, + { + "start": 30815.76, + "end": 30821.32, + "probability": 0.9717 + }, + { + "start": 30821.72, + "end": 30825.64, + "probability": 0.8752 + }, + { + "start": 30826.12, + "end": 30830.98, + "probability": 0.9836 + }, + { + "start": 30831.66, + "end": 30838.64, + "probability": 0.9921 + }, + { + "start": 30838.72, + "end": 30843.4, + "probability": 0.9993 + }, + { + "start": 30843.98, + "end": 30846.56, + "probability": 0.6642 + }, + { + "start": 30846.9, + "end": 30849.4, + "probability": 0.9956 + }, + { + "start": 30849.4, + "end": 30851.7, + "probability": 0.9532 + }, + { + "start": 30852.04, + "end": 30853.0, + "probability": 0.3213 + }, + { + "start": 30853.9, + "end": 30854.86, + "probability": 0.515 + }, + { + "start": 30857.28, + "end": 30858.2, + "probability": 0.745 + }, + { + "start": 30858.4, + "end": 30858.4, + "probability": 0.3472 + }, + { + "start": 30858.4, + "end": 30859.48, + "probability": 0.5385 + }, + { + "start": 30860.3, + "end": 30862.22, + "probability": 0.9955 + }, + { + "start": 30866.46, + "end": 30869.5, + "probability": 0.9878 + }, + { + "start": 30870.1, + "end": 30872.74, + "probability": 0.8315 + }, + { + "start": 30873.34, + "end": 30876.38, + "probability": 0.9937 + }, + { + "start": 30876.78, + "end": 30878.16, + "probability": 0.8064 + }, + { + "start": 30878.32, + "end": 30880.34, + "probability": 0.9808 + }, + { + "start": 30880.64, + "end": 30881.44, + "probability": 0.6701 + }, + { + "start": 30881.46, + "end": 30881.98, + "probability": 0.7112 + }, + { + "start": 30882.3, + "end": 30886.32, + "probability": 0.9773 + }, + { + "start": 30887.12, + "end": 30889.8, + "probability": 0.9941 + }, + { + "start": 30890.6, + "end": 30891.04, + "probability": 0.768 + }, + { + "start": 30891.24, + "end": 30893.12, + "probability": 0.8155 + }, + { + "start": 30911.44, + "end": 30912.42, + "probability": 0.6473 + }, + { + "start": 30913.76, + "end": 30917.04, + "probability": 0.8636 + }, + { + "start": 30918.06, + "end": 30918.8, + "probability": 0.6293 + }, + { + "start": 30920.58, + "end": 30921.78, + "probability": 0.9371 + }, + { + "start": 30922.48, + "end": 30923.5, + "probability": 0.9899 + }, + { + "start": 30924.98, + "end": 30931.7, + "probability": 0.9881 + }, + { + "start": 30932.92, + "end": 30940.48, + "probability": 0.941 + }, + { + "start": 30941.08, + "end": 30947.34, + "probability": 0.9963 + }, + { + "start": 30948.9, + "end": 30949.94, + "probability": 0.8456 + }, + { + "start": 30951.22, + "end": 30954.96, + "probability": 0.7011 + }, + { + "start": 30956.04, + "end": 30968.16, + "probability": 0.7721 + }, + { + "start": 30969.14, + "end": 30969.56, + "probability": 0.6088 + }, + { + "start": 30970.92, + "end": 30973.26, + "probability": 0.8305 + }, + { + "start": 30973.26, + "end": 30977.8, + "probability": 0.9674 + }, + { + "start": 30987.34, + "end": 30988.02, + "probability": 0.5052 + }, + { + "start": 30990.4, + "end": 30991.02, + "probability": 0.7092 + }, + { + "start": 30992.06, + "end": 30994.26, + "probability": 0.6812 + }, + { + "start": 30995.34, + "end": 30997.66, + "probability": 0.9902 + }, + { + "start": 30999.4, + "end": 31005.84, + "probability": 0.9714 + }, + { + "start": 31005.9, + "end": 31012.12, + "probability": 0.7367 + }, + { + "start": 31012.28, + "end": 31022.06, + "probability": 0.969 + }, + { + "start": 31022.12, + "end": 31022.52, + "probability": 0.6657 + }, + { + "start": 31023.86, + "end": 31027.3, + "probability": 0.9865 + }, + { + "start": 31028.12, + "end": 31032.86, + "probability": 0.9774 + }, + { + "start": 31034.28, + "end": 31034.74, + "probability": 0.8131 + }, + { + "start": 31035.94, + "end": 31036.44, + "probability": 0.821 + }, + { + "start": 31036.8, + "end": 31042.96, + "probability": 0.8783 + }, + { + "start": 31044.62, + "end": 31046.38, + "probability": 0.9391 + }, + { + "start": 31047.38, + "end": 31050.72, + "probability": 0.9797 + }, + { + "start": 31052.1, + "end": 31053.02, + "probability": 0.3387 + }, + { + "start": 31053.68, + "end": 31056.0, + "probability": 0.8237 + }, + { + "start": 31056.6, + "end": 31057.9, + "probability": 0.9967 + }, + { + "start": 31058.58, + "end": 31059.16, + "probability": 0.3059 + }, + { + "start": 31059.76, + "end": 31061.43, + "probability": 0.9768 + }, + { + "start": 31062.6, + "end": 31063.7, + "probability": 0.7696 + }, + { + "start": 31065.2, + "end": 31068.04, + "probability": 0.9122 + }, + { + "start": 31069.52, + "end": 31070.56, + "probability": 0.9212 + }, + { + "start": 31071.48, + "end": 31072.66, + "probability": 0.9963 + }, + { + "start": 31073.46, + "end": 31075.98, + "probability": 0.9871 + }, + { + "start": 31077.2, + "end": 31080.46, + "probability": 0.8083 + }, + { + "start": 31082.06, + "end": 31088.1, + "probability": 0.9703 + }, + { + "start": 31088.36, + "end": 31090.32, + "probability": 0.7461 + }, + { + "start": 31093.86, + "end": 31101.0, + "probability": 0.918 + }, + { + "start": 31102.48, + "end": 31107.62, + "probability": 0.8896 + }, + { + "start": 31107.88, + "end": 31108.9, + "probability": 0.762 + }, + { + "start": 31110.54, + "end": 31113.36, + "probability": 0.9904 + }, + { + "start": 31114.08, + "end": 31115.12, + "probability": 0.8098 + }, + { + "start": 31116.08, + "end": 31117.08, + "probability": 0.74 + }, + { + "start": 31118.08, + "end": 31121.44, + "probability": 0.8587 + }, + { + "start": 31122.42, + "end": 31123.86, + "probability": 0.9019 + }, + { + "start": 31124.38, + "end": 31125.48, + "probability": 0.6622 + }, + { + "start": 31127.56, + "end": 31130.58, + "probability": 0.9771 + }, + { + "start": 31131.18, + "end": 31132.14, + "probability": 0.9764 + }, + { + "start": 31133.42, + "end": 31134.58, + "probability": 0.5512 + }, + { + "start": 31135.44, + "end": 31136.8, + "probability": 0.5549 + }, + { + "start": 31136.86, + "end": 31140.98, + "probability": 0.9152 + }, + { + "start": 31142.4, + "end": 31145.1, + "probability": 0.7593 + }, + { + "start": 31148.68, + "end": 31153.65, + "probability": 0.8446 + }, + { + "start": 31154.44, + "end": 31155.66, + "probability": 0.6991 + }, + { + "start": 31156.86, + "end": 31158.52, + "probability": 0.8329 + }, + { + "start": 31160.9, + "end": 31168.36, + "probability": 0.9941 + }, + { + "start": 31168.36, + "end": 31173.64, + "probability": 0.957 + }, + { + "start": 31174.16, + "end": 31174.8, + "probability": 0.8504 + }, + { + "start": 31175.48, + "end": 31176.88, + "probability": 0.8983 + }, + { + "start": 31177.9, + "end": 31178.4, + "probability": 0.666 + }, + { + "start": 31179.82, + "end": 31180.82, + "probability": 0.8439 + }, + { + "start": 31181.7, + "end": 31185.32, + "probability": 0.9153 + }, + { + "start": 31186.58, + "end": 31187.92, + "probability": 0.8431 + }, + { + "start": 31188.66, + "end": 31189.78, + "probability": 0.7194 + }, + { + "start": 31191.22, + "end": 31194.18, + "probability": 0.9529 + }, + { + "start": 31195.58, + "end": 31196.62, + "probability": 0.8902 + }, + { + "start": 31197.64, + "end": 31199.18, + "probability": 0.971 + }, + { + "start": 31200.6, + "end": 31201.2, + "probability": 0.9681 + }, + { + "start": 31203.14, + "end": 31207.22, + "probability": 0.7496 + }, + { + "start": 31208.12, + "end": 31211.62, + "probability": 0.6305 + }, + { + "start": 31211.76, + "end": 31212.28, + "probability": 0.3172 + }, + { + "start": 31213.48, + "end": 31217.2, + "probability": 0.8643 + }, + { + "start": 31219.66, + "end": 31222.36, + "probability": 0.789 + }, + { + "start": 31223.44, + "end": 31225.8, + "probability": 0.8961 + }, + { + "start": 31226.44, + "end": 31229.36, + "probability": 0.7612 + }, + { + "start": 31230.6, + "end": 31232.06, + "probability": 0.8894 + }, + { + "start": 31232.66, + "end": 31233.32, + "probability": 0.8313 + }, + { + "start": 31234.06, + "end": 31236.62, + "probability": 0.8107 + }, + { + "start": 31237.66, + "end": 31238.26, + "probability": 0.531 + }, + { + "start": 31238.92, + "end": 31241.66, + "probability": 0.9562 + }, + { + "start": 31243.02, + "end": 31247.94, + "probability": 0.8794 + }, + { + "start": 31249.56, + "end": 31251.44, + "probability": 0.8974 + }, + { + "start": 31252.34, + "end": 31255.66, + "probability": 0.9551 + }, + { + "start": 31257.46, + "end": 31261.46, + "probability": 0.8013 + }, + { + "start": 31262.4, + "end": 31263.26, + "probability": 0.67 + }, + { + "start": 31264.24, + "end": 31266.52, + "probability": 0.426 + }, + { + "start": 31267.8, + "end": 31267.98, + "probability": 0.2864 + }, + { + "start": 31269.9, + "end": 31270.08, + "probability": 0.0734 + }, + { + "start": 31270.08, + "end": 31273.46, + "probability": 0.9336 + }, + { + "start": 31274.72, + "end": 31278.8, + "probability": 0.9486 + }, + { + "start": 31279.98, + "end": 31287.14, + "probability": 0.8457 + }, + { + "start": 31288.0, + "end": 31289.76, + "probability": 0.3466 + }, + { + "start": 31290.44, + "end": 31292.38, + "probability": 0.7473 + }, + { + "start": 31293.28, + "end": 31295.98, + "probability": 0.9953 + }, + { + "start": 31297.66, + "end": 31299.22, + "probability": 0.7984 + }, + { + "start": 31300.14, + "end": 31303.86, + "probability": 0.7706 + }, + { + "start": 31304.08, + "end": 31304.38, + "probability": 0.1328 + }, + { + "start": 31305.44, + "end": 31310.12, + "probability": 0.9891 + }, + { + "start": 31310.78, + "end": 31315.06, + "probability": 0.9737 + }, + { + "start": 31316.34, + "end": 31319.16, + "probability": 0.9071 + }, + { + "start": 31319.22, + "end": 31319.94, + "probability": 0.677 + }, + { + "start": 31320.08, + "end": 31320.64, + "probability": 0.5225 + }, + { + "start": 31321.78, + "end": 31322.38, + "probability": 0.6715 + }, + { + "start": 31323.06, + "end": 31324.0, + "probability": 0.9506 + }, + { + "start": 31325.42, + "end": 31326.18, + "probability": 0.9278 + }, + { + "start": 31327.54, + "end": 31331.56, + "probability": 0.8535 + }, + { + "start": 31332.66, + "end": 31333.26, + "probability": 0.7385 + }, + { + "start": 31334.02, + "end": 31336.92, + "probability": 0.9818 + }, + { + "start": 31338.32, + "end": 31338.72, + "probability": 0.7489 + }, + { + "start": 31339.46, + "end": 31341.96, + "probability": 0.9714 + }, + { + "start": 31343.22, + "end": 31347.18, + "probability": 0.9747 + }, + { + "start": 31348.24, + "end": 31352.96, + "probability": 0.775 + }, + { + "start": 31353.98, + "end": 31353.98, + "probability": 0.0119 + }, + { + "start": 31353.98, + "end": 31354.54, + "probability": 0.4263 + }, + { + "start": 31355.88, + "end": 31358.82, + "probability": 0.8239 + }, + { + "start": 31358.92, + "end": 31360.34, + "probability": 0.9673 + }, + { + "start": 31361.96, + "end": 31363.32, + "probability": 0.4798 + }, + { + "start": 31365.08, + "end": 31365.32, + "probability": 0.0087 + }, + { + "start": 31365.32, + "end": 31369.86, + "probability": 0.8357 + }, + { + "start": 31369.9, + "end": 31371.02, + "probability": 0.8383 + }, + { + "start": 31371.62, + "end": 31374.5, + "probability": 0.6279 + }, + { + "start": 31375.46, + "end": 31378.36, + "probability": 0.6812 + }, + { + "start": 31378.94, + "end": 31381.54, + "probability": 0.7519 + }, + { + "start": 31382.14, + "end": 31382.42, + "probability": 0.7106 + }, + { + "start": 31384.66, + "end": 31386.6, + "probability": 0.0664 + }, + { + "start": 31388.36, + "end": 31389.82, + "probability": 0.2563 + }, + { + "start": 31390.34, + "end": 31392.68, + "probability": 0.7433 + }, + { + "start": 31393.24, + "end": 31395.24, + "probability": 0.6436 + }, + { + "start": 31398.54, + "end": 31399.74, + "probability": 0.0724 + }, + { + "start": 31427.6, + "end": 31431.62, + "probability": 0.5268 + }, + { + "start": 31431.62, + "end": 31435.56, + "probability": 0.246 + }, + { + "start": 31437.34, + "end": 31441.18, + "probability": 0.9888 + }, + { + "start": 31441.66, + "end": 31442.5, + "probability": 0.878 + }, + { + "start": 31442.62, + "end": 31442.82, + "probability": 0.3254 + }, + { + "start": 31442.92, + "end": 31444.54, + "probability": 0.8368 + }, + { + "start": 31445.6, + "end": 31446.32, + "probability": 0.8155 + }, + { + "start": 31447.32, + "end": 31448.72, + "probability": 0.9647 + }, + { + "start": 31448.88, + "end": 31451.1, + "probability": 0.9607 + }, + { + "start": 31452.14, + "end": 31452.3, + "probability": 0.0092 + }, + { + "start": 31452.3, + "end": 31458.3, + "probability": 0.9813 + }, + { + "start": 31459.04, + "end": 31466.54, + "probability": 0.9058 + }, + { + "start": 31468.0, + "end": 31468.78, + "probability": 0.5112 + }, + { + "start": 31469.3, + "end": 31472.64, + "probability": 0.9816 + }, + { + "start": 31473.88, + "end": 31475.04, + "probability": 0.9808 + }, + { + "start": 31476.1, + "end": 31479.17, + "probability": 0.723 + }, + { + "start": 31480.16, + "end": 31483.68, + "probability": 0.95 + }, + { + "start": 31484.16, + "end": 31484.28, + "probability": 0.0093 + }, + { + "start": 31484.7, + "end": 31486.7, + "probability": 0.9148 + }, + { + "start": 31487.22, + "end": 31492.1, + "probability": 0.8818 + }, + { + "start": 31492.48, + "end": 31493.5, + "probability": 0.409 + }, + { + "start": 31494.06, + "end": 31496.67, + "probability": 0.9712 + }, + { + "start": 31497.7, + "end": 31504.7, + "probability": 0.7464 + }, + { + "start": 31505.1, + "end": 31506.62, + "probability": 0.9314 + }, + { + "start": 31506.74, + "end": 31509.12, + "probability": 0.9119 + }, + { + "start": 31509.14, + "end": 31513.6, + "probability": 0.2427 + }, + { + "start": 31514.46, + "end": 31515.54, + "probability": 0.7036 + }, + { + "start": 31516.5, + "end": 31522.82, + "probability": 0.997 + }, + { + "start": 31523.24, + "end": 31527.22, + "probability": 0.9973 + }, + { + "start": 31527.96, + "end": 31530.54, + "probability": 0.9408 + }, + { + "start": 31531.94, + "end": 31534.16, + "probability": 0.7566 + }, + { + "start": 31534.62, + "end": 31535.76, + "probability": 0.6488 + }, + { + "start": 31536.18, + "end": 31540.86, + "probability": 0.9731 + }, + { + "start": 31540.86, + "end": 31546.62, + "probability": 0.9988 + }, + { + "start": 31547.12, + "end": 31548.4, + "probability": 0.8189 + }, + { + "start": 31548.84, + "end": 31550.5, + "probability": 0.6422 + }, + { + "start": 31551.52, + "end": 31552.52, + "probability": 0.7048 + }, + { + "start": 31553.95, + "end": 31554.28, + "probability": 0.2167 + }, + { + "start": 31554.28, + "end": 31555.86, + "probability": 0.6108 + }, + { + "start": 31556.4, + "end": 31557.6, + "probability": 0.7601 + }, + { + "start": 31559.0, + "end": 31563.2, + "probability": 0.9792 + }, + { + "start": 31563.7, + "end": 31565.8, + "probability": 0.9961 + }, + { + "start": 31566.28, + "end": 31568.88, + "probability": 0.637 + }, + { + "start": 31569.04, + "end": 31574.17, + "probability": 0.9567 + }, + { + "start": 31574.82, + "end": 31577.92, + "probability": 0.9744 + }, + { + "start": 31577.98, + "end": 31578.7, + "probability": 0.3355 + }, + { + "start": 31579.98, + "end": 31581.86, + "probability": 0.7473 + }, + { + "start": 31581.98, + "end": 31586.72, + "probability": 0.9874 + }, + { + "start": 31586.72, + "end": 31590.24, + "probability": 0.9526 + }, + { + "start": 31590.42, + "end": 31595.18, + "probability": 0.9844 + }, + { + "start": 31595.56, + "end": 31601.3, + "probability": 0.9799 + }, + { + "start": 31601.3, + "end": 31604.76, + "probability": 0.9932 + }, + { + "start": 31605.14, + "end": 31606.26, + "probability": 0.8136 + }, + { + "start": 31606.64, + "end": 31609.12, + "probability": 0.9783 + }, + { + "start": 31609.6, + "end": 31610.84, + "probability": 0.9135 + }, + { + "start": 31611.0, + "end": 31611.68, + "probability": 0.8802 + }, + { + "start": 31611.74, + "end": 31612.74, + "probability": 0.8904 + }, + { + "start": 31614.76, + "end": 31615.62, + "probability": 0.2206 + }, + { + "start": 31618.0, + "end": 31619.48, + "probability": 0.1189 + }, + { + "start": 31620.3, + "end": 31621.16, + "probability": 0.204 + }, + { + "start": 31621.9, + "end": 31622.78, + "probability": 0.0552 + }, + { + "start": 31623.26, + "end": 31623.76, + "probability": 0.2093 + }, + { + "start": 31623.76, + "end": 31623.76, + "probability": 0.1017 + }, + { + "start": 31623.76, + "end": 31625.2, + "probability": 0.6263 + }, + { + "start": 31625.96, + "end": 31626.12, + "probability": 0.1456 + }, + { + "start": 31626.42, + "end": 31631.64, + "probability": 0.3961 + }, + { + "start": 31631.86, + "end": 31634.94, + "probability": 0.9297 + }, + { + "start": 31635.0, + "end": 31636.86, + "probability": 0.9956 + }, + { + "start": 31637.7, + "end": 31641.56, + "probability": 0.7288 + }, + { + "start": 31641.78, + "end": 31642.08, + "probability": 0.1409 + }, + { + "start": 31642.08, + "end": 31649.12, + "probability": 0.9516 + }, + { + "start": 31649.94, + "end": 31650.64, + "probability": 0.0368 + }, + { + "start": 31650.7, + "end": 31651.15, + "probability": 0.5483 + }, + { + "start": 31651.74, + "end": 31652.12, + "probability": 0.8136 + }, + { + "start": 31652.18, + "end": 31652.18, + "probability": 0.8032 + }, + { + "start": 31652.18, + "end": 31652.48, + "probability": 0.9222 + }, + { + "start": 31652.52, + "end": 31653.84, + "probability": 0.6264 + }, + { + "start": 31653.88, + "end": 31655.44, + "probability": 0.7407 + }, + { + "start": 31655.54, + "end": 31656.0, + "probability": 0.6736 + }, + { + "start": 31656.18, + "end": 31656.78, + "probability": 0.0109 + }, + { + "start": 31656.78, + "end": 31657.66, + "probability": 0.3115 + }, + { + "start": 31657.66, + "end": 31657.98, + "probability": 0.3654 + }, + { + "start": 31657.98, + "end": 31657.98, + "probability": 0.2844 + }, + { + "start": 31657.98, + "end": 31658.62, + "probability": 0.7059 + }, + { + "start": 31658.86, + "end": 31659.54, + "probability": 0.3624 + }, + { + "start": 31659.78, + "end": 31661.1, + "probability": 0.749 + }, + { + "start": 31662.88, + "end": 31664.98, + "probability": 0.449 + }, + { + "start": 31666.24, + "end": 31666.34, + "probability": 0.0246 + }, + { + "start": 31666.34, + "end": 31667.48, + "probability": 0.7306 + }, + { + "start": 31667.6, + "end": 31668.16, + "probability": 0.6507 + }, + { + "start": 31668.4, + "end": 31669.14, + "probability": 0.9484 + }, + { + "start": 31669.48, + "end": 31671.72, + "probability": 0.6866 + }, + { + "start": 31672.44, + "end": 31672.94, + "probability": 0.5603 + }, + { + "start": 31673.06, + "end": 31675.26, + "probability": 0.9886 + }, + { + "start": 31676.1, + "end": 31676.1, + "probability": 0.8404 + }, + { + "start": 31676.16, + "end": 31679.5, + "probability": 0.9958 + }, + { + "start": 31680.14, + "end": 31683.9, + "probability": 0.9922 + }, + { + "start": 31683.9, + "end": 31687.24, + "probability": 0.9963 + }, + { + "start": 31687.98, + "end": 31690.76, + "probability": 0.9988 + }, + { + "start": 31691.38, + "end": 31692.16, + "probability": 0.7897 + }, + { + "start": 31693.02, + "end": 31694.0, + "probability": 0.9117 + }, + { + "start": 31694.18, + "end": 31694.44, + "probability": 0.6368 + }, + { + "start": 31696.02, + "end": 31698.7, + "probability": 0.8282 + }, + { + "start": 31699.48, + "end": 31701.66, + "probability": 0.9747 + }, + { + "start": 31702.36, + "end": 31702.66, + "probability": 0.4012 + }, + { + "start": 31705.58, + "end": 31706.38, + "probability": 0.2556 + }, + { + "start": 31706.92, + "end": 31710.8, + "probability": 0.7878 + }, + { + "start": 31711.42, + "end": 31712.88, + "probability": 0.9173 + }, + { + "start": 31713.4, + "end": 31715.4, + "probability": 0.9192 + }, + { + "start": 31715.44, + "end": 31717.0, + "probability": 0.9489 + }, + { + "start": 31717.5, + "end": 31719.42, + "probability": 0.945 + }, + { + "start": 31720.16, + "end": 31720.56, + "probability": 0.9958 + }, + { + "start": 31721.58, + "end": 31722.56, + "probability": 0.7024 + }, + { + "start": 31723.44, + "end": 31725.48, + "probability": 0.4188 + }, + { + "start": 31725.48, + "end": 31726.11, + "probability": 0.6777 + }, + { + "start": 31726.78, + "end": 31728.18, + "probability": 0.7593 + }, + { + "start": 31729.3, + "end": 31730.86, + "probability": 0.9727 + }, + { + "start": 31731.88, + "end": 31733.9, + "probability": 0.9719 + }, + { + "start": 31735.68, + "end": 31737.12, + "probability": 0.9092 + }, + { + "start": 31739.12, + "end": 31739.88, + "probability": 0.9338 + }, + { + "start": 31740.74, + "end": 31741.46, + "probability": 0.6676 + }, + { + "start": 31741.62, + "end": 31742.9, + "probability": 0.632 + }, + { + "start": 31743.02, + "end": 31744.56, + "probability": 0.7177 + }, + { + "start": 31745.08, + "end": 31746.46, + "probability": 0.7652 + }, + { + "start": 31748.74, + "end": 31749.08, + "probability": 0.9077 + }, + { + "start": 31750.74, + "end": 31751.64, + "probability": 0.8821 + }, + { + "start": 31752.04, + "end": 31753.56, + "probability": 0.9739 + }, + { + "start": 31753.64, + "end": 31755.06, + "probability": 0.9431 + }, + { + "start": 31755.1, + "end": 31757.14, + "probability": 0.993 + }, + { + "start": 31757.28, + "end": 31759.24, + "probability": 0.7596 + }, + { + "start": 31759.3, + "end": 31760.14, + "probability": 0.7328 + }, + { + "start": 31761.22, + "end": 31764.06, + "probability": 0.9059 + }, + { + "start": 31765.14, + "end": 31765.36, + "probability": 0.9788 + }, + { + "start": 31766.04, + "end": 31766.72, + "probability": 0.9244 + }, + { + "start": 31767.5, + "end": 31771.66, + "probability": 0.8373 + }, + { + "start": 31772.6, + "end": 31774.14, + "probability": 0.8337 + }, + { + "start": 31781.34, + "end": 31782.56, + "probability": 0.5442 + }, + { + "start": 31783.28, + "end": 31787.14, + "probability": 0.8427 + }, + { + "start": 31788.36, + "end": 31791.88, + "probability": 0.9715 + }, + { + "start": 31792.56, + "end": 31794.28, + "probability": 0.9799 + }, + { + "start": 31794.82, + "end": 31797.52, + "probability": 0.9148 + }, + { + "start": 31799.74, + "end": 31802.32, + "probability": 0.8457 + }, + { + "start": 31802.96, + "end": 31804.16, + "probability": 0.7499 + }, + { + "start": 31804.82, + "end": 31805.14, + "probability": 0.9866 + }, + { + "start": 31806.06, + "end": 31808.19, + "probability": 0.8261 + }, + { + "start": 31809.02, + "end": 31809.32, + "probability": 0.9841 + }, + { + "start": 31810.54, + "end": 31811.9, + "probability": 0.8742 + }, + { + "start": 31813.68, + "end": 31819.58, + "probability": 0.9485 + }, + { + "start": 31820.3, + "end": 31820.52, + "probability": 0.576 + }, + { + "start": 31822.1, + "end": 31823.24, + "probability": 0.3864 + }, + { + "start": 31824.14, + "end": 31826.48, + "probability": 0.9073 + }, + { + "start": 31826.54, + "end": 31828.32, + "probability": 0.7025 + }, + { + "start": 31828.38, + "end": 31829.78, + "probability": 0.519 + }, + { + "start": 31830.36, + "end": 31832.06, + "probability": 0.9186 + }, + { + "start": 31832.98, + "end": 31836.46, + "probability": 0.8616 + }, + { + "start": 31838.04, + "end": 31838.44, + "probability": 0.9924 + }, + { + "start": 31840.72, + "end": 31846.18, + "probability": 0.6661 + }, + { + "start": 31847.4, + "end": 31849.2, + "probability": 0.9294 + }, + { + "start": 31850.8, + "end": 31854.54, + "probability": 0.8883 + }, + { + "start": 31856.26, + "end": 31856.98, + "probability": 0.9929 + }, + { + "start": 31858.14, + "end": 31861.64, + "probability": 0.8723 + }, + { + "start": 31863.3, + "end": 31864.76, + "probability": 0.9058 + }, + { + "start": 31865.4, + "end": 31867.62, + "probability": 0.8117 + }, + { + "start": 31873.86, + "end": 31878.32, + "probability": 0.8592 + }, + { + "start": 31879.06, + "end": 31879.68, + "probability": 0.7538 + }, + { + "start": 31882.0, + "end": 31885.88, + "probability": 0.5671 + }, + { + "start": 31886.7, + "end": 31888.3, + "probability": 0.7952 + }, + { + "start": 31889.72, + "end": 31891.82, + "probability": 0.8665 + }, + { + "start": 31892.46, + "end": 31893.78, + "probability": 0.9515 + }, + { + "start": 31893.82, + "end": 31895.3, + "probability": 0.953 + }, + { + "start": 31895.68, + "end": 31897.34, + "probability": 0.9719 + }, + { + "start": 31898.62, + "end": 31901.96, + "probability": 0.9409 + }, + { + "start": 31902.64, + "end": 31904.48, + "probability": 0.8453 + }, + { + "start": 31908.06, + "end": 31908.48, + "probability": 0.8474 + }, + { + "start": 31909.7, + "end": 31912.66, + "probability": 0.7807 + }, + { + "start": 31914.92, + "end": 31917.26, + "probability": 0.9058 + }, + { + "start": 31917.5, + "end": 31919.64, + "probability": 0.8439 + }, + { + "start": 31920.52, + "end": 31923.58, + "probability": 0.6548 + }, + { + "start": 31924.86, + "end": 31925.54, + "probability": 0.7937 + }, + { + "start": 31927.34, + "end": 31931.94, + "probability": 0.863 + }, + { + "start": 31932.86, + "end": 31934.38, + "probability": 0.7059 + }, + { + "start": 31935.12, + "end": 31935.76, + "probability": 0.9875 + }, + { + "start": 31936.8, + "end": 31938.5, + "probability": 0.9725 + }, + { + "start": 31939.36, + "end": 31942.9, + "probability": 0.9656 + }, + { + "start": 31944.8, + "end": 31947.84, + "probability": 0.8558 + }, + { + "start": 31948.6, + "end": 31950.42, + "probability": 0.9541 + }, + { + "start": 31951.14, + "end": 31951.54, + "probability": 0.9094 + }, + { + "start": 31952.54, + "end": 31953.5, + "probability": 0.6949 + }, + { + "start": 31954.33, + "end": 31956.32, + "probability": 0.8434 + }, + { + "start": 31957.5, + "end": 31958.06, + "probability": 0.9688 + }, + { + "start": 31959.12, + "end": 31960.12, + "probability": 0.7729 + }, + { + "start": 31961.36, + "end": 31964.34, + "probability": 0.9551 + }, + { + "start": 31965.9, + "end": 31966.94, + "probability": 0.5134 + }, + { + "start": 31970.26, + "end": 31974.42, + "probability": 0.4662 + }, + { + "start": 31975.68, + "end": 31976.52, + "probability": 0.815 + }, + { + "start": 31976.68, + "end": 31978.22, + "probability": 0.8834 + }, + { + "start": 31978.34, + "end": 31979.72, + "probability": 0.7606 + }, + { + "start": 31980.88, + "end": 31982.94, + "probability": 0.9241 + }, + { + "start": 31984.04, + "end": 31985.02, + "probability": 0.8615 + }, + { + "start": 31985.62, + "end": 31987.86, + "probability": 0.6707 + }, + { + "start": 31988.42, + "end": 31988.94, + "probability": 0.9949 + }, + { + "start": 31989.94, + "end": 31992.12, + "probability": 0.9161 + }, + { + "start": 31992.68, + "end": 31993.64, + "probability": 0.9851 + }, + { + "start": 31994.72, + "end": 31995.1, + "probability": 0.5724 + }, + { + "start": 31996.12, + "end": 31998.74, + "probability": 0.8205 + }, + { + "start": 31999.8, + "end": 32000.22, + "probability": 0.8501 + }, + { + "start": 32001.44, + "end": 32002.34, + "probability": 0.7256 + }, + { + "start": 32003.9, + "end": 32005.4, + "probability": 0.8931 + }, + { + "start": 32006.36, + "end": 32006.5, + "probability": 0.9736 + }, + { + "start": 32007.04, + "end": 32008.4, + "probability": 0.8001 + }, + { + "start": 32008.44, + "end": 32010.7, + "probability": 0.8724 + }, + { + "start": 32010.76, + "end": 32012.9, + "probability": 0.9698 + }, + { + "start": 32014.06, + "end": 32014.48, + "probability": 0.9849 + }, + { + "start": 32015.52, + "end": 32015.9, + "probability": 0.9489 + }, + { + "start": 32019.18, + "end": 32020.14, + "probability": 0.1875 + }, + { + "start": 32022.1, + "end": 32023.2, + "probability": 0.8716 + }, + { + "start": 32028.7, + "end": 32030.34, + "probability": 0.7006 + }, + { + "start": 32031.84, + "end": 32032.22, + "probability": 0.6893 + }, + { + "start": 32033.34, + "end": 32034.22, + "probability": 0.8125 + }, + { + "start": 32036.56, + "end": 32037.86, + "probability": 0.9584 + }, + { + "start": 32039.56, + "end": 32041.26, + "probability": 0.9746 + }, + { + "start": 32041.92, + "end": 32042.34, + "probability": 0.9856 + }, + { + "start": 32044.1, + "end": 32045.08, + "probability": 0.9605 + }, + { + "start": 32046.6, + "end": 32048.86, + "probability": 0.9768 + }, + { + "start": 32050.7, + "end": 32051.28, + "probability": 0.4793 + }, + { + "start": 32053.64, + "end": 32056.42, + "probability": 0.5048 + }, + { + "start": 32057.22, + "end": 32059.2, + "probability": 0.8478 + }, + { + "start": 32059.7, + "end": 32061.9, + "probability": 0.9564 + }, + { + "start": 32062.9, + "end": 32066.68, + "probability": 0.9519 + }, + { + "start": 32067.3, + "end": 32068.88, + "probability": 0.9867 + }, + { + "start": 32069.54, + "end": 32074.22, + "probability": 0.7299 + }, + { + "start": 32074.74, + "end": 32078.02, + "probability": 0.9465 + }, + { + "start": 32081.04, + "end": 32083.12, + "probability": 0.914 + }, + { + "start": 32083.14, + "end": 32084.54, + "probability": 0.6455 + }, + { + "start": 32085.02, + "end": 32086.86, + "probability": 0.9213 + }, + { + "start": 32087.34, + "end": 32089.32, + "probability": 0.8983 + }, + { + "start": 32089.88, + "end": 32091.86, + "probability": 0.8026 + }, + { + "start": 32092.28, + "end": 32093.88, + "probability": 0.7315 + }, + { + "start": 32093.88, + "end": 32095.56, + "probability": 0.7917 + }, + { + "start": 32096.48, + "end": 32098.16, + "probability": 0.7938 + }, + { + "start": 32099.16, + "end": 32101.2, + "probability": 0.9648 + }, + { + "start": 32101.84, + "end": 32103.96, + "probability": 0.9534 + }, + { + "start": 32105.04, + "end": 32108.62, + "probability": 0.8777 + }, + { + "start": 32109.08, + "end": 32111.26, + "probability": 0.6995 + }, + { + "start": 32111.44, + "end": 32113.24, + "probability": 0.6884 + }, + { + "start": 32113.78, + "end": 32115.62, + "probability": 0.8852 + }, + { + "start": 32116.28, + "end": 32117.86, + "probability": 0.9733 + }, + { + "start": 32118.02, + "end": 32119.7, + "probability": 0.9521 + }, + { + "start": 32119.82, + "end": 32122.1, + "probability": 0.9915 + }, + { + "start": 32122.58, + "end": 32124.42, + "probability": 0.9684 + }, + { + "start": 32124.6, + "end": 32126.46, + "probability": 0.641 + }, + { + "start": 32127.5, + "end": 32131.08, + "probability": 0.3855 + }, + { + "start": 32132.3, + "end": 32136.68, + "probability": 0.9699 + }, + { + "start": 32138.12, + "end": 32142.3, + "probability": 0.9897 + }, + { + "start": 32143.14, + "end": 32144.96, + "probability": 0.8062 + }, + { + "start": 32145.31, + "end": 32147.64, + "probability": 0.982 + }, + { + "start": 32147.72, + "end": 32149.18, + "probability": 0.908 + }, + { + "start": 32150.74, + "end": 32152.32, + "probability": 0.9688 + }, + { + "start": 32152.38, + "end": 32154.98, + "probability": 0.6936 + }, + { + "start": 32155.44, + "end": 32159.36, + "probability": 0.6966 + }, + { + "start": 32159.7, + "end": 32161.22, + "probability": 0.7563 + }, + { + "start": 32161.3, + "end": 32163.5, + "probability": 0.5077 + }, + { + "start": 32163.62, + "end": 32165.32, + "probability": 0.6433 + }, + { + "start": 32165.74, + "end": 32167.42, + "probability": 0.719 + }, + { + "start": 32168.88, + "end": 32169.42, + "probability": 0.9907 + }, + { + "start": 32172.44, + "end": 32173.38, + "probability": 0.2991 + }, + { + "start": 32174.92, + "end": 32182.52, + "probability": 0.6968 + }, + { + "start": 32184.06, + "end": 32186.48, + "probability": 0.9556 + }, + { + "start": 32186.5, + "end": 32188.12, + "probability": 0.8677 + }, + { + "start": 32188.28, + "end": 32190.2, + "probability": 0.9483 + }, + { + "start": 32190.31, + "end": 32194.04, + "probability": 0.8297 + }, + { + "start": 32195.62, + "end": 32197.2, + "probability": 0.9444 + }, + { + "start": 32198.14, + "end": 32200.36, + "probability": 0.9285 + }, + { + "start": 32200.38, + "end": 32201.68, + "probability": 0.8053 + }, + { + "start": 32201.72, + "end": 32203.14, + "probability": 0.8394 + }, + { + "start": 32203.9, + "end": 32205.94, + "probability": 0.8606 + }, + { + "start": 32206.68, + "end": 32209.26, + "probability": 0.9761 + }, + { + "start": 32209.34, + "end": 32210.52, + "probability": 0.9247 + }, + { + "start": 32210.62, + "end": 32211.28, + "probability": 0.9379 + }, + { + "start": 32211.82, + "end": 32215.24, + "probability": 0.8125 + }, + { + "start": 32216.12, + "end": 32218.34, + "probability": 0.7255 + }, + { + "start": 32219.0, + "end": 32220.7, + "probability": 0.9075 + }, + { + "start": 32220.82, + "end": 32222.56, + "probability": 0.7666 + }, + { + "start": 32223.1, + "end": 32224.98, + "probability": 0.9451 + }, + { + "start": 32225.94, + "end": 32227.62, + "probability": 0.9498 + }, + { + "start": 32228.36, + "end": 32229.88, + "probability": 0.6967 + }, + { + "start": 32229.92, + "end": 32232.36, + "probability": 0.7033 + }, + { + "start": 32233.26, + "end": 32236.4, + "probability": 0.879 + }, + { + "start": 32237.58, + "end": 32239.42, + "probability": 0.8883 + }, + { + "start": 32240.02, + "end": 32240.24, + "probability": 0.9536 + }, + { + "start": 32241.9, + "end": 32242.64, + "probability": 0.872 + }, + { + "start": 32242.7, + "end": 32243.9, + "probability": 0.8052 + }, + { + "start": 32243.94, + "end": 32245.6, + "probability": 0.7803 + }, + { + "start": 32245.78, + "end": 32247.84, + "probability": 0.9151 + }, + { + "start": 32249.08, + "end": 32250.82, + "probability": 0.9708 + }, + { + "start": 32250.98, + "end": 32253.24, + "probability": 0.8477 + }, + { + "start": 32253.74, + "end": 32255.84, + "probability": 0.9648 + }, + { + "start": 32255.9, + "end": 32257.54, + "probability": 0.9144 + }, + { + "start": 32257.98, + "end": 32261.14, + "probability": 0.751 + }, + { + "start": 32262.9, + "end": 32271.54, + "probability": 0.9453 + }, + { + "start": 32272.8, + "end": 32274.78, + "probability": 0.9102 + }, + { + "start": 32275.76, + "end": 32277.7, + "probability": 0.7261 + }, + { + "start": 32277.8, + "end": 32280.06, + "probability": 0.9231 + }, + { + "start": 32280.32, + "end": 32282.36, + "probability": 0.7065 + }, + { + "start": 32283.96, + "end": 32287.32, + "probability": 0.7776 + }, + { + "start": 32287.92, + "end": 32289.4, + "probability": 0.5861 + }, + { + "start": 32289.48, + "end": 32290.78, + "probability": 0.7213 + }, + { + "start": 32290.96, + "end": 32291.76, + "probability": 0.9564 + }, + { + "start": 32294.8, + "end": 32297.22, + "probability": 0.9736 + }, + { + "start": 32297.76, + "end": 32301.36, + "probability": 0.0574 + }, + { + "start": 32303.14, + "end": 32303.78, + "probability": 0.5097 + }, + { + "start": 32305.52, + "end": 32307.96, + "probability": 0.6079 + }, + { + "start": 32344.48, + "end": 32346.54, + "probability": 0.0512 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32421.0, + "probability": 0.0 + }, + { + "start": 32421.0, + "end": 32422.13, + "probability": 0.5282 + }, + { + "start": 32435.8, + "end": 32436.72, + "probability": 0.2415 + }, + { + "start": 32441.31, + "end": 32446.6, + "probability": 0.9598 + }, + { + "start": 32446.7, + "end": 32447.86, + "probability": 0.607 + }, + { + "start": 32448.62, + "end": 32450.38, + "probability": 0.9869 + }, + { + "start": 32450.72, + "end": 32452.16, + "probability": 0.8808 + }, + { + "start": 32453.62, + "end": 32455.24, + "probability": 0.6234 + }, + { + "start": 32455.8, + "end": 32456.6, + "probability": 0.9729 + }, + { + "start": 32477.96, + "end": 32479.98, + "probability": 0.6577 + }, + { + "start": 32481.14, + "end": 32482.04, + "probability": 0.8992 + }, + { + "start": 32482.1, + "end": 32483.88, + "probability": 0.9006 + }, + { + "start": 32483.94, + "end": 32486.02, + "probability": 0.7219 + }, + { + "start": 32486.12, + "end": 32487.08, + "probability": 0.5872 + }, + { + "start": 32487.52, + "end": 32488.52, + "probability": 0.7871 + }, + { + "start": 32490.38, + "end": 32494.06, + "probability": 0.9658 + }, + { + "start": 32494.18, + "end": 32495.76, + "probability": 0.8188 + }, + { + "start": 32495.86, + "end": 32496.24, + "probability": 0.3318 + }, + { + "start": 32496.34, + "end": 32496.94, + "probability": 0.5666 + }, + { + "start": 32496.98, + "end": 32499.88, + "probability": 0.9222 + }, + { + "start": 32500.7, + "end": 32502.6, + "probability": 0.9468 + }, + { + "start": 32502.92, + "end": 32506.28, + "probability": 0.9471 + }, + { + "start": 32507.0, + "end": 32508.18, + "probability": 0.7916 + }, + { + "start": 32508.26, + "end": 32508.64, + "probability": 0.7356 + }, + { + "start": 32508.72, + "end": 32512.64, + "probability": 0.9662 + }, + { + "start": 32514.34, + "end": 32515.66, + "probability": 0.4784 + }, + { + "start": 32515.66, + "end": 32516.06, + "probability": 0.5926 + }, + { + "start": 32516.16, + "end": 32517.16, + "probability": 0.6531 + }, + { + "start": 32517.2, + "end": 32518.38, + "probability": 0.9625 + }, + { + "start": 32519.48, + "end": 32521.16, + "probability": 0.8594 + }, + { + "start": 32521.16, + "end": 32524.01, + "probability": 0.3248 + }, + { + "start": 32526.06, + "end": 32527.46, + "probability": 0.9557 + }, + { + "start": 32527.88, + "end": 32529.22, + "probability": 0.8755 + }, + { + "start": 32529.64, + "end": 32532.1, + "probability": 0.9661 + }, + { + "start": 32532.1, + "end": 32534.36, + "probability": 0.9766 + }, + { + "start": 32534.98, + "end": 32535.62, + "probability": 0.9253 + }, + { + "start": 32536.38, + "end": 32537.86, + "probability": 0.8008 + }, + { + "start": 32538.3, + "end": 32544.82, + "probability": 0.4952 + }, + { + "start": 32544.82, + "end": 32546.68, + "probability": 0.5779 + }, + { + "start": 32547.08, + "end": 32548.18, + "probability": 0.9548 + }, + { + "start": 32548.82, + "end": 32550.38, + "probability": 0.475 + }, + { + "start": 32550.72, + "end": 32554.34, + "probability": 0.9937 + }, + { + "start": 32555.44, + "end": 32557.34, + "probability": 0.8611 + }, + { + "start": 32557.4, + "end": 32558.59, + "probability": 0.9948 + }, + { + "start": 32558.66, + "end": 32562.54, + "probability": 0.9956 + }, + { + "start": 32563.58, + "end": 32565.36, + "probability": 0.2656 + }, + { + "start": 32565.88, + "end": 32566.82, + "probability": 0.1888 + }, + { + "start": 32569.82, + "end": 32570.4, + "probability": 0.0393 + }, + { + "start": 32571.16, + "end": 32576.5, + "probability": 0.4009 + }, + { + "start": 32579.46, + "end": 32579.82, + "probability": 0.6464 + }, + { + "start": 32579.96, + "end": 32580.48, + "probability": 0.8434 + }, + { + "start": 32580.58, + "end": 32583.42, + "probability": 0.9434 + }, + { + "start": 32583.76, + "end": 32585.9, + "probability": 0.948 + }, + { + "start": 32585.96, + "end": 32587.08, + "probability": 0.84 + }, + { + "start": 32588.18, + "end": 32592.38, + "probability": 0.9507 + }, + { + "start": 32592.52, + "end": 32593.98, + "probability": 0.8356 + }, + { + "start": 32594.18, + "end": 32594.34, + "probability": 0.5796 + }, + { + "start": 32594.44, + "end": 32595.26, + "probability": 0.9075 + }, + { + "start": 32595.4, + "end": 32598.24, + "probability": 0.5932 + }, + { + "start": 32598.34, + "end": 32599.1, + "probability": 0.1906 + }, + { + "start": 32599.1, + "end": 32601.2, + "probability": 0.3959 + }, + { + "start": 32601.34, + "end": 32601.5, + "probability": 0.0001 + }, + { + "start": 32601.56, + "end": 32604.02, + "probability": 0.7074 + }, + { + "start": 32604.02, + "end": 32607.31, + "probability": 0.5491 + }, + { + "start": 32607.54, + "end": 32609.92, + "probability": 0.8599 + }, + { + "start": 32610.14, + "end": 32610.94, + "probability": 0.5559 + }, + { + "start": 32611.04, + "end": 32614.78, + "probability": 0.9648 + }, + { + "start": 32615.36, + "end": 32618.24, + "probability": 0.9899 + }, + { + "start": 32618.72, + "end": 32621.46, + "probability": 0.9779 + }, + { + "start": 32621.68, + "end": 32622.58, + "probability": 0.8272 + }, + { + "start": 32623.06, + "end": 32624.3, + "probability": 0.9714 + }, + { + "start": 32624.34, + "end": 32626.08, + "probability": 0.7704 + }, + { + "start": 32626.22, + "end": 32627.26, + "probability": 0.7113 + }, + { + "start": 32627.72, + "end": 32629.82, + "probability": 0.9826 + }, + { + "start": 32630.34, + "end": 32631.84, + "probability": 0.9941 + }, + { + "start": 32632.42, + "end": 32632.82, + "probability": 0.6152 + }, + { + "start": 32633.52, + "end": 32634.52, + "probability": 0.7064 + }, + { + "start": 32634.74, + "end": 32636.38, + "probability": 0.9459 + }, + { + "start": 32636.88, + "end": 32639.3, + "probability": 0.9444 + }, + { + "start": 32639.7, + "end": 32640.54, + "probability": 0.696 + }, + { + "start": 32640.72, + "end": 32643.74, + "probability": 0.9867 + }, + { + "start": 32643.86, + "end": 32645.12, + "probability": 0.9711 + }, + { + "start": 32646.14, + "end": 32646.9, + "probability": 0.9245 + }, + { + "start": 32646.96, + "end": 32648.35, + "probability": 0.9966 + }, + { + "start": 32648.66, + "end": 32650.04, + "probability": 0.8438 + }, + { + "start": 32650.48, + "end": 32651.26, + "probability": 0.6254 + }, + { + "start": 32653.16, + "end": 32655.36, + "probability": 0.8753 + }, + { + "start": 32655.36, + "end": 32657.58, + "probability": 0.9791 + }, + { + "start": 32658.06, + "end": 32660.1, + "probability": 0.9802 + }, + { + "start": 32660.34, + "end": 32661.36, + "probability": 0.7563 + }, + { + "start": 32661.44, + "end": 32664.56, + "probability": 0.9345 + }, + { + "start": 32665.1, + "end": 32666.5, + "probability": 0.9928 + }, + { + "start": 32666.84, + "end": 32666.86, + "probability": 0.1647 + }, + { + "start": 32666.86, + "end": 32669.4, + "probability": 0.7177 + }, + { + "start": 32669.46, + "end": 32670.56, + "probability": 0.8115 + }, + { + "start": 32670.92, + "end": 32674.68, + "probability": 0.98 + }, + { + "start": 32674.78, + "end": 32675.66, + "probability": 0.4203 + }, + { + "start": 32675.74, + "end": 32677.12, + "probability": 0.7553 + }, + { + "start": 32677.34, + "end": 32680.1, + "probability": 0.9938 + }, + { + "start": 32680.64, + "end": 32682.08, + "probability": 0.8416 + }, + { + "start": 32682.34, + "end": 32683.32, + "probability": 0.917 + }, + { + "start": 32683.38, + "end": 32684.22, + "probability": 0.999 + }, + { + "start": 32684.22, + "end": 32687.1, + "probability": 0.75 + }, + { + "start": 32688.16, + "end": 32689.14, + "probability": 0.5447 + }, + { + "start": 32689.18, + "end": 32690.16, + "probability": 0.3334 + }, + { + "start": 32690.2, + "end": 32693.56, + "probability": 0.9966 + }, + { + "start": 32694.98, + "end": 32695.33, + "probability": 0.3811 + }, + { + "start": 32699.52, + "end": 32699.66, + "probability": 0.079 + }, + { + "start": 32699.66, + "end": 32700.6, + "probability": 0.7345 + }, + { + "start": 32700.7, + "end": 32701.14, + "probability": 0.3142 + }, + { + "start": 32702.12, + "end": 32702.34, + "probability": 0.0003 + }, + { + "start": 32711.74, + "end": 32713.48, + "probability": 0.351 + }, + { + "start": 32719.16, + "end": 32721.14, + "probability": 0.4009 + }, + { + "start": 32733.12, + "end": 32734.0, + "probability": 0.2876 + }, + { + "start": 32735.0, + "end": 32735.84, + "probability": 0.3929 + }, + { + "start": 32736.25, + "end": 32738.66, + "probability": 0.9028 + }, + { + "start": 32745.6, + "end": 32746.54, + "probability": 0.7617 + }, + { + "start": 32753.86, + "end": 32755.74, + "probability": 0.7021 + }, + { + "start": 32756.96, + "end": 32763.46, + "probability": 0.887 + }, + { + "start": 32764.48, + "end": 32767.72, + "probability": 0.9675 + }, + { + "start": 32768.7, + "end": 32771.62, + "probability": 0.7932 + }, + { + "start": 32772.54, + "end": 32773.8, + "probability": 0.8908 + }, + { + "start": 32774.52, + "end": 32776.0, + "probability": 0.8579 + }, + { + "start": 32776.1, + "end": 32777.22, + "probability": 0.6484 + }, + { + "start": 32777.84, + "end": 32778.3, + "probability": 0.9117 + }, + { + "start": 32778.82, + "end": 32779.92, + "probability": 0.7594 + }, + { + "start": 32780.7, + "end": 32782.9, + "probability": 0.9733 + }, + { + "start": 32784.42, + "end": 32787.34, + "probability": 0.8593 + }, + { + "start": 32787.88, + "end": 32788.56, + "probability": 0.9023 + }, + { + "start": 32789.46, + "end": 32793.06, + "probability": 0.9728 + }, + { + "start": 32793.26, + "end": 32794.5, + "probability": 0.8899 + }, + { + "start": 32795.84, + "end": 32799.42, + "probability": 0.6988 + }, + { + "start": 32800.48, + "end": 32801.86, + "probability": 0.5735 + }, + { + "start": 32802.04, + "end": 32803.68, + "probability": 0.9471 + }, + { + "start": 32804.92, + "end": 32808.66, + "probability": 0.8338 + }, + { + "start": 32810.97, + "end": 32813.7, + "probability": 0.5923 + }, + { + "start": 32813.76, + "end": 32815.42, + "probability": 0.9356 + }, + { + "start": 32815.82, + "end": 32816.54, + "probability": 0.9159 + }, + { + "start": 32817.54, + "end": 32820.82, + "probability": 0.5262 + }, + { + "start": 32821.34, + "end": 32822.06, + "probability": 0.6643 + }, + { + "start": 32822.66, + "end": 32825.18, + "probability": 0.8331 + }, + { + "start": 32827.24, + "end": 32830.96, + "probability": 0.9521 + }, + { + "start": 32831.52, + "end": 32832.44, + "probability": 0.4574 + }, + { + "start": 32833.18, + "end": 32835.36, + "probability": 0.5036 + }, + { + "start": 32835.96, + "end": 32837.8, + "probability": 0.7461 + }, + { + "start": 32838.42, + "end": 32840.16, + "probability": 0.9786 + }, + { + "start": 32840.76, + "end": 32844.58, + "probability": 0.7421 + }, + { + "start": 32845.24, + "end": 32848.6, + "probability": 0.9014 + }, + { + "start": 32849.61, + "end": 32854.12, + "probability": 0.9517 + }, + { + "start": 32855.06, + "end": 32858.74, + "probability": 0.9563 + }, + { + "start": 32858.78, + "end": 32859.3, + "probability": 0.751 + }, + { + "start": 32859.38, + "end": 32859.64, + "probability": 0.8375 + }, + { + "start": 32859.72, + "end": 32860.52, + "probability": 0.8354 + }, + { + "start": 32861.1, + "end": 32861.4, + "probability": 0.5432 + }, + { + "start": 32861.54, + "end": 32865.56, + "probability": 0.9619 + }, + { + "start": 32866.3, + "end": 32869.44, + "probability": 0.9697 + }, + { + "start": 32870.34, + "end": 32872.46, + "probability": 0.962 + }, + { + "start": 32873.22, + "end": 32874.66, + "probability": 0.9055 + }, + { + "start": 32875.76, + "end": 32878.32, + "probability": 0.5665 + }, + { + "start": 32882.4, + "end": 32885.14, + "probability": 0.9941 + }, + { + "start": 32885.88, + "end": 32888.68, + "probability": 0.8367 + }, + { + "start": 32889.32, + "end": 32890.86, + "probability": 0.8109 + }, + { + "start": 32891.16, + "end": 32897.46, + "probability": 0.9633 + }, + { + "start": 32898.16, + "end": 32899.96, + "probability": 0.5468 + }, + { + "start": 32900.48, + "end": 32904.32, + "probability": 0.8265 + }, + { + "start": 32904.9, + "end": 32907.9, + "probability": 0.8745 + }, + { + "start": 32908.52, + "end": 32910.84, + "probability": 0.8883 + }, + { + "start": 32911.64, + "end": 32911.64, + "probability": 0.4542 + }, + { + "start": 32912.58, + "end": 32912.86, + "probability": 0.152 + }, + { + "start": 32912.86, + "end": 32913.18, + "probability": 0.4659 + }, + { + "start": 32913.84, + "end": 32916.13, + "probability": 0.5135 + }, + { + "start": 32916.96, + "end": 32917.18, + "probability": 0.4269 + }, + { + "start": 32917.24, + "end": 32919.3, + "probability": 0.2442 + }, + { + "start": 32919.34, + "end": 32920.16, + "probability": 0.7698 + }, + { + "start": 32920.28, + "end": 32922.39, + "probability": 0.5835 + }, + { + "start": 32923.44, + "end": 32923.98, + "probability": 0.051 + }, + { + "start": 32923.98, + "end": 32924.6, + "probability": 0.1104 + }, + { + "start": 32924.76, + "end": 32924.78, + "probability": 0.0816 + }, + { + "start": 32924.78, + "end": 32924.78, + "probability": 0.0572 + }, + { + "start": 32924.78, + "end": 32928.38, + "probability": 0.9082 + }, + { + "start": 32928.78, + "end": 32929.74, + "probability": 0.7718 + }, + { + "start": 32929.86, + "end": 32931.16, + "probability": 0.7975 + }, + { + "start": 32931.16, + "end": 32932.82, + "probability": 0.7535 + }, + { + "start": 32933.32, + "end": 32934.68, + "probability": 0.9821 + }, + { + "start": 32934.7, + "end": 32935.26, + "probability": 0.14 + }, + { + "start": 32935.6, + "end": 32935.67, + "probability": 0.177 + }, + { + "start": 32936.36, + "end": 32937.96, + "probability": 0.1863 + }, + { + "start": 32937.96, + "end": 32937.96, + "probability": 0.0457 + }, + { + "start": 32937.96, + "end": 32937.96, + "probability": 0.1254 + }, + { + "start": 32937.96, + "end": 32938.06, + "probability": 0.3068 + }, + { + "start": 32938.44, + "end": 32939.56, + "probability": 0.9924 + }, + { + "start": 32939.66, + "end": 32940.5, + "probability": 0.2146 + }, + { + "start": 32941.18, + "end": 32941.72, + "probability": 0.6058 + }, + { + "start": 32941.82, + "end": 32942.0, + "probability": 0.4214 + }, + { + "start": 32944.98, + "end": 32946.94, + "probability": 0.3054 + }, + { + "start": 32950.38, + "end": 32951.03, + "probability": 0.1537 + }, + { + "start": 32951.54, + "end": 32953.24, + "probability": 0.0535 + }, + { + "start": 32953.24, + "end": 32959.04, + "probability": 0.1057 + }, + { + "start": 32962.58, + "end": 32962.92, + "probability": 0.0194 + }, + { + "start": 32971.96, + "end": 32972.7, + "probability": 0.0056 + }, + { + "start": 32973.22, + "end": 32973.44, + "probability": 0.0118 + }, + { + "start": 32997.58, + "end": 33001.76, + "probability": 0.9876 + }, + { + "start": 33001.76, + "end": 33004.7, + "probability": 0.9985 + }, + { + "start": 33005.58, + "end": 33005.92, + "probability": 0.4948 + }, + { + "start": 33006.46, + "end": 33010.82, + "probability": 0.9692 + }, + { + "start": 33010.82, + "end": 33014.28, + "probability": 0.9896 + }, + { + "start": 33014.9, + "end": 33018.66, + "probability": 0.9558 + }, + { + "start": 33019.2, + "end": 33023.26, + "probability": 0.9924 + }, + { + "start": 33024.34, + "end": 33028.36, + "probability": 0.9748 + }, + { + "start": 33028.36, + "end": 33034.0, + "probability": 0.9983 + }, + { + "start": 33035.08, + "end": 33036.14, + "probability": 0.8877 + }, + { + "start": 33036.44, + "end": 33041.54, + "probability": 0.7316 + }, + { + "start": 33042.3, + "end": 33044.7, + "probability": 0.9989 + }, + { + "start": 33045.26, + "end": 33047.68, + "probability": 0.9891 + }, + { + "start": 33048.58, + "end": 33049.02, + "probability": 0.8986 + }, + { + "start": 33049.9, + "end": 33053.06, + "probability": 0.9089 + }, + { + "start": 33054.02, + "end": 33056.52, + "probability": 0.9587 + }, + { + "start": 33056.52, + "end": 33059.76, + "probability": 0.9651 + }, + { + "start": 33060.5, + "end": 33066.04, + "probability": 0.987 + }, + { + "start": 33066.04, + "end": 33070.04, + "probability": 0.9982 + }, + { + "start": 33070.68, + "end": 33071.3, + "probability": 0.6009 + }, + { + "start": 33071.86, + "end": 33075.92, + "probability": 0.9904 + }, + { + "start": 33075.92, + "end": 33078.8, + "probability": 0.9902 + }, + { + "start": 33079.74, + "end": 33083.88, + "probability": 0.7455 + }, + { + "start": 33087.12, + "end": 33090.78, + "probability": 0.9907 + }, + { + "start": 33091.46, + "end": 33093.5, + "probability": 0.999 + }, + { + "start": 33094.06, + "end": 33096.64, + "probability": 0.9979 + }, + { + "start": 33097.52, + "end": 33100.36, + "probability": 0.7974 + }, + { + "start": 33100.36, + "end": 33102.92, + "probability": 0.996 + }, + { + "start": 33103.66, + "end": 33108.48, + "probability": 0.9971 + }, + { + "start": 33109.02, + "end": 33112.12, + "probability": 0.9866 + }, + { + "start": 33112.16, + "end": 33115.3, + "probability": 0.9915 + }, + { + "start": 33115.82, + "end": 33118.98, + "probability": 0.9665 + }, + { + "start": 33119.6, + "end": 33119.84, + "probability": 0.652 + }, + { + "start": 33120.8, + "end": 33121.32, + "probability": 0.6266 + }, + { + "start": 33121.44, + "end": 33124.58, + "probability": 0.7468 + }, + { + "start": 33125.48, + "end": 33125.52, + "probability": 0.1379 + }, + { + "start": 33128.14, + "end": 33129.5, + "probability": 0.0242 + }, + { + "start": 33149.52, + "end": 33152.44, + "probability": 0.8029 + }, + { + "start": 33152.44, + "end": 33155.78, + "probability": 0.9993 + }, + { + "start": 33156.64, + "end": 33158.64, + "probability": 0.8526 + }, + { + "start": 33158.76, + "end": 33161.2, + "probability": 0.9932 + }, + { + "start": 33162.26, + "end": 33163.0, + "probability": 0.7524 + }, + { + "start": 33163.14, + "end": 33165.06, + "probability": 0.9818 + }, + { + "start": 33165.64, + "end": 33166.9, + "probability": 0.9453 + }, + { + "start": 33167.06, + "end": 33167.14, + "probability": 0.3799 + }, + { + "start": 33167.28, + "end": 33169.82, + "probability": 0.8203 + }, + { + "start": 33170.68, + "end": 33175.16, + "probability": 0.7859 + }, + { + "start": 33175.22, + "end": 33175.98, + "probability": 0.5305 + }, + { + "start": 33176.14, + "end": 33177.18, + "probability": 0.7565 + }, + { + "start": 33177.28, + "end": 33177.78, + "probability": 0.8391 + }, + { + "start": 33177.88, + "end": 33179.56, + "probability": 0.7735 + }, + { + "start": 33181.0, + "end": 33182.14, + "probability": 0.98 + }, + { + "start": 33182.32, + "end": 33185.06, + "probability": 0.8937 + }, + { + "start": 33185.56, + "end": 33186.24, + "probability": 0.7739 + }, + { + "start": 33186.3, + "end": 33187.74, + "probability": 0.9862 + }, + { + "start": 33188.56, + "end": 33190.94, + "probability": 0.9705 + }, + { + "start": 33192.34, + "end": 33196.06, + "probability": 0.1867 + }, + { + "start": 33197.23, + "end": 33198.58, + "probability": 0.0472 + }, + { + "start": 33198.58, + "end": 33198.58, + "probability": 0.4992 + }, + { + "start": 33198.58, + "end": 33198.58, + "probability": 0.0661 + }, + { + "start": 33198.58, + "end": 33200.06, + "probability": 0.675 + }, + { + "start": 33200.54, + "end": 33202.44, + "probability": 0.7998 + }, + { + "start": 33203.04, + "end": 33203.9, + "probability": 0.6641 + }, + { + "start": 33204.0, + "end": 33204.94, + "probability": 0.7688 + }, + { + "start": 33205.44, + "end": 33209.83, + "probability": 0.9734 + }, + { + "start": 33210.86, + "end": 33213.22, + "probability": 0.9902 + }, + { + "start": 33214.02, + "end": 33215.12, + "probability": 0.9507 + }, + { + "start": 33215.18, + "end": 33216.79, + "probability": 0.0455 + }, + { + "start": 33217.08, + "end": 33217.08, + "probability": 0.0954 + }, + { + "start": 33217.08, + "end": 33219.34, + "probability": 0.8783 + }, + { + "start": 33220.1, + "end": 33223.86, + "probability": 0.9885 + }, + { + "start": 33224.14, + "end": 33230.92, + "probability": 0.0521 + }, + { + "start": 33235.74, + "end": 33243.24, + "probability": 0.0137 + }, + { + "start": 33248.98, + "end": 33249.72, + "probability": 0.2036 + }, + { + "start": 33251.28, + "end": 33255.74, + "probability": 0.4285 + }, + { + "start": 33256.28, + "end": 33257.98, + "probability": 0.161 + }, + { + "start": 33262.66, + "end": 33265.86, + "probability": 0.0483 + }, + { + "start": 33268.33, + "end": 33270.7, + "probability": 0.1208 + }, + { + "start": 33270.7, + "end": 33271.26, + "probability": 0.2786 + }, + { + "start": 33271.4, + "end": 33272.14, + "probability": 0.0291 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.0, + "end": 33301.0, + "probability": 0.0 + }, + { + "start": 33301.34, + "end": 33301.82, + "probability": 0.0394 + }, + { + "start": 33301.82, + "end": 33301.82, + "probability": 0.0506 + }, + { + "start": 33301.82, + "end": 33303.3, + "probability": 0.6249 + }, + { + "start": 33303.44, + "end": 33305.09, + "probability": 0.9811 + }, + { + "start": 33305.9, + "end": 33307.79, + "probability": 0.947 + }, + { + "start": 33308.52, + "end": 33311.2, + "probability": 0.9575 + }, + { + "start": 33311.78, + "end": 33313.7, + "probability": 0.9966 + }, + { + "start": 33314.9, + "end": 33315.96, + "probability": 0.9839 + }, + { + "start": 33316.2, + "end": 33317.04, + "probability": 0.9492 + }, + { + "start": 33317.12, + "end": 33318.0, + "probability": 0.949 + }, + { + "start": 33318.12, + "end": 33318.54, + "probability": 0.8794 + }, + { + "start": 33318.62, + "end": 33321.14, + "probability": 0.9092 + }, + { + "start": 33321.76, + "end": 33325.02, + "probability": 0.9966 + }, + { + "start": 33325.62, + "end": 33325.78, + "probability": 0.0004 + }, + { + "start": 33326.58, + "end": 33327.32, + "probability": 0.0695 + }, + { + "start": 33327.32, + "end": 33327.42, + "probability": 0.2797 + }, + { + "start": 33327.42, + "end": 33327.48, + "probability": 0.1768 + }, + { + "start": 33327.48, + "end": 33327.48, + "probability": 0.1325 + }, + { + "start": 33327.48, + "end": 33327.48, + "probability": 0.2857 + }, + { + "start": 33327.48, + "end": 33327.48, + "probability": 0.4128 + }, + { + "start": 33327.48, + "end": 33331.0, + "probability": 0.966 + }, + { + "start": 33331.1, + "end": 33331.42, + "probability": 0.802 + }, + { + "start": 33331.7, + "end": 33333.44, + "probability": 0.8575 + }, + { + "start": 33333.96, + "end": 33335.61, + "probability": 0.981 + }, + { + "start": 33336.18, + "end": 33337.45, + "probability": 0.9775 + }, + { + "start": 33339.78, + "end": 33344.04, + "probability": 0.9881 + }, + { + "start": 33344.76, + "end": 33351.18, + "probability": 0.9875 + }, + { + "start": 33351.56, + "end": 33352.32, + "probability": 0.891 + }, + { + "start": 33352.6, + "end": 33356.94, + "probability": 0.9715 + }, + { + "start": 33357.52, + "end": 33361.92, + "probability": 0.9846 + }, + { + "start": 33362.9, + "end": 33363.14, + "probability": 0.7491 + }, + { + "start": 33364.14, + "end": 33366.9, + "probability": 0.7969 + }, + { + "start": 33367.74, + "end": 33368.58, + "probability": 0.0213 + }, + { + "start": 33369.68, + "end": 33370.54, + "probability": 0.0719 + }, + { + "start": 33373.88, + "end": 33374.84, + "probability": 0.1925 + }, + { + "start": 33377.1, + "end": 33381.34, + "probability": 0.0758 + }, + { + "start": 33381.82, + "end": 33383.8, + "probability": 0.0481 + }, + { + "start": 33384.62, + "end": 33386.8, + "probability": 0.0362 + }, + { + "start": 33400.48, + "end": 33401.64, + "probability": 0.3784 + }, + { + "start": 33402.18, + "end": 33405.06, + "probability": 0.0397 + }, + { + "start": 33406.48, + "end": 33406.72, + "probability": 0.0264 + }, + { + "start": 33407.4, + "end": 33408.28, + "probability": 0.0462 + }, + { + "start": 33434.56, + "end": 33437.24, + "probability": 0.8027 + }, + { + "start": 33438.38, + "end": 33440.18, + "probability": 0.7603 + }, + { + "start": 33441.48, + "end": 33446.68, + "probability": 0.9799 + }, + { + "start": 33447.74, + "end": 33450.9, + "probability": 0.9951 + }, + { + "start": 33451.9, + "end": 33452.34, + "probability": 0.9185 + }, + { + "start": 33452.86, + "end": 33454.86, + "probability": 0.9784 + }, + { + "start": 33456.76, + "end": 33460.24, + "probability": 0.9345 + }, + { + "start": 33462.16, + "end": 33464.94, + "probability": 0.8839 + }, + { + "start": 33465.52, + "end": 33467.71, + "probability": 0.9586 + }, + { + "start": 33467.94, + "end": 33469.34, + "probability": 0.9381 + }, + { + "start": 33469.46, + "end": 33473.52, + "probability": 0.9778 + }, + { + "start": 33474.28, + "end": 33478.82, + "probability": 0.9893 + }, + { + "start": 33479.15, + "end": 33480.42, + "probability": 0.9858 + }, + { + "start": 33483.38, + "end": 33487.82, + "probability": 0.9953 + }, + { + "start": 33487.9, + "end": 33488.42, + "probability": 0.8667 + }, + { + "start": 33488.8, + "end": 33489.52, + "probability": 0.8921 + }, + { + "start": 33490.2, + "end": 33496.68, + "probability": 0.9858 + }, + { + "start": 33497.86, + "end": 33500.12, + "probability": 0.9437 + }, + { + "start": 33502.94, + "end": 33504.64, + "probability": 0.8799 + }, + { + "start": 33505.3, + "end": 33506.86, + "probability": 0.9888 + }, + { + "start": 33508.24, + "end": 33511.38, + "probability": 0.952 + }, + { + "start": 33512.16, + "end": 33513.12, + "probability": 0.9639 + }, + { + "start": 33513.82, + "end": 33515.68, + "probability": 0.9546 + }, + { + "start": 33517.94, + "end": 33519.34, + "probability": 0.4082 + }, + { + "start": 33520.8, + "end": 33521.34, + "probability": 0.5104 + }, + { + "start": 33522.46, + "end": 33527.72, + "probability": 0.7961 + }, + { + "start": 33528.1, + "end": 33528.78, + "probability": 0.5341 + }, + { + "start": 33529.42, + "end": 33530.86, + "probability": 0.9945 + }, + { + "start": 33531.38, + "end": 33532.88, + "probability": 0.8837 + }, + { + "start": 33532.96, + "end": 33535.24, + "probability": 0.7407 + }, + { + "start": 33535.26, + "end": 33536.18, + "probability": 0.8184 + }, + { + "start": 33536.32, + "end": 33540.08, + "probability": 0.9479 + }, + { + "start": 33540.26, + "end": 33547.3, + "probability": 0.5747 + }, + { + "start": 33547.9, + "end": 33552.28, + "probability": 0.9347 + }, + { + "start": 33552.82, + "end": 33555.56, + "probability": 0.9261 + }, + { + "start": 33556.24, + "end": 33559.6, + "probability": 0.9526 + }, + { + "start": 33560.6, + "end": 33562.5, + "probability": 0.918 + }, + { + "start": 33562.78, + "end": 33564.56, + "probability": 0.6967 + }, + { + "start": 33564.66, + "end": 33565.52, + "probability": 0.9192 + }, + { + "start": 33566.9, + "end": 33568.02, + "probability": 0.9939 + }, + { + "start": 33568.46, + "end": 33572.62, + "probability": 0.8164 + }, + { + "start": 33572.72, + "end": 33573.46, + "probability": 0.7707 + }, + { + "start": 33573.74, + "end": 33577.04, + "probability": 0.9875 + }, + { + "start": 33578.12, + "end": 33580.66, + "probability": 0.9129 + }, + { + "start": 33580.82, + "end": 33581.78, + "probability": 0.9018 + }, + { + "start": 33582.16, + "end": 33584.56, + "probability": 0.9889 + }, + { + "start": 33585.38, + "end": 33586.98, + "probability": 0.9914 + }, + { + "start": 33587.04, + "end": 33589.96, + "probability": 0.927 + }, + { + "start": 33590.48, + "end": 33591.18, + "probability": 0.9956 + }, + { + "start": 33591.92, + "end": 33594.4, + "probability": 0.9084 + }, + { + "start": 33594.84, + "end": 33596.48, + "probability": 0.8961 + }, + { + "start": 33601.4, + "end": 33602.1, + "probability": 0.595 + }, + { + "start": 33608.92, + "end": 33609.06, + "probability": 0.0168 + }, + { + "start": 33609.06, + "end": 33611.88, + "probability": 0.9119 + }, + { + "start": 33617.7, + "end": 33620.4, + "probability": 0.7116 + }, + { + "start": 33621.78, + "end": 33622.06, + "probability": 0.0269 + }, + { + "start": 33622.06, + "end": 33622.54, + "probability": 0.7705 + }, + { + "start": 33622.84, + "end": 33623.81, + "probability": 0.5911 + }, + { + "start": 33624.3, + "end": 33625.62, + "probability": 0.9409 + }, + { + "start": 33625.7, + "end": 33625.92, + "probability": 0.987 + }, + { + "start": 33625.98, + "end": 33626.82, + "probability": 0.7163 + }, + { + "start": 33627.32, + "end": 33628.18, + "probability": 0.9641 + }, + { + "start": 33628.36, + "end": 33629.92, + "probability": 0.9858 + }, + { + "start": 33630.76, + "end": 33632.26, + "probability": 0.9983 + }, + { + "start": 33632.74, + "end": 33633.85, + "probability": 0.9976 + }, + { + "start": 33635.52, + "end": 33638.48, + "probability": 0.9971 + }, + { + "start": 33641.0, + "end": 33643.0, + "probability": 0.9961 + }, + { + "start": 33643.3, + "end": 33645.26, + "probability": 0.9895 + }, + { + "start": 33645.46, + "end": 33647.68, + "probability": 0.9651 + }, + { + "start": 33648.34, + "end": 33650.74, + "probability": 0.566 + }, + { + "start": 33652.98, + "end": 33656.28, + "probability": 0.1827 + }, + { + "start": 33656.62, + "end": 33659.08, + "probability": 0.8741 + }, + { + "start": 33659.22, + "end": 33660.27, + "probability": 0.97 + }, + { + "start": 33661.39, + "end": 33663.6, + "probability": 0.9155 + }, + { + "start": 33664.48, + "end": 33666.54, + "probability": 0.4736 + }, + { + "start": 33666.54, + "end": 33668.9, + "probability": 0.9697 + }, + { + "start": 33669.02, + "end": 33669.6, + "probability": 0.7885 + }, + { + "start": 33669.68, + "end": 33671.24, + "probability": 0.9148 + }, + { + "start": 33672.42, + "end": 33674.08, + "probability": 0.8182 + }, + { + "start": 33674.94, + "end": 33678.21, + "probability": 0.9956 + }, + { + "start": 33679.2, + "end": 33680.54, + "probability": 0.73 + }, + { + "start": 33680.56, + "end": 33681.52, + "probability": 0.9919 + }, + { + "start": 33681.7, + "end": 33683.6, + "probability": 0.9229 + }, + { + "start": 33684.7, + "end": 33685.37, + "probability": 0.5472 + }, + { + "start": 33685.8, + "end": 33687.42, + "probability": 0.9767 + }, + { + "start": 33687.52, + "end": 33689.36, + "probability": 0.8757 + }, + { + "start": 33689.4, + "end": 33690.46, + "probability": 0.99 + }, + { + "start": 33691.36, + "end": 33693.88, + "probability": 0.7653 + }, + { + "start": 33693.94, + "end": 33695.18, + "probability": 0.4553 + }, + { + "start": 33695.28, + "end": 33696.58, + "probability": 0.7695 + }, + { + "start": 33697.04, + "end": 33697.4, + "probability": 0.983 + }, + { + "start": 33698.84, + "end": 33699.56, + "probability": 0.9839 + }, + { + "start": 33699.64, + "end": 33703.62, + "probability": 0.9951 + }, + { + "start": 33703.7, + "end": 33704.58, + "probability": 0.6897 + }, + { + "start": 33705.14, + "end": 33706.26, + "probability": 0.6785 + }, + { + "start": 33706.36, + "end": 33707.04, + "probability": 0.9781 + }, + { + "start": 33707.12, + "end": 33707.62, + "probability": 0.9458 + }, + { + "start": 33708.3, + "end": 33709.4, + "probability": 0.7781 + }, + { + "start": 33711.1, + "end": 33712.8, + "probability": 0.9858 + }, + { + "start": 33712.96, + "end": 33713.92, + "probability": 0.58 + }, + { + "start": 33714.48, + "end": 33715.55, + "probability": 0.9669 + }, + { + "start": 33717.14, + "end": 33718.25, + "probability": 0.9244 + }, + { + "start": 33719.12, + "end": 33720.84, + "probability": 0.8613 + }, + { + "start": 33723.98, + "end": 33725.76, + "probability": 0.9264 + }, + { + "start": 33725.9, + "end": 33726.32, + "probability": 0.4434 + }, + { + "start": 33726.56, + "end": 33727.0, + "probability": 0.9064 + }, + { + "start": 33728.32, + "end": 33731.54, + "probability": 0.519 + }, + { + "start": 33731.62, + "end": 33732.9, + "probability": 0.1153 + }, + { + "start": 33735.4, + "end": 33736.06, + "probability": 0.3559 + }, + { + "start": 33738.82, + "end": 33739.94, + "probability": 0.0103 + }, + { + "start": 33740.04, + "end": 33743.48, + "probability": 0.1454 + }, + { + "start": 33743.48, + "end": 33743.48, + "probability": 0.8294 + }, + { + "start": 33743.5, + "end": 33744.81, + "probability": 0.6504 + }, + { + "start": 33745.2, + "end": 33747.38, + "probability": 0.1014 + }, + { + "start": 33747.38, + "end": 33747.6, + "probability": 0.3795 + }, + { + "start": 33747.72, + "end": 33748.21, + "probability": 0.9247 + }, + { + "start": 33748.4, + "end": 33748.74, + "probability": 0.3261 + }, + { + "start": 33748.76, + "end": 33748.9, + "probability": 0.2068 + }, + { + "start": 33749.68, + "end": 33749.86, + "probability": 0.0989 + }, + { + "start": 33749.86, + "end": 33750.34, + "probability": 0.3733 + }, + { + "start": 33751.6, + "end": 33753.84, + "probability": 0.9021 + }, + { + "start": 33754.8, + "end": 33755.44, + "probability": 0.6685 + }, + { + "start": 33756.5, + "end": 33758.98, + "probability": 0.9415 + }, + { + "start": 33760.64, + "end": 33762.08, + "probability": 0.6895 + }, + { + "start": 33763.12, + "end": 33764.44, + "probability": 0.9642 + }, + { + "start": 33765.6, + "end": 33768.54, + "probability": 0.9845 + }, + { + "start": 33769.54, + "end": 33770.18, + "probability": 0.9715 + }, + { + "start": 33772.38, + "end": 33775.64, + "probability": 0.9976 + }, + { + "start": 33777.86, + "end": 33778.82, + "probability": 0.5286 + }, + { + "start": 33778.96, + "end": 33779.86, + "probability": 0.9475 + }, + { + "start": 33779.88, + "end": 33781.26, + "probability": 0.8678 + }, + { + "start": 33781.54, + "end": 33783.08, + "probability": 0.9381 + }, + { + "start": 33784.86, + "end": 33786.88, + "probability": 0.9548 + }, + { + "start": 33788.58, + "end": 33790.3, + "probability": 0.9963 + }, + { + "start": 33791.24, + "end": 33793.58, + "probability": 0.9851 + }, + { + "start": 33796.46, + "end": 33797.12, + "probability": 0.9673 + }, + { + "start": 33798.76, + "end": 33800.36, + "probability": 0.7451 + }, + { + "start": 33801.2, + "end": 33802.7, + "probability": 0.8269 + }, + { + "start": 33804.02, + "end": 33804.62, + "probability": 0.9821 + }, + { + "start": 33805.48, + "end": 33806.9, + "probability": 0.96 + }, + { + "start": 33807.86, + "end": 33811.18, + "probability": 0.9478 + }, + { + "start": 33811.96, + "end": 33812.87, + "probability": 0.9873 + }, + { + "start": 33814.85, + "end": 33818.47, + "probability": 0.9529 + }, + { + "start": 33819.57, + "end": 33820.87, + "probability": 0.7507 + }, + { + "start": 33821.39, + "end": 33824.03, + "probability": 0.7563 + }, + { + "start": 33825.37, + "end": 33827.58, + "probability": 0.9417 + }, + { + "start": 33828.87, + "end": 33832.17, + "probability": 0.9714 + }, + { + "start": 33832.29, + "end": 33832.99, + "probability": 0.8778 + }, + { + "start": 33834.73, + "end": 33839.03, + "probability": 0.9498 + }, + { + "start": 33839.85, + "end": 33840.83, + "probability": 0.7449 + }, + { + "start": 33841.99, + "end": 33842.81, + "probability": 0.7907 + }, + { + "start": 33844.53, + "end": 33846.67, + "probability": 0.8569 + }, + { + "start": 33848.11, + "end": 33848.79, + "probability": 0.7299 + }, + { + "start": 33849.67, + "end": 33850.63, + "probability": 0.9652 + }, + { + "start": 33851.19, + "end": 33851.23, + "probability": 0.0417 + }, + { + "start": 33851.27, + "end": 33851.97, + "probability": 0.0315 + }, + { + "start": 33851.97, + "end": 33852.85, + "probability": 0.82 + }, + { + "start": 33852.85, + "end": 33853.91, + "probability": 0.4324 + }, + { + "start": 33854.51, + "end": 33859.55, + "probability": 0.3466 + }, + { + "start": 33861.17, + "end": 33861.17, + "probability": 0.0452 + }, + { + "start": 33861.17, + "end": 33861.17, + "probability": 0.1607 + }, + { + "start": 33861.17, + "end": 33864.33, + "probability": 0.7791 + }, + { + "start": 33865.51, + "end": 33867.97, + "probability": 0.7188 + }, + { + "start": 33868.67, + "end": 33869.59, + "probability": 0.1279 + }, + { + "start": 33869.59, + "end": 33869.59, + "probability": 0.0542 + }, + { + "start": 33869.59, + "end": 33869.95, + "probability": 0.3746 + }, + { + "start": 33870.37, + "end": 33870.77, + "probability": 0.6962 + }, + { + "start": 33870.93, + "end": 33871.81, + "probability": 0.7176 + }, + { + "start": 33872.05, + "end": 33874.43, + "probability": 0.5721 + }, + { + "start": 33874.43, + "end": 33874.61, + "probability": 0.2217 + }, + { + "start": 33874.77, + "end": 33874.81, + "probability": 0.0791 + }, + { + "start": 33874.81, + "end": 33877.35, + "probability": 0.553 + }, + { + "start": 33877.71, + "end": 33879.15, + "probability": 0.8505 + }, + { + "start": 33879.37, + "end": 33881.05, + "probability": 0.6963 + }, + { + "start": 33881.05, + "end": 33882.23, + "probability": 0.0554 + }, + { + "start": 33882.87, + "end": 33884.95, + "probability": 0.8066 + }, + { + "start": 33885.03, + "end": 33887.93, + "probability": 0.7728 + }, + { + "start": 33887.99, + "end": 33887.99, + "probability": 0.0125 + }, + { + "start": 33887.99, + "end": 33888.57, + "probability": 0.3274 + }, + { + "start": 33888.57, + "end": 33892.13, + "probability": 0.7351 + }, + { + "start": 33892.99, + "end": 33894.41, + "probability": 0.9463 + }, + { + "start": 33894.93, + "end": 33895.52, + "probability": 0.5915 + }, + { + "start": 33895.67, + "end": 33897.12, + "probability": 0.8755 + }, + { + "start": 33897.25, + "end": 33900.05, + "probability": 0.9803 + }, + { + "start": 33900.05, + "end": 33902.07, + "probability": 0.9888 + }, + { + "start": 33902.59, + "end": 33902.85, + "probability": 0.7908 + }, + { + "start": 33902.89, + "end": 33904.05, + "probability": 0.8596 + }, + { + "start": 33904.07, + "end": 33904.41, + "probability": 0.8771 + }, + { + "start": 33904.47, + "end": 33905.41, + "probability": 0.6582 + }, + { + "start": 33905.51, + "end": 33906.25, + "probability": 0.6207 + }, + { + "start": 33906.95, + "end": 33908.97, + "probability": 0.6247 + }, + { + "start": 33910.15, + "end": 33912.37, + "probability": 0.7979 + }, + { + "start": 33912.75, + "end": 33915.23, + "probability": 0.8875 + }, + { + "start": 33916.15, + "end": 33918.57, + "probability": 0.815 + }, + { + "start": 33918.87, + "end": 33920.69, + "probability": 0.857 + }, + { + "start": 33920.71, + "end": 33922.07, + "probability": 0.8118 + }, + { + "start": 33923.93, + "end": 33926.63, + "probability": 0.7486 + }, + { + "start": 33927.25, + "end": 33929.83, + "probability": 0.76 + }, + { + "start": 33929.93, + "end": 33930.63, + "probability": 0.964 + }, + { + "start": 33930.67, + "end": 33931.79, + "probability": 0.994 + }, + { + "start": 33932.67, + "end": 33933.27, + "probability": 0.9764 + }, + { + "start": 33933.99, + "end": 33938.31, + "probability": 0.4338 + }, + { + "start": 33939.09, + "end": 33939.09, + "probability": 0.112 + }, + { + "start": 33939.09, + "end": 33939.09, + "probability": 0.0207 + }, + { + "start": 33939.09, + "end": 33939.39, + "probability": 0.4381 + }, + { + "start": 33939.57, + "end": 33942.45, + "probability": 0.9473 + }, + { + "start": 33942.97, + "end": 33944.05, + "probability": 0.8792 + }, + { + "start": 33944.19, + "end": 33945.47, + "probability": 0.9647 + }, + { + "start": 33947.41, + "end": 33949.81, + "probability": 0.7807 + }, + { + "start": 33949.91, + "end": 33950.65, + "probability": 0.4743 + }, + { + "start": 33950.65, + "end": 33951.19, + "probability": 0.0527 + }, + { + "start": 33951.19, + "end": 33953.15, + "probability": 0.0111 + }, + { + "start": 33954.33, + "end": 33955.03, + "probability": 0.0833 + }, + { + "start": 33955.03, + "end": 33955.31, + "probability": 0.2031 + }, + { + "start": 33955.87, + "end": 33957.89, + "probability": 0.1621 + }, + { + "start": 33960.53, + "end": 33961.17, + "probability": 0.1874 + }, + { + "start": 33962.01, + "end": 33965.95, + "probability": 0.0617 + }, + { + "start": 33966.59, + "end": 33968.17, + "probability": 0.0535 + }, + { + "start": 33968.59, + "end": 33968.75, + "probability": 0.233 + }, + { + "start": 33969.47, + "end": 33972.83, + "probability": 0.0148 + }, + { + "start": 33972.83, + "end": 33977.25, + "probability": 0.0681 + }, + { + "start": 33977.83, + "end": 33979.35, + "probability": 0.0664 + }, + { + "start": 33979.41, + "end": 33979.73, + "probability": 0.0188 + }, + { + "start": 33979.79, + "end": 33983.99, + "probability": 0.04 + }, + { + "start": 33983.99, + "end": 33985.11, + "probability": 0.3655 + }, + { + "start": 33986.33, + "end": 33986.59, + "probability": 0.0392 + }, + { + "start": 33986.59, + "end": 33986.79, + "probability": 0.2264 + }, + { + "start": 33986.91, + "end": 33993.09, + "probability": 0.0303 + }, + { + "start": 33993.09, + "end": 33993.11, + "probability": 0.008 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34019.0, + "end": 34019.0, + "probability": 0.0 + }, + { + "start": 34028.0, + "end": 34028.0, + "probability": 0.0003 + }, + { + "start": 34028.9, + "end": 34031.13, + "probability": 0.0922 + }, + { + "start": 34046.5, + "end": 34056.32, + "probability": 0.0845 + }, + { + "start": 34056.8, + "end": 34058.2, + "probability": 0.0666 + }, + { + "start": 34058.78, + "end": 34058.82, + "probability": 0.0923 + }, + { + "start": 34058.82, + "end": 34059.68, + "probability": 0.0199 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34163.0, + "end": 34163.0, + "probability": 0.0 + }, + { + "start": 34164.18, + "end": 34168.54, + "probability": 0.0736 + }, + { + "start": 34169.28, + "end": 34170.46, + "probability": 0.08 + }, + { + "start": 34171.49, + "end": 34173.42, + "probability": 0.2569 + }, + { + "start": 34173.7, + "end": 34174.96, + "probability": 0.4028 + }, + { + "start": 34174.96, + "end": 34176.68, + "probability": 0.2613 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34307.0, + "end": 34307.0, + "probability": 0.0 + }, + { + "start": 34308.77, + "end": 34313.14, + "probability": 0.6555 + }, + { + "start": 34314.64, + "end": 34316.16, + "probability": 0.9104 + }, + { + "start": 34319.84, + "end": 34321.4, + "probability": 0.9039 + }, + { + "start": 34321.44, + "end": 34323.1, + "probability": 0.7683 + }, + { + "start": 34323.7, + "end": 34325.44, + "probability": 0.7743 + }, + { + "start": 34326.46, + "end": 34326.66, + "probability": 0.7681 + }, + { + "start": 34327.3, + "end": 34329.38, + "probability": 0.5951 + }, + { + "start": 34329.94, + "end": 34331.5, + "probability": 0.8435 + }, + { + "start": 34331.58, + "end": 34333.24, + "probability": 0.8817 + }, + { + "start": 34333.26, + "end": 34337.56, + "probability": 0.8512 + }, + { + "start": 34337.62, + "end": 34339.46, + "probability": 0.9565 + }, + { + "start": 34340.52, + "end": 34342.08, + "probability": 0.9316 + }, + { + "start": 34343.74, + "end": 34344.72, + "probability": 0.9095 + }, + { + "start": 34345.36, + "end": 34345.7, + "probability": 0.9788 + }, + { + "start": 34346.38, + "end": 34347.58, + "probability": 0.7013 + }, + { + "start": 34349.32, + "end": 34351.14, + "probability": 0.8833 + }, + { + "start": 34351.8, + "end": 34353.16, + "probability": 0.9486 + }, + { + "start": 34355.04, + "end": 34357.92, + "probability": 0.8796 + }, + { + "start": 34358.54, + "end": 34359.76, + "probability": 0.9704 + }, + { + "start": 34359.82, + "end": 34360.98, + "probability": 0.9509 + }, + { + "start": 34361.18, + "end": 34362.36, + "probability": 0.7166 + }, + { + "start": 34362.36, + "end": 34363.8, + "probability": 0.5101 + }, + { + "start": 34363.9, + "end": 34365.38, + "probability": 0.4908 + }, + { + "start": 34366.46, + "end": 34369.74, + "probability": 0.9696 + }, + { + "start": 34370.82, + "end": 34374.48, + "probability": 0.9775 + }, + { + "start": 34375.52, + "end": 34376.4, + "probability": 0.7421 + }, + { + "start": 34377.62, + "end": 34379.3, + "probability": 0.9214 + }, + { + "start": 34379.54, + "end": 34381.74, + "probability": 0.7703 + }, + { + "start": 34382.78, + "end": 34385.18, + "probability": 0.3757 + }, + { + "start": 34392.02, + "end": 34397.94, + "probability": 0.7245 + }, + { + "start": 34399.16, + "end": 34400.92, + "probability": 0.9381 + }, + { + "start": 34402.7, + "end": 34405.28, + "probability": 0.9487 + }, + { + "start": 34406.2, + "end": 34407.16, + "probability": 0.8324 + }, + { + "start": 34408.3, + "end": 34410.82, + "probability": 0.9639 + }, + { + "start": 34411.6, + "end": 34412.0, + "probability": 0.5207 + }, + { + "start": 34413.7, + "end": 34415.54, + "probability": 0.812 + }, + { + "start": 34416.66, + "end": 34417.4, + "probability": 0.9652 + }, + { + "start": 34419.46, + "end": 34420.04, + "probability": 0.9389 + }, + { + "start": 34420.8, + "end": 34422.56, + "probability": 0.9209 + }, + { + "start": 34422.6, + "end": 34424.76, + "probability": 0.7428 + }, + { + "start": 34425.22, + "end": 34427.5, + "probability": 0.9181 + }, + { + "start": 34427.54, + "end": 34428.16, + "probability": 0.7866 + }, + { + "start": 34428.8, + "end": 34429.68, + "probability": 0.6466 + }, + { + "start": 34430.7, + "end": 34432.6, + "probability": 0.6541 + }, + { + "start": 34434.32, + "end": 34436.42, + "probability": 0.8967 + }, + { + "start": 34436.52, + "end": 34437.66, + "probability": 0.8375 + }, + { + "start": 34437.78, + "end": 34439.52, + "probability": 0.8533 + }, + { + "start": 34440.24, + "end": 34440.52, + "probability": 0.929 + }, + { + "start": 34442.5, + "end": 34443.92, + "probability": 0.9082 + }, + { + "start": 34444.7, + "end": 34445.14, + "probability": 0.9753 + }, + { + "start": 34446.02, + "end": 34447.5, + "probability": 0.8798 + }, + { + "start": 34448.48, + "end": 34451.12, + "probability": 0.8899 + }, + { + "start": 34451.68, + "end": 34452.38, + "probability": 0.478 + }, + { + "start": 34453.58, + "end": 34455.54, + "probability": 0.7096 + }, + { + "start": 34455.66, + "end": 34456.8, + "probability": 0.9826 + }, + { + "start": 34456.86, + "end": 34458.58, + "probability": 0.9592 + }, + { + "start": 34458.76, + "end": 34459.42, + "probability": 0.6659 + }, + { + "start": 34460.88, + "end": 34463.9, + "probability": 0.7218 + }, + { + "start": 34465.42, + "end": 34469.02, + "probability": 0.6051 + }, + { + "start": 34469.64, + "end": 34470.62, + "probability": 0.7235 + }, + { + "start": 34471.42, + "end": 34474.4, + "probability": 0.9515 + }, + { + "start": 34474.92, + "end": 34476.76, + "probability": 0.892 + }, + { + "start": 34477.98, + "end": 34478.38, + "probability": 0.9353 + }, + { + "start": 34480.28, + "end": 34481.12, + "probability": 0.8755 + }, + { + "start": 34482.14, + "end": 34483.5, + "probability": 0.6906 + }, + { + "start": 34483.58, + "end": 34485.6, + "probability": 0.731 + }, + { + "start": 34485.82, + "end": 34487.18, + "probability": 0.8912 + }, + { + "start": 34487.28, + "end": 34488.86, + "probability": 0.8633 + }, + { + "start": 34489.14, + "end": 34491.08, + "probability": 0.9553 + }, + { + "start": 34491.16, + "end": 34492.46, + "probability": 0.9534 + }, + { + "start": 34494.3, + "end": 34496.04, + "probability": 0.1175 + }, + { + "start": 34496.04, + "end": 34496.46, + "probability": 0.4879 + }, + { + "start": 34497.06, + "end": 34497.86, + "probability": 0.7318 + }, + { + "start": 34500.26, + "end": 34501.22, + "probability": 0.7825 + }, + { + "start": 34502.84, + "end": 34506.5, + "probability": 0.9287 + }, + { + "start": 34507.34, + "end": 34508.83, + "probability": 0.9575 + }, + { + "start": 34509.84, + "end": 34511.48, + "probability": 0.9756 + }, + { + "start": 34512.42, + "end": 34515.52, + "probability": 0.8273 + }, + { + "start": 34516.52, + "end": 34517.94, + "probability": 0.9704 + }, + { + "start": 34518.06, + "end": 34520.06, + "probability": 0.927 + }, + { + "start": 34520.06, + "end": 34521.54, + "probability": 0.9952 + }, + { + "start": 34521.62, + "end": 34522.98, + "probability": 0.9883 + }, + { + "start": 34523.88, + "end": 34525.22, + "probability": 0.9935 + }, + { + "start": 34526.42, + "end": 34530.76, + "probability": 0.8658 + }, + { + "start": 34532.08, + "end": 34533.7, + "probability": 0.6758 + }, + { + "start": 34535.74, + "end": 34536.74, + "probability": 0.3532 + }, + { + "start": 34537.94, + "end": 34538.78, + "probability": 0.7374 + }, + { + "start": 34539.38, + "end": 34540.54, + "probability": 0.7346 + }, + { + "start": 34542.18, + "end": 34543.9, + "probability": 0.7363 + }, + { + "start": 34545.08, + "end": 34546.76, + "probability": 0.769 + }, + { + "start": 34546.8, + "end": 34548.2, + "probability": 0.4446 + }, + { + "start": 34549.08, + "end": 34550.5, + "probability": 0.6522 + }, + { + "start": 34550.62, + "end": 34552.44, + "probability": 0.6108 + }, + { + "start": 34552.58, + "end": 34553.92, + "probability": 0.8849 + }, + { + "start": 34555.42, + "end": 34556.18, + "probability": 0.993 + }, + { + "start": 34556.74, + "end": 34557.66, + "probability": 0.8402 + }, + { + "start": 34559.34, + "end": 34560.54, + "probability": 0.9616 + }, + { + "start": 34560.62, + "end": 34561.94, + "probability": 0.9506 + }, + { + "start": 34562.1, + "end": 34563.86, + "probability": 0.8343 + }, + { + "start": 34564.6, + "end": 34566.4, + "probability": 0.6526 + }, + { + "start": 34566.82, + "end": 34568.44, + "probability": 0.9238 + }, + { + "start": 34568.66, + "end": 34570.46, + "probability": 0.9067 + }, + { + "start": 34571.24, + "end": 34572.38, + "probability": 0.9217 + }, + { + "start": 34572.42, + "end": 34573.74, + "probability": 0.8745 + }, + { + "start": 34573.9, + "end": 34575.44, + "probability": 0.8997 + }, + { + "start": 34576.16, + "end": 34579.42, + "probability": 0.89 + }, + { + "start": 34579.94, + "end": 34582.14, + "probability": 0.818 + }, + { + "start": 34583.76, + "end": 34585.56, + "probability": 0.7396 + }, + { + "start": 34585.84, + "end": 34588.18, + "probability": 0.8308 + }, + { + "start": 34588.3, + "end": 34590.2, + "probability": 0.9406 + }, + { + "start": 34591.02, + "end": 34593.12, + "probability": 0.9088 + }, + { + "start": 34594.44, + "end": 34595.9, + "probability": 0.9618 + }, + { + "start": 34597.1, + "end": 34599.26, + "probability": 0.7082 + }, + { + "start": 34599.34, + "end": 34600.98, + "probability": 0.7944 + }, + { + "start": 34601.08, + "end": 34602.98, + "probability": 0.6591 + }, + { + "start": 34604.1, + "end": 34605.46, + "probability": 0.9639 + }, + { + "start": 34605.74, + "end": 34607.32, + "probability": 0.9834 + }, + { + "start": 34607.36, + "end": 34611.6, + "probability": 0.7965 + }, + { + "start": 34611.68, + "end": 34613.18, + "probability": 0.6665 + }, + { + "start": 34614.54, + "end": 34616.72, + "probability": 0.8026 + }, + { + "start": 34617.72, + "end": 34619.24, + "probability": 0.9553 + }, + { + "start": 34619.48, + "end": 34621.36, + "probability": 0.8184 + }, + { + "start": 34623.46, + "end": 34625.26, + "probability": 0.9774 + }, + { + "start": 34625.36, + "end": 34627.18, + "probability": 0.8515 + }, + { + "start": 34627.22, + "end": 34628.5, + "probability": 0.8746 + }, + { + "start": 34628.76, + "end": 34630.08, + "probability": 0.8945 + }, + { + "start": 34630.14, + "end": 34631.7, + "probability": 0.782 + }, + { + "start": 34632.34, + "end": 34632.66, + "probability": 0.9412 + }, + { + "start": 34634.56, + "end": 34635.58, + "probability": 0.3791 + }, + { + "start": 34636.9, + "end": 34640.66, + "probability": 0.9484 + }, + { + "start": 34642.24, + "end": 34645.08, + "probability": 0.9067 + }, + { + "start": 34645.98, + "end": 34648.7, + "probability": 0.967 + }, + { + "start": 34649.24, + "end": 34651.82, + "probability": 0.947 + }, + { + "start": 34652.52, + "end": 34653.42, + "probability": 0.9541 + }, + { + "start": 34654.84, + "end": 34656.0, + "probability": 0.9898 + }, + { + "start": 34657.24, + "end": 34660.16, + "probability": 0.8861 + }, + { + "start": 34661.76, + "end": 34663.2, + "probability": 0.9193 + }, + { + "start": 34664.74, + "end": 34666.32, + "probability": 0.961 + }, + { + "start": 34667.48, + "end": 34669.14, + "probability": 0.9827 + }, + { + "start": 34670.32, + "end": 34672.34, + "probability": 0.9764 + }, + { + "start": 34673.3, + "end": 34675.02, + "probability": 0.6142 + }, + { + "start": 34675.16, + "end": 34676.7, + "probability": 0.4002 + }, + { + "start": 34676.78, + "end": 34678.48, + "probability": 0.429 + }, + { + "start": 34679.28, + "end": 34680.9, + "probability": 0.9535 + }, + { + "start": 34680.9, + "end": 34682.32, + "probability": 0.6699 + }, + { + "start": 34682.38, + "end": 34683.86, + "probability": 0.9344 + }, + { + "start": 34684.56, + "end": 34687.5, + "probability": 0.9097 + }, + { + "start": 34688.08, + "end": 34689.23, + "probability": 0.5139 + }, + { + "start": 34691.64, + "end": 34692.54, + "probability": 0.1665 + }, + { + "start": 34700.04, + "end": 34700.78, + "probability": 0.2527 + }, + { + "start": 34700.88, + "end": 34701.88, + "probability": 0.9133 + }, + { + "start": 34703.36, + "end": 34706.16, + "probability": 0.0172 + }, + { + "start": 34713.42, + "end": 34714.58, + "probability": 0.2138 + }, + { + "start": 34715.46, + "end": 34722.0, + "probability": 0.04 + }, + { + "start": 34730.34, + "end": 34730.94, + "probability": 0.0086 + }, + { + "start": 34730.98, + "end": 34733.68, + "probability": 0.0263 + }, + { + "start": 34735.04, + "end": 34736.36, + "probability": 0.067 + }, + { + "start": 34738.33, + "end": 34739.46, + "probability": 0.1144 + }, + { + "start": 34739.5, + "end": 34741.58, + "probability": 0.021 + }, + { + "start": 34769.58, + "end": 34769.96, + "probability": 0.5259 + }, + { + "start": 34770.72, + "end": 34771.8, + "probability": 0.8765 + }, + { + "start": 34773.72, + "end": 34775.42, + "probability": 0.9096 + }, + { + "start": 34777.48, + "end": 34779.7, + "probability": 0.695 + }, + { + "start": 34780.94, + "end": 34782.65, + "probability": 0.6533 + }, + { + "start": 34784.16, + "end": 34786.08, + "probability": 0.6211 + }, + { + "start": 34786.18, + "end": 34787.13, + "probability": 0.7937 + }, + { + "start": 34787.24, + "end": 34787.42, + "probability": 0.762 + }, + { + "start": 34787.86, + "end": 34788.64, + "probability": 0.5147 + }, + { + "start": 34790.3, + "end": 34792.18, + "probability": 0.6372 + }, + { + "start": 34792.3, + "end": 34793.78, + "probability": 0.7117 + }, + { + "start": 34793.84, + "end": 34795.16, + "probability": 0.7538 + }, + { + "start": 34795.32, + "end": 34796.98, + "probability": 0.775 + }, + { + "start": 34798.0, + "end": 34799.64, + "probability": 0.9522 + }, + { + "start": 34800.42, + "end": 34801.68, + "probability": 0.9189 + }, + { + "start": 34806.22, + "end": 34808.0, + "probability": 0.7097 + }, + { + "start": 34809.52, + "end": 34810.94, + "probability": 0.6724 + }, + { + "start": 34811.18, + "end": 34812.48, + "probability": 0.8639 + }, + { + "start": 34812.56, + "end": 34813.18, + "probability": 0.6453 + }, + { + "start": 34813.88, + "end": 34816.48, + "probability": 0.8974 + }, + { + "start": 34817.46, + "end": 34818.46, + "probability": 0.9656 + }, + { + "start": 34820.92, + "end": 34821.3, + "probability": 0.7125 + }, + { + "start": 34824.12, + "end": 34824.86, + "probability": 0.5571 + }, + { + "start": 34830.88, + "end": 34831.62, + "probability": 0.5407 + }, + { + "start": 34833.4, + "end": 34835.4, + "probability": 0.4903 + }, + { + "start": 34836.22, + "end": 34837.72, + "probability": 0.7588 + }, + { + "start": 34840.22, + "end": 34841.56, + "probability": 0.755 + }, + { + "start": 34841.6, + "end": 34843.06, + "probability": 0.7153 + }, + { + "start": 34843.26, + "end": 34844.72, + "probability": 0.8572 + }, + { + "start": 34846.3, + "end": 34849.91, + "probability": 0.8092 + }, + { + "start": 34851.26, + "end": 34851.76, + "probability": 0.2093 + }, + { + "start": 34853.02, + "end": 34855.42, + "probability": 0.6965 + }, + { + "start": 34856.28, + "end": 34859.54, + "probability": 0.8009 + }, + { + "start": 34866.32, + "end": 34866.7, + "probability": 0.6103 + }, + { + "start": 34868.16, + "end": 34868.84, + "probability": 0.6592 + }, + { + "start": 34869.04, + "end": 34872.06, + "probability": 0.6067 + }, + { + "start": 34872.06, + "end": 34873.78, + "probability": 0.7891 + }, + { + "start": 34875.22, + "end": 34876.14, + "probability": 0.936 + }, + { + "start": 34877.1, + "end": 34877.92, + "probability": 0.7999 + }, + { + "start": 34878.42, + "end": 34880.06, + "probability": 0.9002 + }, + { + "start": 34880.1, + "end": 34881.34, + "probability": 0.8477 + }, + { + "start": 34881.4, + "end": 34882.16, + "probability": 0.608 + }, + { + "start": 34882.68, + "end": 34883.48, + "probability": 0.9829 + }, + { + "start": 34883.58, + "end": 34884.86, + "probability": 0.5167 + }, + { + "start": 34884.96, + "end": 34886.58, + "probability": 0.8754 + }, + { + "start": 34886.7, + "end": 34888.04, + "probability": 0.9743 + }, + { + "start": 34888.1, + "end": 34889.2, + "probability": 0.8893 + }, + { + "start": 34889.3, + "end": 34890.72, + "probability": 0.8885 + }, + { + "start": 34891.16, + "end": 34893.52, + "probability": 0.9846 + }, + { + "start": 34900.13, + "end": 34905.12, + "probability": 0.6048 + }, + { + "start": 34907.32, + "end": 34909.5, + "probability": 0.5527 + }, + { + "start": 34910.78, + "end": 34913.32, + "probability": 0.9009 + }, + { + "start": 34914.78, + "end": 34916.28, + "probability": 0.6423 + }, + { + "start": 34917.38, + "end": 34920.82, + "probability": 0.7073 + }, + { + "start": 34920.88, + "end": 34922.24, + "probability": 0.7045 + }, + { + "start": 34922.46, + "end": 34924.1, + "probability": 0.7745 + }, + { + "start": 34924.2, + "end": 34925.62, + "probability": 0.475 + }, + { + "start": 34926.52, + "end": 34929.96, + "probability": 0.8408 + }, + { + "start": 34930.88, + "end": 34932.2, + "probability": 0.9672 + }, + { + "start": 34932.98, + "end": 34933.98, + "probability": 0.9436 + }, + { + "start": 34935.14, + "end": 34935.58, + "probability": 0.5043 + }, + { + "start": 34937.02, + "end": 34939.84, + "probability": 0.9381 + }, + { + "start": 34941.14, + "end": 34943.56, + "probability": 0.9791 + }, + { + "start": 34944.22, + "end": 34945.56, + "probability": 0.8918 + }, + { + "start": 34946.66, + "end": 34948.8, + "probability": 0.9911 + }, + { + "start": 34948.86, + "end": 34950.48, + "probability": 0.9869 + }, + { + "start": 34950.92, + "end": 34952.16, + "probability": 0.9814 + }, + { + "start": 34953.84, + "end": 34954.9, + "probability": 0.6369 + }, + { + "start": 34956.42, + "end": 34957.16, + "probability": 0.6239 + }, + { + "start": 34959.46, + "end": 34959.98, + "probability": 0.7955 + }, + { + "start": 34960.5, + "end": 34961.08, + "probability": 0.8406 + }, + { + "start": 34961.76, + "end": 34962.5, + "probability": 0.8586 + }, + { + "start": 34963.42, + "end": 34964.66, + "probability": 0.9576 + }, + { + "start": 34964.76, + "end": 34966.46, + "probability": 0.8414 + }, + { + "start": 34966.5, + "end": 34967.82, + "probability": 0.9463 + }, + { + "start": 34967.92, + "end": 34968.54, + "probability": 0.8327 + }, + { + "start": 34969.08, + "end": 34969.76, + "probability": 0.9428 + }, + { + "start": 34969.9, + "end": 34971.34, + "probability": 0.7162 + }, + { + "start": 34971.42, + "end": 34973.84, + "probability": 0.9229 + }, + { + "start": 34973.98, + "end": 34975.5, + "probability": 0.9325 + }, + { + "start": 34976.38, + "end": 34978.1, + "probability": 0.9636 + }, + { + "start": 34979.2, + "end": 34982.46, + "probability": 0.9256 + }, + { + "start": 34983.16, + "end": 34984.56, + "probability": 0.5701 + }, + { + "start": 34984.6, + "end": 34986.48, + "probability": 0.8583 + }, + { + "start": 34987.02, + "end": 34988.92, + "probability": 0.8032 + }, + { + "start": 34989.7, + "end": 34991.06, + "probability": 0.916 + }, + { + "start": 34991.1, + "end": 34992.68, + "probability": 0.7966 + }, + { + "start": 34992.74, + "end": 34994.38, + "probability": 0.7534 + }, + { + "start": 34994.44, + "end": 34996.36, + "probability": 0.6601 + }, + { + "start": 34996.84, + "end": 34998.3, + "probability": 0.8344 + }, + { + "start": 35000.52, + "end": 35002.96, + "probability": 0.8696 + }, + { + "start": 35003.84, + "end": 35005.94, + "probability": 0.9688 + }, + { + "start": 35007.52, + "end": 35009.78, + "probability": 0.8201 + }, + { + "start": 35009.94, + "end": 35012.38, + "probability": 0.8795 + }, + { + "start": 35012.62, + "end": 35014.3, + "probability": 0.7975 + }, + { + "start": 35015.42, + "end": 35017.24, + "probability": 0.9012 + }, + { + "start": 35018.06, + "end": 35019.48, + "probability": 0.881 + }, + { + "start": 35019.54, + "end": 35020.86, + "probability": 0.8436 + }, + { + "start": 35022.08, + "end": 35023.66, + "probability": 0.8626 + }, + { + "start": 35023.68, + "end": 35025.02, + "probability": 0.5951 + }, + { + "start": 35025.1, + "end": 35026.36, + "probability": 0.9503 + }, + { + "start": 35026.54, + "end": 35027.98, + "probability": 0.9026 + }, + { + "start": 35028.74, + "end": 35030.84, + "probability": 0.9347 + }, + { + "start": 35031.74, + "end": 35033.18, + "probability": 0.6556 + }, + { + "start": 35033.24, + "end": 35035.24, + "probability": 0.8309 + }, + { + "start": 35035.3, + "end": 35036.62, + "probability": 0.798 + }, + { + "start": 35037.66, + "end": 35039.88, + "probability": 0.954 + }, + { + "start": 35042.14, + "end": 35042.8, + "probability": 0.9104 + }, + { + "start": 35043.62, + "end": 35046.02, + "probability": 0.9801 + }, + { + "start": 35046.6, + "end": 35048.72, + "probability": 0.8713 + }, + { + "start": 35052.52, + "end": 35053.0, + "probability": 0.5878 + }, + { + "start": 35055.12, + "end": 35058.74, + "probability": 0.8338 + }, + { + "start": 35059.5, + "end": 35060.66, + "probability": 0.8981 + }, + { + "start": 35062.1, + "end": 35063.16, + "probability": 0.9242 + }, + { + "start": 35064.66, + "end": 35065.04, + "probability": 0.9614 + }, + { + "start": 35066.1, + "end": 35067.04, + "probability": 0.7639 + }, + { + "start": 35069.18, + "end": 35073.14, + "probability": 0.8113 + }, + { + "start": 35074.28, + "end": 35076.94, + "probability": 0.9188 + }, + { + "start": 35078.08, + "end": 35079.28, + "probability": 0.8777 + }, + { + "start": 35080.06, + "end": 35081.52, + "probability": 0.8727 + }, + { + "start": 35081.56, + "end": 35083.1, + "probability": 0.7748 + }, + { + "start": 35083.14, + "end": 35084.7, + "probability": 0.9379 + }, + { + "start": 35084.72, + "end": 35086.92, + "probability": 0.8993 + }, + { + "start": 35087.1, + "end": 35087.92, + "probability": 0.6793 + }, + { + "start": 35088.44, + "end": 35089.14, + "probability": 0.5018 + }, + { + "start": 35089.3, + "end": 35091.06, + "probability": 0.7983 + }, + { + "start": 35091.18, + "end": 35092.6, + "probability": 0.8835 + }, + { + "start": 35093.22, + "end": 35094.9, + "probability": 0.8249 + }, + { + "start": 35097.16, + "end": 35101.2, + "probability": 0.6557 + }, + { + "start": 35105.22, + "end": 35105.54, + "probability": 0.5434 + }, + { + "start": 35106.62, + "end": 35107.56, + "probability": 0.7088 + }, + { + "start": 35108.52, + "end": 35109.32, + "probability": 0.9949 + }, + { + "start": 35112.92, + "end": 35115.28, + "probability": 0.9215 + }, + { + "start": 35115.3, + "end": 35116.4, + "probability": 0.5412 + }, + { + "start": 35116.76, + "end": 35118.4, + "probability": 0.6733 + }, + { + "start": 35118.52, + "end": 35119.54, + "probability": 0.9087 + }, + { + "start": 35119.62, + "end": 35121.16, + "probability": 0.6671 + }, + { + "start": 35122.14, + "end": 35122.52, + "probability": 0.9761 + }, + { + "start": 35125.24, + "end": 35129.32, + "probability": 0.7752 + }, + { + "start": 35130.24, + "end": 35130.62, + "probability": 0.8639 + }, + { + "start": 35132.44, + "end": 35134.28, + "probability": 0.7637 + }, + { + "start": 35136.48, + "end": 35136.86, + "probability": 0.9583 + }, + { + "start": 35138.68, + "end": 35139.34, + "probability": 0.6623 + }, + { + "start": 35139.44, + "end": 35141.0, + "probability": 0.9312 + }, + { + "start": 35141.08, + "end": 35142.36, + "probability": 0.9766 + }, + { + "start": 35142.44, + "end": 35143.8, + "probability": 0.8844 + }, + { + "start": 35143.86, + "end": 35145.44, + "probability": 0.6925 + }, + { + "start": 35146.42, + "end": 35147.98, + "probability": 0.7948 + }, + { + "start": 35148.38, + "end": 35149.84, + "probability": 0.809 + }, + { + "start": 35149.9, + "end": 35151.36, + "probability": 0.8817 + }, + { + "start": 35151.46, + "end": 35152.98, + "probability": 0.8756 + }, + { + "start": 35154.64, + "end": 35156.46, + "probability": 0.9249 + }, + { + "start": 35156.62, + "end": 35157.78, + "probability": 0.8622 + }, + { + "start": 35157.86, + "end": 35159.38, + "probability": 0.9343 + }, + { + "start": 35159.56, + "end": 35161.22, + "probability": 0.9849 + }, + { + "start": 35161.36, + "end": 35163.06, + "probability": 0.915 + }, + { + "start": 35164.92, + "end": 35167.96, + "probability": 0.9353 + }, + { + "start": 35168.78, + "end": 35171.04, + "probability": 0.5801 + }, + { + "start": 35172.18, + "end": 35174.42, + "probability": 0.7687 + }, + { + "start": 35174.58, + "end": 35176.5, + "probability": 0.8974 + }, + { + "start": 35176.54, + "end": 35177.98, + "probability": 0.9256 + }, + { + "start": 35179.0, + "end": 35182.3, + "probability": 0.9675 + }, + { + "start": 35182.92, + "end": 35185.74, + "probability": 0.8824 + }, + { + "start": 35186.38, + "end": 35190.76, + "probability": 0.9719 + }, + { + "start": 35191.56, + "end": 35193.86, + "probability": 0.716 + }, + { + "start": 35195.4, + "end": 35197.0, + "probability": 0.7546 + }, + { + "start": 35198.2, + "end": 35200.4, + "probability": 0.4721 + }, + { + "start": 35202.1, + "end": 35202.42, + "probability": 0.6053 + }, + { + "start": 35204.14, + "end": 35205.34, + "probability": 0.6692 + }, + { + "start": 35206.78, + "end": 35209.43, + "probability": 0.565 + }, + { + "start": 35209.7, + "end": 35211.4, + "probability": 0.793 + }, + { + "start": 35211.46, + "end": 35212.62, + "probability": 0.5855 + }, + { + "start": 35212.62, + "end": 35215.02, + "probability": 0.7525 + }, + { + "start": 35215.64, + "end": 35218.3, + "probability": 0.8669 + }, + { + "start": 35220.2, + "end": 35221.74, + "probability": 0.9902 + }, + { + "start": 35222.28, + "end": 35224.08, + "probability": 0.9789 + }, + { + "start": 35225.16, + "end": 35227.76, + "probability": 0.9796 + }, + { + "start": 35229.06, + "end": 35230.0, + "probability": 0.8876 + }, + { + "start": 35230.6, + "end": 35231.8, + "probability": 0.8169 + }, + { + "start": 35231.88, + "end": 35233.24, + "probability": 0.6855 + }, + { + "start": 35233.38, + "end": 35235.14, + "probability": 0.8528 + }, + { + "start": 35236.12, + "end": 35237.6, + "probability": 0.8975 + }, + { + "start": 35238.76, + "end": 35239.88, + "probability": 0.9644 + }, + { + "start": 35240.12, + "end": 35241.98, + "probability": 0.8918 + }, + { + "start": 35242.02, + "end": 35243.52, + "probability": 0.9559 + }, + { + "start": 35243.68, + "end": 35244.94, + "probability": 0.9467 + }, + { + "start": 35245.04, + "end": 35245.62, + "probability": 0.5837 + }, + { + "start": 35246.34, + "end": 35247.32, + "probability": 0.5587 + }, + { + "start": 35247.92, + "end": 35251.5, + "probability": 0.9436 + }, + { + "start": 35252.66, + "end": 35254.42, + "probability": 0.9664 + }, + { + "start": 35256.0, + "end": 35259.48, + "probability": 0.947 + }, + { + "start": 35260.4, + "end": 35262.06, + "probability": 0.5091 + }, + { + "start": 35262.12, + "end": 35264.0, + "probability": 0.7581 + }, + { + "start": 35264.82, + "end": 35266.82, + "probability": 0.8303 + }, + { + "start": 35267.54, + "end": 35269.16, + "probability": 0.955 + }, + { + "start": 35269.76, + "end": 35271.32, + "probability": 0.8538 + }, + { + "start": 35271.38, + "end": 35273.58, + "probability": 0.7266 + }, + { + "start": 35273.76, + "end": 35274.46, + "probability": 0.7319 + }, + { + "start": 35275.3, + "end": 35276.14, + "probability": 0.6404 + }, + { + "start": 35276.82, + "end": 35278.64, + "probability": 0.9328 + }, + { + "start": 35279.92, + "end": 35281.32, + "probability": 0.9738 + }, + { + "start": 35281.72, + "end": 35283.28, + "probability": 0.9829 + }, + { + "start": 35283.36, + "end": 35284.0, + "probability": 0.9021 + }, + { + "start": 35285.58, + "end": 35288.08, + "probability": 0.9288 + }, + { + "start": 35289.68, + "end": 35292.58, + "probability": 0.3289 + }, + { + "start": 35292.58, + "end": 35292.86, + "probability": 0.6099 + }, + { + "start": 35294.26, + "end": 35296.62, + "probability": 0.6992 + }, + { + "start": 35297.64, + "end": 35299.38, + "probability": 0.8583 + }, + { + "start": 35299.42, + "end": 35301.02, + "probability": 0.8223 + }, + { + "start": 35302.08, + "end": 35304.38, + "probability": 0.7713 + }, + { + "start": 35304.42, + "end": 35305.54, + "probability": 0.6746 + }, + { + "start": 35305.64, + "end": 35307.54, + "probability": 0.853 + }, + { + "start": 35307.6, + "end": 35308.78, + "probability": 0.7638 + }, + { + "start": 35308.9, + "end": 35311.0, + "probability": 0.7253 + }, + { + "start": 35311.66, + "end": 35313.42, + "probability": 0.5009 + }, + { + "start": 35314.44, + "end": 35315.94, + "probability": 0.8656 + }, + { + "start": 35316.04, + "end": 35317.54, + "probability": 0.935 + }, + { + "start": 35317.66, + "end": 35318.32, + "probability": 0.5454 + }, + { + "start": 35318.9, + "end": 35321.26, + "probability": 0.8921 + }, + { + "start": 35321.94, + "end": 35323.66, + "probability": 0.9089 + }, + { + "start": 35323.92, + "end": 35326.14, + "probability": 0.9265 + }, + { + "start": 35326.24, + "end": 35327.92, + "probability": 0.9799 + }, + { + "start": 35328.88, + "end": 35329.94, + "probability": 0.9861 + }, + { + "start": 35331.1, + "end": 35332.52, + "probability": 0.9528 + }, + { + "start": 35333.08, + "end": 35335.82, + "probability": 0.7491 + }, + { + "start": 35336.76, + "end": 35340.86, + "probability": 0.9602 + }, + { + "start": 35341.94, + "end": 35343.58, + "probability": 0.9409 + }, + { + "start": 35343.66, + "end": 35345.32, + "probability": 0.763 + }, + { + "start": 35345.38, + "end": 35347.06, + "probability": 0.8235 + }, + { + "start": 35347.24, + "end": 35349.38, + "probability": 0.6045 + }, + { + "start": 35349.44, + "end": 35350.18, + "probability": 0.915 + }, + { + "start": 35350.78, + "end": 35351.54, + "probability": 0.8815 + }, + { + "start": 35351.64, + "end": 35353.34, + "probability": 0.8091 + }, + { + "start": 35353.44, + "end": 35354.96, + "probability": 0.9601 + }, + { + "start": 35355.42, + "end": 35357.32, + "probability": 0.9128 + }, + { + "start": 35358.58, + "end": 35363.2, + "probability": 0.6095 + }, + { + "start": 35364.28, + "end": 35367.04, + "probability": 0.9018 + }, + { + "start": 35368.5, + "end": 35368.5, + "probability": 0.2171 + }, + { + "start": 35368.5, + "end": 35368.64, + "probability": 0.4423 + }, + { + "start": 35368.72, + "end": 35373.34, + "probability": 0.7612 + }, + { + "start": 35374.04, + "end": 35376.0, + "probability": 0.9581 + }, + { + "start": 35376.84, + "end": 35379.52, + "probability": 0.8923 + }, + { + "start": 35380.06, + "end": 35382.84, + "probability": 0.0863 + }, + { + "start": 35388.46, + "end": 35388.8, + "probability": 0.024 + }, + { + "start": 35390.76, + "end": 35393.58, + "probability": 0.511 + }, + { + "start": 35395.76, + "end": 35397.66, + "probability": 0.2064 + }, + { + "start": 35398.46, + "end": 35403.0, + "probability": 0.0841 + }, + { + "start": 35403.96, + "end": 35404.2, + "probability": 0.0356 + }, + { + "start": 35404.2, + "end": 35405.32, + "probability": 0.0836 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35491.0, + "end": 35491.0, + "probability": 0.0 + }, + { + "start": 35499.4, + "end": 35500.58, + "probability": 0.1859 + }, + { + "start": 35501.3, + "end": 35506.24, + "probability": 0.1491 + }, + { + "start": 35507.14, + "end": 35509.04, + "probability": 0.2701 + }, + { + "start": 35509.8, + "end": 35510.75, + "probability": 0.0569 + }, + { + "start": 35512.36, + "end": 35513.04, + "probability": 0.0147 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.0, + "end": 35677.0, + "probability": 0.0 + }, + { + "start": 35677.76, + "end": 35679.76, + "probability": 0.3247 + }, + { + "start": 35681.92, + "end": 35682.26, + "probability": 0.057 + }, + { + "start": 35684.96, + "end": 35684.96, + "probability": 0.1274 + }, + { + "start": 35686.04, + "end": 35686.52, + "probability": 0.1228 + }, + { + "start": 35686.91, + "end": 35688.52, + "probability": 0.0082 + }, + { + "start": 35688.52, + "end": 35689.58, + "probability": 0.143 + }, + { + "start": 35689.88, + "end": 35692.32, + "probability": 0.2467 + }, + { + "start": 35693.32, + "end": 35693.88, + "probability": 0.2077 + }, + { + "start": 35696.68, + "end": 35696.94, + "probability": 0.3078 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35801.0, + "end": 35801.0, + "probability": 0.0 + }, + { + "start": 35802.16, + "end": 35802.16, + "probability": 0.1261 + }, + { + "start": 35802.16, + "end": 35802.2, + "probability": 0.154 + }, + { + "start": 35802.2, + "end": 35802.2, + "probability": 0.032 + }, + { + "start": 35802.2, + "end": 35808.6, + "probability": 0.9315 + }, + { + "start": 35809.5, + "end": 35813.16, + "probability": 0.9986 + }, + { + "start": 35813.8, + "end": 35815.82, + "probability": 0.9945 + }, + { + "start": 35815.82, + "end": 35818.26, + "probability": 0.9591 + }, + { + "start": 35818.34, + "end": 35821.52, + "probability": 0.9942 + }, + { + "start": 35823.1, + "end": 35824.22, + "probability": 0.8925 + }, + { + "start": 35824.58, + "end": 35828.9, + "probability": 0.9989 + }, + { + "start": 35829.72, + "end": 35831.31, + "probability": 0.6095 + }, + { + "start": 35833.02, + "end": 35837.8, + "probability": 0.9831 + }, + { + "start": 35838.18, + "end": 35840.12, + "probability": 0.8514 + }, + { + "start": 35840.64, + "end": 35843.82, + "probability": 0.9152 + }, + { + "start": 35844.74, + "end": 35849.22, + "probability": 0.9777 + }, + { + "start": 35850.32, + "end": 35852.12, + "probability": 0.9971 + }, + { + "start": 35852.92, + "end": 35856.32, + "probability": 0.9709 + }, + { + "start": 35856.44, + "end": 35858.94, + "probability": 0.0448 + }, + { + "start": 35858.94, + "end": 35864.32, + "probability": 0.9564 + }, + { + "start": 35864.66, + "end": 35868.78, + "probability": 0.6692 + }, + { + "start": 35869.58, + "end": 35875.48, + "probability": 0.9896 + }, + { + "start": 35876.62, + "end": 35880.22, + "probability": 0.95 + }, + { + "start": 35880.7, + "end": 35882.88, + "probability": 0.8801 + }, + { + "start": 35883.3, + "end": 35885.42, + "probability": 0.8501 + }, + { + "start": 35885.48, + "end": 35886.38, + "probability": 0.972 + }, + { + "start": 35886.86, + "end": 35888.14, + "probability": 0.7882 + }, + { + "start": 35888.78, + "end": 35892.72, + "probability": 0.9757 + }, + { + "start": 35894.12, + "end": 35897.12, + "probability": 0.9935 + }, + { + "start": 35898.04, + "end": 35902.4, + "probability": 0.9802 + }, + { + "start": 35903.9, + "end": 35906.24, + "probability": 0.9944 + }, + { + "start": 35906.44, + "end": 35908.38, + "probability": 0.9774 + }, + { + "start": 35908.56, + "end": 35909.24, + "probability": 0.9882 + }, + { + "start": 35909.3, + "end": 35910.02, + "probability": 0.8716 + }, + { + "start": 35910.12, + "end": 35910.84, + "probability": 0.5616 + }, + { + "start": 35911.42, + "end": 35915.9, + "probability": 0.9993 + }, + { + "start": 35915.9, + "end": 35920.24, + "probability": 0.9997 + }, + { + "start": 35921.0, + "end": 35924.42, + "probability": 0.9989 + }, + { + "start": 35924.9, + "end": 35928.22, + "probability": 0.9951 + }, + { + "start": 35928.88, + "end": 35930.12, + "probability": 0.8557 + }, + { + "start": 35932.64, + "end": 35936.84, + "probability": 0.6874 + }, + { + "start": 35936.9, + "end": 35937.36, + "probability": 0.8133 + }, + { + "start": 35947.76, + "end": 35948.11, + "probability": 0.0298 + }, + { + "start": 35962.94, + "end": 35963.9, + "probability": 0.0177 + }, + { + "start": 35964.2, + "end": 35965.16, + "probability": 0.4922 + }, + { + "start": 35965.72, + "end": 35966.12, + "probability": 0.7226 + }, + { + "start": 35966.82, + "end": 35967.86, + "probability": 0.8932 + }, + { + "start": 35968.62, + "end": 35974.24, + "probability": 0.9794 + }, + { + "start": 35974.46, + "end": 35977.44, + "probability": 0.9526 + }, + { + "start": 35977.84, + "end": 35980.92, + "probability": 0.9702 + }, + { + "start": 35985.6, + "end": 35990.06, + "probability": 0.9917 + }, + { + "start": 35990.24, + "end": 35991.36, + "probability": 0.7625 + }, + { + "start": 35991.76, + "end": 35996.94, + "probability": 0.9864 + }, + { + "start": 35997.42, + "end": 35999.6, + "probability": 0.9597 + }, + { + "start": 36000.78, + "end": 36003.14, + "probability": 0.9684 + }, + { + "start": 36004.38, + "end": 36010.76, + "probability": 0.9637 + }, + { + "start": 36012.88, + "end": 36013.66, + "probability": 0.9639 + }, + { + "start": 36014.36, + "end": 36018.92, + "probability": 0.8483 + }, + { + "start": 36019.94, + "end": 36022.28, + "probability": 0.9886 + }, + { + "start": 36022.28, + "end": 36025.46, + "probability": 0.9748 + }, + { + "start": 36025.9, + "end": 36030.86, + "probability": 0.8577 + }, + { + "start": 36030.86, + "end": 36034.82, + "probability": 0.9697 + }, + { + "start": 36035.52, + "end": 36041.26, + "probability": 0.8245 + }, + { + "start": 36041.98, + "end": 36042.66, + "probability": 0.7199 + }, + { + "start": 36042.74, + "end": 36047.76, + "probability": 0.9888 + }, + { + "start": 36048.34, + "end": 36051.16, + "probability": 0.9041 + }, + { + "start": 36051.98, + "end": 36055.46, + "probability": 0.9583 + }, + { + "start": 36056.1, + "end": 36060.92, + "probability": 0.996 + }, + { + "start": 36061.78, + "end": 36065.66, + "probability": 0.988 + }, + { + "start": 36066.3, + "end": 36066.68, + "probability": 0.5008 + }, + { + "start": 36067.92, + "end": 36070.44, + "probability": 0.9691 + }, + { + "start": 36071.18, + "end": 36071.5, + "probability": 0.7003 + }, + { + "start": 36074.66, + "end": 36078.56, + "probability": 0.8655 + }, + { + "start": 36078.92, + "end": 36082.34, + "probability": 0.9167 + }, + { + "start": 36082.66, + "end": 36084.34, + "probability": 0.9601 + }, + { + "start": 36096.38, + "end": 36097.82, + "probability": 0.7748 + }, + { + "start": 36098.54, + "end": 36102.04, + "probability": 0.9038 + }, + { + "start": 36104.04, + "end": 36109.26, + "probability": 0.683 + }, + { + "start": 36109.28, + "end": 36113.44, + "probability": 0.9814 + }, + { + "start": 36114.4, + "end": 36115.02, + "probability": 0.5932 + }, + { + "start": 36116.16, + "end": 36119.94, + "probability": 0.3939 + }, + { + "start": 36121.08, + "end": 36125.42, + "probability": 0.999 + }, + { + "start": 36125.42, + "end": 36130.18, + "probability": 0.9894 + }, + { + "start": 36131.14, + "end": 36132.62, + "probability": 0.9361 + }, + { + "start": 36133.62, + "end": 36134.78, + "probability": 0.9614 + }, + { + "start": 36135.44, + "end": 36138.34, + "probability": 0.9976 + }, + { + "start": 36139.14, + "end": 36141.14, + "probability": 0.8265 + }, + { + "start": 36141.82, + "end": 36143.06, + "probability": 0.97 + }, + { + "start": 36143.76, + "end": 36149.44, + "probability": 0.9525 + }, + { + "start": 36149.94, + "end": 36152.82, + "probability": 0.9841 + }, + { + "start": 36154.32, + "end": 36164.42, + "probability": 0.9946 + }, + { + "start": 36164.42, + "end": 36172.56, + "probability": 0.9987 + }, + { + "start": 36173.38, + "end": 36179.6, + "probability": 0.9985 + }, + { + "start": 36180.1, + "end": 36183.24, + "probability": 0.9644 + }, + { + "start": 36184.06, + "end": 36188.3, + "probability": 0.995 + }, + { + "start": 36188.34, + "end": 36193.34, + "probability": 0.9946 + }, + { + "start": 36194.7, + "end": 36199.02, + "probability": 0.9591 + }, + { + "start": 36199.08, + "end": 36200.38, + "probability": 0.8125 + }, + { + "start": 36200.78, + "end": 36206.1, + "probability": 0.9924 + }, + { + "start": 36207.06, + "end": 36207.98, + "probability": 0.5279 + }, + { + "start": 36208.98, + "end": 36211.18, + "probability": 0.9859 + }, + { + "start": 36212.22, + "end": 36212.94, + "probability": 0.6665 + }, + { + "start": 36213.48, + "end": 36214.92, + "probability": 0.9406 + }, + { + "start": 36215.5, + "end": 36219.1, + "probability": 0.9817 + }, + { + "start": 36219.54, + "end": 36223.84, + "probability": 0.7506 + }, + { + "start": 36224.4, + "end": 36224.84, + "probability": 0.08 + }, + { + "start": 36225.34, + "end": 36226.92, + "probability": 0.0947 + }, + { + "start": 36227.0, + "end": 36228.3, + "probability": 0.0504 + }, + { + "start": 36229.3, + "end": 36229.94, + "probability": 0.1754 + }, + { + "start": 36229.94, + "end": 36231.12, + "probability": 0.8573 + }, + { + "start": 36231.26, + "end": 36232.06, + "probability": 0.8384 + }, + { + "start": 36232.1, + "end": 36235.34, + "probability": 0.9102 + }, + { + "start": 36235.98, + "end": 36237.26, + "probability": 0.8221 + }, + { + "start": 36238.6, + "end": 36243.02, + "probability": 0.9962 + }, + { + "start": 36244.18, + "end": 36247.8, + "probability": 0.9092 + }, + { + "start": 36248.32, + "end": 36251.0, + "probability": 0.9779 + }, + { + "start": 36251.58, + "end": 36253.38, + "probability": 0.9933 + }, + { + "start": 36254.32, + "end": 36257.16, + "probability": 0.9999 + }, + { + "start": 36257.74, + "end": 36263.62, + "probability": 0.9988 + }, + { + "start": 36264.2, + "end": 36264.9, + "probability": 0.9097 + }, + { + "start": 36265.76, + "end": 36269.06, + "probability": 0.998 + }, + { + "start": 36269.1, + "end": 36270.16, + "probability": 0.7796 + }, + { + "start": 36270.6, + "end": 36271.21, + "probability": 0.1364 + }, + { + "start": 36273.42, + "end": 36278.14, + "probability": 0.1382 + }, + { + "start": 36278.44, + "end": 36278.78, + "probability": 0.0425 + }, + { + "start": 36278.78, + "end": 36278.78, + "probability": 0.0179 + }, + { + "start": 36278.78, + "end": 36280.32, + "probability": 0.0836 + }, + { + "start": 36280.94, + "end": 36282.39, + "probability": 0.457 + }, + { + "start": 36283.44, + "end": 36285.9, + "probability": 0.9713 + }, + { + "start": 36286.46, + "end": 36290.84, + "probability": 0.637 + }, + { + "start": 36291.3, + "end": 36298.74, + "probability": 0.9916 + }, + { + "start": 36299.46, + "end": 36302.62, + "probability": 0.998 + }, + { + "start": 36303.22, + "end": 36306.06, + "probability": 0.9839 + }, + { + "start": 36306.82, + "end": 36311.86, + "probability": 0.9949 + }, + { + "start": 36311.86, + "end": 36317.62, + "probability": 0.9917 + }, + { + "start": 36318.22, + "end": 36327.16, + "probability": 0.9989 + }, + { + "start": 36328.14, + "end": 36330.8, + "probability": 0.9705 + }, + { + "start": 36330.8, + "end": 36334.82, + "probability": 0.936 + }, + { + "start": 36334.86, + "end": 36338.28, + "probability": 0.9973 + }, + { + "start": 36338.28, + "end": 36342.68, + "probability": 0.9248 + }, + { + "start": 36343.14, + "end": 36345.8, + "probability": 0.9398 + }, + { + "start": 36346.26, + "end": 36348.42, + "probability": 0.3953 + }, + { + "start": 36348.8, + "end": 36350.66, + "probability": 0.8195 + }, + { + "start": 36350.86, + "end": 36351.88, + "probability": 0.7134 + }, + { + "start": 36352.36, + "end": 36354.48, + "probability": 0.9867 + }, + { + "start": 36354.6, + "end": 36354.9, + "probability": 0.7716 + }, + { + "start": 36355.88, + "end": 36356.78, + "probability": 0.7634 + }, + { + "start": 36357.34, + "end": 36358.93, + "probability": 0.9591 + }, + { + "start": 36359.48, + "end": 36363.28, + "probability": 0.8367 + }, + { + "start": 36364.19, + "end": 36365.86, + "probability": 0.7463 + }, + { + "start": 36365.92, + "end": 36366.32, + "probability": 0.6805 + }, + { + "start": 36366.38, + "end": 36366.66, + "probability": 0.5588 + }, + { + "start": 36367.26, + "end": 36367.42, + "probability": 0.017 + }, + { + "start": 36367.42, + "end": 36368.16, + "probability": 0.4824 + }, + { + "start": 36368.24, + "end": 36370.16, + "probability": 0.8809 + }, + { + "start": 36370.72, + "end": 36371.68, + "probability": 0.3164 + }, + { + "start": 36371.74, + "end": 36373.14, + "probability": 0.5094 + }, + { + "start": 36373.74, + "end": 36374.1, + "probability": 0.7988 + }, + { + "start": 36374.66, + "end": 36376.02, + "probability": 0.6531 + }, + { + "start": 36376.9, + "end": 36380.3, + "probability": 0.9471 + }, + { + "start": 36380.88, + "end": 36381.12, + "probability": 0.9839 + }, + { + "start": 36382.3, + "end": 36383.36, + "probability": 0.6253 + }, + { + "start": 36384.34, + "end": 36387.46, + "probability": 0.7807 + }, + { + "start": 36391.12, + "end": 36391.88, + "probability": 0.57 + }, + { + "start": 36392.8, + "end": 36394.42, + "probability": 0.1774 + }, + { + "start": 36394.82, + "end": 36396.9, + "probability": 0.8615 + }, + { + "start": 36397.3, + "end": 36399.0, + "probability": 0.7907 + }, + { + "start": 36400.08, + "end": 36401.68, + "probability": 0.829 + }, + { + "start": 36402.38, + "end": 36402.76, + "probability": 0.9038 + }, + { + "start": 36403.4, + "end": 36404.08, + "probability": 0.675 + }, + { + "start": 36404.12, + "end": 36405.56, + "probability": 0.6592 + }, + { + "start": 36405.58, + "end": 36407.0, + "probability": 0.7393 + }, + { + "start": 36407.14, + "end": 36408.52, + "probability": 0.8181 + }, + { + "start": 36409.68, + "end": 36410.02, + "probability": 0.9038 + }, + { + "start": 36410.98, + "end": 36411.88, + "probability": 0.8419 + }, + { + "start": 36411.92, + "end": 36413.2, + "probability": 0.8442 + }, + { + "start": 36413.24, + "end": 36414.8, + "probability": 0.9094 + }, + { + "start": 36414.92, + "end": 36416.46, + "probability": 0.9773 + }, + { + "start": 36416.56, + "end": 36418.12, + "probability": 0.6503 + }, + { + "start": 36419.44, + "end": 36422.7, + "probability": 0.7838 + }, + { + "start": 36423.58, + "end": 36426.78, + "probability": 0.9622 + }, + { + "start": 36428.02, + "end": 36429.58, + "probability": 0.9443 + }, + { + "start": 36430.58, + "end": 36432.78, + "probability": 0.9214 + }, + { + "start": 36432.86, + "end": 36434.54, + "probability": 0.8892 + }, + { + "start": 36434.88, + "end": 36440.22, + "probability": 0.3186 + }, + { + "start": 36440.24, + "end": 36441.76, + "probability": 0.3648 + }, + { + "start": 36441.76, + "end": 36446.42, + "probability": 0.7014 + }, + { + "start": 36446.48, + "end": 36448.17, + "probability": 0.7695 + }, + { + "start": 36448.48, + "end": 36449.74, + "probability": 0.9108 + }, + { + "start": 36449.78, + "end": 36450.96, + "probability": 0.8754 + }, + { + "start": 36451.08, + "end": 36452.88, + "probability": 0.6952 + }, + { + "start": 36453.04, + "end": 36453.66, + "probability": 0.6956 + }, + { + "start": 36454.2, + "end": 36455.08, + "probability": 0.59 + }, + { + "start": 36456.74, + "end": 36460.4, + "probability": 0.8348 + }, + { + "start": 36462.28, + "end": 36463.84, + "probability": 0.7867 + }, + { + "start": 36465.54, + "end": 36467.22, + "probability": 0.8585 + }, + { + "start": 36470.72, + "end": 36471.92, + "probability": 0.51 + }, + { + "start": 36473.0, + "end": 36473.98, + "probability": 0.6573 + }, + { + "start": 36474.64, + "end": 36475.04, + "probability": 0.8984 + }, + { + "start": 36476.08, + "end": 36477.48, + "probability": 0.911 + }, + { + "start": 36478.06, + "end": 36480.22, + "probability": 0.8027 + }, + { + "start": 36481.32, + "end": 36483.3, + "probability": 0.7521 + }, + { + "start": 36483.38, + "end": 36484.54, + "probability": 0.5906 + }, + { + "start": 36484.78, + "end": 36485.38, + "probability": 0.8221 + }, + { + "start": 36486.14, + "end": 36487.22, + "probability": 0.5494 + }, + { + "start": 36491.84, + "end": 36494.24, + "probability": 0.5217 + }, + { + "start": 36495.5, + "end": 36496.16, + "probability": 0.7961 + }, + { + "start": 36497.1, + "end": 36498.28, + "probability": 0.8173 + }, + { + "start": 36499.48, + "end": 36500.96, + "probability": 0.876 + }, + { + "start": 36502.78, + "end": 36503.56, + "probability": 0.8103 + }, + { + "start": 36506.92, + "end": 36508.0, + "probability": 0.374 + }, + { + "start": 36509.48, + "end": 36512.76, + "probability": 0.8981 + }, + { + "start": 36513.6, + "end": 36514.32, + "probability": 0.7193 + }, + { + "start": 36515.6, + "end": 36516.78, + "probability": 0.8706 + }, + { + "start": 36516.84, + "end": 36517.98, + "probability": 0.8332 + }, + { + "start": 36518.12, + "end": 36519.42, + "probability": 0.8826 + }, + { + "start": 36519.56, + "end": 36521.28, + "probability": 0.9822 + }, + { + "start": 36521.9, + "end": 36523.38, + "probability": 0.7362 + }, + { + "start": 36525.81, + "end": 36529.52, + "probability": 0.4429 + }, + { + "start": 36530.62, + "end": 36530.94, + "probability": 0.6399 + }, + { + "start": 36531.96, + "end": 36532.7, + "probability": 0.7284 + }, + { + "start": 36534.12, + "end": 36535.4, + "probability": 0.715 + }, + { + "start": 36535.56, + "end": 36537.16, + "probability": 0.8723 + }, + { + "start": 36537.16, + "end": 36538.38, + "probability": 0.912 + }, + { + "start": 36538.46, + "end": 36539.76, + "probability": 0.9073 + }, + { + "start": 36539.88, + "end": 36541.16, + "probability": 0.8286 + }, + { + "start": 36542.76, + "end": 36544.5, + "probability": 0.4091 + }, + { + "start": 36544.5, + "end": 36544.71, + "probability": 0.4983 + }, + { + "start": 36545.16, + "end": 36547.5, + "probability": 0.6788 + }, + { + "start": 36548.96, + "end": 36550.48, + "probability": 0.8095 + }, + { + "start": 36550.56, + "end": 36551.88, + "probability": 0.7955 + }, + { + "start": 36551.94, + "end": 36553.44, + "probability": 0.6492 + }, + { + "start": 36553.5, + "end": 36555.26, + "probability": 0.7391 + }, + { + "start": 36555.76, + "end": 36556.4, + "probability": 0.7763 + }, + { + "start": 36556.98, + "end": 36559.32, + "probability": 0.8397 + }, + { + "start": 36560.76, + "end": 36561.36, + "probability": 0.8427 + }, + { + "start": 36561.44, + "end": 36562.88, + "probability": 0.8978 + }, + { + "start": 36562.94, + "end": 36564.56, + "probability": 0.923 + }, + { + "start": 36565.28, + "end": 36567.0, + "probability": 0.8193 + }, + { + "start": 36568.04, + "end": 36569.76, + "probability": 0.9128 + }, + { + "start": 36570.28, + "end": 36572.06, + "probability": 0.6904 + }, + { + "start": 36572.1, + "end": 36573.66, + "probability": 0.9344 + }, + { + "start": 36573.7, + "end": 36575.42, + "probability": 0.7791 + }, + { + "start": 36576.66, + "end": 36578.32, + "probability": 0.9742 + }, + { + "start": 36578.84, + "end": 36581.06, + "probability": 0.9406 + }, + { + "start": 36581.08, + "end": 36582.06, + "probability": 0.8474 + }, + { + "start": 36583.42, + "end": 36585.66, + "probability": 0.6314 + }, + { + "start": 36586.74, + "end": 36587.54, + "probability": 0.7323 + }, + { + "start": 36588.8, + "end": 36591.56, + "probability": 0.9395 + }, + { + "start": 36592.24, + "end": 36593.96, + "probability": 0.8434 + }, + { + "start": 36594.04, + "end": 36595.38, + "probability": 0.9667 + }, + { + "start": 36595.44, + "end": 36596.66, + "probability": 0.9766 + }, + { + "start": 36597.27, + "end": 36598.44, + "probability": 0.4118 + }, + { + "start": 36598.52, + "end": 36600.08, + "probability": 0.7481 + }, + { + "start": 36601.44, + "end": 36603.28, + "probability": 0.7677 + }, + { + "start": 36608.52, + "end": 36609.36, + "probability": 0.6646 + }, + { + "start": 36610.98, + "end": 36613.14, + "probability": 0.6958 + }, + { + "start": 36614.46, + "end": 36617.56, + "probability": 0.9726 + }, + { + "start": 36618.8, + "end": 36620.46, + "probability": 0.9568 + }, + { + "start": 36621.7, + "end": 36625.17, + "probability": 0.9704 + }, + { + "start": 36625.46, + "end": 36627.64, + "probability": 0.5869 + }, + { + "start": 36627.96, + "end": 36628.32, + "probability": 0.8761 + }, + { + "start": 36628.8, + "end": 36630.1, + "probability": 0.3727 + }, + { + "start": 36631.68, + "end": 36634.34, + "probability": 0.9301 + }, + { + "start": 36634.48, + "end": 36636.44, + "probability": 0.9291 + }, + { + "start": 36637.42, + "end": 36640.56, + "probability": 0.8134 + }, + { + "start": 36641.36, + "end": 36643.22, + "probability": 0.8007 + }, + { + "start": 36643.84, + "end": 36645.4, + "probability": 0.9437 + }, + { + "start": 36645.96, + "end": 36646.98, + "probability": 0.7027 + }, + { + "start": 36648.38, + "end": 36650.12, + "probability": 0.9864 + }, + { + "start": 36650.32, + "end": 36652.08, + "probability": 0.9291 + }, + { + "start": 36652.12, + "end": 36653.6, + "probability": 0.976 + }, + { + "start": 36654.56, + "end": 36654.92, + "probability": 0.9805 + }, + { + "start": 36656.76, + "end": 36659.16, + "probability": 0.7816 + }, + { + "start": 36659.94, + "end": 36661.9, + "probability": 0.7909 + }, + { + "start": 36661.94, + "end": 36663.88, + "probability": 0.6521 + }, + { + "start": 36663.9, + "end": 36665.18, + "probability": 0.967 + }, + { + "start": 36665.24, + "end": 36666.68, + "probability": 0.6803 + }, + { + "start": 36667.22, + "end": 36670.62, + "probability": 0.896 + }, + { + "start": 36671.46, + "end": 36674.46, + "probability": 0.6837 + }, + { + "start": 36675.76, + "end": 36676.58, + "probability": 0.9824 + }, + { + "start": 36677.86, + "end": 36679.8, + "probability": 0.6524 + }, + { + "start": 36680.36, + "end": 36680.8, + "probability": 0.9731 + }, + { + "start": 36681.56, + "end": 36685.68, + "probability": 0.822 + }, + { + "start": 36686.6, + "end": 36688.06, + "probability": 0.5856 + }, + { + "start": 36688.44, + "end": 36688.44, + "probability": 0.542 + }, + { + "start": 36688.44, + "end": 36689.2, + "probability": 0.5651 + }, + { + "start": 36689.26, + "end": 36690.78, + "probability": 0.5886 + }, + { + "start": 36690.9, + "end": 36692.02, + "probability": 0.8054 + }, + { + "start": 36692.1, + "end": 36694.2, + "probability": 0.6819 + }, + { + "start": 36695.02, + "end": 36697.42, + "probability": 0.5629 + }, + { + "start": 36698.04, + "end": 36698.91, + "probability": 0.2438 + }, + { + "start": 36700.32, + "end": 36701.56, + "probability": 0.6497 + }, + { + "start": 36701.62, + "end": 36703.02, + "probability": 0.9658 + }, + { + "start": 36703.1, + "end": 36704.86, + "probability": 0.9625 + }, + { + "start": 36704.92, + "end": 36705.96, + "probability": 0.9677 + }, + { + "start": 36707.44, + "end": 36708.4, + "probability": 0.8472 + }, + { + "start": 36709.16, + "end": 36710.38, + "probability": 0.2281 + }, + { + "start": 36711.58, + "end": 36713.72, + "probability": 0.7117 + }, + { + "start": 36713.8, + "end": 36715.48, + "probability": 0.702 + }, + { + "start": 36717.56, + "end": 36718.86, + "probability": 0.8328 + }, + { + "start": 36718.96, + "end": 36720.62, + "probability": 0.8281 + }, + { + "start": 36720.66, + "end": 36722.3, + "probability": 0.9676 + }, + { + "start": 36723.28, + "end": 36724.8, + "probability": 0.9569 + }, + { + "start": 36725.88, + "end": 36726.64, + "probability": 0.5077 + }, + { + "start": 36726.8, + "end": 36728.4, + "probability": 0.8785 + }, + { + "start": 36728.44, + "end": 36729.14, + "probability": 0.9447 + }, + { + "start": 36729.68, + "end": 36730.48, + "probability": 0.8721 + }, + { + "start": 36730.56, + "end": 36731.92, + "probability": 0.8185 + }, + { + "start": 36732.02, + "end": 36733.68, + "probability": 0.971 + }, + { + "start": 36733.88, + "end": 36735.74, + "probability": 0.8469 + }, + { + "start": 36735.82, + "end": 36737.24, + "probability": 0.8456 + }, + { + "start": 36737.8, + "end": 36739.36, + "probability": 0.5986 + }, + { + "start": 36739.48, + "end": 36740.8, + "probability": 0.8125 + }, + { + "start": 36740.9, + "end": 36741.58, + "probability": 0.7281 + }, + { + "start": 36742.32, + "end": 36743.1, + "probability": 0.9593 + }, + { + "start": 36743.24, + "end": 36744.64, + "probability": 0.9023 + }, + { + "start": 36744.78, + "end": 36746.58, + "probability": 0.9564 + }, + { + "start": 36746.68, + "end": 36748.64, + "probability": 0.9938 + }, + { + "start": 36748.66, + "end": 36749.86, + "probability": 0.8363 + }, + { + "start": 36750.97, + "end": 36751.64, + "probability": 0.3096 + }, + { + "start": 36751.74, + "end": 36753.12, + "probability": 0.6742 + }, + { + "start": 36753.7, + "end": 36755.68, + "probability": 0.9468 + }, + { + "start": 36755.7, + "end": 36756.92, + "probability": 0.8359 + }, + { + "start": 36757.02, + "end": 36757.62, + "probability": 0.7848 + }, + { + "start": 36758.76, + "end": 36759.6, + "probability": 0.2109 + }, + { + "start": 36759.72, + "end": 36762.02, + "probability": 0.6397 + }, + { + "start": 36762.1, + "end": 36764.12, + "probability": 0.701 + }, + { + "start": 36764.16, + "end": 36765.6, + "probability": 0.265 + }, + { + "start": 36765.6, + "end": 36767.54, + "probability": 0.8362 + }, + { + "start": 36767.62, + "end": 36768.3, + "probability": 0.8896 + }, + { + "start": 36768.82, + "end": 36769.6, + "probability": 0.8621 + }, + { + "start": 36769.8, + "end": 36771.08, + "probability": 0.8922 + }, + { + "start": 36771.14, + "end": 36772.64, + "probability": 0.9508 + }, + { + "start": 36772.82, + "end": 36774.78, + "probability": 0.9325 + }, + { + "start": 36774.88, + "end": 36775.5, + "probability": 0.6687 + }, + { + "start": 36776.12, + "end": 36777.42, + "probability": 0.5988 + }, + { + "start": 36777.56, + "end": 36778.66, + "probability": 0.9174 + }, + { + "start": 36778.96, + "end": 36780.62, + "probability": 0.9014 + }, + { + "start": 36780.72, + "end": 36782.14, + "probability": 0.8899 + }, + { + "start": 36782.14, + "end": 36783.62, + "probability": 0.9189 + }, + { + "start": 36785.28, + "end": 36786.6, + "probability": 0.94 + }, + { + "start": 36786.86, + "end": 36788.84, + "probability": 0.8958 + }, + { + "start": 36788.86, + "end": 36790.82, + "probability": 0.9768 + }, + { + "start": 36791.62, + "end": 36791.62, + "probability": 0.0294 + }, + { + "start": 36791.62, + "end": 36792.25, + "probability": 0.4549 + }, + { + "start": 36792.34, + "end": 36793.76, + "probability": 0.6443 + }, + { + "start": 36793.84, + "end": 36795.52, + "probability": 0.8371 + }, + { + "start": 36795.56, + "end": 36797.58, + "probability": 0.961 + }, + { + "start": 36797.62, + "end": 36799.4, + "probability": 0.842 + }, + { + "start": 36801.02, + "end": 36804.26, + "probability": 0.7999 + }, + { + "start": 36804.36, + "end": 36805.92, + "probability": 0.8556 + }, + { + "start": 36805.98, + "end": 36807.58, + "probability": 0.8696 + }, + { + "start": 36807.68, + "end": 36808.38, + "probability": 0.9762 + }, + { + "start": 36808.92, + "end": 36810.8, + "probability": 0.835 + }, + { + "start": 36811.86, + "end": 36814.8, + "probability": 0.8457 + }, + { + "start": 36816.28, + "end": 36816.28, + "probability": 0.2116 + }, + { + "start": 36816.28, + "end": 36816.8, + "probability": 0.266 + }, + { + "start": 36816.92, + "end": 36818.28, + "probability": 0.711 + }, + { + "start": 36818.4, + "end": 36819.96, + "probability": 0.6627 + }, + { + "start": 36820.06, + "end": 36821.56, + "probability": 0.5395 + }, + { + "start": 36821.9, + "end": 36823.44, + "probability": 0.9376 + }, + { + "start": 36823.52, + "end": 36824.5, + "probability": 0.9086 + }, + { + "start": 36824.62, + "end": 36826.04, + "probability": 0.6684 + }, + { + "start": 36826.08, + "end": 36826.64, + "probability": 0.7131 + }, + { + "start": 36827.48, + "end": 36831.14, + "probability": 0.8478 + }, + { + "start": 36831.26, + "end": 36833.1, + "probability": 0.9653 + }, + { + "start": 36833.16, + "end": 36835.08, + "probability": 0.9375 + }, + { + "start": 36835.78, + "end": 36837.48, + "probability": 0.9801 + }, + { + "start": 36837.66, + "end": 36839.02, + "probability": 0.5785 + }, + { + "start": 36839.38, + "end": 36840.2, + "probability": 0.6385 + }, + { + "start": 36840.76, + "end": 36841.56, + "probability": 0.5592 + }, + { + "start": 36841.64, + "end": 36842.66, + "probability": 0.8443 + }, + { + "start": 36842.76, + "end": 36843.9, + "probability": 0.9317 + }, + { + "start": 36844.04, + "end": 36845.58, + "probability": 0.7408 + }, + { + "start": 36845.66, + "end": 36847.0, + "probability": 0.8474 + }, + { + "start": 36847.12, + "end": 36848.58, + "probability": 0.5565 + }, + { + "start": 36848.64, + "end": 36850.02, + "probability": 0.8261 + }, + { + "start": 36850.5, + "end": 36852.14, + "probability": 0.9176 + }, + { + "start": 36852.32, + "end": 36853.36, + "probability": 0.8132 + }, + { + "start": 36860.5, + "end": 36865.92, + "probability": 0.3806 + }, + { + "start": 36866.9, + "end": 36869.16, + "probability": 0.6185 + }, + { + "start": 36870.38, + "end": 36872.5, + "probability": 0.8262 + }, + { + "start": 36872.66, + "end": 36874.74, + "probability": 0.7758 + }, + { + "start": 36874.82, + "end": 36876.74, + "probability": 0.8127 + }, + { + "start": 36876.8, + "end": 36878.36, + "probability": 0.9578 + }, + { + "start": 36879.24, + "end": 36880.38, + "probability": 0.7571 + }, + { + "start": 36881.12, + "end": 36883.14, + "probability": 0.6443 + }, + { + "start": 36883.18, + "end": 36884.6, + "probability": 0.8681 + }, + { + "start": 36884.64, + "end": 36885.76, + "probability": 0.8844 + }, + { + "start": 36886.1, + "end": 36886.8, + "probability": 0.8161 + }, + { + "start": 36887.7, + "end": 36888.78, + "probability": 0.9044 + }, + { + "start": 36889.46, + "end": 36890.94, + "probability": 0.9619 + }, + { + "start": 36890.98, + "end": 36892.38, + "probability": 0.6415 + }, + { + "start": 36892.52, + "end": 36894.34, + "probability": 0.5742 + }, + { + "start": 36894.34, + "end": 36895.86, + "probability": 0.5573 + }, + { + "start": 36895.9, + "end": 36896.74, + "probability": 0.9704 + }, + { + "start": 36897.26, + "end": 36898.0, + "probability": 0.9202 + }, + { + "start": 36898.1, + "end": 36899.64, + "probability": 0.8823 + }, + { + "start": 36899.68, + "end": 36901.18, + "probability": 0.8888 + }, + { + "start": 36902.12, + "end": 36902.44, + "probability": 0.0166 + }, + { + "start": 36903.26, + "end": 36904.04, + "probability": 0.9631 + }, + { + "start": 36905.53, + "end": 36907.86, + "probability": 0.6689 + }, + { + "start": 36908.04, + "end": 36910.34, + "probability": 0.613 + }, + { + "start": 36910.42, + "end": 36915.38, + "probability": 0.8452 + }, + { + "start": 36915.48, + "end": 36916.72, + "probability": 0.6537 + }, + { + "start": 36920.26, + "end": 36921.66, + "probability": 0.2186 + }, + { + "start": 36923.88, + "end": 36924.5, + "probability": 0.0407 + }, + { + "start": 36925.92, + "end": 36928.16, + "probability": 0.091 + }, + { + "start": 36928.2, + "end": 36929.38, + "probability": 0.094 + }, + { + "start": 36929.38, + "end": 36931.8, + "probability": 0.0169 + }, + { + "start": 36931.8, + "end": 36935.28, + "probability": 0.1013 + }, + { + "start": 36937.2, + "end": 36938.3, + "probability": 0.0177 + }, + { + "start": 36939.78, + "end": 36939.78, + "probability": 0.21 + }, + { + "start": 36939.78, + "end": 36940.26, + "probability": 0.222 + }, + { + "start": 36940.42, + "end": 36941.62, + "probability": 0.1664 + }, + { + "start": 36942.58, + "end": 36944.5, + "probability": 0.0303 + }, + { + "start": 36986.63, + "end": 36987.99, + "probability": 0.903 + }, + { + "start": 36988.21, + "end": 36989.91, + "probability": 0.7099 + }, + { + "start": 36990.01, + "end": 36991.21, + "probability": 0.8178 + }, + { + "start": 36991.35, + "end": 36993.03, + "probability": 0.6367 + }, + { + "start": 36993.17, + "end": 36995.01, + "probability": 0.9746 + }, + { + "start": 36996.59, + "end": 36997.31, + "probability": 0.9155 + }, + { + "start": 37012.35, + "end": 37013.33, + "probability": 0.6809 + }, + { + "start": 37013.41, + "end": 37013.75, + "probability": 0.8807 + }, + { + "start": 37014.19, + "end": 37017.23, + "probability": 0.7612 + }, + { + "start": 37020.59, + "end": 37023.75, + "probability": 0.8436 + }, + { + "start": 37025.59, + "end": 37028.47, + "probability": 0.973 + }, + { + "start": 37028.47, + "end": 37032.47, + "probability": 0.8506 + }, + { + "start": 37033.37, + "end": 37034.43, + "probability": 0.7222 + }, + { + "start": 37035.25, + "end": 37037.79, + "probability": 0.8766 + }, + { + "start": 37038.71, + "end": 37041.53, + "probability": 0.8112 + }, + { + "start": 37042.45, + "end": 37044.05, + "probability": 0.9788 + }, + { + "start": 37044.05, + "end": 37046.99, + "probability": 0.8337 + }, + { + "start": 37047.73, + "end": 37049.13, + "probability": 0.9503 + }, + { + "start": 37049.61, + "end": 37053.13, + "probability": 0.8791 + }, + { + "start": 37053.33, + "end": 37053.95, + "probability": 0.6759 + }, + { + "start": 37054.45, + "end": 37057.61, + "probability": 0.9565 + }, + { + "start": 37058.21, + "end": 37058.95, + "probability": 0.9983 + }, + { + "start": 37059.83, + "end": 37061.83, + "probability": 0.8239 + }, + { + "start": 37062.43, + "end": 37066.07, + "probability": 0.9875 + }, + { + "start": 37066.63, + "end": 37071.27, + "probability": 0.724 + }, + { + "start": 37071.89, + "end": 37075.95, + "probability": 0.7969 + }, + { + "start": 37075.95, + "end": 37079.21, + "probability": 0.9263 + }, + { + "start": 37080.03, + "end": 37083.51, + "probability": 0.9966 + }, + { + "start": 37084.65, + "end": 37085.73, + "probability": 0.9891 + }, + { + "start": 37086.75, + "end": 37087.99, + "probability": 0.9875 + }, + { + "start": 37088.71, + "end": 37096.59, + "probability": 0.9937 + }, + { + "start": 37097.03, + "end": 37097.41, + "probability": 0.781 + }, + { + "start": 37097.43, + "end": 37098.79, + "probability": 0.9246 + }, + { + "start": 37099.13, + "end": 37102.59, + "probability": 0.984 + }, + { + "start": 37102.89, + "end": 37103.69, + "probability": 0.9633 + }, + { + "start": 37103.81, + "end": 37104.29, + "probability": 0.7347 + }, + { + "start": 37104.85, + "end": 37105.53, + "probability": 0.7874 + }, + { + "start": 37106.11, + "end": 37107.73, + "probability": 0.7816 + }, + { + "start": 37108.33, + "end": 37110.42, + "probability": 0.8379 + }, + { + "start": 37112.09, + "end": 37116.03, + "probability": 0.9458 + }, + { + "start": 37116.03, + "end": 37121.09, + "probability": 0.7826 + }, + { + "start": 37121.17, + "end": 37124.79, + "probability": 0.8136 + }, + { + "start": 37125.71, + "end": 37126.19, + "probability": 0.9283 + }, + { + "start": 37126.63, + "end": 37129.14, + "probability": 0.9577 + }, + { + "start": 37129.97, + "end": 37132.23, + "probability": 0.8397 + }, + { + "start": 37132.95, + "end": 37136.05, + "probability": 0.9926 + }, + { + "start": 37136.19, + "end": 37137.95, + "probability": 0.7476 + }, + { + "start": 37138.73, + "end": 37140.45, + "probability": 0.6578 + }, + { + "start": 37140.79, + "end": 37141.63, + "probability": 0.8076 + }, + { + "start": 37141.99, + "end": 37144.61, + "probability": 0.9809 + }, + { + "start": 37145.71, + "end": 37148.65, + "probability": 0.99 + }, + { + "start": 37149.13, + "end": 37152.01, + "probability": 0.9777 + }, + { + "start": 37152.01, + "end": 37155.93, + "probability": 0.9679 + }, + { + "start": 37156.77, + "end": 37157.59, + "probability": 0.8097 + }, + { + "start": 37158.69, + "end": 37162.41, + "probability": 0.8939 + }, + { + "start": 37162.85, + "end": 37166.03, + "probability": 0.9402 + }, + { + "start": 37166.03, + "end": 37169.03, + "probability": 0.9573 + }, + { + "start": 37170.35, + "end": 37172.39, + "probability": 0.9651 + }, + { + "start": 37172.45, + "end": 37175.05, + "probability": 0.9829 + }, + { + "start": 37175.49, + "end": 37177.65, + "probability": 0.5619 + }, + { + "start": 37178.09, + "end": 37180.57, + "probability": 0.974 + }, + { + "start": 37181.89, + "end": 37181.97, + "probability": 0.1399 + }, + { + "start": 37181.97, + "end": 37181.97, + "probability": 0.491 + }, + { + "start": 37181.97, + "end": 37182.67, + "probability": 0.4956 + }, + { + "start": 37183.29, + "end": 37187.89, + "probability": 0.8348 + }, + { + "start": 37187.89, + "end": 37191.27, + "probability": 0.9616 + }, + { + "start": 37191.89, + "end": 37194.75, + "probability": 0.9472 + }, + { + "start": 37194.75, + "end": 37198.41, + "probability": 0.9992 + }, + { + "start": 37198.99, + "end": 37203.67, + "probability": 0.9893 + }, + { + "start": 37203.99, + "end": 37206.55, + "probability": 0.9304 + }, + { + "start": 37207.03, + "end": 37210.59, + "probability": 0.9906 + }, + { + "start": 37210.69, + "end": 37216.79, + "probability": 0.943 + }, + { + "start": 37217.63, + "end": 37218.93, + "probability": 0.7844 + }, + { + "start": 37219.55, + "end": 37222.61, + "probability": 0.9976 + }, + { + "start": 37223.21, + "end": 37223.55, + "probability": 0.5814 + }, + { + "start": 37224.13, + "end": 37228.29, + "probability": 0.9944 + }, + { + "start": 37228.39, + "end": 37230.55, + "probability": 0.9915 + }, + { + "start": 37231.01, + "end": 37231.51, + "probability": 0.8528 + }, + { + "start": 37231.91, + "end": 37236.98, + "probability": 0.9746 + }, + { + "start": 37238.23, + "end": 37243.35, + "probability": 0.9977 + }, + { + "start": 37243.35, + "end": 37247.15, + "probability": 0.8869 + }, + { + "start": 37247.97, + "end": 37251.37, + "probability": 0.9242 + }, + { + "start": 37251.63, + "end": 37252.29, + "probability": 0.9993 + }, + { + "start": 37253.39, + "end": 37255.23, + "probability": 0.7794 + }, + { + "start": 37256.29, + "end": 37257.49, + "probability": 0.7763 + }, + { + "start": 37258.17, + "end": 37261.17, + "probability": 0.9847 + }, + { + "start": 37262.11, + "end": 37263.71, + "probability": 0.956 + }, + { + "start": 37263.73, + "end": 37266.09, + "probability": 0.8997 + }, + { + "start": 37266.25, + "end": 37268.93, + "probability": 0.9558 + }, + { + "start": 37269.15, + "end": 37269.77, + "probability": 0.4296 + }, + { + "start": 37270.35, + "end": 37271.67, + "probability": 0.7426 + }, + { + "start": 37271.77, + "end": 37272.42, + "probability": 0.9276 + }, + { + "start": 37272.91, + "end": 37276.49, + "probability": 0.8098 + }, + { + "start": 37276.49, + "end": 37279.91, + "probability": 0.9958 + }, + { + "start": 37280.13, + "end": 37280.53, + "probability": 0.7505 + }, + { + "start": 37281.17, + "end": 37282.87, + "probability": 0.9958 + }, + { + "start": 37283.03, + "end": 37286.45, + "probability": 0.814 + }, + { + "start": 37300.59, + "end": 37301.27, + "probability": 0.6373 + }, + { + "start": 37301.35, + "end": 37302.35, + "probability": 0.7438 + }, + { + "start": 37302.55, + "end": 37303.45, + "probability": 0.8082 + }, + { + "start": 37303.63, + "end": 37305.85, + "probability": 0.937 + }, + { + "start": 37307.03, + "end": 37310.67, + "probability": 0.9861 + }, + { + "start": 37310.79, + "end": 37312.21, + "probability": 0.7438 + }, + { + "start": 37312.75, + "end": 37314.99, + "probability": 0.8979 + }, + { + "start": 37314.99, + "end": 37318.81, + "probability": 0.9857 + }, + { + "start": 37319.05, + "end": 37319.25, + "probability": 0.4544 + }, + { + "start": 37319.79, + "end": 37323.61, + "probability": 0.7856 + }, + { + "start": 37325.91, + "end": 37328.37, + "probability": 0.4198 + }, + { + "start": 37328.75, + "end": 37331.65, + "probability": 0.9389 + }, + { + "start": 37332.55, + "end": 37335.37, + "probability": 0.9897 + }, + { + "start": 37335.37, + "end": 37338.27, + "probability": 0.7284 + }, + { + "start": 37339.25, + "end": 37342.39, + "probability": 0.9659 + }, + { + "start": 37342.39, + "end": 37345.55, + "probability": 0.9585 + }, + { + "start": 37345.55, + "end": 37350.47, + "probability": 0.8778 + }, + { + "start": 37351.15, + "end": 37355.27, + "probability": 0.9842 + }, + { + "start": 37355.45, + "end": 37358.99, + "probability": 0.974 + }, + { + "start": 37358.99, + "end": 37362.43, + "probability": 0.932 + }, + { + "start": 37362.59, + "end": 37366.89, + "probability": 0.9775 + }, + { + "start": 37367.05, + "end": 37370.25, + "probability": 0.9594 + }, + { + "start": 37371.09, + "end": 37372.51, + "probability": 0.7092 + }, + { + "start": 37372.65, + "end": 37374.93, + "probability": 0.7876 + }, + { + "start": 37375.51, + "end": 37379.55, + "probability": 0.9314 + }, + { + "start": 37379.57, + "end": 37380.43, + "probability": 0.9721 + }, + { + "start": 37381.19, + "end": 37383.69, + "probability": 0.9891 + }, + { + "start": 37383.69, + "end": 37386.21, + "probability": 0.9096 + }, + { + "start": 37386.77, + "end": 37388.43, + "probability": 0.7299 + }, + { + "start": 37388.57, + "end": 37391.75, + "probability": 0.8706 + }, + { + "start": 37393.51, + "end": 37395.89, + "probability": 0.9948 + }, + { + "start": 37396.45, + "end": 37398.25, + "probability": 0.9732 + }, + { + "start": 37398.35, + "end": 37400.79, + "probability": 0.9788 + }, + { + "start": 37400.87, + "end": 37403.05, + "probability": 0.9958 + }, + { + "start": 37403.49, + "end": 37405.59, + "probability": 0.9801 + }, + { + "start": 37405.95, + "end": 37406.57, + "probability": 0.5566 + }, + { + "start": 37407.07, + "end": 37408.79, + "probability": 0.78 + }, + { + "start": 37409.05, + "end": 37413.01, + "probability": 0.9001 + }, + { + "start": 37413.07, + "end": 37413.63, + "probability": 0.9323 + }, + { + "start": 37413.71, + "end": 37417.49, + "probability": 0.9477 + }, + { + "start": 37417.75, + "end": 37418.57, + "probability": 0.0001 + }, + { + "start": 37419.49, + "end": 37419.77, + "probability": 0.2105 + }, + { + "start": 37419.77, + "end": 37422.77, + "probability": 0.7357 + }, + { + "start": 37422.85, + "end": 37424.01, + "probability": 0.6738 + }, + { + "start": 37424.09, + "end": 37424.87, + "probability": 0.4837 + }, + { + "start": 37425.55, + "end": 37426.35, + "probability": 0.2297 + }, + { + "start": 37426.45, + "end": 37430.08, + "probability": 0.6651 + }, + { + "start": 37431.21, + "end": 37431.59, + "probability": 0.5278 + }, + { + "start": 37431.79, + "end": 37431.79, + "probability": 0.1532 + }, + { + "start": 37431.79, + "end": 37431.79, + "probability": 0.1265 + }, + { + "start": 37431.79, + "end": 37432.01, + "probability": 0.2245 + }, + { + "start": 37432.53, + "end": 37434.51, + "probability": 0.9125 + }, + { + "start": 37434.87, + "end": 37436.11, + "probability": 0.9878 + }, + { + "start": 37436.35, + "end": 37440.55, + "probability": 0.9685 + }, + { + "start": 37440.65, + "end": 37441.89, + "probability": 0.9972 + }, + { + "start": 37441.89, + "end": 37442.63, + "probability": 0.9641 + }, + { + "start": 37442.95, + "end": 37443.51, + "probability": 0.6033 + }, + { + "start": 37444.65, + "end": 37451.33, + "probability": 0.8659 + }, + { + "start": 37451.51, + "end": 37452.97, + "probability": 0.7249 + }, + { + "start": 37454.01, + "end": 37458.03, + "probability": 0.9954 + }, + { + "start": 37458.49, + "end": 37458.67, + "probability": 0.7434 + }, + { + "start": 37460.16, + "end": 37461.17, + "probability": 0.9277 + }, + { + "start": 37461.49, + "end": 37463.41, + "probability": 0.7729 + }, + { + "start": 37463.53, + "end": 37464.53, + "probability": 0.993 + }, + { + "start": 37465.33, + "end": 37466.47, + "probability": 0.9715 + }, + { + "start": 37466.75, + "end": 37469.41, + "probability": 0.9514 + }, + { + "start": 37470.29, + "end": 37472.05, + "probability": 0.9949 + }, + { + "start": 37472.73, + "end": 37475.55, + "probability": 0.7087 + }, + { + "start": 37475.83, + "end": 37476.99, + "probability": 0.6456 + }, + { + "start": 37477.47, + "end": 37481.59, + "probability": 0.9995 + }, + { + "start": 37482.11, + "end": 37483.59, + "probability": 0.9849 + }, + { + "start": 37483.67, + "end": 37486.09, + "probability": 0.664 + }, + { + "start": 37486.27, + "end": 37487.49, + "probability": 0.922 + }, + { + "start": 37487.59, + "end": 37489.95, + "probability": 0.999 + }, + { + "start": 37490.05, + "end": 37495.67, + "probability": 0.9889 + }, + { + "start": 37495.81, + "end": 37496.17, + "probability": 0.7633 + }, + { + "start": 37496.69, + "end": 37498.47, + "probability": 0.7517 + }, + { + "start": 37498.49, + "end": 37502.21, + "probability": 0.9526 + }, + { + "start": 37502.81, + "end": 37502.85, + "probability": 0.1967 + }, + { + "start": 37529.57, + "end": 37531.79, + "probability": 0.684 + }, + { + "start": 37533.09, + "end": 37536.99, + "probability": 0.9886 + }, + { + "start": 37538.71, + "end": 37539.51, + "probability": 0.8703 + }, + { + "start": 37541.05, + "end": 37545.33, + "probability": 0.8986 + }, + { + "start": 37545.35, + "end": 37545.89, + "probability": 0.7334 + }, + { + "start": 37546.67, + "end": 37550.53, + "probability": 0.9563 + }, + { + "start": 37551.17, + "end": 37552.75, + "probability": 0.7434 + }, + { + "start": 37554.05, + "end": 37558.23, + "probability": 0.8647 + }, + { + "start": 37559.63, + "end": 37561.64, + "probability": 0.9966 + }, + { + "start": 37562.65, + "end": 37566.59, + "probability": 0.9967 + }, + { + "start": 37567.11, + "end": 37569.65, + "probability": 0.9914 + }, + { + "start": 37571.05, + "end": 37574.81, + "probability": 0.961 + }, + { + "start": 37575.13, + "end": 37578.47, + "probability": 0.7971 + }, + { + "start": 37579.11, + "end": 37580.73, + "probability": 0.8588 + }, + { + "start": 37580.99, + "end": 37582.49, + "probability": 0.182 + }, + { + "start": 37583.51, + "end": 37584.21, + "probability": 0.159 + }, + { + "start": 37584.39, + "end": 37589.69, + "probability": 0.9727 + }, + { + "start": 37590.57, + "end": 37594.37, + "probability": 0.9848 + }, + { + "start": 37594.85, + "end": 37599.39, + "probability": 0.9969 + }, + { + "start": 37600.13, + "end": 37600.69, + "probability": 0.0382 + }, + { + "start": 37601.82, + "end": 37603.63, + "probability": 0.1092 + }, + { + "start": 37603.97, + "end": 37609.03, + "probability": 0.4554 + }, + { + "start": 37610.07, + "end": 37611.12, + "probability": 0.9227 + }, + { + "start": 37611.31, + "end": 37614.11, + "probability": 0.9967 + }, + { + "start": 37614.21, + "end": 37615.9, + "probability": 0.9363 + }, + { + "start": 37616.97, + "end": 37624.15, + "probability": 0.9164 + }, + { + "start": 37625.69, + "end": 37626.33, + "probability": 0.9807 + }, + { + "start": 37627.01, + "end": 37629.07, + "probability": 0.9968 + }, + { + "start": 37629.21, + "end": 37630.43, + "probability": 0.9522 + }, + { + "start": 37631.55, + "end": 37632.59, + "probability": 0.7805 + }, + { + "start": 37633.65, + "end": 37637.71, + "probability": 0.9799 + }, + { + "start": 37638.79, + "end": 37640.33, + "probability": 0.9834 + }, + { + "start": 37641.05, + "end": 37644.51, + "probability": 0.982 + }, + { + "start": 37644.93, + "end": 37646.43, + "probability": 0.9745 + }, + { + "start": 37647.47, + "end": 37648.55, + "probability": 0.9957 + }, + { + "start": 37649.37, + "end": 37651.55, + "probability": 0.5838 + }, + { + "start": 37652.11, + "end": 37652.79, + "probability": 0.9626 + }, + { + "start": 37653.37, + "end": 37656.61, + "probability": 0.7402 + }, + { + "start": 37657.13, + "end": 37660.19, + "probability": 0.9105 + }, + { + "start": 37661.09, + "end": 37661.61, + "probability": 0.4252 + }, + { + "start": 37661.61, + "end": 37662.03, + "probability": 0.3875 + }, + { + "start": 37662.05, + "end": 37663.19, + "probability": 0.8272 + }, + { + "start": 37663.31, + "end": 37665.01, + "probability": 0.9766 + }, + { + "start": 37666.33, + "end": 37667.79, + "probability": 0.8633 + }, + { + "start": 37668.41, + "end": 37669.37, + "probability": 0.9012 + }, + { + "start": 37670.63, + "end": 37672.91, + "probability": 0.8953 + }, + { + "start": 37673.07, + "end": 37675.27, + "probability": 0.9581 + }, + { + "start": 37675.73, + "end": 37676.35, + "probability": 0.3568 + }, + { + "start": 37676.39, + "end": 37679.31, + "probability": 0.8734 + }, + { + "start": 37679.79, + "end": 37681.75, + "probability": 0.9633 + }, + { + "start": 37683.09, + "end": 37684.01, + "probability": 0.861 + }, + { + "start": 37685.15, + "end": 37688.83, + "probability": 0.9958 + }, + { + "start": 37689.93, + "end": 37694.01, + "probability": 0.9648 + }, + { + "start": 37695.11, + "end": 37696.21, + "probability": 0.7143 + }, + { + "start": 37697.41, + "end": 37701.25, + "probability": 0.9346 + }, + { + "start": 37701.81, + "end": 37702.01, + "probability": 0.2 + }, + { + "start": 37702.13, + "end": 37704.71, + "probability": 0.9489 + }, + { + "start": 37705.85, + "end": 37708.42, + "probability": 0.8444 + }, + { + "start": 37708.89, + "end": 37710.07, + "probability": 0.666 + }, + { + "start": 37710.07, + "end": 37710.59, + "probability": 0.6388 + }, + { + "start": 37710.64, + "end": 37711.71, + "probability": 0.4791 + }, + { + "start": 37711.71, + "end": 37718.21, + "probability": 0.8547 + }, + { + "start": 37718.41, + "end": 37719.51, + "probability": 0.507 + }, + { + "start": 37719.55, + "end": 37720.71, + "probability": 0.9141 + }, + { + "start": 37720.75, + "end": 37722.25, + "probability": 0.8486 + }, + { + "start": 37722.25, + "end": 37724.85, + "probability": 0.7947 + }, + { + "start": 37725.15, + "end": 37725.41, + "probability": 0.8535 + }, + { + "start": 37727.11, + "end": 37727.15, + "probability": 0.0061 + }, + { + "start": 37727.15, + "end": 37728.63, + "probability": 0.5928 + }, + { + "start": 37728.69, + "end": 37729.87, + "probability": 0.9136 + }, + { + "start": 37730.59, + "end": 37732.77, + "probability": 0.9424 + }, + { + "start": 37733.17, + "end": 37735.15, + "probability": 0.957 + }, + { + "start": 37735.75, + "end": 37737.65, + "probability": 0.902 + }, + { + "start": 37737.99, + "end": 37742.07, + "probability": 0.9818 + }, + { + "start": 37742.23, + "end": 37746.71, + "probability": 0.8441 + }, + { + "start": 37747.11, + "end": 37748.35, + "probability": 0.7597 + }, + { + "start": 37748.45, + "end": 37749.11, + "probability": 0.7984 + }, + { + "start": 37749.53, + "end": 37752.13, + "probability": 0.8917 + }, + { + "start": 37752.35, + "end": 37753.04, + "probability": 0.4873 + }, + { + "start": 37754.17, + "end": 37754.87, + "probability": 0.5116 + }, + { + "start": 37754.91, + "end": 37755.29, + "probability": 0.7842 + }, + { + "start": 37755.33, + "end": 37755.73, + "probability": 0.8572 + }, + { + "start": 37756.07, + "end": 37756.53, + "probability": 0.4902 + }, + { + "start": 37757.47, + "end": 37758.71, + "probability": 0.9316 + }, + { + "start": 37759.07, + "end": 37760.87, + "probability": 0.9037 + }, + { + "start": 37761.21, + "end": 37762.4, + "probability": 0.7778 + }, + { + "start": 37762.97, + "end": 37769.19, + "probability": 0.9832 + }, + { + "start": 37769.91, + "end": 37772.49, + "probability": 0.9945 + }, + { + "start": 37772.49, + "end": 37777.45, + "probability": 0.966 + }, + { + "start": 37777.91, + "end": 37779.91, + "probability": 0.9707 + }, + { + "start": 37780.33, + "end": 37783.91, + "probability": 0.9843 + }, + { + "start": 37784.37, + "end": 37785.61, + "probability": 0.909 + }, + { + "start": 37786.43, + "end": 37789.95, + "probability": 0.5962 + }, + { + "start": 37790.39, + "end": 37790.63, + "probability": 0.5924 + }, + { + "start": 37790.63, + "end": 37794.97, + "probability": 0.9675 + }, + { + "start": 37795.51, + "end": 37796.31, + "probability": 0.8858 + }, + { + "start": 37796.49, + "end": 37796.97, + "probability": 0.6824 + }, + { + "start": 37797.07, + "end": 37799.69, + "probability": 0.867 + }, + { + "start": 37800.45, + "end": 37800.75, + "probability": 0.4574 + }, + { + "start": 37800.83, + "end": 37804.31, + "probability": 0.7106 + }, + { + "start": 37804.83, + "end": 37807.99, + "probability": 0.8314 + }, + { + "start": 37808.21, + "end": 37811.01, + "probability": 0.9686 + }, + { + "start": 37812.17, + "end": 37813.94, + "probability": 0.4826 + }, + { + "start": 37814.87, + "end": 37815.59, + "probability": 0.6266 + }, + { + "start": 37815.63, + "end": 37817.23, + "probability": 0.7463 + }, + { + "start": 37817.27, + "end": 37818.41, + "probability": 0.7277 + }, + { + "start": 37820.07, + "end": 37821.63, + "probability": 0.7719 + }, + { + "start": 37821.65, + "end": 37823.33, + "probability": 0.6911 + }, + { + "start": 37823.37, + "end": 37824.41, + "probability": 0.7297 + }, + { + "start": 37824.47, + "end": 37825.03, + "probability": 0.854 + }, + { + "start": 37825.89, + "end": 37826.87, + "probability": 0.5943 + }, + { + "start": 37832.97, + "end": 37835.85, + "probability": 0.5098 + }, + { + "start": 37836.63, + "end": 37837.79, + "probability": 0.3724 + }, + { + "start": 37837.85, + "end": 37838.81, + "probability": 0.4536 + }, + { + "start": 37838.85, + "end": 37840.31, + "probability": 0.6369 + }, + { + "start": 37840.31, + "end": 37841.55, + "probability": 0.6476 + }, + { + "start": 37841.55, + "end": 37842.75, + "probability": 0.7772 + }, + { + "start": 37843.57, + "end": 37844.97, + "probability": 0.8695 + }, + { + "start": 37845.03, + "end": 37846.23, + "probability": 0.6657 + }, + { + "start": 37846.27, + "end": 37847.65, + "probability": 0.8249 + }, + { + "start": 37847.77, + "end": 37848.75, + "probability": 0.6378 + }, + { + "start": 37849.25, + "end": 37849.63, + "probability": 0.508 + }, + { + "start": 37850.37, + "end": 37852.77, + "probability": 0.852 + }, + { + "start": 37854.31, + "end": 37856.09, + "probability": 0.9182 + }, + { + "start": 37856.15, + "end": 37857.15, + "probability": 0.5917 + }, + { + "start": 37857.25, + "end": 37858.55, + "probability": 0.6177 + }, + { + "start": 37858.75, + "end": 37860.63, + "probability": 0.857 + }, + { + "start": 37860.65, + "end": 37862.11, + "probability": 0.8932 + }, + { + "start": 37862.21, + "end": 37863.53, + "probability": 0.9273 + }, + { + "start": 37863.63, + "end": 37864.25, + "probability": 0.8475 + }, + { + "start": 37864.89, + "end": 37865.57, + "probability": 0.4279 + }, + { + "start": 37865.61, + "end": 37866.77, + "probability": 0.618 + }, + { + "start": 37866.91, + "end": 37867.81, + "probability": 0.7038 + }, + { + "start": 37867.93, + "end": 37868.91, + "probability": 0.8231 + }, + { + "start": 37869.01, + "end": 37869.99, + "probability": 0.4938 + }, + { + "start": 37870.07, + "end": 37870.65, + "probability": 0.7053 + }, + { + "start": 37871.19, + "end": 37871.81, + "probability": 0.9006 + }, + { + "start": 37871.89, + "end": 37872.85, + "probability": 0.8246 + }, + { + "start": 37872.89, + "end": 37874.21, + "probability": 0.7482 + }, + { + "start": 37875.21, + "end": 37876.55, + "probability": 0.5472 + }, + { + "start": 37876.61, + "end": 37877.67, + "probability": 0.9199 + }, + { + "start": 37877.69, + "end": 37878.75, + "probability": 0.6327 + }, + { + "start": 37878.85, + "end": 37879.67, + "probability": 0.809 + }, + { + "start": 37879.79, + "end": 37881.17, + "probability": 0.7234 + }, + { + "start": 37881.25, + "end": 37881.67, + "probability": 0.7705 + }, + { + "start": 37882.43, + "end": 37885.35, + "probability": 0.8037 + }, + { + "start": 37885.91, + "end": 37886.77, + "probability": 0.6756 + }, + { + "start": 37886.83, + "end": 37888.17, + "probability": 0.6474 + }, + { + "start": 37888.27, + "end": 37890.23, + "probability": 0.7756 + }, + { + "start": 37892.63, + "end": 37893.05, + "probability": 0.7048 + }, + { + "start": 37894.67, + "end": 37895.43, + "probability": 0.7873 + }, + { + "start": 37896.49, + "end": 37898.05, + "probability": 0.7983 + }, + { + "start": 37898.11, + "end": 37900.07, + "probability": 0.5171 + }, + { + "start": 37900.07, + "end": 37900.77, + "probability": 0.888 + }, + { + "start": 37901.37, + "end": 37902.27, + "probability": 0.3946 + }, + { + "start": 37907.55, + "end": 37907.93, + "probability": 0.4702 + }, + { + "start": 37909.51, + "end": 37911.67, + "probability": 0.3141 + }, + { + "start": 37912.21, + "end": 37916.11, + "probability": 0.6736 + }, + { + "start": 37917.69, + "end": 37918.89, + "probability": 0.7455 + }, + { + "start": 37918.95, + "end": 37920.67, + "probability": 0.9184 + }, + { + "start": 37920.73, + "end": 37922.15, + "probability": 0.8164 + }, + { + "start": 37923.45, + "end": 37924.49, + "probability": 0.9873 + }, + { + "start": 37925.79, + "end": 37926.53, + "probability": 0.8475 + }, + { + "start": 37926.73, + "end": 37927.73, + "probability": 0.7979 + }, + { + "start": 37927.83, + "end": 37928.61, + "probability": 0.6522 + }, + { + "start": 37928.85, + "end": 37930.57, + "probability": 0.6524 + }, + { + "start": 37931.45, + "end": 37932.05, + "probability": 0.6785 + }, + { + "start": 37935.45, + "end": 37936.35, + "probability": 0.2987 + }, + { + "start": 37938.03, + "end": 37941.89, + "probability": 0.5845 + }, + { + "start": 37942.59, + "end": 37943.77, + "probability": 0.8059 + }, + { + "start": 37945.07, + "end": 37946.01, + "probability": 0.8228 + }, + { + "start": 37946.07, + "end": 37947.81, + "probability": 0.6311 + }, + { + "start": 37947.87, + "end": 37948.79, + "probability": 0.6345 + }, + { + "start": 37948.81, + "end": 37949.73, + "probability": 0.6781 + }, + { + "start": 37949.75, + "end": 37950.85, + "probability": 0.7151 + }, + { + "start": 37950.93, + "end": 37952.09, + "probability": 0.7696 + }, + { + "start": 37952.19, + "end": 37952.65, + "probability": 0.7046 + }, + { + "start": 37953.23, + "end": 37955.37, + "probability": 0.6902 + }, + { + "start": 37957.73, + "end": 37958.25, + "probability": 0.8967 + }, + { + "start": 37959.93, + "end": 37960.79, + "probability": 0.8595 + }, + { + "start": 37960.87, + "end": 37961.97, + "probability": 0.7978 + }, + { + "start": 37962.05, + "end": 37963.21, + "probability": 0.7952 + }, + { + "start": 37963.21, + "end": 37965.23, + "probability": 0.9481 + }, + { + "start": 37965.29, + "end": 37967.39, + "probability": 0.7336 + }, + { + "start": 37967.51, + "end": 37968.71, + "probability": 0.8933 + }, + { + "start": 37970.23, + "end": 37972.21, + "probability": 0.9481 + }, + { + "start": 37972.35, + "end": 37973.69, + "probability": 0.9406 + }, + { + "start": 37974.09, + "end": 37974.55, + "probability": 0.9229 + }, + { + "start": 37975.15, + "end": 37975.77, + "probability": 0.7176 + }, + { + "start": 37975.85, + "end": 37977.21, + "probability": 0.85 + }, + { + "start": 37977.39, + "end": 37978.55, + "probability": 0.4716 + }, + { + "start": 37978.63, + "end": 37979.87, + "probability": 0.925 + }, + { + "start": 37979.93, + "end": 37980.43, + "probability": 0.8752 + }, + { + "start": 37982.11, + "end": 37983.77, + "probability": 0.7631 + }, + { + "start": 37984.53, + "end": 37985.33, + "probability": 0.7755 + }, + { + "start": 37985.41, + "end": 37986.67, + "probability": 0.9517 + }, + { + "start": 37986.71, + "end": 37988.25, + "probability": 0.9034 + }, + { + "start": 37988.77, + "end": 37990.17, + "probability": 0.8827 + }, + { + "start": 37990.25, + "end": 37993.57, + "probability": 0.5485 + }, + { + "start": 37993.99, + "end": 37996.49, + "probability": 0.4196 + }, + { + "start": 37996.53, + "end": 37997.47, + "probability": 0.4919 + }, + { + "start": 37997.63, + "end": 37999.51, + "probability": 0.9064 + }, + { + "start": 37999.67, + "end": 38003.13, + "probability": 0.8545 + }, + { + "start": 38003.19, + "end": 38004.73, + "probability": 0.9078 + }, + { + "start": 38005.21, + "end": 38006.57, + "probability": 0.8683 + }, + { + "start": 38007.39, + "end": 38009.61, + "probability": 0.769 + }, + { + "start": 38011.55, + "end": 38014.89, + "probability": 0.5627 + }, + { + "start": 38015.73, + "end": 38018.27, + "probability": 0.8763 + }, + { + "start": 38019.25, + "end": 38020.07, + "probability": 0.9333 + }, + { + "start": 38021.43, + "end": 38022.27, + "probability": 0.7932 + }, + { + "start": 38024.49, + "end": 38026.21, + "probability": 0.9348 + }, + { + "start": 38027.41, + "end": 38027.93, + "probability": 0.9526 + }, + { + "start": 38028.49, + "end": 38029.23, + "probability": 0.5816 + }, + { + "start": 38029.75, + "end": 38030.99, + "probability": 0.5103 + }, + { + "start": 38031.11, + "end": 38033.17, + "probability": 0.7722 + }, + { + "start": 38033.27, + "end": 38034.95, + "probability": 0.8962 + }, + { + "start": 38035.29, + "end": 38035.75, + "probability": 0.8567 + }, + { + "start": 38036.59, + "end": 38037.49, + "probability": 0.9717 + }, + { + "start": 38038.09, + "end": 38039.01, + "probability": 0.8865 + }, + { + "start": 38039.53, + "end": 38041.31, + "probability": 0.7652 + }, + { + "start": 38042.87, + "end": 38043.91, + "probability": 0.3908 + }, + { + "start": 38045.03, + "end": 38046.97, + "probability": 0.3252 + }, + { + "start": 38053.79, + "end": 38054.85, + "probability": 0.5707 + }, + { + "start": 38054.93, + "end": 38056.47, + "probability": 0.7605 + }, + { + "start": 38056.57, + "end": 38057.93, + "probability": 0.8353 + }, + { + "start": 38059.37, + "end": 38060.09, + "probability": 0.8612 + }, + { + "start": 38060.09, + "end": 38061.87, + "probability": 0.5745 + }, + { + "start": 38061.87, + "end": 38062.97, + "probability": 0.5391 + }, + { + "start": 38063.09, + "end": 38064.09, + "probability": 0.9234 + }, + { + "start": 38064.11, + "end": 38064.99, + "probability": 0.5954 + }, + { + "start": 38065.13, + "end": 38066.19, + "probability": 0.6763 + }, + { + "start": 38066.21, + "end": 38067.41, + "probability": 0.8158 + }, + { + "start": 38067.47, + "end": 38069.03, + "probability": 0.7184 + }, + { + "start": 38069.05, + "end": 38070.31, + "probability": 0.7277 + }, + { + "start": 38070.83, + "end": 38071.27, + "probability": 0.7842 + }, + { + "start": 38072.09, + "end": 38072.97, + "probability": 0.8445 + }, + { + "start": 38073.63, + "end": 38075.71, + "probability": 0.5229 + }, + { + "start": 38077.27, + "end": 38077.53, + "probability": 0.0151 + }, + { + "start": 38077.53, + "end": 38078.23, + "probability": 0.437 + }, + { + "start": 38078.25, + "end": 38080.43, + "probability": 0.7751 + }, + { + "start": 38080.79, + "end": 38081.15, + "probability": 0.0051 + }, + { + "start": 38084.31, + "end": 38085.31, + "probability": 0.9474 + }, + { + "start": 38086.11, + "end": 38086.89, + "probability": 0.2218 + }, + { + "start": 38087.33, + "end": 38088.63, + "probability": 0.6134 + }, + { + "start": 38088.63, + "end": 38089.61, + "probability": 0.745 + }, + { + "start": 38089.63, + "end": 38090.79, + "probability": 0.6789 + }, + { + "start": 38091.41, + "end": 38091.95, + "probability": 0.8586 + }, + { + "start": 38093.35, + "end": 38094.07, + "probability": 0.4523 + }, + { + "start": 38095.27, + "end": 38096.19, + "probability": 0.1959 + }, + { + "start": 38096.19, + "end": 38096.54, + "probability": 0.5313 + }, + { + "start": 38096.73, + "end": 38098.03, + "probability": 0.5844 + }, + { + "start": 38098.05, + "end": 38099.15, + "probability": 0.5182 + }, + { + "start": 38099.17, + "end": 38100.19, + "probability": 0.7446 + }, + { + "start": 38100.31, + "end": 38102.55, + "probability": 0.8182 + }, + { + "start": 38106.57, + "end": 38107.99, + "probability": 0.9764 + }, + { + "start": 38111.21, + "end": 38112.15, + "probability": 0.4594 + }, + { + "start": 38112.39, + "end": 38113.61, + "probability": 0.7049 + }, + { + "start": 38113.75, + "end": 38114.85, + "probability": 0.7462 + }, + { + "start": 38115.27, + "end": 38116.61, + "probability": 0.9249 + }, + { + "start": 38116.67, + "end": 38118.37, + "probability": 0.8431 + }, + { + "start": 38118.37, + "end": 38119.69, + "probability": 0.8332 + }, + { + "start": 38119.79, + "end": 38120.57, + "probability": 0.8126 + }, + { + "start": 38121.37, + "end": 38123.73, + "probability": 0.8505 + }, + { + "start": 38125.97, + "end": 38127.35, + "probability": 0.8934 + }, + { + "start": 38127.47, + "end": 38128.59, + "probability": 0.9315 + }, + { + "start": 38128.69, + "end": 38130.01, + "probability": 0.8546 + }, + { + "start": 38131.19, + "end": 38132.91, + "probability": 0.9086 + }, + { + "start": 38132.95, + "end": 38134.19, + "probability": 0.6994 + }, + { + "start": 38134.31, + "end": 38136.09, + "probability": 0.5446 + }, + { + "start": 38136.11, + "end": 38137.19, + "probability": 0.8235 + }, + { + "start": 38137.19, + "end": 38138.37, + "probability": 0.837 + }, + { + "start": 38138.49, + "end": 38139.37, + "probability": 0.579 + }, + { + "start": 38139.47, + "end": 38140.49, + "probability": 0.911 + }, + { + "start": 38140.57, + "end": 38141.89, + "probability": 0.8407 + }, + { + "start": 38141.93, + "end": 38143.43, + "probability": 0.7242 + }, + { + "start": 38144.33, + "end": 38145.63, + "probability": 0.6879 + }, + { + "start": 38145.67, + "end": 38146.67, + "probability": 0.9103 + }, + { + "start": 38146.69, + "end": 38147.89, + "probability": 0.8967 + }, + { + "start": 38148.55, + "end": 38149.59, + "probability": 0.9598 + }, + { + "start": 38149.65, + "end": 38150.77, + "probability": 0.9614 + }, + { + "start": 38150.77, + "end": 38151.73, + "probability": 0.8141 + }, + { + "start": 38151.81, + "end": 38153.13, + "probability": 0.375 + }, + { + "start": 38153.27, + "end": 38154.53, + "probability": 0.6524 + }, + { + "start": 38154.89, + "end": 38156.53, + "probability": 0.5848 + }, + { + "start": 38157.01, + "end": 38159.11, + "probability": 0.5616 + }, + { + "start": 38159.13, + "end": 38160.59, + "probability": 0.6606 + }, + { + "start": 38160.67, + "end": 38161.75, + "probability": 0.4665 + }, + { + "start": 38161.79, + "end": 38162.37, + "probability": 0.8298 + }, + { + "start": 38162.95, + "end": 38164.59, + "probability": 0.6772 + }, + { + "start": 38165.35, + "end": 38165.83, + "probability": 0.6689 + }, + { + "start": 38166.97, + "end": 38168.93, + "probability": 0.814 + }, + { + "start": 38169.61, + "end": 38171.09, + "probability": 0.9579 + }, + { + "start": 38171.45, + "end": 38173.05, + "probability": 0.9552 + }, + { + "start": 38173.29, + "end": 38174.35, + "probability": 0.9236 + }, + { + "start": 38174.35, + "end": 38175.21, + "probability": 0.6305 + }, + { + "start": 38175.55, + "end": 38177.15, + "probability": 0.77 + }, + { + "start": 38177.19, + "end": 38178.49, + "probability": 0.9072 + }, + { + "start": 38179.07, + "end": 38179.65, + "probability": 0.7841 + }, + { + "start": 38180.29, + "end": 38181.39, + "probability": 0.6563 + }, + { + "start": 38181.51, + "end": 38182.35, + "probability": 0.8529 + }, + { + "start": 38182.39, + "end": 38183.57, + "probability": 0.58 + }, + { + "start": 38183.61, + "end": 38184.49, + "probability": 0.4543 + }, + { + "start": 38184.49, + "end": 38185.49, + "probability": 0.7827 + }, + { + "start": 38185.69, + "end": 38186.87, + "probability": 0.3568 + }, + { + "start": 38186.95, + "end": 38188.09, + "probability": 0.9025 + }, + { + "start": 38188.13, + "end": 38189.43, + "probability": 0.8992 + }, + { + "start": 38189.47, + "end": 38189.87, + "probability": 0.636 + }, + { + "start": 38190.81, + "end": 38190.99, + "probability": 0.0212 + }, + { + "start": 38190.99, + "end": 38191.39, + "probability": 0.4112 + }, + { + "start": 38191.49, + "end": 38192.55, + "probability": 0.536 + }, + { + "start": 38192.63, + "end": 38193.71, + "probability": 0.6086 + }, + { + "start": 38193.75, + "end": 38194.89, + "probability": 0.8684 + }, + { + "start": 38194.89, + "end": 38197.23, + "probability": 0.845 + }, + { + "start": 38197.35, + "end": 38200.69, + "probability": 0.8999 + }, + { + "start": 38201.93, + "end": 38202.03, + "probability": 0.0785 + }, + { + "start": 38202.03, + "end": 38202.45, + "probability": 0.2765 + }, + { + "start": 38202.77, + "end": 38204.09, + "probability": 0.7417 + }, + { + "start": 38204.33, + "end": 38205.33, + "probability": 0.8194 + }, + { + "start": 38205.43, + "end": 38206.65, + "probability": 0.7765 + }, + { + "start": 38208.51, + "end": 38210.47, + "probability": 0.7705 + }, + { + "start": 38210.55, + "end": 38211.69, + "probability": 0.8287 + }, + { + "start": 38211.71, + "end": 38213.79, + "probability": 0.6801 + }, + { + "start": 38213.85, + "end": 38214.91, + "probability": 0.7842 + }, + { + "start": 38214.91, + "end": 38215.99, + "probability": 0.7223 + }, + { + "start": 38216.09, + "end": 38216.55, + "probability": 0.7553 + }, + { + "start": 38217.21, + "end": 38217.73, + "probability": 0.8191 + }, + { + "start": 38217.77, + "end": 38218.65, + "probability": 0.3342 + }, + { + "start": 38218.73, + "end": 38220.13, + "probability": 0.6941 + }, + { + "start": 38220.13, + "end": 38221.31, + "probability": 0.7873 + }, + { + "start": 38221.37, + "end": 38222.21, + "probability": 0.6847 + }, + { + "start": 38223.09, + "end": 38224.47, + "probability": 0.3541 + }, + { + "start": 38224.47, + "end": 38225.89, + "probability": 0.7931 + }, + { + "start": 38225.99, + "end": 38228.95, + "probability": 0.8618 + }, + { + "start": 38229.95, + "end": 38229.95, + "probability": 0.0069 + }, + { + "start": 38229.95, + "end": 38229.95, + "probability": 0.2399 + }, + { + "start": 38229.95, + "end": 38230.58, + "probability": 0.4961 + }, + { + "start": 38230.69, + "end": 38232.15, + "probability": 0.7309 + }, + { + "start": 38232.17, + "end": 38233.67, + "probability": 0.8455 + }, + { + "start": 38234.15, + "end": 38235.75, + "probability": 0.889 + }, + { + "start": 38235.89, + "end": 38236.47, + "probability": 0.9042 + }, + { + "start": 38237.91, + "end": 38238.99, + "probability": 0.6851 + }, + { + "start": 38239.63, + "end": 38240.65, + "probability": 0.5206 + }, + { + "start": 38241.01, + "end": 38242.19, + "probability": 0.8797 + }, + { + "start": 38242.33, + "end": 38243.01, + "probability": 0.9589 + }, + { + "start": 38243.79, + "end": 38244.27, + "probability": 0.9382 + }, + { + "start": 38244.37, + "end": 38245.61, + "probability": 0.8122 + }, + { + "start": 38245.71, + "end": 38246.93, + "probability": 0.7092 + }, + { + "start": 38246.99, + "end": 38247.57, + "probability": 0.9656 + }, + { + "start": 38248.33, + "end": 38248.97, + "probability": 0.9363 + }, + { + "start": 38249.05, + "end": 38252.73, + "probability": 0.0424 + }, + { + "start": 38252.73, + "end": 38253.55, + "probability": 0.2276 + }, + { + "start": 38253.55, + "end": 38253.55, + "probability": 0.2273 + }, + { + "start": 38253.55, + "end": 38254.18, + "probability": 0.7433 + }, + { + "start": 38255.05, + "end": 38257.81, + "probability": 0.6167 + }, + { + "start": 38258.35, + "end": 38261.23, + "probability": 0.7344 + }, + { + "start": 38261.27, + "end": 38262.87, + "probability": 0.7159 + }, + { + "start": 38265.87, + "end": 38266.33, + "probability": 0.4882 + }, + { + "start": 38267.27, + "end": 38267.91, + "probability": 0.4863 + }, + { + "start": 38268.39, + "end": 38268.97, + "probability": 0.1474 + }, + { + "start": 38270.89, + "end": 38270.89, + "probability": 0.0434 + }, + { + "start": 38271.99, + "end": 38272.03, + "probability": 0.1472 + }, + { + "start": 38276.07, + "end": 38276.75, + "probability": 0.0801 + }, + { + "start": 38280.22, + "end": 38283.05, + "probability": 0.021 + }, + { + "start": 38292.25, + "end": 38298.91, + "probability": 0.0534 + }, + { + "start": 38315.35, + "end": 38315.45, + "probability": 0.4813 + }, + { + "start": 38327.43, + "end": 38330.23, + "probability": 0.6009 + }, + { + "start": 38331.17, + "end": 38336.49, + "probability": 0.9883 + }, + { + "start": 38337.37, + "end": 38337.51, + "probability": 0.2068 + }, + { + "start": 38337.71, + "end": 38338.29, + "probability": 0.5125 + }, + { + "start": 38338.33, + "end": 38340.53, + "probability": 0.9502 + }, + { + "start": 38341.57, + "end": 38341.87, + "probability": 0.3343 + }, + { + "start": 38341.87, + "end": 38341.87, + "probability": 0.1755 + }, + { + "start": 38341.87, + "end": 38341.87, + "probability": 0.0551 + }, + { + "start": 38341.87, + "end": 38342.91, + "probability": 0.8948 + }, + { + "start": 38344.13, + "end": 38346.95, + "probability": 0.7607 + }, + { + "start": 38347.89, + "end": 38351.11, + "probability": 0.6713 + }, + { + "start": 38351.17, + "end": 38351.31, + "probability": 0.1083 + }, + { + "start": 38351.31, + "end": 38352.91, + "probability": 0.9526 + }, + { + "start": 38353.49, + "end": 38354.47, + "probability": 0.6777 + }, + { + "start": 38355.03, + "end": 38356.75, + "probability": 0.577 + }, + { + "start": 38357.53, + "end": 38360.15, + "probability": 0.8362 + }, + { + "start": 38363.01, + "end": 38364.23, + "probability": 0.8136 + }, + { + "start": 38365.11, + "end": 38365.87, + "probability": 0.7829 + }, + { + "start": 38370.57, + "end": 38373.11, + "probability": 0.9478 + }, + { + "start": 38373.11, + "end": 38375.53, + "probability": 0.9966 + }, + { + "start": 38376.39, + "end": 38378.83, + "probability": 0.9729 + }, + { + "start": 38379.85, + "end": 38384.53, + "probability": 0.8186 + }, + { + "start": 38384.53, + "end": 38387.59, + "probability": 0.9102 + }, + { + "start": 38388.57, + "end": 38390.81, + "probability": 0.9873 + }, + { + "start": 38391.55, + "end": 38393.49, + "probability": 0.9935 + }, + { + "start": 38394.07, + "end": 38396.19, + "probability": 0.9961 + }, + { + "start": 38396.97, + "end": 38400.65, + "probability": 0.9441 + }, + { + "start": 38401.55, + "end": 38404.35, + "probability": 0.6749 + }, + { + "start": 38405.25, + "end": 38409.21, + "probability": 0.9009 + }, + { + "start": 38409.87, + "end": 38414.11, + "probability": 0.908 + }, + { + "start": 38414.79, + "end": 38418.73, + "probability": 0.9948 + }, + { + "start": 38419.37, + "end": 38422.13, + "probability": 0.9219 + }, + { + "start": 38422.93, + "end": 38426.13, + "probability": 0.8659 + }, + { + "start": 38426.45, + "end": 38429.79, + "probability": 0.9778 + }, + { + "start": 38430.49, + "end": 38433.97, + "probability": 0.9934 + }, + { + "start": 38434.61, + "end": 38436.29, + "probability": 0.9884 + }, + { + "start": 38437.19, + "end": 38441.09, + "probability": 0.9202 + }, + { + "start": 38441.09, + "end": 38443.21, + "probability": 0.8724 + }, + { + "start": 38443.89, + "end": 38447.07, + "probability": 0.994 + }, + { + "start": 38447.85, + "end": 38450.51, + "probability": 0.7529 + }, + { + "start": 38451.13, + "end": 38451.53, + "probability": 0.5517 + }, + { + "start": 38452.67, + "end": 38453.25, + "probability": 0.5951 + }, + { + "start": 38453.35, + "end": 38456.59, + "probability": 0.7748 + }, + { + "start": 38478.89, + "end": 38481.23, + "probability": 0.5813 + }, + { + "start": 38484.19, + "end": 38487.35, + "probability": 0.8555 + }, + { + "start": 38487.49, + "end": 38489.75, + "probability": 0.9697 + }, + { + "start": 38489.83, + "end": 38493.19, + "probability": 0.9513 + }, + { + "start": 38493.45, + "end": 38496.11, + "probability": 0.948 + }, + { + "start": 38496.59, + "end": 38499.23, + "probability": 0.9887 + }, + { + "start": 38499.23, + "end": 38501.89, + "probability": 0.9919 + }, + { + "start": 38502.85, + "end": 38505.63, + "probability": 0.9786 + }, + { + "start": 38506.09, + "end": 38508.53, + "probability": 0.9666 + }, + { + "start": 38508.91, + "end": 38512.15, + "probability": 0.9529 + }, + { + "start": 38514.29, + "end": 38520.31, + "probability": 0.7488 + }, + { + "start": 38520.31, + "end": 38526.35, + "probability": 0.9927 + }, + { + "start": 38526.95, + "end": 38532.13, + "probability": 0.9958 + }, + { + "start": 38532.63, + "end": 38535.09, + "probability": 0.9983 + }, + { + "start": 38535.09, + "end": 38538.63, + "probability": 0.9934 + }, + { + "start": 38538.63, + "end": 38542.69, + "probability": 0.9967 + }, + { + "start": 38542.83, + "end": 38546.37, + "probability": 0.9946 + }, + { + "start": 38546.87, + "end": 38549.01, + "probability": 0.9599 + }, + { + "start": 38549.21, + "end": 38550.29, + "probability": 0.9574 + }, + { + "start": 38550.59, + "end": 38552.57, + "probability": 0.9904 + }, + { + "start": 38552.69, + "end": 38557.03, + "probability": 0.9943 + }, + { + "start": 38557.17, + "end": 38558.55, + "probability": 0.8996 + }, + { + "start": 38558.63, + "end": 38559.47, + "probability": 0.6977 + }, + { + "start": 38560.07, + "end": 38563.31, + "probability": 0.924 + }, + { + "start": 38564.53, + "end": 38564.95, + "probability": 0.4902 + }, + { + "start": 38565.35, + "end": 38565.89, + "probability": 0.7587 + }, + { + "start": 38570.79, + "end": 38572.01, + "probability": 0.9747 + }, + { + "start": 38572.93, + "end": 38574.71, + "probability": 0.1688 + }, + { + "start": 38575.37, + "end": 38576.43, + "probability": 0.7609 + }, + { + "start": 38576.51, + "end": 38578.52, + "probability": 0.9964 + }, + { + "start": 38579.37, + "end": 38584.69, + "probability": 0.9469 + }, + { + "start": 38585.27, + "end": 38590.21, + "probability": 0.9465 + }, + { + "start": 38590.91, + "end": 38594.19, + "probability": 0.9709 + }, + { + "start": 38595.31, + "end": 38597.59, + "probability": 0.9959 + }, + { + "start": 38599.11, + "end": 38600.87, + "probability": 0.7765 + }, + { + "start": 38601.43, + "end": 38604.09, + "probability": 0.9489 + }, + { + "start": 38605.13, + "end": 38606.49, + "probability": 0.9856 + }, + { + "start": 38607.01, + "end": 38608.11, + "probability": 0.6409 + }, + { + "start": 38608.65, + "end": 38611.01, + "probability": 0.9674 + }, + { + "start": 38611.55, + "end": 38614.97, + "probability": 0.9159 + }, + { + "start": 38615.75, + "end": 38616.47, + "probability": 0.8184 + }, + { + "start": 38617.47, + "end": 38623.23, + "probability": 0.9934 + }, + { + "start": 38623.45, + "end": 38624.63, + "probability": 0.8392 + }, + { + "start": 38625.05, + "end": 38626.97, + "probability": 0.9504 + }, + { + "start": 38627.97, + "end": 38629.23, + "probability": 0.5685 + }, + { + "start": 38630.55, + "end": 38632.79, + "probability": 0.9187 + }, + { + "start": 38633.09, + "end": 38634.97, + "probability": 0.9941 + }, + { + "start": 38635.17, + "end": 38638.55, + "probability": 0.9473 + }, + { + "start": 38638.79, + "end": 38641.59, + "probability": 0.9893 + }, + { + "start": 38641.91, + "end": 38643.75, + "probability": 0.7059 + }, + { + "start": 38643.81, + "end": 38643.99, + "probability": 0.0193 + }, + { + "start": 38643.99, + "end": 38643.99, + "probability": 0.5718 + }, + { + "start": 38643.99, + "end": 38647.79, + "probability": 0.7797 + }, + { + "start": 38652.04, + "end": 38653.95, + "probability": 0.5825 + }, + { + "start": 38655.25, + "end": 38656.27, + "probability": 0.4924 + }, + { + "start": 38657.01, + "end": 38657.63, + "probability": 0.6422 + }, + { + "start": 38657.7, + "end": 38658.07, + "probability": 0.3921 + }, + { + "start": 38658.07, + "end": 38658.07, + "probability": 0.0267 + }, + { + "start": 38658.07, + "end": 38658.87, + "probability": 0.0679 + }, + { + "start": 38660.99, + "end": 38662.15, + "probability": 0.1198 + }, + { + "start": 38662.95, + "end": 38664.37, + "probability": 0.5658 + }, + { + "start": 38664.71, + "end": 38665.97, + "probability": 0.318 + }, + { + "start": 38667.27, + "end": 38667.55, + "probability": 0.0653 + }, + { + "start": 38667.55, + "end": 38667.55, + "probability": 0.1025 + }, + { + "start": 38667.55, + "end": 38667.55, + "probability": 0.0728 + }, + { + "start": 38667.55, + "end": 38667.55, + "probability": 0.1656 + }, + { + "start": 38667.55, + "end": 38667.93, + "probability": 0.0997 + }, + { + "start": 38667.93, + "end": 38673.67, + "probability": 0.3447 + }, + { + "start": 38673.81, + "end": 38674.95, + "probability": 0.7569 + }, + { + "start": 38675.23, + "end": 38676.79, + "probability": 0.8309 + }, + { + "start": 38678.63, + "end": 38683.01, + "probability": 0.8777 + }, + { + "start": 38683.09, + "end": 38685.43, + "probability": 0.916 + }, + { + "start": 38686.02, + "end": 38689.19, + "probability": 0.379 + }, + { + "start": 38689.35, + "end": 38692.29, + "probability": 0.7948 + }, + { + "start": 38692.79, + "end": 38694.69, + "probability": 0.9614 + }, + { + "start": 38694.79, + "end": 38697.31, + "probability": 0.9523 + }, + { + "start": 38698.31, + "end": 38699.35, + "probability": 0.7754 + }, + { + "start": 38699.51, + "end": 38702.75, + "probability": 0.4299 + }, + { + "start": 38703.02, + "end": 38707.41, + "probability": 0.7116 + }, + { + "start": 38707.41, + "end": 38707.89, + "probability": 0.0557 + }, + { + "start": 38707.89, + "end": 38708.45, + "probability": 0.0914 + }, + { + "start": 38708.45, + "end": 38709.85, + "probability": 0.1395 + }, + { + "start": 38711.26, + "end": 38714.45, + "probability": 0.2701 + }, + { + "start": 38714.61, + "end": 38720.42, + "probability": 0.9853 + }, + { + "start": 38720.69, + "end": 38724.97, + "probability": 0.9906 + }, + { + "start": 38725.89, + "end": 38728.81, + "probability": 0.2107 + }, + { + "start": 38728.95, + "end": 38732.09, + "probability": 0.3886 + }, + { + "start": 38732.09, + "end": 38732.65, + "probability": 0.5635 + }, + { + "start": 38734.01, + "end": 38735.19, + "probability": 0.1348 + }, + { + "start": 38735.59, + "end": 38736.53, + "probability": 0.5641 + }, + { + "start": 38736.53, + "end": 38737.81, + "probability": 0.3866 + }, + { + "start": 38737.93, + "end": 38738.91, + "probability": 0.5144 + }, + { + "start": 38738.91, + "end": 38740.31, + "probability": 0.1635 + }, + { + "start": 38740.39, + "end": 38740.99, + "probability": 0.0237 + }, + { + "start": 38741.05, + "end": 38745.85, + "probability": 0.4643 + }, + { + "start": 38745.85, + "end": 38753.65, + "probability": 0.4724 + }, + { + "start": 38753.65, + "end": 38753.79, + "probability": 0.0374 + }, + { + "start": 38753.79, + "end": 38753.79, + "probability": 0.1651 + }, + { + "start": 38753.79, + "end": 38753.93, + "probability": 0.0334 + }, + { + "start": 38753.93, + "end": 38753.95, + "probability": 0.1542 + }, + { + "start": 38753.99, + "end": 38759.65, + "probability": 0.3813 + }, + { + "start": 38759.67, + "end": 38759.67, + "probability": 0.0104 + }, + { + "start": 38759.67, + "end": 38759.67, + "probability": 0.3064 + }, + { + "start": 38759.81, + "end": 38760.83, + "probability": 0.0327 + }, + { + "start": 38761.05, + "end": 38764.45, + "probability": 0.8855 + }, + { + "start": 38764.75, + "end": 38772.41, + "probability": 0.8008 + }, + { + "start": 38772.49, + "end": 38772.85, + "probability": 0.4108 + }, + { + "start": 38773.89, + "end": 38776.85, + "probability": 0.4632 + }, + { + "start": 38778.27, + "end": 38780.41, + "probability": 0.1139 + }, + { + "start": 38780.47, + "end": 38781.89, + "probability": 0.6398 + }, + { + "start": 38783.59, + "end": 38785.91, + "probability": 0.423 + }, + { + "start": 38786.15, + "end": 38786.87, + "probability": 0.0222 + }, + { + "start": 38788.19, + "end": 38788.9, + "probability": 0.2729 + }, + { + "start": 38790.03, + "end": 38790.89, + "probability": 0.2056 + }, + { + "start": 38791.48, + "end": 38796.81, + "probability": 0.0822 + }, + { + "start": 38798.05, + "end": 38799.09, + "probability": 0.0115 + }, + { + "start": 38799.19, + "end": 38799.77, + "probability": 0.0989 + }, + { + "start": 38799.77, + "end": 38800.45, + "probability": 0.0861 + }, + { + "start": 38800.45, + "end": 38801.75, + "probability": 0.1039 + }, + { + "start": 38802.03, + "end": 38802.97, + "probability": 0.0312 + }, + { + "start": 38802.99, + "end": 38803.59, + "probability": 0.237 + }, + { + "start": 38803.59, + "end": 38803.95, + "probability": 0.1572 + }, + { + "start": 38804.13, + "end": 38805.93, + "probability": 0.4645 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.0, + "end": 38806.0, + "probability": 0.0 + }, + { + "start": 38806.24, + "end": 38806.88, + "probability": 0.0706 + }, + { + "start": 38806.88, + "end": 38808.68, + "probability": 0.1615 + }, + { + "start": 38809.98, + "end": 38812.18, + "probability": 0.1298 + }, + { + "start": 38812.56, + "end": 38813.02, + "probability": 0.1398 + }, + { + "start": 38813.02, + "end": 38813.14, + "probability": 0.1739 + }, + { + "start": 38814.12, + "end": 38818.5, + "probability": 0.0749 + }, + { + "start": 38818.82, + "end": 38825.34, + "probability": 0.203 + }, + { + "start": 38826.34, + "end": 38826.36, + "probability": 0.0119 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.0, + "end": 38928.0, + "probability": 0.0 + }, + { + "start": 38928.1, + "end": 38928.78, + "probability": 0.2324 + }, + { + "start": 38929.69, + "end": 38931.74, + "probability": 0.2326 + }, + { + "start": 38931.74, + "end": 38932.96, + "probability": 0.7961 + }, + { + "start": 38933.12, + "end": 38936.33, + "probability": 0.4418 + }, + { + "start": 38937.56, + "end": 38938.86, + "probability": 0.7875 + }, + { + "start": 38939.04, + "end": 38939.86, + "probability": 0.2445 + }, + { + "start": 38939.86, + "end": 38939.92, + "probability": 0.028 + }, + { + "start": 38939.92, + "end": 38941.14, + "probability": 0.6979 + }, + { + "start": 38941.22, + "end": 38941.92, + "probability": 0.1259 + }, + { + "start": 38945.78, + "end": 38945.96, + "probability": 0.3101 + }, + { + "start": 38950.7, + "end": 38951.16, + "probability": 0.401 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.0, + "end": 39048.0, + "probability": 0.0 + }, + { + "start": 39048.74, + "end": 39048.76, + "probability": 0.2411 + }, + { + "start": 39048.76, + "end": 39053.66, + "probability": 0.9516 + }, + { + "start": 39054.22, + "end": 39055.44, + "probability": 0.9567 + }, + { + "start": 39055.48, + "end": 39057.58, + "probability": 0.9949 + }, + { + "start": 39058.16, + "end": 39059.82, + "probability": 0.8719 + }, + { + "start": 39060.38, + "end": 39064.98, + "probability": 0.8692 + }, + { + "start": 39065.48, + "end": 39066.6, + "probability": 0.6528 + }, + { + "start": 39067.3, + "end": 39069.32, + "probability": 0.9852 + }, + { + "start": 39069.8, + "end": 39073.32, + "probability": 0.9035 + }, + { + "start": 39073.64, + "end": 39075.38, + "probability": 0.7397 + }, + { + "start": 39075.7, + "end": 39077.32, + "probability": 0.5601 + }, + { + "start": 39077.34, + "end": 39078.46, + "probability": 0.9723 + }, + { + "start": 39079.1, + "end": 39081.26, + "probability": 0.9183 + }, + { + "start": 39081.8, + "end": 39086.68, + "probability": 0.9878 + }, + { + "start": 39087.36, + "end": 39089.91, + "probability": 0.9985 + }, + { + "start": 39090.36, + "end": 39092.6, + "probability": 0.9985 + }, + { + "start": 39092.82, + "end": 39093.1, + "probability": 0.3019 + }, + { + "start": 39093.26, + "end": 39094.24, + "probability": 0.7918 + }, + { + "start": 39094.88, + "end": 39097.62, + "probability": 0.6657 + }, + { + "start": 39098.16, + "end": 39103.84, + "probability": 0.9936 + }, + { + "start": 39104.62, + "end": 39108.4, + "probability": 0.9911 + }, + { + "start": 39108.9, + "end": 39110.72, + "probability": 0.8723 + }, + { + "start": 39111.38, + "end": 39116.44, + "probability": 0.986 + }, + { + "start": 39116.44, + "end": 39120.6, + "probability": 0.9983 + }, + { + "start": 39121.3, + "end": 39123.86, + "probability": 0.9873 + }, + { + "start": 39124.88, + "end": 39131.98, + "probability": 0.9969 + }, + { + "start": 39131.98, + "end": 39139.76, + "probability": 0.9938 + }, + { + "start": 39139.84, + "end": 39142.3, + "probability": 0.7438 + }, + { + "start": 39142.86, + "end": 39144.94, + "probability": 0.9305 + }, + { + "start": 39145.34, + "end": 39149.56, + "probability": 0.9375 + }, + { + "start": 39149.56, + "end": 39154.24, + "probability": 0.9873 + }, + { + "start": 39154.64, + "end": 39158.1, + "probability": 0.9446 + }, + { + "start": 39158.56, + "end": 39164.56, + "probability": 0.9984 + }, + { + "start": 39165.26, + "end": 39169.98, + "probability": 0.9514 + }, + { + "start": 39169.98, + "end": 39170.3, + "probability": 0.199 + }, + { + "start": 39171.48, + "end": 39173.66, + "probability": 0.4825 + }, + { + "start": 39175.64, + "end": 39175.86, + "probability": 0.057 + }, + { + "start": 39175.86, + "end": 39175.86, + "probability": 0.0358 + }, + { + "start": 39175.86, + "end": 39175.86, + "probability": 0.1089 + }, + { + "start": 39175.86, + "end": 39176.42, + "probability": 0.4279 + }, + { + "start": 39177.08, + "end": 39180.2, + "probability": 0.8214 + }, + { + "start": 39180.26, + "end": 39181.46, + "probability": 0.7334 + }, + { + "start": 39181.5, + "end": 39181.6, + "probability": 0.4646 + }, + { + "start": 39181.6, + "end": 39181.6, + "probability": 0.1541 + }, + { + "start": 39181.6, + "end": 39183.34, + "probability": 0.9078 + }, + { + "start": 39183.78, + "end": 39184.92, + "probability": 0.7031 + }, + { + "start": 39185.04, + "end": 39189.74, + "probability": 0.9434 + }, + { + "start": 39189.86, + "end": 39190.9, + "probability": 0.046 + }, + { + "start": 39191.5, + "end": 39194.2, + "probability": 0.9391 + }, + { + "start": 39194.72, + "end": 39197.36, + "probability": 0.7745 + }, + { + "start": 39197.74, + "end": 39200.24, + "probability": 0.8358 + }, + { + "start": 39200.94, + "end": 39204.6, + "probability": 0.7796 + }, + { + "start": 39205.1, + "end": 39206.58, + "probability": 0.9727 + }, + { + "start": 39212.22, + "end": 39214.92, + "probability": 0.6436 + }, + { + "start": 39219.98, + "end": 39223.64, + "probability": 0.6959 + }, + { + "start": 39224.26, + "end": 39227.04, + "probability": 0.2342 + }, + { + "start": 39228.6, + "end": 39228.78, + "probability": 0.6158 + }, + { + "start": 39228.8, + "end": 39229.36, + "probability": 0.2009 + }, + { + "start": 39229.92, + "end": 39232.72, + "probability": 0.721 + }, + { + "start": 39232.74, + "end": 39234.02, + "probability": 0.7854 + }, + { + "start": 39234.02, + "end": 39234.72, + "probability": 0.9724 + }, + { + "start": 39239.34, + "end": 39246.2, + "probability": 0.5181 + }, + { + "start": 39247.06, + "end": 39251.1, + "probability": 0.7583 + }, + { + "start": 39252.32, + "end": 39257.2, + "probability": 0.6073 + }, + { + "start": 39259.44, + "end": 39263.52, + "probability": 0.777 + }, + { + "start": 39264.22, + "end": 39265.9, + "probability": 0.6435 + }, + { + "start": 39274.56, + "end": 39275.28, + "probability": 0.9839 + }, + { + "start": 39275.84, + "end": 39278.32, + "probability": 0.8029 + }, + { + "start": 39284.54, + "end": 39288.74, + "probability": 0.5053 + }, + { + "start": 39290.52, + "end": 39292.02, + "probability": 0.3444 + }, + { + "start": 39295.78, + "end": 39297.0, + "probability": 0.7497 + }, + { + "start": 39297.58, + "end": 39299.86, + "probability": 0.8486 + }, + { + "start": 39300.76, + "end": 39302.38, + "probability": 0.8252 + }, + { + "start": 39303.14, + "end": 39305.68, + "probability": 0.9562 + }, + { + "start": 39306.2, + "end": 39307.56, + "probability": 0.8628 + }, + { + "start": 39308.46, + "end": 39308.92, + "probability": 0.9819 + }, + { + "start": 39312.02, + "end": 39314.64, + "probability": 0.5764 + }, + { + "start": 39316.52, + "end": 39318.66, + "probability": 0.7944 + }, + { + "start": 39319.24, + "end": 39320.02, + "probability": 0.9247 + }, + { + "start": 39321.04, + "end": 39321.56, + "probability": 0.9784 + }, + { + "start": 39322.95, + "end": 39325.04, + "probability": 0.9854 + }, + { + "start": 39325.76, + "end": 39329.14, + "probability": 0.966 + }, + { + "start": 39334.18, + "end": 39338.14, + "probability": 0.6304 + }, + { + "start": 39338.68, + "end": 39339.56, + "probability": 0.9495 + }, + { + "start": 39340.3, + "end": 39341.18, + "probability": 0.7214 + }, + { + "start": 39343.26, + "end": 39343.98, + "probability": 0.7078 + }, + { + "start": 39344.62, + "end": 39348.12, + "probability": 0.8504 + }, + { + "start": 39348.88, + "end": 39349.68, + "probability": 0.8149 + }, + { + "start": 39350.73, + "end": 39353.1, + "probability": 0.9856 + }, + { + "start": 39354.24, + "end": 39356.7, + "probability": 0.8788 + }, + { + "start": 39359.56, + "end": 39360.38, + "probability": 0.4494 + }, + { + "start": 39362.48, + "end": 39363.34, + "probability": 0.0043 + }, + { + "start": 39368.3, + "end": 39370.34, + "probability": 0.8105 + }, + { + "start": 39370.42, + "end": 39371.5, + "probability": 0.7261 + }, + { + "start": 39371.6, + "end": 39373.26, + "probability": 0.7122 + }, + { + "start": 39374.02, + "end": 39374.6, + "probability": 0.9648 + }, + { + "start": 39375.34, + "end": 39378.06, + "probability": 0.9559 + }, + { + "start": 39379.2, + "end": 39380.3, + "probability": 0.9277 + }, + { + "start": 39381.76, + "end": 39386.54, + "probability": 0.9583 + }, + { + "start": 39391.76, + "end": 39396.18, + "probability": 0.6863 + }, + { + "start": 39397.04, + "end": 39398.06, + "probability": 0.39 + }, + { + "start": 39400.12, + "end": 39401.02, + "probability": 0.748 + }, + { + "start": 39401.8, + "end": 39402.78, + "probability": 0.8195 + }, + { + "start": 39404.04, + "end": 39409.04, + "probability": 0.9305 + }, + { + "start": 39409.78, + "end": 39411.01, + "probability": 0.8979 + }, + { + "start": 39412.97, + "end": 39415.46, + "probability": 0.7766 + }, + { + "start": 39415.54, + "end": 39417.26, + "probability": 0.411 + }, + { + "start": 39417.32, + "end": 39418.38, + "probability": 0.4148 + }, + { + "start": 39418.52, + "end": 39419.18, + "probability": 0.7295 + }, + { + "start": 39420.0, + "end": 39426.18, + "probability": 0.8564 + }, + { + "start": 39427.42, + "end": 39431.2, + "probability": 0.943 + }, + { + "start": 39432.16, + "end": 39432.66, + "probability": 0.9766 + }, + { + "start": 39434.1, + "end": 39434.9, + "probability": 0.7617 + }, + { + "start": 39442.11, + "end": 39446.86, + "probability": 0.5814 + }, + { + "start": 39448.0, + "end": 39449.6, + "probability": 0.93 + }, + { + "start": 39451.42, + "end": 39454.66, + "probability": 0.9662 + }, + { + "start": 39458.23, + "end": 39463.7, + "probability": 0.8707 + }, + { + "start": 39464.46, + "end": 39464.94, + "probability": 0.163 + }, + { + "start": 39471.42, + "end": 39472.64, + "probability": 0.6231 + }, + { + "start": 39474.9, + "end": 39475.6, + "probability": 0.8228 + }, + { + "start": 39479.74, + "end": 39480.24, + "probability": 0.3958 + }, + { + "start": 39481.08, + "end": 39481.64, + "probability": 0.5501 + }, + { + "start": 39482.36, + "end": 39482.98, + "probability": 0.7287 + }, + { + "start": 39484.08, + "end": 39485.5, + "probability": 0.7739 + }, + { + "start": 39487.44, + "end": 39489.16, + "probability": 0.6851 + }, + { + "start": 39491.64, + "end": 39492.86, + "probability": 0.8248 + }, + { + "start": 39492.88, + "end": 39493.92, + "probability": 0.891 + }, + { + "start": 39493.94, + "end": 39495.65, + "probability": 0.9074 + }, + { + "start": 39495.98, + "end": 39497.44, + "probability": 0.9241 + }, + { + "start": 39497.46, + "end": 39498.48, + "probability": 0.9703 + }, + { + "start": 39499.6, + "end": 39502.04, + "probability": 0.7203 + }, + { + "start": 39503.3, + "end": 39504.46, + "probability": 0.7441 + }, + { + "start": 39505.08, + "end": 39506.02, + "probability": 0.7031 + }, + { + "start": 39506.8, + "end": 39508.18, + "probability": 0.7323 + }, + { + "start": 39508.22, + "end": 39509.54, + "probability": 0.8105 + }, + { + "start": 39509.64, + "end": 39511.84, + "probability": 0.7805 + }, + { + "start": 39512.54, + "end": 39513.06, + "probability": 0.9868 + }, + { + "start": 39514.18, + "end": 39515.4, + "probability": 0.8071 + }, + { + "start": 39516.28, + "end": 39518.62, + "probability": 0.807 + }, + { + "start": 39519.24, + "end": 39520.02, + "probability": 0.6444 + }, + { + "start": 39520.64, + "end": 39522.7, + "probability": 0.7316 + }, + { + "start": 39522.8, + "end": 39524.08, + "probability": 0.7761 + }, + { + "start": 39524.1, + "end": 39525.5, + "probability": 0.5168 + }, + { + "start": 39528.66, + "end": 39529.14, + "probability": 0.5526 + }, + { + "start": 39530.1, + "end": 39530.74, + "probability": 0.595 + }, + { + "start": 39532.22, + "end": 39534.28, + "probability": 0.915 + }, + { + "start": 39534.98, + "end": 39535.62, + "probability": 0.7552 + }, + { + "start": 39535.92, + "end": 39537.36, + "probability": 0.8106 + }, + { + "start": 39537.4, + "end": 39541.26, + "probability": 0.7078 + }, + { + "start": 39543.06, + "end": 39546.06, + "probability": 0.7839 + }, + { + "start": 39547.22, + "end": 39548.6, + "probability": 0.8265 + }, + { + "start": 39549.68, + "end": 39549.92, + "probability": 0.5062 + }, + { + "start": 39550.72, + "end": 39551.74, + "probability": 0.6187 + }, + { + "start": 39552.78, + "end": 39555.08, + "probability": 0.8219 + }, + { + "start": 39556.06, + "end": 39557.18, + "probability": 0.6854 + }, + { + "start": 39558.52, + "end": 39560.56, + "probability": 0.7451 + }, + { + "start": 39564.28, + "end": 39567.32, + "probability": 0.9536 + }, + { + "start": 39568.28, + "end": 39572.78, + "probability": 0.9284 + }, + { + "start": 39575.8, + "end": 39578.82, + "probability": 0.236 + }, + { + "start": 39580.26, + "end": 39581.76, + "probability": 0.9095 + }, + { + "start": 39583.25, + "end": 39584.94, + "probability": 0.1872 + }, + { + "start": 39586.93, + "end": 39590.56, + "probability": 0.8543 + }, + { + "start": 39591.86, + "end": 39592.46, + "probability": 0.9482 + }, + { + "start": 39593.26, + "end": 39594.14, + "probability": 0.7293 + }, + { + "start": 39595.52, + "end": 39597.08, + "probability": 0.9705 + }, + { + "start": 39599.12, + "end": 39601.68, + "probability": 0.0126 + }, + { + "start": 39602.54, + "end": 39602.96, + "probability": 0.2526 + }, + { + "start": 39617.32, + "end": 39618.64, + "probability": 0.058 + }, + { + "start": 39619.92, + "end": 39622.92, + "probability": 0.6811 + }, + { + "start": 39623.8, + "end": 39626.32, + "probability": 0.7286 + }, + { + "start": 39627.34, + "end": 39631.68, + "probability": 0.9827 + }, + { + "start": 39632.88, + "end": 39633.92, + "probability": 0.5828 + }, + { + "start": 39638.5, + "end": 39639.26, + "probability": 0.5015 + }, + { + "start": 39640.64, + "end": 39642.94, + "probability": 0.7756 + }, + { + "start": 39644.0, + "end": 39644.9, + "probability": 0.5035 + }, + { + "start": 39645.94, + "end": 39647.82, + "probability": 0.9138 + }, + { + "start": 39648.5, + "end": 39649.22, + "probability": 0.9441 + }, + { + "start": 39649.82, + "end": 39650.44, + "probability": 0.756 + }, + { + "start": 39651.28, + "end": 39654.44, + "probability": 0.9559 + }, + { + "start": 39655.16, + "end": 39655.46, + "probability": 0.9897 + }, + { + "start": 39656.38, + "end": 39658.14, + "probability": 0.8996 + }, + { + "start": 39659.92, + "end": 39661.54, + "probability": 0.6484 + }, + { + "start": 39661.68, + "end": 39663.66, + "probability": 0.4941 + }, + { + "start": 39663.74, + "end": 39664.66, + "probability": 0.7719 + }, + { + "start": 39665.32, + "end": 39667.36, + "probability": 0.6259 + }, + { + "start": 39667.46, + "end": 39670.66, + "probability": 0.7028 + }, + { + "start": 39671.02, + "end": 39672.3, + "probability": 0.9175 + }, + { + "start": 39672.3, + "end": 39672.76, + "probability": 0.8793 + }, + { + "start": 39673.36, + "end": 39675.7, + "probability": 0.932 + }, + { + "start": 39676.78, + "end": 39677.0, + "probability": 0.9639 + }, + { + "start": 39677.52, + "end": 39678.68, + "probability": 0.923 + }, + { + "start": 39680.06, + "end": 39683.78, + "probability": 0.6931 + }, + { + "start": 39684.64, + "end": 39687.2, + "probability": 0.6771 + }, + { + "start": 39687.3, + "end": 39690.58, + "probability": 0.6886 + }, + { + "start": 39690.78, + "end": 39693.02, + "probability": 0.5937 + }, + { + "start": 39694.56, + "end": 39695.5, + "probability": 0.0177 + }, + { + "start": 39695.62, + "end": 39697.4, + "probability": 0.7113 + }, + { + "start": 39697.44, + "end": 39699.02, + "probability": 0.7148 + }, + { + "start": 39699.2, + "end": 39700.22, + "probability": 0.9765 + }, + { + "start": 39700.78, + "end": 39701.18, + "probability": 0.7449 + }, + { + "start": 39719.02, + "end": 39721.86, + "probability": 0.5554 + }, + { + "start": 39722.54, + "end": 39723.28, + "probability": 0.9455 + }, + { + "start": 39723.84, + "end": 39724.52, + "probability": 0.784 + }, + { + "start": 39724.58, + "end": 39725.68, + "probability": 0.7367 + }, + { + "start": 39725.74, + "end": 39727.04, + "probability": 0.8648 + }, + { + "start": 39728.22, + "end": 39731.9, + "probability": 0.6204 + }, + { + "start": 39732.44, + "end": 39735.9, + "probability": 0.586 + }, + { + "start": 39737.22, + "end": 39739.52, + "probability": 0.8415 + }, + { + "start": 39741.25, + "end": 39746.82, + "probability": 0.8808 + }, + { + "start": 39748.8, + "end": 39749.66, + "probability": 0.7209 + }, + { + "start": 39750.66, + "end": 39751.44, + "probability": 0.8042 + }, + { + "start": 39752.54, + "end": 39753.36, + "probability": 0.9753 + }, + { + "start": 39755.92, + "end": 39756.41, + "probability": 0.0146 + }, + { + "start": 39756.5, + "end": 39757.94, + "probability": 0.5416 + }, + { + "start": 39757.98, + "end": 39759.06, + "probability": 0.9341 + }, + { + "start": 39759.14, + "end": 39760.1, + "probability": 0.7764 + }, + { + "start": 39760.16, + "end": 39761.58, + "probability": 0.9615 + }, + { + "start": 39761.58, + "end": 39762.88, + "probability": 0.7429 + }, + { + "start": 39764.0, + "end": 39765.32, + "probability": 0.9697 + }, + { + "start": 39765.4, + "end": 39767.38, + "probability": 0.8966 + }, + { + "start": 39767.42, + "end": 39768.03, + "probability": 0.0827 + }, + { + "start": 39770.9, + "end": 39773.62, + "probability": 0.7678 + }, + { + "start": 39776.6, + "end": 39778.12, + "probability": 0.7865 + }, + { + "start": 39778.18, + "end": 39779.94, + "probability": 0.8118 + }, + { + "start": 39779.96, + "end": 39781.84, + "probability": 0.6162 + }, + { + "start": 39782.0, + "end": 39783.36, + "probability": 0.554 + }, + { + "start": 39784.26, + "end": 39785.46, + "probability": 0.756 + }, + { + "start": 39786.08, + "end": 39787.68, + "probability": 0.542 + }, + { + "start": 39788.28, + "end": 39790.26, + "probability": 0.9502 + }, + { + "start": 39791.88, + "end": 39793.92, + "probability": 0.9705 + }, + { + "start": 39795.34, + "end": 39797.58, + "probability": 0.9834 + }, + { + "start": 39798.68, + "end": 39800.08, + "probability": 0.9885 + }, + { + "start": 39800.74, + "end": 39802.36, + "probability": 0.9939 + }, + { + "start": 39803.28, + "end": 39804.54, + "probability": 0.7538 + }, + { + "start": 39805.98, + "end": 39808.58, + "probability": 0.6902 + }, + { + "start": 39809.44, + "end": 39810.5, + "probability": 0.9318 + }, + { + "start": 39810.52, + "end": 39811.48, + "probability": 0.7891 + }, + { + "start": 39811.56, + "end": 39813.4, + "probability": 0.7367 + }, + { + "start": 39814.92, + "end": 39816.76, + "probability": 0.8359 + }, + { + "start": 39816.78, + "end": 39818.18, + "probability": 0.7624 + }, + { + "start": 39818.28, + "end": 39819.54, + "probability": 0.543 + }, + { + "start": 39820.96, + "end": 39822.6, + "probability": 0.934 + }, + { + "start": 39822.72, + "end": 39823.98, + "probability": 0.8 + }, + { + "start": 39824.02, + "end": 39824.68, + "probability": 0.9257 + }, + { + "start": 39826.22, + "end": 39828.92, + "probability": 0.9183 + }, + { + "start": 39829.8, + "end": 39831.88, + "probability": 0.9528 + }, + { + "start": 39838.82, + "end": 39839.74, + "probability": 0.5108 + }, + { + "start": 39839.84, + "end": 39840.98, + "probability": 0.6573 + }, + { + "start": 39841.1, + "end": 39842.48, + "probability": 0.9575 + }, + { + "start": 39842.58, + "end": 39843.58, + "probability": 0.4823 + }, + { + "start": 39845.82, + "end": 39846.2, + "probability": 0.8992 + }, + { + "start": 39847.36, + "end": 39848.26, + "probability": 0.8126 + }, + { + "start": 39849.62, + "end": 39852.48, + "probability": 0.9544 + }, + { + "start": 39852.48, + "end": 39853.74, + "probability": 0.4728 + }, + { + "start": 39853.8, + "end": 39855.36, + "probability": 0.8955 + }, + { + "start": 39855.5, + "end": 39856.22, + "probability": 0.9295 + }, + { + "start": 39856.76, + "end": 39857.9, + "probability": 0.8464 + }, + { + "start": 39858.72, + "end": 39859.32, + "probability": 0.9692 + }, + { + "start": 39861.0, + "end": 39863.6, + "probability": 0.6659 + }, + { + "start": 39878.32, + "end": 39882.22, + "probability": 0.6821 + }, + { + "start": 39886.36, + "end": 39888.4, + "probability": 0.6381 + }, + { + "start": 39888.5, + "end": 39889.72, + "probability": 0.8394 + }, + { + "start": 39889.84, + "end": 39890.92, + "probability": 0.9379 + }, + { + "start": 39891.12, + "end": 39891.9, + "probability": 0.6932 + }, + { + "start": 39892.7, + "end": 39894.2, + "probability": 0.6135 + }, + { + "start": 39895.18, + "end": 39898.1, + "probability": 0.8923 + }, + { + "start": 39899.16, + "end": 39902.4, + "probability": 0.5092 + }, + { + "start": 39903.8, + "end": 39908.0, + "probability": 0.5561 + }, + { + "start": 39908.72, + "end": 39912.96, + "probability": 0.9805 + }, + { + "start": 39913.86, + "end": 39916.86, + "probability": 0.5584 + }, + { + "start": 39940.34, + "end": 39942.5, + "probability": 0.2336 + }, + { + "start": 39943.24, + "end": 39945.94, + "probability": 0.2178 + }, + { + "start": 39946.16, + "end": 39946.16, + "probability": 0.4228 + }, + { + "start": 39946.16, + "end": 39946.16, + "probability": 0.0645 + }, + { + "start": 39947.92, + "end": 39948.54, + "probability": 0.2426 + }, + { + "start": 39948.82, + "end": 39953.4, + "probability": 0.1631 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.0, + "end": 40022.0, + "probability": 0.0 + }, + { + "start": 40022.86, + "end": 40025.1, + "probability": 0.5262 + }, + { + "start": 40025.18, + "end": 40029.14, + "probability": 0.9709 + }, + { + "start": 40029.14, + "end": 40029.84, + "probability": 0.1412 + }, + { + "start": 40029.84, + "end": 40030.5, + "probability": 0.4426 + }, + { + "start": 40031.18, + "end": 40031.56, + "probability": 0.6328 + }, + { + "start": 40032.14, + "end": 40034.84, + "probability": 0.946 + }, + { + "start": 40036.28, + "end": 40037.34, + "probability": 0.442 + }, + { + "start": 40040.62, + "end": 40041.74, + "probability": 0.3325 + }, + { + "start": 40043.8, + "end": 40045.74, + "probability": 0.4431 + }, + { + "start": 40048.53, + "end": 40053.22, + "probability": 0.9815 + }, + { + "start": 40053.82, + "end": 40057.28, + "probability": 0.9535 + }, + { + "start": 40057.28, + "end": 40057.28, + "probability": 0.0204 + }, + { + "start": 40057.28, + "end": 40058.96, + "probability": 0.6653 + }, + { + "start": 40059.06, + "end": 40063.36, + "probability": 0.9005 + }, + { + "start": 40063.52, + "end": 40065.34, + "probability": 0.6738 + }, + { + "start": 40065.74, + "end": 40066.12, + "probability": 0.6872 + }, + { + "start": 40070.02, + "end": 40071.1, + "probability": 0.0395 + }, + { + "start": 40085.3, + "end": 40086.42, + "probability": 0.0685 + }, + { + "start": 40087.84, + "end": 40091.58, + "probability": 0.2531 + }, + { + "start": 40093.92, + "end": 40094.06, + "probability": 0.0953 + }, + { + "start": 40094.06, + "end": 40094.36, + "probability": 0.25 + }, + { + "start": 40094.36, + "end": 40095.14, + "probability": 0.2382 + }, + { + "start": 40097.16, + "end": 40098.0, + "probability": 0.045 + }, + { + "start": 40100.02, + "end": 40101.76, + "probability": 0.4625 + }, + { + "start": 40102.16, + "end": 40103.42, + "probability": 0.0258 + }, + { + "start": 40103.48, + "end": 40108.72, + "probability": 0.4266 + }, + { + "start": 40110.7, + "end": 40112.14, + "probability": 0.5795 + }, + { + "start": 40112.7, + "end": 40114.58, + "probability": 0.8506 + }, + { + "start": 40114.88, + "end": 40116.86, + "probability": 0.2692 + }, + { + "start": 40117.92, + "end": 40119.3, + "probability": 0.088 + }, + { + "start": 40139.4, + "end": 40141.52, + "probability": 0.4962 + }, + { + "start": 40141.52, + "end": 40142.38, + "probability": 0.327 + }, + { + "start": 40162.54, + "end": 40163.18, + "probability": 0.057 + }, + { + "start": 40163.2, + "end": 40166.54, + "probability": 0.6685 + }, + { + "start": 40166.86, + "end": 40170.0, + "probability": 0.8059 + }, + { + "start": 40170.36, + "end": 40176.42, + "probability": 0.8694 + }, + { + "start": 40176.48, + "end": 40177.18, + "probability": 0.3861 + }, + { + "start": 40177.58, + "end": 40178.68, + "probability": 0.998 + }, + { + "start": 40178.82, + "end": 40180.1, + "probability": 0.9899 + }, + { + "start": 40181.2, + "end": 40184.0, + "probability": 0.9865 + }, + { + "start": 40184.22, + "end": 40185.36, + "probability": 0.9582 + }, + { + "start": 40185.48, + "end": 40185.98, + "probability": 0.828 + }, + { + "start": 40186.6, + "end": 40191.36, + "probability": 0.9569 + }, + { + "start": 40191.44, + "end": 40192.42, + "probability": 0.9901 + }, + { + "start": 40192.46, + "end": 40193.64, + "probability": 0.9512 + }, + { + "start": 40194.1, + "end": 40196.32, + "probability": 0.9925 + }, + { + "start": 40196.54, + "end": 40198.96, + "probability": 0.8149 + }, + { + "start": 40199.92, + "end": 40202.8, + "probability": 0.6338 + }, + { + "start": 40203.04, + "end": 40204.18, + "probability": 0.9493 + }, + { + "start": 40204.24, + "end": 40204.92, + "probability": 0.7779 + }, + { + "start": 40205.02, + "end": 40205.2, + "probability": 0.7768 + }, + { + "start": 40205.58, + "end": 40208.12, + "probability": 0.9723 + }, + { + "start": 40208.82, + "end": 40210.52, + "probability": 0.8033 + }, + { + "start": 40210.58, + "end": 40212.86, + "probability": 0.7661 + }, + { + "start": 40213.42, + "end": 40215.0, + "probability": 0.7915 + }, + { + "start": 40215.0, + "end": 40215.6, + "probability": 0.9815 + }, + { + "start": 40215.74, + "end": 40216.26, + "probability": 0.9053 + }, + { + "start": 40216.32, + "end": 40216.86, + "probability": 0.6128 + }, + { + "start": 40217.28, + "end": 40220.0, + "probability": 0.6425 + }, + { + "start": 40220.2, + "end": 40221.28, + "probability": 0.9526 + }, + { + "start": 40221.44, + "end": 40222.18, + "probability": 0.8254 + }, + { + "start": 40222.26, + "end": 40223.52, + "probability": 0.7324 + }, + { + "start": 40223.74, + "end": 40226.42, + "probability": 0.9429 + }, + { + "start": 40226.42, + "end": 40226.78, + "probability": 0.5997 + }, + { + "start": 40226.84, + "end": 40228.16, + "probability": 0.7365 + }, + { + "start": 40228.16, + "end": 40228.5, + "probability": 0.8462 + }, + { + "start": 40228.7, + "end": 40229.04, + "probability": 0.7017 + }, + { + "start": 40229.82, + "end": 40230.92, + "probability": 0.9307 + }, + { + "start": 40231.2, + "end": 40234.56, + "probability": 0.9666 + }, + { + "start": 40234.96, + "end": 40238.52, + "probability": 0.5032 + }, + { + "start": 40239.0, + "end": 40241.28, + "probability": 0.9811 + }, + { + "start": 40242.48, + "end": 40243.94, + "probability": 0.0297 + }, + { + "start": 40244.0, + "end": 40246.06, + "probability": 0.5741 + }, + { + "start": 40247.52, + "end": 40248.88, + "probability": 0.0901 + }, + { + "start": 40248.88, + "end": 40249.92, + "probability": 0.3141 + }, + { + "start": 40251.04, + "end": 40252.94, + "probability": 0.9934 + }, + { + "start": 40253.26, + "end": 40254.18, + "probability": 0.9441 + }, + { + "start": 40254.46, + "end": 40255.14, + "probability": 0.7108 + }, + { + "start": 40255.6, + "end": 40256.18, + "probability": 0.6177 + }, + { + "start": 40256.54, + "end": 40258.23, + "probability": 0.9922 + }, + { + "start": 40258.58, + "end": 40258.76, + "probability": 0.3795 + }, + { + "start": 40259.08, + "end": 40261.24, + "probability": 0.8647 + }, + { + "start": 40261.78, + "end": 40264.18, + "probability": 0.9264 + }, + { + "start": 40264.5, + "end": 40265.82, + "probability": 0.9966 + }, + { + "start": 40265.82, + "end": 40266.8, + "probability": 0.9973 + }, + { + "start": 40267.16, + "end": 40268.06, + "probability": 0.826 + }, + { + "start": 40268.34, + "end": 40269.76, + "probability": 0.9884 + }, + { + "start": 40269.84, + "end": 40269.96, + "probability": 0.2597 + }, + { + "start": 40270.26, + "end": 40273.82, + "probability": 0.9718 + }, + { + "start": 40273.96, + "end": 40274.08, + "probability": 0.0022 + }, + { + "start": 40274.32, + "end": 40274.8, + "probability": 0.2374 + }, + { + "start": 40275.48, + "end": 40279.92, + "probability": 0.991 + }, + { + "start": 40279.94, + "end": 40280.76, + "probability": 0.6822 + }, + { + "start": 40281.22, + "end": 40284.94, + "probability": 0.8947 + }, + { + "start": 40285.36, + "end": 40286.67, + "probability": 0.9623 + }, + { + "start": 40287.12, + "end": 40290.48, + "probability": 0.7368 + }, + { + "start": 40290.56, + "end": 40291.44, + "probability": 0.8598 + }, + { + "start": 40291.84, + "end": 40294.21, + "probability": 0.8623 + }, + { + "start": 40295.18, + "end": 40296.4, + "probability": 0.7232 + }, + { + "start": 40296.74, + "end": 40298.22, + "probability": 0.9507 + }, + { + "start": 40298.94, + "end": 40299.58, + "probability": 0.481 + }, + { + "start": 40300.0, + "end": 40301.36, + "probability": 0.8616 + }, + { + "start": 40302.24, + "end": 40304.04, + "probability": 0.9697 + }, + { + "start": 40304.7, + "end": 40306.69, + "probability": 0.9875 + }, + { + "start": 40307.3, + "end": 40309.34, + "probability": 0.9933 + }, + { + "start": 40309.72, + "end": 40310.97, + "probability": 0.993 + }, + { + "start": 40311.44, + "end": 40312.17, + "probability": 0.9883 + }, + { + "start": 40312.58, + "end": 40313.66, + "probability": 0.8662 + }, + { + "start": 40314.14, + "end": 40316.08, + "probability": 0.9893 + }, + { + "start": 40316.4, + "end": 40320.27, + "probability": 0.9972 + }, + { + "start": 40320.84, + "end": 40321.58, + "probability": 0.6179 + }, + { + "start": 40321.92, + "end": 40324.24, + "probability": 0.9332 + }, + { + "start": 40324.36, + "end": 40324.46, + "probability": 0.264 + }, + { + "start": 40324.72, + "end": 40325.72, + "probability": 0.9924 + }, + { + "start": 40326.04, + "end": 40327.2, + "probability": 0.9543 + }, + { + "start": 40327.52, + "end": 40328.4, + "probability": 0.9497 + }, + { + "start": 40328.68, + "end": 40330.62, + "probability": 0.9714 + }, + { + "start": 40331.32, + "end": 40333.62, + "probability": 0.6802 + }, + { + "start": 40334.06, + "end": 40334.38, + "probability": 0.5684 + }, + { + "start": 40334.94, + "end": 40335.86, + "probability": 0.9741 + }, + { + "start": 40336.92, + "end": 40339.26, + "probability": 0.5082 + }, + { + "start": 40339.34, + "end": 40339.86, + "probability": 0.9366 + }, + { + "start": 40340.8, + "end": 40344.42, + "probability": 0.993 + }, + { + "start": 40344.42, + "end": 40349.46, + "probability": 0.9979 + }, + { + "start": 40350.64, + "end": 40351.66, + "probability": 0.9988 + }, + { + "start": 40351.96, + "end": 40352.2, + "probability": 0.9032 + }, + { + "start": 40352.24, + "end": 40357.24, + "probability": 0.8928 + }, + { + "start": 40357.62, + "end": 40360.44, + "probability": 0.9987 + }, + { + "start": 40360.44, + "end": 40363.32, + "probability": 0.9662 + }, + { + "start": 40364.21, + "end": 40366.78, + "probability": 0.998 + }, + { + "start": 40367.2, + "end": 40369.92, + "probability": 0.9771 + }, + { + "start": 40370.04, + "end": 40372.7, + "probability": 0.9899 + }, + { + "start": 40373.44, + "end": 40374.48, + "probability": 0.8351 + }, + { + "start": 40374.54, + "end": 40375.14, + "probability": 0.7082 + }, + { + "start": 40375.3, + "end": 40376.32, + "probability": 0.8023 + }, + { + "start": 40377.34, + "end": 40382.98, + "probability": 0.9523 + }, + { + "start": 40382.98, + "end": 40385.5, + "probability": 0.9915 + }, + { + "start": 40386.04, + "end": 40387.08, + "probability": 0.7417 + }, + { + "start": 40387.48, + "end": 40388.04, + "probability": 0.6103 + }, + { + "start": 40388.6, + "end": 40388.74, + "probability": 0.549 + }, + { + "start": 40388.78, + "end": 40389.82, + "probability": 0.5937 + }, + { + "start": 40389.86, + "end": 40390.96, + "probability": 0.5941 + }, + { + "start": 40391.84, + "end": 40393.1, + "probability": 0.7112 + }, + { + "start": 40393.18, + "end": 40393.62, + "probability": 0.9431 + }, + { + "start": 40394.22, + "end": 40395.04, + "probability": 0.8676 + }, + { + "start": 40395.52, + "end": 40398.58, + "probability": 0.7319 + }, + { + "start": 40398.68, + "end": 40398.68, + "probability": 0.0748 + }, + { + "start": 40398.68, + "end": 40400.98, + "probability": 0.4077 + }, + { + "start": 40401.58, + "end": 40403.04, + "probability": 0.9867 + }, + { + "start": 40403.36, + "end": 40405.14, + "probability": 0.9073 + }, + { + "start": 40405.24, + "end": 40405.82, + "probability": 0.8472 + }, + { + "start": 40406.14, + "end": 40408.24, + "probability": 0.7681 + }, + { + "start": 40408.72, + "end": 40410.84, + "probability": 0.6885 + }, + { + "start": 40411.34, + "end": 40412.61, + "probability": 0.9434 + }, + { + "start": 40413.94, + "end": 40414.78, + "probability": 0.4535 + }, + { + "start": 40415.36, + "end": 40420.22, + "probability": 0.9103 + }, + { + "start": 40420.9, + "end": 40422.02, + "probability": 0.7612 + }, + { + "start": 40422.66, + "end": 40424.36, + "probability": 0.998 + }, + { + "start": 40424.6, + "end": 40426.76, + "probability": 0.9731 + }, + { + "start": 40427.12, + "end": 40428.28, + "probability": 0.8286 + }, + { + "start": 40428.58, + "end": 40428.94, + "probability": 0.9715 + }, + { + "start": 40429.04, + "end": 40429.7, + "probability": 0.7957 + }, + { + "start": 40429.88, + "end": 40430.66, + "probability": 0.8513 + }, + { + "start": 40430.74, + "end": 40433.14, + "probability": 0.8695 + }, + { + "start": 40433.2, + "end": 40436.3, + "probability": 0.6241 + }, + { + "start": 40437.08, + "end": 40440.64, + "probability": 0.9209 + }, + { + "start": 40441.46, + "end": 40442.54, + "probability": 0.7746 + }, + { + "start": 40443.28, + "end": 40444.8, + "probability": 0.78 + }, + { + "start": 40444.92, + "end": 40448.24, + "probability": 0.9821 + }, + { + "start": 40448.94, + "end": 40452.16, + "probability": 0.995 + }, + { + "start": 40452.7, + "end": 40455.94, + "probability": 0.7194 + }, + { + "start": 40456.76, + "end": 40458.0, + "probability": 0.9382 + }, + { + "start": 40458.08, + "end": 40462.0, + "probability": 0.8556 + }, + { + "start": 40462.42, + "end": 40463.1, + "probability": 0.7541 + }, + { + "start": 40463.8, + "end": 40467.44, + "probability": 0.7938 + }, + { + "start": 40468.26, + "end": 40470.64, + "probability": 0.992 + }, + { + "start": 40471.2, + "end": 40472.64, + "probability": 0.8238 + }, + { + "start": 40473.7, + "end": 40476.08, + "probability": 0.9152 + }, + { + "start": 40476.62, + "end": 40477.74, + "probability": 0.8267 + }, + { + "start": 40477.88, + "end": 40481.18, + "probability": 0.8866 + }, + { + "start": 40481.78, + "end": 40484.18, + "probability": 0.7533 + }, + { + "start": 40484.92, + "end": 40485.62, + "probability": 0.9877 + }, + { + "start": 40485.88, + "end": 40486.5, + "probability": 0.91 + }, + { + "start": 40486.98, + "end": 40489.26, + "probability": 0.9952 + }, + { + "start": 40489.84, + "end": 40492.14, + "probability": 0.998 + }, + { + "start": 40492.14, + "end": 40495.02, + "probability": 0.9975 + }, + { + "start": 40495.72, + "end": 40498.78, + "probability": 0.9888 + }, + { + "start": 40499.44, + "end": 40501.0, + "probability": 0.984 + }, + { + "start": 40501.58, + "end": 40503.4, + "probability": 0.9718 + }, + { + "start": 40503.82, + "end": 40504.7, + "probability": 0.9716 + }, + { + "start": 40504.82, + "end": 40505.8, + "probability": 0.7765 + }, + { + "start": 40506.6, + "end": 40509.02, + "probability": 0.8544 + }, + { + "start": 40509.56, + "end": 40511.9, + "probability": 0.9987 + }, + { + "start": 40512.38, + "end": 40513.96, + "probability": 0.6948 + }, + { + "start": 40514.1, + "end": 40515.06, + "probability": 0.7922 + }, + { + "start": 40515.54, + "end": 40516.66, + "probability": 0.7532 + }, + { + "start": 40516.76, + "end": 40522.8, + "probability": 0.9473 + }, + { + "start": 40523.18, + "end": 40523.62, + "probability": 0.7409 + }, + { + "start": 40523.78, + "end": 40524.62, + "probability": 0.7606 + }, + { + "start": 40525.5, + "end": 40528.26, + "probability": 0.7722 + }, + { + "start": 40528.72, + "end": 40529.2, + "probability": 0.6273 + }, + { + "start": 40529.7, + "end": 40530.58, + "probability": 0.9119 + }, + { + "start": 40531.14, + "end": 40532.06, + "probability": 0.9735 + }, + { + "start": 40532.76, + "end": 40534.3, + "probability": 0.7458 + }, + { + "start": 40534.74, + "end": 40535.42, + "probability": 0.9544 + }, + { + "start": 40535.94, + "end": 40538.66, + "probability": 0.9814 + }, + { + "start": 40541.84, + "end": 40542.24, + "probability": 0.5468 + }, + { + "start": 40542.24, + "end": 40542.24, + "probability": 0.053 + }, + { + "start": 40542.24, + "end": 40542.78, + "probability": 0.4145 + }, + { + "start": 40543.6, + "end": 40544.92, + "probability": 0.693 + }, + { + "start": 40545.76, + "end": 40547.86, + "probability": 0.9541 + }, + { + "start": 40548.94, + "end": 40550.16, + "probability": 0.7576 + }, + { + "start": 40550.22, + "end": 40551.55, + "probability": 0.9556 + }, + { + "start": 40552.48, + "end": 40554.0, + "probability": 0.8918 + }, + { + "start": 40554.44, + "end": 40555.06, + "probability": 0.4655 + }, + { + "start": 40555.16, + "end": 40556.02, + "probability": 0.7397 + }, + { + "start": 40556.12, + "end": 40556.88, + "probability": 0.9894 + }, + { + "start": 40556.9, + "end": 40561.08, + "probability": 0.989 + }, + { + "start": 40561.78, + "end": 40564.2, + "probability": 0.8749 + }, + { + "start": 40565.3, + "end": 40568.8, + "probability": 0.9957 + }, + { + "start": 40568.8, + "end": 40572.52, + "probability": 0.8844 + }, + { + "start": 40573.14, + "end": 40578.26, + "probability": 0.9985 + }, + { + "start": 40578.78, + "end": 40582.5, + "probability": 0.9971 + }, + { + "start": 40582.5, + "end": 40588.7, + "probability": 0.9608 + }, + { + "start": 40588.7, + "end": 40590.6, + "probability": 0.9988 + }, + { + "start": 40590.74, + "end": 40593.32, + "probability": 0.9937 + }, + { + "start": 40593.72, + "end": 40596.32, + "probability": 0.7778 + }, + { + "start": 40597.16, + "end": 40604.02, + "probability": 0.9691 + }, + { + "start": 40604.18, + "end": 40605.9, + "probability": 0.6671 + }, + { + "start": 40606.38, + "end": 40607.18, + "probability": 0.8642 + }, + { + "start": 40607.92, + "end": 40609.26, + "probability": 0.8658 + }, + { + "start": 40609.66, + "end": 40610.34, + "probability": 0.9379 + }, + { + "start": 40610.46, + "end": 40612.06, + "probability": 0.8736 + }, + { + "start": 40612.44, + "end": 40613.58, + "probability": 0.9875 + }, + { + "start": 40614.42, + "end": 40614.88, + "probability": 0.6331 + }, + { + "start": 40615.02, + "end": 40621.54, + "probability": 0.9036 + }, + { + "start": 40622.1, + "end": 40624.52, + "probability": 0.9221 + }, + { + "start": 40624.7, + "end": 40628.86, + "probability": 0.9675 + }, + { + "start": 40630.06, + "end": 40630.6, + "probability": 0.7061 + }, + { + "start": 40630.7, + "end": 40634.06, + "probability": 0.974 + }, + { + "start": 40634.16, + "end": 40635.58, + "probability": 0.9381 + }, + { + "start": 40636.14, + "end": 40641.02, + "probability": 0.997 + }, + { + "start": 40641.14, + "end": 40641.64, + "probability": 0.864 + }, + { + "start": 40641.94, + "end": 40642.76, + "probability": 0.6737 + }, + { + "start": 40643.16, + "end": 40645.42, + "probability": 0.8235 + }, + { + "start": 40666.56, + "end": 40671.32, + "probability": 0.7506 + }, + { + "start": 40672.86, + "end": 40676.34, + "probability": 0.9938 + }, + { + "start": 40676.34, + "end": 40679.9, + "probability": 0.8725 + }, + { + "start": 40679.9, + "end": 40683.24, + "probability": 0.9958 + }, + { + "start": 40683.82, + "end": 40687.86, + "probability": 0.9956 + }, + { + "start": 40688.28, + "end": 40693.9, + "probability": 0.9976 + }, + { + "start": 40694.62, + "end": 40697.52, + "probability": 0.9412 + }, + { + "start": 40697.52, + "end": 40700.74, + "probability": 0.9749 + }, + { + "start": 40701.26, + "end": 40703.36, + "probability": 0.9834 + }, + { + "start": 40703.9, + "end": 40706.5, + "probability": 0.9504 + }, + { + "start": 40707.0, + "end": 40709.78, + "probability": 0.7969 + }, + { + "start": 40709.78, + "end": 40712.6, + "probability": 0.9984 + }, + { + "start": 40712.6, + "end": 40716.14, + "probability": 0.9982 + }, + { + "start": 40716.24, + "end": 40718.31, + "probability": 0.8147 + }, + { + "start": 40718.94, + "end": 40719.36, + "probability": 0.8019 + }, + { + "start": 40719.44, + "end": 40719.76, + "probability": 0.9179 + }, + { + "start": 40719.84, + "end": 40724.46, + "probability": 0.9816 + }, + { + "start": 40724.56, + "end": 40726.48, + "probability": 0.9865 + }, + { + "start": 40727.06, + "end": 40728.84, + "probability": 0.9866 + }, + { + "start": 40729.82, + "end": 40732.76, + "probability": 0.9963 + }, + { + "start": 40732.86, + "end": 40734.3, + "probability": 0.9403 + }, + { + "start": 40734.74, + "end": 40736.74, + "probability": 0.9961 + }, + { + "start": 40736.74, + "end": 40739.89, + "probability": 0.9958 + }, + { + "start": 40740.91, + "end": 40743.44, + "probability": 0.9918 + }, + { + "start": 40743.52, + "end": 40747.32, + "probability": 0.9847 + }, + { + "start": 40748.18, + "end": 40751.48, + "probability": 0.999 + }, + { + "start": 40751.48, + "end": 40755.72, + "probability": 0.9823 + }, + { + "start": 40757.24, + "end": 40760.14, + "probability": 0.9746 + }, + { + "start": 40760.92, + "end": 40761.38, + "probability": 0.9327 + }, + { + "start": 40764.5, + "end": 40766.74, + "probability": 0.5676 + }, + { + "start": 40767.66, + "end": 40768.5, + "probability": 0.9265 + }, + { + "start": 40769.24, + "end": 40772.46, + "probability": 0.5714 + }, + { + "start": 40772.66, + "end": 40773.9, + "probability": 0.9338 + }, + { + "start": 40774.3, + "end": 40776.08, + "probability": 0.8411 + }, + { + "start": 40776.25, + "end": 40777.18, + "probability": 0.7935 + }, + { + "start": 40777.52, + "end": 40777.98, + "probability": 0.8765 + }, + { + "start": 40778.74, + "end": 40778.98, + "probability": 0.6609 + }, + { + "start": 40780.4, + "end": 40781.8, + "probability": 0.0848 + }, + { + "start": 40785.08, + "end": 40786.6, + "probability": 0.0199 + }, + { + "start": 40788.2, + "end": 40792.58, + "probability": 0.8153 + }, + { + "start": 40793.12, + "end": 40798.04, + "probability": 0.9112 + }, + { + "start": 40798.96, + "end": 40803.84, + "probability": 0.9907 + }, + { + "start": 40803.84, + "end": 40808.44, + "probability": 0.999 + }, + { + "start": 40809.04, + "end": 40811.52, + "probability": 0.8681 + }, + { + "start": 40812.2, + "end": 40818.14, + "probability": 0.9951 + }, + { + "start": 40818.7, + "end": 40821.02, + "probability": 0.9902 + }, + { + "start": 40821.6, + "end": 40822.34, + "probability": 0.8744 + }, + { + "start": 40823.2, + "end": 40825.84, + "probability": 0.9301 + }, + { + "start": 40826.06, + "end": 40826.3, + "probability": 0.6664 + }, + { + "start": 40827.52, + "end": 40828.82, + "probability": 0.5421 + }, + { + "start": 40828.94, + "end": 40833.48, + "probability": 0.8933 + }, + { + "start": 40834.28, + "end": 40835.62, + "probability": 0.8804 + }, + { + "start": 40836.64, + "end": 40840.3, + "probability": 0.8285 + }, + { + "start": 40840.94, + "end": 40843.44, + "probability": 0.195 + }, + { + "start": 40843.82, + "end": 40844.76, + "probability": 0.5087 + }, + { + "start": 40845.2, + "end": 40847.4, + "probability": 0.837 + }, + { + "start": 40847.48, + "end": 40848.96, + "probability": 0.81 + }, + { + "start": 40848.98, + "end": 40850.66, + "probability": 0.7059 + }, + { + "start": 40851.22, + "end": 40854.44, + "probability": 0.7419 + }, + { + "start": 40855.18, + "end": 40856.78, + "probability": 0.9777 + }, + { + "start": 40857.44, + "end": 40858.66, + "probability": 0.9789 + }, + { + "start": 40859.34, + "end": 40859.66, + "probability": 0.9089 + }, + { + "start": 40860.78, + "end": 40861.82, + "probability": 0.524 + }, + { + "start": 40862.44, + "end": 40864.36, + "probability": 0.87 + }, + { + "start": 40866.48, + "end": 40868.06, + "probability": 0.935 + }, + { + "start": 40868.72, + "end": 40870.26, + "probability": 0.9875 + }, + { + "start": 40871.46, + "end": 40873.02, + "probability": 0.8301 + }, + { + "start": 40874.5, + "end": 40876.2, + "probability": 0.8123 + }, + { + "start": 40876.98, + "end": 40878.58, + "probability": 0.9509 + }, + { + "start": 40879.4, + "end": 40880.9, + "probability": 0.9468 + }, + { + "start": 40882.06, + "end": 40883.62, + "probability": 0.7022 + }, + { + "start": 40884.3, + "end": 40886.94, + "probability": 0.7433 + }, + { + "start": 40889.24, + "end": 40889.96, + "probability": 0.7159 + }, + { + "start": 40891.56, + "end": 40892.46, + "probability": 0.827 + }, + { + "start": 40893.52, + "end": 40895.1, + "probability": 0.9253 + }, + { + "start": 40895.82, + "end": 40897.32, + "probability": 0.9233 + }, + { + "start": 40898.44, + "end": 40902.84, + "probability": 0.9838 + }, + { + "start": 40903.94, + "end": 40908.3, + "probability": 0.8297 + }, + { + "start": 40909.38, + "end": 40912.34, + "probability": 0.9491 + }, + { + "start": 40912.88, + "end": 40913.04, + "probability": 0.9775 + }, + { + "start": 40916.34, + "end": 40917.96, + "probability": 0.3389 + }, + { + "start": 40918.68, + "end": 40920.3, + "probability": 0.6028 + }, + { + "start": 40922.6, + "end": 40923.7, + "probability": 0.546 + }, + { + "start": 40924.22, + "end": 40925.22, + "probability": 0.7397 + }, + { + "start": 40926.52, + "end": 40926.76, + "probability": 0.9771 + }, + { + "start": 40927.42, + "end": 40930.0, + "probability": 0.858 + }, + { + "start": 40930.54, + "end": 40932.48, + "probability": 0.9736 + }, + { + "start": 40932.6, + "end": 40934.0, + "probability": 0.789 + }, + { + "start": 40934.04, + "end": 40936.0, + "probability": 0.9307 + }, + { + "start": 40936.82, + "end": 40938.5, + "probability": 0.9948 + }, + { + "start": 40938.52, + "end": 40941.48, + "probability": 0.3685 + }, + { + "start": 40941.48, + "end": 40942.18, + "probability": 0.3219 + }, + { + "start": 40943.0, + "end": 40944.54, + "probability": 0.9115 + }, + { + "start": 40945.24, + "end": 40946.68, + "probability": 0.9141 + }, + { + "start": 40947.7, + "end": 40951.86, + "probability": 0.6968 + }, + { + "start": 40953.16, + "end": 40954.56, + "probability": 0.2913 + }, + { + "start": 40955.26, + "end": 40957.16, + "probability": 0.8139 + }, + { + "start": 40957.84, + "end": 40960.54, + "probability": 0.9375 + }, + { + "start": 40960.62, + "end": 40963.26, + "probability": 0.9247 + }, + { + "start": 40964.43, + "end": 40967.48, + "probability": 0.6916 + }, + { + "start": 40967.76, + "end": 40969.38, + "probability": 0.8782 + }, + { + "start": 40969.46, + "end": 40970.72, + "probability": 0.9153 + }, + { + "start": 40970.78, + "end": 40973.02, + "probability": 0.7757 + }, + { + "start": 40973.36, + "end": 40974.02, + "probability": 0.9842 + }, + { + "start": 40975.14, + "end": 40976.0, + "probability": 0.6937 + }, + { + "start": 40976.74, + "end": 40980.42, + "probability": 0.8 + }, + { + "start": 40983.96, + "end": 40984.16, + "probability": 0.5713 + }, + { + "start": 40985.34, + "end": 40986.16, + "probability": 0.5868 + }, + { + "start": 40988.6, + "end": 40990.12, + "probability": 0.9585 + }, + { + "start": 40990.84, + "end": 40992.62, + "probability": 0.956 + }, + { + "start": 40993.7, + "end": 40998.74, + "probability": 0.9711 + }, + { + "start": 41000.7, + "end": 41003.54, + "probability": 0.9829 + }, + { + "start": 41004.06, + "end": 41007.18, + "probability": 0.7371 + }, + { + "start": 41008.56, + "end": 41009.8, + "probability": 0.8671 + }, + { + "start": 41011.22, + "end": 41013.54, + "probability": 0.5038 + }, + { + "start": 41014.3, + "end": 41015.86, + "probability": 0.7441 + }, + { + "start": 41016.96, + "end": 41018.12, + "probability": 0.9778 + }, + { + "start": 41018.72, + "end": 41020.96, + "probability": 0.915 + }, + { + "start": 41021.02, + "end": 41022.18, + "probability": 0.9553 + }, + { + "start": 41022.2, + "end": 41023.48, + "probability": 0.9728 + }, + { + "start": 41023.88, + "end": 41025.18, + "probability": 0.7582 + }, + { + "start": 41025.26, + "end": 41026.96, + "probability": 0.893 + }, + { + "start": 41027.02, + "end": 41028.42, + "probability": 0.872 + }, + { + "start": 41029.42, + "end": 41031.24, + "probability": 0.9685 + }, + { + "start": 41032.82, + "end": 41036.04, + "probability": 0.9037 + }, + { + "start": 41037.12, + "end": 41038.56, + "probability": 0.546 + }, + { + "start": 41038.66, + "end": 41040.86, + "probability": 0.7512 + }, + { + "start": 41040.98, + "end": 41043.44, + "probability": 0.6538 + }, + { + "start": 41045.18, + "end": 41045.7, + "probability": 0.8921 + }, + { + "start": 41046.76, + "end": 41047.94, + "probability": 0.955 + }, + { + "start": 41048.5, + "end": 41050.16, + "probability": 0.913 + }, + { + "start": 41056.74, + "end": 41057.5, + "probability": 0.7436 + }, + { + "start": 41059.06, + "end": 41060.36, + "probability": 0.7505 + }, + { + "start": 41061.72, + "end": 41063.32, + "probability": 0.7292 + }, + { + "start": 41064.68, + "end": 41065.06, + "probability": 0.6823 + }, + { + "start": 41066.12, + "end": 41066.92, + "probability": 0.8771 + }, + { + "start": 41068.82, + "end": 41070.32, + "probability": 0.9483 + }, + { + "start": 41070.76, + "end": 41072.3, + "probability": 0.9424 + }, + { + "start": 41072.3, + "end": 41076.78, + "probability": 0.901 + }, + { + "start": 41076.8, + "end": 41078.84, + "probability": 0.9073 + }, + { + "start": 41079.08, + "end": 41080.8, + "probability": 0.8052 + }, + { + "start": 41082.4, + "end": 41084.26, + "probability": 0.9388 + }, + { + "start": 41090.28, + "end": 41094.7, + "probability": 0.5801 + }, + { + "start": 41095.3, + "end": 41096.06, + "probability": 0.5384 + }, + { + "start": 41097.66, + "end": 41099.38, + "probability": 0.6335 + }, + { + "start": 41102.64, + "end": 41103.06, + "probability": 0.8137 + }, + { + "start": 41104.02, + "end": 41104.8, + "probability": 0.8817 + }, + { + "start": 41104.82, + "end": 41106.12, + "probability": 0.9174 + }, + { + "start": 41106.16, + "end": 41107.26, + "probability": 0.7977 + }, + { + "start": 41107.88, + "end": 41111.3, + "probability": 0.6567 + }, + { + "start": 41116.06, + "end": 41118.78, + "probability": 0.6032 + }, + { + "start": 41120.9, + "end": 41125.46, + "probability": 0.9033 + }, + { + "start": 41127.22, + "end": 41128.98, + "probability": 0.9201 + }, + { + "start": 41129.78, + "end": 41130.02, + "probability": 0.9819 + }, + { + "start": 41130.66, + "end": 41134.18, + "probability": 0.811 + }, + { + "start": 41134.72, + "end": 41137.04, + "probability": 0.916 + }, + { + "start": 41137.14, + "end": 41138.72, + "probability": 0.9605 + }, + { + "start": 41140.36, + "end": 41142.12, + "probability": 0.9634 + }, + { + "start": 41143.04, + "end": 41145.1, + "probability": 0.9887 + }, + { + "start": 41146.76, + "end": 41147.18, + "probability": 0.9678 + }, + { + "start": 41148.52, + "end": 41149.48, + "probability": 0.6132 + }, + { + "start": 41152.1, + "end": 41155.82, + "probability": 0.9849 + }, + { + "start": 41156.58, + "end": 41158.76, + "probability": 0.9852 + }, + { + "start": 41159.74, + "end": 41160.9, + "probability": 0.6161 + }, + { + "start": 41161.52, + "end": 41162.8, + "probability": 0.7313 + }, + { + "start": 41165.0, + "end": 41167.68, + "probability": 0.8317 + }, + { + "start": 41169.0, + "end": 41170.74, + "probability": 0.5501 + }, + { + "start": 41170.78, + "end": 41172.28, + "probability": 0.661 + }, + { + "start": 41172.34, + "end": 41173.86, + "probability": 0.9604 + }, + { + "start": 41173.96, + "end": 41175.82, + "probability": 0.6449 + }, + { + "start": 41176.28, + "end": 41178.14, + "probability": 0.888 + }, + { + "start": 41178.28, + "end": 41180.2, + "probability": 0.8792 + }, + { + "start": 41180.38, + "end": 41181.9, + "probability": 0.8385 + }, + { + "start": 41181.94, + "end": 41183.64, + "probability": 0.8607 + }, + { + "start": 41184.06, + "end": 41184.5, + "probability": 0.8589 + }, + { + "start": 41185.42, + "end": 41186.76, + "probability": 0.8776 + }, + { + "start": 41187.44, + "end": 41187.86, + "probability": 0.9709 + }, + { + "start": 41188.48, + "end": 41189.18, + "probability": 0.7348 + }, + { + "start": 41189.2, + "end": 41191.42, + "probability": 0.6454 + }, + { + "start": 41191.82, + "end": 41194.48, + "probability": 0.8485 + }, + { + "start": 41195.08, + "end": 41196.12, + "probability": 0.5144 + }, + { + "start": 41196.6, + "end": 41198.22, + "probability": 0.7884 + }, + { + "start": 41198.36, + "end": 41200.84, + "probability": 0.6652 + }, + { + "start": 41201.9, + "end": 41207.98, + "probability": 0.7191 + }, + { + "start": 41209.22, + "end": 41211.14, + "probability": 0.6688 + }, + { + "start": 41212.46, + "end": 41214.1, + "probability": 0.8121 + }, + { + "start": 41215.08, + "end": 41218.32, + "probability": 0.9809 + }, + { + "start": 41219.64, + "end": 41221.3, + "probability": 0.9755 + }, + { + "start": 41222.9, + "end": 41226.92, + "probability": 0.7552 + }, + { + "start": 41227.82, + "end": 41228.06, + "probability": 0.5521 + }, + { + "start": 41229.46, + "end": 41230.22, + "probability": 0.6052 + }, + { + "start": 41232.06, + "end": 41233.58, + "probability": 0.8178 + }, + { + "start": 41233.86, + "end": 41235.48, + "probability": 0.6964 + }, + { + "start": 41235.72, + "end": 41237.72, + "probability": 0.9319 + }, + { + "start": 41237.82, + "end": 41239.38, + "probability": 0.8793 + }, + { + "start": 41239.44, + "end": 41241.24, + "probability": 0.9563 + }, + { + "start": 41242.16, + "end": 41246.04, + "probability": 0.8994 + }, + { + "start": 41247.64, + "end": 41251.02, + "probability": 0.9125 + }, + { + "start": 41253.08, + "end": 41255.14, + "probability": 0.9418 + }, + { + "start": 41255.38, + "end": 41258.72, + "probability": 0.7555 + }, + { + "start": 41258.76, + "end": 41260.42, + "probability": 0.9617 + }, + { + "start": 41261.76, + "end": 41263.32, + "probability": 0.6395 + }, + { + "start": 41263.85, + "end": 41266.28, + "probability": 0.8954 + }, + { + "start": 41266.42, + "end": 41267.86, + "probability": 0.8409 + }, + { + "start": 41267.86, + "end": 41270.4, + "probability": 0.9855 + }, + { + "start": 41270.84, + "end": 41273.34, + "probability": 0.984 + }, + { + "start": 41273.38, + "end": 41274.66, + "probability": 0.9604 + }, + { + "start": 41275.06, + "end": 41276.64, + "probability": 0.9785 + }, + { + "start": 41278.42, + "end": 41279.74, + "probability": 0.9768 + }, + { + "start": 41279.84, + "end": 41281.56, + "probability": 0.2071 + }, + { + "start": 41281.74, + "end": 41283.98, + "probability": 0.6493 + }, + { + "start": 41286.32, + "end": 41287.66, + "probability": 0.5728 + }, + { + "start": 41288.18, + "end": 41290.48, + "probability": 0.3546 + }, + { + "start": 41291.84, + "end": 41294.24, + "probability": 0.964 + }, + { + "start": 41295.8, + "end": 41297.58, + "probability": 0.7032 + }, + { + "start": 41297.76, + "end": 41299.26, + "probability": 0.5813 + }, + { + "start": 41299.38, + "end": 41300.64, + "probability": 0.4124 + }, + { + "start": 41300.72, + "end": 41300.86, + "probability": 0.2763 + }, + { + "start": 41302.36, + "end": 41303.04, + "probability": 0.0238 + }, + { + "start": 41305.8, + "end": 41308.92, + "probability": 0.7546 + }, + { + "start": 41312.86, + "end": 41314.78, + "probability": 0.5731 + }, + { + "start": 41316.62, + "end": 41317.78, + "probability": 0.7515 + }, + { + "start": 41317.9, + "end": 41319.12, + "probability": 0.6691 + }, + { + "start": 41319.16, + "end": 41320.9, + "probability": 0.8227 + }, + { + "start": 41320.92, + "end": 41322.44, + "probability": 0.7767 + }, + { + "start": 41322.96, + "end": 41324.48, + "probability": 0.9126 + }, + { + "start": 41325.74, + "end": 41327.34, + "probability": 0.9622 + }, + { + "start": 41327.44, + "end": 41329.26, + "probability": 0.3933 + }, + { + "start": 41329.3, + "end": 41330.42, + "probability": 0.8583 + }, + { + "start": 41330.48, + "end": 41331.88, + "probability": 0.8485 + }, + { + "start": 41332.84, + "end": 41334.88, + "probability": 0.8343 + }, + { + "start": 41335.64, + "end": 41338.54, + "probability": 0.966 + }, + { + "start": 41339.22, + "end": 41340.02, + "probability": 0.9581 + }, + { + "start": 41340.54, + "end": 41343.02, + "probability": 0.912 + }, + { + "start": 41344.22, + "end": 41347.56, + "probability": 0.8451 + }, + { + "start": 41348.7, + "end": 41350.42, + "probability": 0.9766 + }, + { + "start": 41350.46, + "end": 41352.2, + "probability": 0.9001 + }, + { + "start": 41352.6, + "end": 41353.22, + "probability": 0.9666 + }, + { + "start": 41353.86, + "end": 41354.7, + "probability": 0.976 + }, + { + "start": 41356.3, + "end": 41357.42, + "probability": 0.9768 + }, + { + "start": 41358.26, + "end": 41361.38, + "probability": 0.6675 + }, + { + "start": 41363.16, + "end": 41364.58, + "probability": 0.8623 + }, + { + "start": 41364.64, + "end": 41366.28, + "probability": 0.8867 + }, + { + "start": 41366.28, + "end": 41368.19, + "probability": 0.7948 + }, + { + "start": 41369.1, + "end": 41370.94, + "probability": 0.9602 + }, + { + "start": 41371.04, + "end": 41373.06, + "probability": 0.9664 + }, + { + "start": 41373.68, + "end": 41375.42, + "probability": 0.7011 + }, + { + "start": 41377.48, + "end": 41379.26, + "probability": 0.8659 + }, + { + "start": 41380.1, + "end": 41381.96, + "probability": 0.9493 + }, + { + "start": 41383.14, + "end": 41385.02, + "probability": 0.8643 + }, + { + "start": 41385.04, + "end": 41386.52, + "probability": 0.9908 + }, + { + "start": 41386.66, + "end": 41388.02, + "probability": 0.8226 + }, + { + "start": 41388.06, + "end": 41389.42, + "probability": 0.796 + }, + { + "start": 41389.52, + "end": 41391.62, + "probability": 0.4965 + }, + { + "start": 41391.66, + "end": 41393.4, + "probability": 0.8529 + }, + { + "start": 41394.96, + "end": 41397.28, + "probability": 0.927 + }, + { + "start": 41397.96, + "end": 41399.86, + "probability": 0.9831 + }, + { + "start": 41400.86, + "end": 41403.9, + "probability": 0.9586 + }, + { + "start": 41404.4, + "end": 41406.28, + "probability": 0.6757 + }, + { + "start": 41406.36, + "end": 41408.48, + "probability": 0.9569 + }, + { + "start": 41410.12, + "end": 41413.2, + "probability": 0.9437 + }, + { + "start": 41421.1, + "end": 41424.78, + "probability": 0.6313 + }, + { + "start": 41425.74, + "end": 41426.56, + "probability": 0.9541 + }, + { + "start": 41428.02, + "end": 41429.32, + "probability": 0.7879 + }, + { + "start": 41431.42, + "end": 41431.64, + "probability": 0.7769 + }, + { + "start": 41435.1, + "end": 41436.6, + "probability": 0.6154 + }, + { + "start": 41436.7, + "end": 41438.36, + "probability": 0.8726 + }, + { + "start": 41438.44, + "end": 41440.0, + "probability": 0.7853 + }, + { + "start": 41440.04, + "end": 41441.56, + "probability": 0.9666 + }, + { + "start": 41441.74, + "end": 41442.34, + "probability": 0.7373 + }, + { + "start": 41442.86, + "end": 41443.64, + "probability": 0.6027 + }, + { + "start": 41444.18, + "end": 41445.78, + "probability": 0.9631 + }, + { + "start": 41445.88, + "end": 41447.48, + "probability": 0.6799 + }, + { + "start": 41448.06, + "end": 41449.6, + "probability": 0.5927 + }, + { + "start": 41449.68, + "end": 41451.1, + "probability": 0.6885 + }, + { + "start": 41451.36, + "end": 41452.34, + "probability": 0.9696 + }, + { + "start": 41453.28, + "end": 41458.04, + "probability": 0.9338 + }, + { + "start": 41463.72, + "end": 41468.98, + "probability": 0.0542 + }, + { + "start": 41471.84, + "end": 41477.82, + "probability": 0.0338 + }, + { + "start": 41484.16, + "end": 41484.16, + "probability": 0.0023 + }, + { + "start": 41485.3, + "end": 41486.22, + "probability": 0.049 + }, + { + "start": 41487.58, + "end": 41489.76, + "probability": 0.0804 + }, + { + "start": 41533.88, + "end": 41536.54, + "probability": 0.6206 + }, + { + "start": 41536.66, + "end": 41537.94, + "probability": 0.7725 + }, + { + "start": 41538.56, + "end": 41543.82, + "probability": 0.7527 + }, + { + "start": 41543.82, + "end": 41543.82, + "probability": 0.0123 + }, + { + "start": 41543.82, + "end": 41545.0, + "probability": 0.6465 + }, + { + "start": 41545.0, + "end": 41548.62, + "probability": 0.8236 + }, + { + "start": 41548.74, + "end": 41549.18, + "probability": 0.6782 + }, + { + "start": 41549.98, + "end": 41553.86, + "probability": 0.987 + }, + { + "start": 41555.68, + "end": 41558.74, + "probability": 0.3413 + }, + { + "start": 41559.16, + "end": 41563.87, + "probability": 0.9565 + }, + { + "start": 41564.44, + "end": 41568.3, + "probability": 0.9805 + }, + { + "start": 41568.94, + "end": 41569.4, + "probability": 0.8585 + }, + { + "start": 41575.28, + "end": 41577.5, + "probability": 0.7932 + }, + { + "start": 41578.12, + "end": 41582.04, + "probability": 0.983 + }, + { + "start": 41582.58, + "end": 41587.1, + "probability": 0.9988 + }, + { + "start": 41587.1, + "end": 41592.64, + "probability": 0.877 + }, + { + "start": 41593.56, + "end": 41597.86, + "probability": 0.9456 + }, + { + "start": 41599.22, + "end": 41603.62, + "probability": 0.9082 + }, + { + "start": 41604.7, + "end": 41604.82, + "probability": 0.045 + }, + { + "start": 41606.64, + "end": 41610.24, + "probability": 0.8512 + }, + { + "start": 41611.56, + "end": 41611.72, + "probability": 0.3551 + }, + { + "start": 41613.94, + "end": 41616.08, + "probability": 0.9733 + }, + { + "start": 41616.26, + "end": 41617.66, + "probability": 0.4909 + }, + { + "start": 41617.8, + "end": 41620.2, + "probability": 0.9894 + }, + { + "start": 41620.24, + "end": 41621.18, + "probability": 0.9616 + }, + { + "start": 41621.4, + "end": 41622.4, + "probability": 0.2423 + }, + { + "start": 41622.4, + "end": 41624.94, + "probability": 0.9106 + }, + { + "start": 41625.76, + "end": 41627.76, + "probability": 0.84 + }, + { + "start": 41628.62, + "end": 41633.62, + "probability": 0.9812 + }, + { + "start": 41634.62, + "end": 41637.26, + "probability": 0.9829 + }, + { + "start": 41638.2, + "end": 41639.16, + "probability": 0.7497 + }, + { + "start": 41639.16, + "end": 41643.02, + "probability": 0.9961 + }, + { + "start": 41643.36, + "end": 41645.14, + "probability": 0.9817 + }, + { + "start": 41645.3, + "end": 41646.04, + "probability": 0.9888 + }, + { + "start": 41647.1, + "end": 41648.62, + "probability": 0.9814 + }, + { + "start": 41649.28, + "end": 41655.58, + "probability": 0.9945 + }, + { + "start": 41655.58, + "end": 41662.64, + "probability": 0.9989 + }, + { + "start": 41663.12, + "end": 41668.48, + "probability": 0.999 + }, + { + "start": 41668.62, + "end": 41672.06, + "probability": 0.9978 + }, + { + "start": 41673.56, + "end": 41681.16, + "probability": 0.9805 + }, + { + "start": 41681.96, + "end": 41686.92, + "probability": 0.997 + }, + { + "start": 41687.5, + "end": 41691.42, + "probability": 0.9914 + }, + { + "start": 41692.14, + "end": 41695.14, + "probability": 0.9983 + }, + { + "start": 41696.1, + "end": 41700.72, + "probability": 0.9946 + }, + { + "start": 41700.72, + "end": 41705.42, + "probability": 0.9969 + }, + { + "start": 41705.94, + "end": 41707.96, + "probability": 0.6633 + }, + { + "start": 41708.72, + "end": 41713.46, + "probability": 0.9932 + }, + { + "start": 41714.04, + "end": 41716.68, + "probability": 0.9501 + }, + { + "start": 41717.24, + "end": 41721.6, + "probability": 0.9773 + }, + { + "start": 41721.6, + "end": 41725.6, + "probability": 0.99 + }, + { + "start": 41725.82, + "end": 41729.82, + "probability": 0.9979 + }, + { + "start": 41730.62, + "end": 41735.96, + "probability": 0.9996 + }, + { + "start": 41736.42, + "end": 41737.18, + "probability": 0.7716 + }, + { + "start": 41738.14, + "end": 41741.04, + "probability": 0.9718 + }, + { + "start": 41742.04, + "end": 41743.14, + "probability": 0.7421 + }, + { + "start": 41743.88, + "end": 41746.2, + "probability": 0.9878 + }, + { + "start": 41746.94, + "end": 41749.44, + "probability": 0.8658 + }, + { + "start": 41750.46, + "end": 41751.1, + "probability": 0.3328 + }, + { + "start": 41751.38, + "end": 41757.94, + "probability": 0.9646 + }, + { + "start": 41757.94, + "end": 41764.32, + "probability": 0.9932 + }, + { + "start": 41764.76, + "end": 41767.2, + "probability": 0.9489 + }, + { + "start": 41767.62, + "end": 41769.84, + "probability": 0.8594 + }, + { + "start": 41770.3, + "end": 41773.48, + "probability": 0.9907 + }, + { + "start": 41774.02, + "end": 41776.58, + "probability": 0.9338 + }, + { + "start": 41777.92, + "end": 41781.14, + "probability": 0.9047 + }, + { + "start": 41781.66, + "end": 41782.74, + "probability": 0.9854 + }, + { + "start": 41783.26, + "end": 41786.74, + "probability": 0.9414 + }, + { + "start": 41787.44, + "end": 41788.42, + "probability": 0.8025 + }, + { + "start": 41789.18, + "end": 41791.44, + "probability": 0.8763 + }, + { + "start": 41793.06, + "end": 41794.06, + "probability": 0.7552 + }, + { + "start": 41794.9, + "end": 41795.2, + "probability": 0.6809 + }, + { + "start": 41795.3, + "end": 41796.56, + "probability": 0.8617 + }, + { + "start": 41796.66, + "end": 41803.29, + "probability": 0.9784 + }, + { + "start": 41803.38, + "end": 41807.7, + "probability": 0.9697 + }, + { + "start": 41808.96, + "end": 41814.18, + "probability": 0.97 + }, + { + "start": 41815.36, + "end": 41816.82, + "probability": 0.7019 + }, + { + "start": 41817.54, + "end": 41821.82, + "probability": 0.9912 + }, + { + "start": 41821.9, + "end": 41826.18, + "probability": 0.9946 + }, + { + "start": 41827.16, + "end": 41835.98, + "probability": 0.9979 + }, + { + "start": 41836.22, + "end": 41837.38, + "probability": 0.8097 + }, + { + "start": 41837.88, + "end": 41838.44, + "probability": 0.7009 + }, + { + "start": 41839.02, + "end": 41845.28, + "probability": 0.7861 + }, + { + "start": 41845.84, + "end": 41848.28, + "probability": 0.8101 + }, + { + "start": 41848.36, + "end": 41849.6, + "probability": 0.7551 + }, + { + "start": 41849.76, + "end": 41850.18, + "probability": 0.6954 + }, + { + "start": 41851.48, + "end": 41856.18, + "probability": 0.9078 + }, + { + "start": 41856.26, + "end": 41859.14, + "probability": 0.9876 + }, + { + "start": 41859.34, + "end": 41860.02, + "probability": 0.7479 + }, + { + "start": 41860.08, + "end": 41861.58, + "probability": 0.9212 + }, + { + "start": 41862.08, + "end": 41862.62, + "probability": 0.8184 + }, + { + "start": 41863.56, + "end": 41864.58, + "probability": 0.9937 + }, + { + "start": 41864.66, + "end": 41868.23, + "probability": 0.9922 + }, + { + "start": 41868.74, + "end": 41874.28, + "probability": 0.9862 + }, + { + "start": 41875.58, + "end": 41877.18, + "probability": 0.879 + }, + { + "start": 41877.7, + "end": 41878.58, + "probability": 0.4772 + }, + { + "start": 41879.28, + "end": 41881.6, + "probability": 0.8965 + }, + { + "start": 41882.44, + "end": 41887.04, + "probability": 0.9928 + }, + { + "start": 41887.72, + "end": 41890.88, + "probability": 0.9985 + }, + { + "start": 41890.88, + "end": 41894.68, + "probability": 0.9973 + }, + { + "start": 41895.18, + "end": 41898.38, + "probability": 0.9959 + }, + { + "start": 41898.86, + "end": 41901.18, + "probability": 0.855 + }, + { + "start": 41901.64, + "end": 41903.18, + "probability": 0.6752 + }, + { + "start": 41903.46, + "end": 41906.98, + "probability": 0.9933 + }, + { + "start": 41907.74, + "end": 41908.3, + "probability": 0.961 + }, + { + "start": 41908.9, + "end": 41909.56, + "probability": 0.9769 + }, + { + "start": 41910.08, + "end": 41912.06, + "probability": 0.9549 + }, + { + "start": 41912.3, + "end": 41912.78, + "probability": 0.555 + }, + { + "start": 41912.8, + "end": 41917.68, + "probability": 0.9967 + }, + { + "start": 41918.22, + "end": 41923.7, + "probability": 0.9536 + }, + { + "start": 41924.16, + "end": 41930.5, + "probability": 0.9912 + }, + { + "start": 41930.8, + "end": 41935.84, + "probability": 0.9974 + }, + { + "start": 41936.14, + "end": 41936.44, + "probability": 0.6739 + }, + { + "start": 41936.64, + "end": 41937.46, + "probability": 0.6371 + }, + { + "start": 41937.82, + "end": 41939.7, + "probability": 0.9827 + }, + { + "start": 41939.7, + "end": 41942.94, + "probability": 0.9125 + }, + { + "start": 41942.94, + "end": 41942.94, + "probability": 0.0152 + }, + { + "start": 41942.94, + "end": 41944.26, + "probability": 0.4866 + }, + { + "start": 41945.1, + "end": 41947.96, + "probability": 0.9678 + }, + { + "start": 41949.34, + "end": 41950.14, + "probability": 0.5396 + }, + { + "start": 41951.28, + "end": 41952.14, + "probability": 0.5155 + }, + { + "start": 41970.98, + "end": 41971.54, + "probability": 0.8524 + }, + { + "start": 41971.8, + "end": 41972.78, + "probability": 0.7565 + }, + { + "start": 41973.16, + "end": 41974.26, + "probability": 0.8415 + }, + { + "start": 41974.42, + "end": 41974.54, + "probability": 0.8016 + }, + { + "start": 41974.76, + "end": 41975.94, + "probability": 0.931 + }, + { + "start": 41976.32, + "end": 41977.42, + "probability": 0.7776 + }, + { + "start": 41978.0, + "end": 41981.36, + "probability": 0.9862 + }, + { + "start": 41982.2, + "end": 41989.2, + "probability": 0.9326 + }, + { + "start": 41989.2, + "end": 41993.14, + "probability": 0.9366 + }, + { + "start": 41994.0, + "end": 41998.5, + "probability": 0.6973 + }, + { + "start": 41998.56, + "end": 42000.74, + "probability": 0.8717 + }, + { + "start": 42002.58, + "end": 42009.16, + "probability": 0.9916 + }, + { + "start": 42010.26, + "end": 42013.52, + "probability": 0.8542 + }, + { + "start": 42014.22, + "end": 42017.72, + "probability": 0.8927 + }, + { + "start": 42018.16, + "end": 42018.64, + "probability": 0.915 + }, + { + "start": 42019.5, + "end": 42023.02, + "probability": 0.9456 + }, + { + "start": 42023.72, + "end": 42033.38, + "probability": 0.9962 + }, + { + "start": 42034.2, + "end": 42037.68, + "probability": 0.9779 + }, + { + "start": 42038.66, + "end": 42042.02, + "probability": 0.6376 + }, + { + "start": 42042.94, + "end": 42046.82, + "probability": 0.9907 + }, + { + "start": 42047.52, + "end": 42048.7, + "probability": 0.9412 + }, + { + "start": 42049.18, + "end": 42051.96, + "probability": 0.9535 + }, + { + "start": 42053.3, + "end": 42055.76, + "probability": 0.9892 + }, + { + "start": 42057.26, + "end": 42058.36, + "probability": 0.5966 + }, + { + "start": 42058.48, + "end": 42059.62, + "probability": 0.9258 + }, + { + "start": 42060.22, + "end": 42064.26, + "probability": 0.9997 + }, + { + "start": 42065.96, + "end": 42069.38, + "probability": 0.9954 + }, + { + "start": 42069.46, + "end": 42074.3, + "probability": 0.9427 + }, + { + "start": 42077.32, + "end": 42083.96, + "probability": 0.9724 + }, + { + "start": 42084.04, + "end": 42088.0, + "probability": 0.9135 + }, + { + "start": 42088.42, + "end": 42093.16, + "probability": 0.9657 + }, + { + "start": 42095.7, + "end": 42098.9, + "probability": 0.9467 + }, + { + "start": 42098.94, + "end": 42104.81, + "probability": 0.8389 + }, + { + "start": 42106.1, + "end": 42106.86, + "probability": 0.6565 + }, + { + "start": 42107.28, + "end": 42109.92, + "probability": 0.9224 + }, + { + "start": 42110.18, + "end": 42111.12, + "probability": 0.7625 + }, + { + "start": 42111.42, + "end": 42114.1, + "probability": 0.9971 + }, + { + "start": 42115.82, + "end": 42123.74, + "probability": 0.8487 + }, + { + "start": 42125.16, + "end": 42127.23, + "probability": 0.8411 + }, + { + "start": 42127.98, + "end": 42133.7, + "probability": 0.7889 + }, + { + "start": 42134.84, + "end": 42138.92, + "probability": 0.9973 + }, + { + "start": 42140.82, + "end": 42145.44, + "probability": 0.9187 + }, + { + "start": 42145.44, + "end": 42151.56, + "probability": 0.9966 + }, + { + "start": 42152.54, + "end": 42162.05, + "probability": 0.9756 + }, + { + "start": 42162.24, + "end": 42163.5, + "probability": 0.4089 + }, + { + "start": 42163.62, + "end": 42175.34, + "probability": 0.9395 + }, + { + "start": 42176.16, + "end": 42177.12, + "probability": 0.7184 + }, + { + "start": 42178.54, + "end": 42183.1, + "probability": 0.8193 + }, + { + "start": 42183.16, + "end": 42187.84, + "probability": 0.9612 + }, + { + "start": 42188.34, + "end": 42193.0, + "probability": 0.9189 + }, + { + "start": 42193.72, + "end": 42197.83, + "probability": 0.9128 + }, + { + "start": 42198.14, + "end": 42200.26, + "probability": 0.7188 + }, + { + "start": 42200.38, + "end": 42202.72, + "probability": 0.9876 + }, + { + "start": 42202.72, + "end": 42207.7, + "probability": 0.981 + }, + { + "start": 42208.04, + "end": 42209.16, + "probability": 0.6167 + }, + { + "start": 42209.18, + "end": 42211.24, + "probability": 0.9097 + }, + { + "start": 42212.84, + "end": 42217.16, + "probability": 0.7476 + }, + { + "start": 42217.16, + "end": 42220.9, + "probability": 0.996 + }, + { + "start": 42221.64, + "end": 42223.92, + "probability": 0.6859 + }, + { + "start": 42224.02, + "end": 42224.66, + "probability": 0.9159 + }, + { + "start": 42227.46, + "end": 42230.6, + "probability": 0.9768 + }, + { + "start": 42230.6, + "end": 42234.66, + "probability": 0.9863 + }, + { + "start": 42234.76, + "end": 42239.9, + "probability": 0.8098 + }, + { + "start": 42239.98, + "end": 42241.42, + "probability": 0.9947 + }, + { + "start": 42242.08, + "end": 42246.12, + "probability": 0.894 + }, + { + "start": 42246.82, + "end": 42252.76, + "probability": 0.9912 + }, + { + "start": 42253.14, + "end": 42253.68, + "probability": 0.6375 + }, + { + "start": 42253.86, + "end": 42254.28, + "probability": 0.7343 + }, + { + "start": 42254.68, + "end": 42259.2, + "probability": 0.5161 + }, + { + "start": 42259.32, + "end": 42259.96, + "probability": 0.8843 + }, + { + "start": 42261.94, + "end": 42264.46, + "probability": 0.9181 + }, + { + "start": 42265.26, + "end": 42270.04, + "probability": 0.9696 + }, + { + "start": 42272.0, + "end": 42273.22, + "probability": 0.9075 + }, + { + "start": 42275.26, + "end": 42277.82, + "probability": 0.7775 + }, + { + "start": 42278.32, + "end": 42281.86, + "probability": 0.3114 + }, + { + "start": 42281.96, + "end": 42281.96, + "probability": 0.6149 + }, + { + "start": 42281.96, + "end": 42285.16, + "probability": 0.6362 + }, + { + "start": 42287.47, + "end": 42289.0, + "probability": 0.0215 + }, + { + "start": 42289.14, + "end": 42289.14, + "probability": 0.0403 + }, + { + "start": 42289.14, + "end": 42289.14, + "probability": 0.0489 + }, + { + "start": 42289.14, + "end": 42289.14, + "probability": 0.3057 + }, + { + "start": 42289.14, + "end": 42290.66, + "probability": 0.7782 + }, + { + "start": 42291.23, + "end": 42292.0, + "probability": 0.3224 + }, + { + "start": 42292.16, + "end": 42299.1, + "probability": 0.9839 + }, + { + "start": 42299.5, + "end": 42300.06, + "probability": 0.5643 + }, + { + "start": 42300.14, + "end": 42304.28, + "probability": 0.9769 + }, + { + "start": 42304.48, + "end": 42305.82, + "probability": 0.7489 + }, + { + "start": 42305.94, + "end": 42307.5, + "probability": 0.8908 + }, + { + "start": 42308.22, + "end": 42312.34, + "probability": 0.9739 + }, + { + "start": 42312.34, + "end": 42316.66, + "probability": 0.8005 + }, + { + "start": 42319.06, + "end": 42321.74, + "probability": 0.9734 + }, + { + "start": 42321.74, + "end": 42324.6, + "probability": 0.9432 + }, + { + "start": 42325.18, + "end": 42327.42, + "probability": 0.9225 + }, + { + "start": 42327.96, + "end": 42328.22, + "probability": 0.3631 + }, + { + "start": 42329.02, + "end": 42330.16, + "probability": 0.8227 + }, + { + "start": 42331.18, + "end": 42338.58, + "probability": 0.9948 + }, + { + "start": 42339.1, + "end": 42345.86, + "probability": 0.9242 + }, + { + "start": 42346.02, + "end": 42351.76, + "probability": 0.9817 + }, + { + "start": 42352.34, + "end": 42354.41, + "probability": 0.9895 + }, + { + "start": 42355.34, + "end": 42357.82, + "probability": 0.9294 + }, + { + "start": 42358.56, + "end": 42361.24, + "probability": 0.9506 + }, + { + "start": 42362.06, + "end": 42364.52, + "probability": 0.5055 + }, + { + "start": 42364.64, + "end": 42365.91, + "probability": 0.8998 + }, + { + "start": 42366.12, + "end": 42367.98, + "probability": 0.9805 + }, + { + "start": 42368.06, + "end": 42370.8, + "probability": 0.981 + }, + { + "start": 42371.58, + "end": 42374.5, + "probability": 0.6239 + }, + { + "start": 42374.58, + "end": 42380.88, + "probability": 0.8592 + }, + { + "start": 42381.5, + "end": 42383.72, + "probability": 0.6621 + }, + { + "start": 42384.3, + "end": 42389.6, + "probability": 0.9911 + }, + { + "start": 42390.24, + "end": 42390.88, + "probability": 0.5239 + }, + { + "start": 42391.02, + "end": 42395.24, + "probability": 0.9956 + }, + { + "start": 42395.86, + "end": 42398.16, + "probability": 0.8782 + }, + { + "start": 42398.76, + "end": 42404.28, + "probability": 0.6917 + }, + { + "start": 42404.76, + "end": 42407.92, + "probability": 0.9941 + }, + { + "start": 42408.58, + "end": 42412.86, + "probability": 0.9888 + }, + { + "start": 42412.96, + "end": 42413.52, + "probability": 0.7873 + }, + { + "start": 42414.68, + "end": 42416.2, + "probability": 0.8762 + }, + { + "start": 42416.28, + "end": 42418.2, + "probability": 0.8708 + }, + { + "start": 42418.5, + "end": 42420.1, + "probability": 0.6679 + }, + { + "start": 42420.56, + "end": 42423.8, + "probability": 0.9185 + }, + { + "start": 42445.42, + "end": 42447.9, + "probability": 0.7359 + }, + { + "start": 42449.36, + "end": 42451.68, + "probability": 0.9919 + }, + { + "start": 42451.68, + "end": 42455.56, + "probability": 0.9944 + }, + { + "start": 42456.66, + "end": 42463.04, + "probability": 0.9873 + }, + { + "start": 42463.04, + "end": 42468.5, + "probability": 0.9974 + }, + { + "start": 42473.52, + "end": 42474.84, + "probability": 0.7324 + }, + { + "start": 42475.88, + "end": 42477.64, + "probability": 0.6348 + }, + { + "start": 42477.68, + "end": 42481.26, + "probability": 0.949 + }, + { + "start": 42481.5, + "end": 42481.96, + "probability": 0.8698 + }, + { + "start": 42482.7, + "end": 42484.94, + "probability": 0.045 + }, + { + "start": 42487.62, + "end": 42488.58, + "probability": 0.3464 + }, + { + "start": 42505.4, + "end": 42508.68, + "probability": 0.8631 + }, + { + "start": 42509.38, + "end": 42514.62, + "probability": 0.9829 + }, + { + "start": 42515.4, + "end": 42518.82, + "probability": 0.6428 + }, + { + "start": 42520.0, + "end": 42528.17, + "probability": 0.9966 + }, + { + "start": 42528.72, + "end": 42534.06, + "probability": 0.9905 + }, + { + "start": 42537.04, + "end": 42538.18, + "probability": 0.8547 + }, + { + "start": 42538.26, + "end": 42541.88, + "probability": 0.9572 + }, + { + "start": 42541.92, + "end": 42543.38, + "probability": 0.7469 + }, + { + "start": 42544.18, + "end": 42547.44, + "probability": 0.7031 + }, + { + "start": 42548.18, + "end": 42554.32, + "probability": 0.9906 + }, + { + "start": 42555.32, + "end": 42557.96, + "probability": 0.9954 + }, + { + "start": 42557.96, + "end": 42562.1, + "probability": 0.9979 + }, + { + "start": 42562.2, + "end": 42562.76, + "probability": 0.9487 + }, + { + "start": 42562.92, + "end": 42564.29, + "probability": 0.8049 + }, + { + "start": 42565.24, + "end": 42566.46, + "probability": 0.8277 + }, + { + "start": 42567.16, + "end": 42568.4, + "probability": 0.9451 + }, + { + "start": 42571.14, + "end": 42572.44, + "probability": 0.3059 + }, + { + "start": 42572.44, + "end": 42572.74, + "probability": 0.3405 + }, + { + "start": 42572.74, + "end": 42572.74, + "probability": 0.5435 + }, + { + "start": 42572.74, + "end": 42573.72, + "probability": 0.6191 + }, + { + "start": 42573.76, + "end": 42576.02, + "probability": 0.9514 + }, + { + "start": 42576.32, + "end": 42579.3, + "probability": 0.8934 + }, + { + "start": 42579.5, + "end": 42579.62, + "probability": 0.0029 + }, + { + "start": 42580.84, + "end": 42585.16, + "probability": 0.0575 + }, + { + "start": 42585.16, + "end": 42585.16, + "probability": 0.0426 + }, + { + "start": 42585.16, + "end": 42585.16, + "probability": 0.5385 + }, + { + "start": 42585.16, + "end": 42585.52, + "probability": 0.0601 + }, + { + "start": 42585.52, + "end": 42586.93, + "probability": 0.4326 + }, + { + "start": 42587.36, + "end": 42593.56, + "probability": 0.9302 + }, + { + "start": 42594.02, + "end": 42594.02, + "probability": 0.3778 + }, + { + "start": 42594.02, + "end": 42595.64, + "probability": 0.9864 + }, + { + "start": 42597.24, + "end": 42599.54, + "probability": 0.8994 + }, + { + "start": 42599.66, + "end": 42601.23, + "probability": 0.9725 + }, + { + "start": 42602.44, + "end": 42606.06, + "probability": 0.7856 + }, + { + "start": 42606.62, + "end": 42609.36, + "probability": 0.9627 + }, + { + "start": 42610.02, + "end": 42612.5, + "probability": 0.9833 + }, + { + "start": 42613.1, + "end": 42615.68, + "probability": 0.9785 + }, + { + "start": 42616.24, + "end": 42618.18, + "probability": 0.7505 + }, + { + "start": 42619.22, + "end": 42620.86, + "probability": 0.9237 + }, + { + "start": 42621.44, + "end": 42623.68, + "probability": 0.9821 + }, + { + "start": 42624.82, + "end": 42626.14, + "probability": 0.9834 + }, + { + "start": 42626.68, + "end": 42628.64, + "probability": 0.9917 + }, + { + "start": 42631.04, + "end": 42632.16, + "probability": 0.0493 + }, + { + "start": 42632.16, + "end": 42636.54, + "probability": 0.9952 + }, + { + "start": 42638.36, + "end": 42639.14, + "probability": 0.9507 + }, + { + "start": 42639.26, + "end": 42643.46, + "probability": 0.9183 + }, + { + "start": 42644.5, + "end": 42647.32, + "probability": 0.9689 + }, + { + "start": 42648.36, + "end": 42652.92, + "probability": 0.3385 + }, + { + "start": 42653.14, + "end": 42656.66, + "probability": 0.9966 + }, + { + "start": 42656.66, + "end": 42659.9, + "probability": 0.9961 + }, + { + "start": 42660.3, + "end": 42662.08, + "probability": 0.9754 + }, + { + "start": 42663.1, + "end": 42664.52, + "probability": 0.979 + }, + { + "start": 42665.4, + "end": 42667.54, + "probability": 0.8701 + }, + { + "start": 42668.0, + "end": 42670.66, + "probability": 0.9552 + }, + { + "start": 42671.68, + "end": 42675.1, + "probability": 0.9102 + }, + { + "start": 42676.18, + "end": 42678.22, + "probability": 0.9671 + }, + { + "start": 42678.82, + "end": 42680.08, + "probability": 0.8917 + }, + { + "start": 42680.92, + "end": 42681.48, + "probability": 0.0307 + }, + { + "start": 42681.48, + "end": 42682.32, + "probability": 0.79 + }, + { + "start": 42682.46, + "end": 42682.98, + "probability": 0.9858 + }, + { + "start": 42684.26, + "end": 42687.86, + "probability": 0.9097 + }, + { + "start": 42689.02, + "end": 42689.44, + "probability": 0.2722 + }, + { + "start": 42690.04, + "end": 42691.56, + "probability": 0.4384 + }, + { + "start": 42691.56, + "end": 42694.28, + "probability": 0.013 + }, + { + "start": 42694.46, + "end": 42697.42, + "probability": 0.4815 + }, + { + "start": 42700.3, + "end": 42700.3, + "probability": 0.0251 + }, + { + "start": 42700.3, + "end": 42700.3, + "probability": 0.015 + }, + { + "start": 42700.3, + "end": 42700.3, + "probability": 0.12 + }, + { + "start": 42700.3, + "end": 42700.3, + "probability": 0.1825 + }, + { + "start": 42700.3, + "end": 42702.62, + "probability": 0.5303 + }, + { + "start": 42703.22, + "end": 42704.15, + "probability": 0.6682 + }, + { + "start": 42704.86, + "end": 42705.48, + "probability": 0.5953 + }, + { + "start": 42705.78, + "end": 42708.76, + "probability": 0.9933 + }, + { + "start": 42709.1, + "end": 42711.46, + "probability": 0.9766 + }, + { + "start": 42711.46, + "end": 42714.78, + "probability": 0.9656 + }, + { + "start": 42715.95, + "end": 42718.36, + "probability": 0.9582 + }, + { + "start": 42719.36, + "end": 42720.08, + "probability": 0.5359 + }, + { + "start": 42720.16, + "end": 42724.92, + "probability": 0.853 + }, + { + "start": 42725.32, + "end": 42728.12, + "probability": 0.9015 + }, + { + "start": 42728.54, + "end": 42732.38, + "probability": 0.5983 + }, + { + "start": 42732.42, + "end": 42732.94, + "probability": 0.8557 + }, + { + "start": 42733.06, + "end": 42733.66, + "probability": 0.3249 + }, + { + "start": 42734.06, + "end": 42739.24, + "probability": 0.8741 + }, + { + "start": 42739.4, + "end": 42741.08, + "probability": 0.6797 + }, + { + "start": 42741.14, + "end": 42743.24, + "probability": 0.3471 + }, + { + "start": 42743.48, + "end": 42744.3, + "probability": 0.6699 + }, + { + "start": 42745.28, + "end": 42746.34, + "probability": 0.709 + }, + { + "start": 42746.52, + "end": 42748.34, + "probability": 0.9554 + }, + { + "start": 42748.76, + "end": 42750.12, + "probability": 0.9215 + }, + { + "start": 42751.08, + "end": 42752.74, + "probability": 0.9756 + }, + { + "start": 42753.9, + "end": 42755.08, + "probability": 0.6455 + }, + { + "start": 42756.42, + "end": 42758.76, + "probability": 0.8894 + }, + { + "start": 42759.54, + "end": 42761.22, + "probability": 0.9307 + }, + { + "start": 42761.94, + "end": 42763.46, + "probability": 0.5622 + }, + { + "start": 42764.46, + "end": 42766.28, + "probability": 0.9694 + }, + { + "start": 42766.48, + "end": 42769.75, + "probability": 0.9225 + }, + { + "start": 42771.06, + "end": 42775.08, + "probability": 0.7512 + }, + { + "start": 42776.72, + "end": 42778.2, + "probability": 0.9618 + }, + { + "start": 42780.31, + "end": 42783.06, + "probability": 0.8217 + }, + { + "start": 42783.72, + "end": 42787.18, + "probability": 0.5335 + }, + { + "start": 42787.76, + "end": 42787.98, + "probability": 0.5067 + }, + { + "start": 42788.9, + "end": 42789.88, + "probability": 0.761 + }, + { + "start": 42791.2, + "end": 42792.98, + "probability": 0.9323 + }, + { + "start": 42804.58, + "end": 42808.56, + "probability": 0.4256 + }, + { + "start": 42808.78, + "end": 42810.42, + "probability": 0.9673 + }, + { + "start": 42810.54, + "end": 42812.18, + "probability": 0.8014 + }, + { + "start": 42813.26, + "end": 42816.7, + "probability": 0.9039 + }, + { + "start": 42818.12, + "end": 42819.58, + "probability": 0.9506 + }, + { + "start": 42819.72, + "end": 42821.78, + "probability": 0.4989 + }, + { + "start": 42821.96, + "end": 42823.56, + "probability": 0.5475 + }, + { + "start": 42825.2, + "end": 42827.02, + "probability": 0.6267 + }, + { + "start": 42828.76, + "end": 42831.88, + "probability": 0.7467 + }, + { + "start": 42831.9, + "end": 42833.3, + "probability": 0.8564 + }, + { + "start": 42833.36, + "end": 42834.78, + "probability": 0.9248 + }, + { + "start": 42834.86, + "end": 42836.16, + "probability": 0.9015 + }, + { + "start": 42836.24, + "end": 42838.26, + "probability": 0.7575 + }, + { + "start": 42838.3, + "end": 42839.66, + "probability": 0.9767 + }, + { + "start": 42839.8, + "end": 42841.08, + "probability": 0.9459 + }, + { + "start": 42841.66, + "end": 42843.24, + "probability": 0.9899 + }, + { + "start": 42843.84, + "end": 42845.48, + "probability": 0.9691 + }, + { + "start": 42846.31, + "end": 42849.98, + "probability": 0.9485 + }, + { + "start": 42850.86, + "end": 42854.4, + "probability": 0.9453 + }, + { + "start": 42854.56, + "end": 42854.98, + "probability": 0.3101 + }, + { + "start": 42856.2, + "end": 42858.28, + "probability": 0.6941 + }, + { + "start": 42860.14, + "end": 42861.56, + "probability": 0.3299 + }, + { + "start": 42862.16, + "end": 42862.94, + "probability": 0.5698 + }, + { + "start": 42863.64, + "end": 42865.4, + "probability": 0.5189 + }, + { + "start": 42867.32, + "end": 42869.12, + "probability": 0.6433 + }, + { + "start": 42869.16, + "end": 42870.82, + "probability": 0.7764 + }, + { + "start": 42870.86, + "end": 42872.28, + "probability": 0.6908 + }, + { + "start": 42872.28, + "end": 42874.5, + "probability": 0.8769 + }, + { + "start": 42879.48, + "end": 42880.38, + "probability": 0.4006 + }, + { + "start": 42881.04, + "end": 42881.86, + "probability": 0.1317 + }, + { + "start": 42882.68, + "end": 42887.1, + "probability": 0.6288 + }, + { + "start": 42888.08, + "end": 42889.62, + "probability": 0.8248 + }, + { + "start": 42890.48, + "end": 42891.96, + "probability": 0.9644 + }, + { + "start": 42892.06, + "end": 42894.2, + "probability": 0.9738 + }, + { + "start": 42894.2, + "end": 42895.94, + "probability": 0.9771 + }, + { + "start": 42896.04, + "end": 42896.76, + "probability": 0.5548 + }, + { + "start": 42897.42, + "end": 42898.34, + "probability": 0.6252 + }, + { + "start": 42901.46, + "end": 42902.34, + "probability": 0.576 + }, + { + "start": 42903.32, + "end": 42905.42, + "probability": 0.6861 + }, + { + "start": 42907.12, + "end": 42914.28, + "probability": 0.5612 + }, + { + "start": 42915.5, + "end": 42918.68, + "probability": 0.9043 + }, + { + "start": 42919.38, + "end": 42920.46, + "probability": 0.9595 + }, + { + "start": 42921.74, + "end": 42923.7, + "probability": 0.9367 + }, + { + "start": 42923.76, + "end": 42925.12, + "probability": 0.9648 + }, + { + "start": 42925.12, + "end": 42926.68, + "probability": 0.7198 + }, + { + "start": 42926.7, + "end": 42927.9, + "probability": 0.7893 + }, + { + "start": 42927.96, + "end": 42929.0, + "probability": 0.8568 + }, + { + "start": 42929.14, + "end": 42930.5, + "probability": 0.8504 + }, + { + "start": 42930.98, + "end": 42932.68, + "probability": 0.9315 + }, + { + "start": 42932.76, + "end": 42934.26, + "probability": 0.9694 + }, + { + "start": 42934.6, + "end": 42936.46, + "probability": 0.9065 + }, + { + "start": 42937.71, + "end": 42941.02, + "probability": 0.7966 + }, + { + "start": 42941.16, + "end": 42942.7, + "probability": 0.7353 + }, + { + "start": 42942.76, + "end": 42944.34, + "probability": 0.9177 + }, + { + "start": 42944.4, + "end": 42946.66, + "probability": 0.9759 + }, + { + "start": 42946.78, + "end": 42948.72, + "probability": 0.7299 + }, + { + "start": 42949.18, + "end": 42949.9, + "probability": 0.8125 + }, + { + "start": 42951.1, + "end": 42951.88, + "probability": 0.807 + }, + { + "start": 42953.76, + "end": 42953.96, + "probability": 0.5724 + }, + { + "start": 42954.94, + "end": 42956.24, + "probability": 0.5709 + }, + { + "start": 42957.06, + "end": 42961.18, + "probability": 0.6968 + }, + { + "start": 42964.58, + "end": 42968.14, + "probability": 0.9424 + }, + { + "start": 42970.02, + "end": 42971.54, + "probability": 0.9502 + }, + { + "start": 42971.68, + "end": 42973.36, + "probability": 0.9707 + }, + { + "start": 42973.38, + "end": 42978.46, + "probability": 0.8533 + }, + { + "start": 42978.56, + "end": 42980.06, + "probability": 0.9206 + }, + { + "start": 42980.72, + "end": 42982.8, + "probability": 0.8862 + }, + { + "start": 42983.68, + "end": 42985.58, + "probability": 0.8959 + }, + { + "start": 42986.94, + "end": 42988.68, + "probability": 0.9386 + }, + { + "start": 42988.74, + "end": 42990.14, + "probability": 0.881 + }, + { + "start": 42991.02, + "end": 42991.48, + "probability": 0.5659 + }, + { + "start": 42992.56, + "end": 42993.38, + "probability": 0.5945 + }, + { + "start": 42994.64, + "end": 42996.68, + "probability": 0.695 + }, + { + "start": 42996.78, + "end": 42997.92, + "probability": 0.9146 + }, + { + "start": 42997.92, + "end": 42999.1, + "probability": 0.7044 + }, + { + "start": 42999.14, + "end": 43000.46, + "probability": 0.8445 + }, + { + "start": 43000.52, + "end": 43001.04, + "probability": 0.7438 + }, + { + "start": 43001.56, + "end": 43003.76, + "probability": 0.6834 + }, + { + "start": 43004.52, + "end": 43007.64, + "probability": 0.6954 + }, + { + "start": 43008.28, + "end": 43009.08, + "probability": 0.8185 + }, + { + "start": 43009.88, + "end": 43012.56, + "probability": 0.7814 + }, + { + "start": 43014.0, + "end": 43015.74, + "probability": 0.9602 + }, + { + "start": 43017.5, + "end": 43019.68, + "probability": 0.9905 + }, + { + "start": 43020.42, + "end": 43021.26, + "probability": 0.4537 + }, + { + "start": 43022.3, + "end": 43023.52, + "probability": 0.4141 + }, + { + "start": 43024.52, + "end": 43026.92, + "probability": 0.703 + }, + { + "start": 43027.64, + "end": 43028.54, + "probability": 0.8782 + }, + { + "start": 43029.62, + "end": 43031.16, + "probability": 0.9269 + }, + { + "start": 43032.92, + "end": 43038.26, + "probability": 0.9372 + }, + { + "start": 43039.52, + "end": 43042.23, + "probability": 0.9734 + }, + { + "start": 43043.12, + "end": 43045.12, + "probability": 0.6835 + }, + { + "start": 43045.78, + "end": 43047.34, + "probability": 0.8043 + }, + { + "start": 43047.98, + "end": 43049.06, + "probability": 0.6491 + }, + { + "start": 43050.02, + "end": 43050.66, + "probability": 0.8755 + }, + { + "start": 43051.3, + "end": 43052.48, + "probability": 0.8946 + }, + { + "start": 43054.1, + "end": 43058.14, + "probability": 0.9694 + }, + { + "start": 43058.96, + "end": 43061.36, + "probability": 0.9297 + }, + { + "start": 43061.48, + "end": 43062.96, + "probability": 0.833 + }, + { + "start": 43063.04, + "end": 43064.56, + "probability": 0.9701 + }, + { + "start": 43064.6, + "end": 43066.12, + "probability": 0.653 + }, + { + "start": 43066.94, + "end": 43068.88, + "probability": 0.6336 + }, + { + "start": 43068.96, + "end": 43070.52, + "probability": 0.8971 + }, + { + "start": 43070.66, + "end": 43072.54, + "probability": 0.9204 + }, + { + "start": 43072.64, + "end": 43074.22, + "probability": 0.8184 + }, + { + "start": 43074.86, + "end": 43075.26, + "probability": 0.834 + }, + { + "start": 43076.1, + "end": 43077.34, + "probability": 0.8612 + }, + { + "start": 43077.46, + "end": 43078.84, + "probability": 0.7691 + }, + { + "start": 43079.02, + "end": 43082.0, + "probability": 0.3788 + }, + { + "start": 43082.14, + "end": 43084.54, + "probability": 0.9686 + }, + { + "start": 43084.82, + "end": 43085.52, + "probability": 0.3941 + }, + { + "start": 43085.64, + "end": 43087.2, + "probability": 0.7659 + }, + { + "start": 43087.92, + "end": 43089.94, + "probability": 0.118 + }, + { + "start": 43089.94, + "end": 43090.74, + "probability": 0.2962 + }, + { + "start": 43090.74, + "end": 43091.38, + "probability": 0.7988 + }, + { + "start": 43091.9, + "end": 43092.9, + "probability": 0.3959 + }, + { + "start": 43092.9, + "end": 43094.48, + "probability": 0.7304 + }, + { + "start": 43094.54, + "end": 43096.44, + "probability": 0.8184 + }, + { + "start": 43096.5, + "end": 43097.88, + "probability": 0.961 + }, + { + "start": 43098.0, + "end": 43099.86, + "probability": 0.9561 + }, + { + "start": 43100.88, + "end": 43101.7, + "probability": 0.4263 + }, + { + "start": 43102.3, + "end": 43103.86, + "probability": 0.8122 + }, + { + "start": 43104.6, + "end": 43104.9, + "probability": 0.8391 + }, + { + "start": 43106.64, + "end": 43107.74, + "probability": 0.738 + }, + { + "start": 43107.98, + "end": 43109.52, + "probability": 0.9028 + }, + { + "start": 43109.66, + "end": 43111.28, + "probability": 0.8716 + }, + { + "start": 43111.32, + "end": 43112.54, + "probability": 0.8833 + }, + { + "start": 43113.5, + "end": 43113.84, + "probability": 0.9575 + }, + { + "start": 43115.66, + "end": 43116.76, + "probability": 0.9928 + }, + { + "start": 43117.28, + "end": 43119.04, + "probability": 0.8177 + }, + { + "start": 43119.62, + "end": 43119.94, + "probability": 0.5659 + }, + { + "start": 43120.52, + "end": 43124.9, + "probability": 0.7984 + }, + { + "start": 43125.8, + "end": 43128.96, + "probability": 0.9152 + }, + { + "start": 43130.66, + "end": 43133.34, + "probability": 0.7875 + }, + { + "start": 43134.28, + "end": 43137.52, + "probability": 0.8421 + }, + { + "start": 43138.12, + "end": 43139.56, + "probability": 0.8881 + }, + { + "start": 43139.88, + "end": 43141.68, + "probability": 0.7484 + }, + { + "start": 43141.8, + "end": 43143.32, + "probability": 0.9586 + }, + { + "start": 43143.9, + "end": 43145.5, + "probability": 0.9928 + }, + { + "start": 43145.66, + "end": 43146.74, + "probability": 0.9401 + }, + { + "start": 43146.86, + "end": 43148.3, + "probability": 0.9672 + }, + { + "start": 43149.2, + "end": 43150.94, + "probability": 0.6445 + }, + { + "start": 43152.26, + "end": 43155.28, + "probability": 0.8261 + }, + { + "start": 43156.72, + "end": 43158.24, + "probability": 0.7671 + }, + { + "start": 43158.34, + "end": 43160.78, + "probability": 0.7657 + }, + { + "start": 43161.86, + "end": 43163.56, + "probability": 0.727 + }, + { + "start": 43163.6, + "end": 43165.3, + "probability": 0.5613 + }, + { + "start": 43166.1, + "end": 43168.18, + "probability": 0.3829 + }, + { + "start": 43169.2, + "end": 43172.28, + "probability": 0.7932 + }, + { + "start": 43173.44, + "end": 43174.1, + "probability": 0.9705 + }, + { + "start": 43175.2, + "end": 43178.12, + "probability": 0.9343 + }, + { + "start": 43179.22, + "end": 43179.96, + "probability": 0.6275 + }, + { + "start": 43180.94, + "end": 43181.8, + "probability": 0.5073 + }, + { + "start": 43182.88, + "end": 43184.48, + "probability": 0.9466 + }, + { + "start": 43185.28, + "end": 43187.46, + "probability": 0.9516 + }, + { + "start": 43188.1, + "end": 43189.92, + "probability": 0.926 + }, + { + "start": 43191.04, + "end": 43192.26, + "probability": 0.894 + }, + { + "start": 43192.8, + "end": 43194.66, + "probability": 0.7781 + }, + { + "start": 43194.7, + "end": 43196.46, + "probability": 0.9276 + }, + { + "start": 43196.56, + "end": 43197.94, + "probability": 0.784 + }, + { + "start": 43198.08, + "end": 43199.42, + "probability": 0.9013 + }, + { + "start": 43199.52, + "end": 43201.72, + "probability": 0.9287 + }, + { + "start": 43201.8, + "end": 43202.94, + "probability": 0.9592 + }, + { + "start": 43203.36, + "end": 43204.04, + "probability": 0.9867 + }, + { + "start": 43204.6, + "end": 43205.76, + "probability": 0.9011 + }, + { + "start": 43206.96, + "end": 43209.0, + "probability": 0.9535 + }, + { + "start": 43209.22, + "end": 43210.64, + "probability": 0.6122 + }, + { + "start": 43210.84, + "end": 43213.06, + "probability": 0.7908 + }, + { + "start": 43213.72, + "end": 43214.02, + "probability": 0.9329 + }, + { + "start": 43215.76, + "end": 43219.68, + "probability": 0.8957 + }, + { + "start": 43220.38, + "end": 43223.48, + "probability": 0.9484 + }, + { + "start": 43224.38, + "end": 43227.96, + "probability": 0.8241 + }, + { + "start": 43228.58, + "end": 43233.56, + "probability": 0.9365 + }, + { + "start": 43233.7, + "end": 43235.46, + "probability": 0.9529 + }, + { + "start": 43236.2, + "end": 43237.84, + "probability": 0.9309 + }, + { + "start": 43239.3, + "end": 43241.68, + "probability": 0.7938 + }, + { + "start": 43242.54, + "end": 43246.8, + "probability": 0.7964 + }, + { + "start": 43248.02, + "end": 43249.96, + "probability": 0.9219 + }, + { + "start": 43250.1, + "end": 43251.6, + "probability": 0.6365 + }, + { + "start": 43251.76, + "end": 43252.88, + "probability": 0.7518 + }, + { + "start": 43252.98, + "end": 43254.62, + "probability": 0.9112 + }, + { + "start": 43254.7, + "end": 43257.94, + "probability": 0.8974 + }, + { + "start": 43259.9, + "end": 43261.54, + "probability": 0.9706 + }, + { + "start": 43262.68, + "end": 43264.64, + "probability": 0.6635 + }, + { + "start": 43265.48, + "end": 43267.2, + "probability": 0.8371 + }, + { + "start": 43268.04, + "end": 43270.22, + "probability": 0.9504 + }, + { + "start": 43271.18, + "end": 43273.06, + "probability": 0.9455 + }, + { + "start": 43273.98, + "end": 43276.1, + "probability": 0.9546 + }, + { + "start": 43276.96, + "end": 43278.16, + "probability": 0.8852 + }, + { + "start": 43278.92, + "end": 43279.7, + "probability": 0.9545 + }, + { + "start": 43282.52, + "end": 43283.58, + "probability": 0.4892 + }, + { + "start": 43283.66, + "end": 43285.02, + "probability": 0.5699 + }, + { + "start": 43285.16, + "end": 43286.92, + "probability": 0.8838 + }, + { + "start": 43287.38, + "end": 43289.06, + "probability": 0.6736 + }, + { + "start": 43289.12, + "end": 43289.9, + "probability": 0.9393 + }, + { + "start": 43290.66, + "end": 43293.36, + "probability": 0.8997 + }, + { + "start": 43294.02, + "end": 43294.42, + "probability": 0.5312 + }, + { + "start": 43295.32, + "end": 43297.0, + "probability": 0.7684 + }, + { + "start": 43297.96, + "end": 43300.74, + "probability": 0.5263 + }, + { + "start": 43300.9, + "end": 43302.38, + "probability": 0.7463 + }, + { + "start": 43302.56, + "end": 43306.1, + "probability": 0.8851 + }, + { + "start": 43306.24, + "end": 43307.66, + "probability": 0.8077 + }, + { + "start": 43308.8, + "end": 43313.22, + "probability": 0.6148 + }, + { + "start": 43313.6, + "end": 43316.8, + "probability": 0.0281 + }, + { + "start": 43317.4, + "end": 43319.27, + "probability": 0.0259 + }, + { + "start": 43323.8, + "end": 43325.64, + "probability": 0.141 + }, + { + "start": 43327.04, + "end": 43327.66, + "probability": 0.1513 + }, + { + "start": 43330.48, + "end": 43331.54, + "probability": 0.1417 + }, + { + "start": 43334.26, + "end": 43334.94, + "probability": 0.0326 + }, + { + "start": 43334.94, + "end": 43337.26, + "probability": 0.0109 + }, + { + "start": 43337.26, + "end": 43338.26, + "probability": 0.0126 + }, + { + "start": 43338.82, + "end": 43340.64, + "probability": 0.0113 + }, + { + "start": 43342.58, + "end": 43345.26, + "probability": 0.0257 + }, + { + "start": 43347.68, + "end": 43348.16, + "probability": 0.0818 + }, + { + "start": 43351.04, + "end": 43351.82, + "probability": 0.2793 + }, + { + "start": 43351.94, + "end": 43354.42, + "probability": 0.0165 + }, + { + "start": 43361.78, + "end": 43364.32, + "probability": 0.1954 + }, + { + "start": 43364.32, + "end": 43365.37, + "probability": 0.0047 + }, + { + "start": 43409.08, + "end": 43409.2, + "probability": 0.0271 + }, + { + "start": 43409.2, + "end": 43409.2, + "probability": 0.0806 + }, + { + "start": 43409.2, + "end": 43412.01, + "probability": 0.7997 + }, + { + "start": 43413.82, + "end": 43420.12, + "probability": 0.959 + }, + { + "start": 43420.9, + "end": 43422.36, + "probability": 0.9146 + }, + { + "start": 43422.38, + "end": 43423.24, + "probability": 0.7385 + }, + { + "start": 43423.34, + "end": 43423.82, + "probability": 0.269 + }, + { + "start": 43424.64, + "end": 43428.72, + "probability": 0.6826 + }, + { + "start": 43429.54, + "end": 43432.4, + "probability": 0.9668 + }, + { + "start": 43437.64, + "end": 43439.28, + "probability": 0.4988 + }, + { + "start": 43442.72, + "end": 43443.24, + "probability": 0.8336 + }, + { + "start": 43444.12, + "end": 43445.98, + "probability": 0.9856 + }, + { + "start": 43446.0, + "end": 43446.74, + "probability": 0.8322 + }, + { + "start": 43447.8, + "end": 43451.3, + "probability": 0.8758 + }, + { + "start": 43454.04, + "end": 43455.75, + "probability": 0.292 + }, + { + "start": 43455.94, + "end": 43456.36, + "probability": 0.7408 + }, + { + "start": 43456.42, + "end": 43458.92, + "probability": 0.8233 + }, + { + "start": 43459.7, + "end": 43463.34, + "probability": 0.449 + }, + { + "start": 43463.9, + "end": 43466.04, + "probability": 0.8545 + }, + { + "start": 43466.1, + "end": 43467.2, + "probability": 0.6052 + }, + { + "start": 43467.28, + "end": 43468.56, + "probability": 0.9309 + }, + { + "start": 43471.16, + "end": 43474.3, + "probability": 0.1528 + }, + { + "start": 43474.88, + "end": 43475.3, + "probability": 0.272 + }, + { + "start": 43484.24, + "end": 43486.38, + "probability": 0.2519 + }, + { + "start": 43487.39, + "end": 43489.68, + "probability": 0.3252 + }, + { + "start": 43529.62, + "end": 43534.36, + "probability": 0.1426 + }, + { + "start": 43535.26, + "end": 43539.42, + "probability": 0.1041 + }, + { + "start": 43540.07, + "end": 43543.38, + "probability": 0.1482 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.0, + "end": 43654.0, + "probability": 0.0 + }, + { + "start": 43654.24, + "end": 43655.69, + "probability": 0.416 + }, + { + "start": 43656.94, + "end": 43662.24, + "probability": 0.8188 + }, + { + "start": 43663.4, + "end": 43666.98, + "probability": 0.984 + }, + { + "start": 43667.86, + "end": 43672.4, + "probability": 0.9877 + }, + { + "start": 43674.12, + "end": 43676.58, + "probability": 0.7445 + }, + { + "start": 43676.64, + "end": 43679.94, + "probability": 0.5878 + }, + { + "start": 43680.8, + "end": 43682.88, + "probability": 0.9736 + }, + { + "start": 43683.76, + "end": 43688.4, + "probability": 0.9834 + }, + { + "start": 43688.86, + "end": 43690.57, + "probability": 0.9939 + }, + { + "start": 43691.46, + "end": 43694.66, + "probability": 0.7319 + }, + { + "start": 43696.43, + "end": 43702.18, + "probability": 0.9628 + }, + { + "start": 43702.62, + "end": 43705.14, + "probability": 0.953 + }, + { + "start": 43705.6, + "end": 43709.74, + "probability": 0.994 + }, + { + "start": 43710.28, + "end": 43714.34, + "probability": 0.8515 + }, + { + "start": 43714.68, + "end": 43718.16, + "probability": 0.993 + }, + { + "start": 43718.38, + "end": 43718.76, + "probability": 0.7603 + }, + { + "start": 43718.76, + "end": 43719.16, + "probability": 0.6047 + }, + { + "start": 43719.26, + "end": 43721.16, + "probability": 0.8381 + }, + { + "start": 43728.22, + "end": 43729.04, + "probability": 0.6621 + }, + { + "start": 43729.12, + "end": 43730.58, + "probability": 0.806 + }, + { + "start": 43731.16, + "end": 43733.3, + "probability": 0.7249 + }, + { + "start": 43733.32, + "end": 43734.38, + "probability": 0.6124 + }, + { + "start": 43735.4, + "end": 43738.68, + "probability": 0.9927 + }, + { + "start": 43738.76, + "end": 43740.96, + "probability": 0.1259 + }, + { + "start": 43741.54, + "end": 43743.65, + "probability": 0.4982 + }, + { + "start": 43744.22, + "end": 43744.22, + "probability": 0.1979 + }, + { + "start": 43744.22, + "end": 43747.28, + "probability": 0.935 + }, + { + "start": 43747.76, + "end": 43750.6, + "probability": 0.9809 + }, + { + "start": 43751.28, + "end": 43753.88, + "probability": 0.9856 + }, + { + "start": 43754.72, + "end": 43755.4, + "probability": 0.0567 + }, + { + "start": 43755.82, + "end": 43760.5, + "probability": 0.9695 + }, + { + "start": 43760.94, + "end": 43764.42, + "probability": 0.9751 + }, + { + "start": 43764.58, + "end": 43768.28, + "probability": 0.9985 + }, + { + "start": 43768.72, + "end": 43769.63, + "probability": 0.9331 + }, + { + "start": 43770.5, + "end": 43772.3, + "probability": 0.8756 + }, + { + "start": 43772.9, + "end": 43775.16, + "probability": 0.9178 + }, + { + "start": 43775.66, + "end": 43779.36, + "probability": 0.9891 + }, + { + "start": 43779.88, + "end": 43781.94, + "probability": 0.9845 + }, + { + "start": 43782.74, + "end": 43783.92, + "probability": 0.965 + }, + { + "start": 43784.88, + "end": 43789.86, + "probability": 0.9482 + }, + { + "start": 43790.0, + "end": 43790.94, + "probability": 0.8946 + }, + { + "start": 43791.74, + "end": 43792.4, + "probability": 0.7378 + }, + { + "start": 43792.98, + "end": 43793.48, + "probability": 0.7944 + }, + { + "start": 43793.68, + "end": 43794.24, + "probability": 0.8959 + }, + { + "start": 43794.28, + "end": 43795.6, + "probability": 0.9956 + }, + { + "start": 43796.0, + "end": 43796.72, + "probability": 0.8823 + }, + { + "start": 43796.9, + "end": 43797.78, + "probability": 0.8706 + }, + { + "start": 43797.78, + "end": 43800.32, + "probability": 0.8744 + }, + { + "start": 43801.6, + "end": 43804.42, + "probability": 0.9028 + }, + { + "start": 43805.2, + "end": 43807.34, + "probability": 0.933 + }, + { + "start": 43808.2, + "end": 43811.3, + "probability": 0.8197 + }, + { + "start": 43812.16, + "end": 43815.8, + "probability": 0.9535 + }, + { + "start": 43815.8, + "end": 43819.56, + "probability": 0.9775 + }, + { + "start": 43820.54, + "end": 43822.9, + "probability": 0.7998 + }, + { + "start": 43823.46, + "end": 43824.0, + "probability": 0.9531 + }, + { + "start": 43825.62, + "end": 43827.86, + "probability": 0.933 + }, + { + "start": 43828.42, + "end": 43832.74, + "probability": 0.9582 + }, + { + "start": 43833.06, + "end": 43838.18, + "probability": 0.9935 + }, + { + "start": 43838.68, + "end": 43839.96, + "probability": 0.9525 + }, + { + "start": 43840.48, + "end": 43842.62, + "probability": 0.9317 + }, + { + "start": 43843.14, + "end": 43843.4, + "probability": 0.1101 + }, + { + "start": 43843.4, + "end": 43846.24, + "probability": 0.968 + }, + { + "start": 43846.64, + "end": 43849.56, + "probability": 0.8872 + }, + { + "start": 43850.12, + "end": 43854.66, + "probability": 0.9951 + }, + { + "start": 43855.22, + "end": 43859.76, + "probability": 0.9967 + }, + { + "start": 43860.32, + "end": 43863.92, + "probability": 0.9117 + }, + { + "start": 43864.86, + "end": 43867.04, + "probability": 0.8057 + }, + { + "start": 43867.74, + "end": 43869.02, + "probability": 0.8517 + }, + { + "start": 43869.78, + "end": 43874.22, + "probability": 0.9732 + }, + { + "start": 43875.02, + "end": 43876.82, + "probability": 0.7854 + }, + { + "start": 43876.82, + "end": 43877.86, + "probability": 0.9248 + }, + { + "start": 43878.3, + "end": 43879.66, + "probability": 0.9191 + }, + { + "start": 43880.06, + "end": 43886.62, + "probability": 0.9918 + }, + { + "start": 43886.88, + "end": 43887.14, + "probability": 0.7693 + }, + { + "start": 43887.86, + "end": 43888.38, + "probability": 0.67 + }, + { + "start": 43888.5, + "end": 43890.5, + "probability": 0.9391 + }, + { + "start": 43913.56, + "end": 43914.3, + "probability": 0.5185 + }, + { + "start": 43914.46, + "end": 43915.3, + "probability": 0.6916 + }, + { + "start": 43915.32, + "end": 43915.76, + "probability": 0.7175 + }, + { + "start": 43915.8, + "end": 43919.38, + "probability": 0.9915 + }, + { + "start": 43920.07, + "end": 43923.48, + "probability": 0.9956 + }, + { + "start": 43923.88, + "end": 43924.98, + "probability": 0.9884 + }, + { + "start": 43925.28, + "end": 43925.96, + "probability": 0.6765 + }, + { + "start": 43926.12, + "end": 43926.8, + "probability": 0.7789 + }, + { + "start": 43926.82, + "end": 43934.86, + "probability": 0.9806 + }, + { + "start": 43936.14, + "end": 43937.22, + "probability": 0.6971 + }, + { + "start": 43937.8, + "end": 43939.9, + "probability": 0.9316 + }, + { + "start": 43940.62, + "end": 43942.21, + "probability": 0.9776 + }, + { + "start": 43942.42, + "end": 43945.54, + "probability": 0.9865 + }, + { + "start": 43946.5, + "end": 43948.26, + "probability": 0.4846 + }, + { + "start": 43949.58, + "end": 43951.08, + "probability": 0.7894 + }, + { + "start": 43951.9, + "end": 43953.86, + "probability": 0.77 + }, + { + "start": 43954.24, + "end": 43958.66, + "probability": 0.9982 + }, + { + "start": 43959.5, + "end": 43962.16, + "probability": 0.9619 + }, + { + "start": 43962.74, + "end": 43965.26, + "probability": 0.9991 + }, + { + "start": 43965.26, + "end": 43968.72, + "probability": 0.9829 + }, + { + "start": 43969.58, + "end": 43975.2, + "probability": 0.9944 + }, + { + "start": 43976.12, + "end": 43981.32, + "probability": 0.9871 + }, + { + "start": 43982.46, + "end": 43987.96, + "probability": 0.98 + }, + { + "start": 43988.66, + "end": 43991.94, + "probability": 0.902 + }, + { + "start": 43992.64, + "end": 43995.22, + "probability": 0.8643 + }, + { + "start": 43995.88, + "end": 43997.24, + "probability": 0.3079 + }, + { + "start": 43998.48, + "end": 44000.36, + "probability": 0.9281 + }, + { + "start": 44001.14, + "end": 44007.06, + "probability": 0.9677 + }, + { + "start": 44007.82, + "end": 44014.2, + "probability": 0.8798 + }, + { + "start": 44014.8, + "end": 44017.34, + "probability": 0.9894 + }, + { + "start": 44018.46, + "end": 44019.26, + "probability": 0.7382 + }, + { + "start": 44019.38, + "end": 44020.08, + "probability": 0.6735 + }, + { + "start": 44020.22, + "end": 44024.0, + "probability": 0.998 + }, + { + "start": 44024.0, + "end": 44027.6, + "probability": 0.8279 + }, + { + "start": 44028.22, + "end": 44030.1, + "probability": 0.7778 + }, + { + "start": 44030.6, + "end": 44033.18, + "probability": 0.9777 + }, + { + "start": 44034.08, + "end": 44036.2, + "probability": 0.992 + }, + { + "start": 44036.8, + "end": 44037.87, + "probability": 0.7148 + }, + { + "start": 44039.12, + "end": 44044.54, + "probability": 0.9807 + }, + { + "start": 44045.18, + "end": 44050.3, + "probability": 0.975 + }, + { + "start": 44051.32, + "end": 44053.98, + "probability": 0.8909 + }, + { + "start": 44054.94, + "end": 44061.34, + "probability": 0.9958 + }, + { + "start": 44062.24, + "end": 44066.7, + "probability": 0.9784 + }, + { + "start": 44067.42, + "end": 44069.1, + "probability": 0.8376 + }, + { + "start": 44070.4, + "end": 44074.96, + "probability": 0.9531 + }, + { + "start": 44076.0, + "end": 44078.26, + "probability": 0.9811 + }, + { + "start": 44079.06, + "end": 44082.86, + "probability": 0.9961 + }, + { + "start": 44083.6, + "end": 44085.0, + "probability": 0.9946 + }, + { + "start": 44086.14, + "end": 44089.52, + "probability": 0.9355 + }, + { + "start": 44090.62, + "end": 44092.94, + "probability": 0.9146 + }, + { + "start": 44093.82, + "end": 44098.36, + "probability": 0.9764 + }, + { + "start": 44098.92, + "end": 44102.04, + "probability": 0.9274 + }, + { + "start": 44103.56, + "end": 44105.46, + "probability": 0.7625 + }, + { + "start": 44105.48, + "end": 44109.1, + "probability": 0.9698 + }, + { + "start": 44109.22, + "end": 44110.48, + "probability": 0.9551 + }, + { + "start": 44111.24, + "end": 44112.1, + "probability": 0.8663 + }, + { + "start": 44112.18, + "end": 44115.5, + "probability": 0.9818 + }, + { + "start": 44115.5, + "end": 44118.52, + "probability": 0.994 + }, + { + "start": 44118.98, + "end": 44120.12, + "probability": 0.8596 + }, + { + "start": 44121.28, + "end": 44124.6, + "probability": 0.9767 + }, + { + "start": 44124.72, + "end": 44124.74, + "probability": 0.2496 + }, + { + "start": 44124.74, + "end": 44125.44, + "probability": 0.4076 + }, + { + "start": 44126.0, + "end": 44128.98, + "probability": 0.9856 + }, + { + "start": 44130.42, + "end": 44135.09, + "probability": 0.8828 + }, + { + "start": 44136.32, + "end": 44139.96, + "probability": 0.9967 + }, + { + "start": 44140.34, + "end": 44141.64, + "probability": 0.736 + }, + { + "start": 44142.12, + "end": 44142.12, + "probability": 0.4863 + }, + { + "start": 44142.12, + "end": 44145.06, + "probability": 0.8276 + }, + { + "start": 44152.54, + "end": 44153.56, + "probability": 0.546 + }, + { + "start": 44154.72, + "end": 44159.26, + "probability": 0.9075 + }, + { + "start": 44159.76, + "end": 44161.78, + "probability": 0.938 + }, + { + "start": 44161.9, + "end": 44163.96, + "probability": 0.9 + }, + { + "start": 44165.4, + "end": 44169.68, + "probability": 0.9861 + }, + { + "start": 44169.68, + "end": 44174.12, + "probability": 0.6289 + }, + { + "start": 44174.34, + "end": 44176.06, + "probability": 0.9971 + }, + { + "start": 44177.12, + "end": 44178.9, + "probability": 0.9222 + }, + { + "start": 44179.46, + "end": 44181.02, + "probability": 0.9933 + }, + { + "start": 44181.14, + "end": 44182.2, + "probability": 0.7841 + }, + { + "start": 44182.28, + "end": 44189.94, + "probability": 0.9851 + }, + { + "start": 44191.7, + "end": 44196.1, + "probability": 0.4802 + }, + { + "start": 44196.14, + "end": 44198.38, + "probability": 0.7899 + }, + { + "start": 44199.06, + "end": 44202.52, + "probability": 0.9137 + }, + { + "start": 44202.88, + "end": 44206.46, + "probability": 0.8074 + }, + { + "start": 44207.0, + "end": 44208.4, + "probability": 0.7375 + }, + { + "start": 44208.72, + "end": 44211.42, + "probability": 0.937 + }, + { + "start": 44212.12, + "end": 44213.46, + "probability": 0.7239 + }, + { + "start": 44214.3, + "end": 44217.72, + "probability": 0.9456 + }, + { + "start": 44217.72, + "end": 44221.54, + "probability": 0.9671 + }, + { + "start": 44221.64, + "end": 44222.08, + "probability": 0.7897 + }, + { + "start": 44223.62, + "end": 44224.56, + "probability": 0.7509 + }, + { + "start": 44225.12, + "end": 44226.06, + "probability": 0.8538 + }, + { + "start": 44226.22, + "end": 44230.26, + "probability": 0.7798 + }, + { + "start": 44231.26, + "end": 44233.18, + "probability": 0.8928 + }, + { + "start": 44233.76, + "end": 44234.0, + "probability": 0.5226 + }, + { + "start": 44234.06, + "end": 44237.76, + "probability": 0.8778 + }, + { + "start": 44237.9, + "end": 44238.38, + "probability": 0.8834 + }, + { + "start": 44239.36, + "end": 44240.2, + "probability": 0.1142 + }, + { + "start": 44265.28, + "end": 44266.68, + "probability": 0.7343 + }, + { + "start": 44267.38, + "end": 44268.04, + "probability": 0.6445 + }, + { + "start": 44270.02, + "end": 44272.9, + "probability": 0.9976 + }, + { + "start": 44274.02, + "end": 44277.8, + "probability": 0.9102 + }, + { + "start": 44278.56, + "end": 44281.29, + "probability": 0.9253 + }, + { + "start": 44281.66, + "end": 44284.04, + "probability": 0.9849 + }, + { + "start": 44284.18, + "end": 44285.04, + "probability": 0.8306 + }, + { + "start": 44285.8, + "end": 44287.74, + "probability": 0.9816 + }, + { + "start": 44288.58, + "end": 44291.66, + "probability": 0.9922 + }, + { + "start": 44292.72, + "end": 44294.76, + "probability": 0.838 + }, + { + "start": 44295.76, + "end": 44297.52, + "probability": 0.8748 + }, + { + "start": 44298.24, + "end": 44300.32, + "probability": 0.7582 + }, + { + "start": 44301.06, + "end": 44301.4, + "probability": 0.7848 + }, + { + "start": 44303.16, + "end": 44306.2, + "probability": 0.9962 + }, + { + "start": 44306.92, + "end": 44309.33, + "probability": 0.984 + }, + { + "start": 44310.28, + "end": 44313.12, + "probability": 0.9514 + }, + { + "start": 44314.06, + "end": 44316.24, + "probability": 0.998 + }, + { + "start": 44317.1, + "end": 44318.94, + "probability": 0.8554 + }, + { + "start": 44320.7, + "end": 44323.5, + "probability": 0.9917 + }, + { + "start": 44324.14, + "end": 44324.88, + "probability": 0.782 + }, + { + "start": 44326.56, + "end": 44329.98, + "probability": 0.91 + }, + { + "start": 44330.18, + "end": 44331.64, + "probability": 0.9922 + }, + { + "start": 44332.66, + "end": 44336.2, + "probability": 0.9808 + }, + { + "start": 44336.44, + "end": 44340.84, + "probability": 0.9673 + }, + { + "start": 44341.74, + "end": 44343.64, + "probability": 0.8374 + }, + { + "start": 44345.1, + "end": 44347.14, + "probability": 0.9004 + }, + { + "start": 44348.6, + "end": 44353.78, + "probability": 0.9862 + }, + { + "start": 44353.78, + "end": 44357.84, + "probability": 0.9941 + }, + { + "start": 44359.18, + "end": 44363.32, + "probability": 0.9895 + }, + { + "start": 44364.16, + "end": 44368.82, + "probability": 0.9981 + }, + { + "start": 44369.56, + "end": 44372.06, + "probability": 0.999 + }, + { + "start": 44373.78, + "end": 44374.74, + "probability": 0.5142 + }, + { + "start": 44375.48, + "end": 44377.9, + "probability": 0.9534 + }, + { + "start": 44378.32, + "end": 44378.94, + "probability": 0.6632 + }, + { + "start": 44379.6, + "end": 44382.34, + "probability": 0.9839 + }, + { + "start": 44383.06, + "end": 44385.56, + "probability": 0.9585 + }, + { + "start": 44387.22, + "end": 44390.12, + "probability": 0.7637 + }, + { + "start": 44391.1, + "end": 44394.1, + "probability": 0.9164 + }, + { + "start": 44394.1, + "end": 44396.36, + "probability": 0.9269 + }, + { + "start": 44398.12, + "end": 44405.5, + "probability": 0.9198 + }, + { + "start": 44406.16, + "end": 44408.8, + "probability": 0.9989 + }, + { + "start": 44410.06, + "end": 44413.52, + "probability": 0.9834 + }, + { + "start": 44413.52, + "end": 44420.3, + "probability": 0.9678 + }, + { + "start": 44420.3, + "end": 44423.02, + "probability": 0.9988 + }, + { + "start": 44424.42, + "end": 44428.36, + "probability": 0.9946 + }, + { + "start": 44428.92, + "end": 44430.7, + "probability": 0.9718 + }, + { + "start": 44431.52, + "end": 44433.12, + "probability": 0.9162 + }, + { + "start": 44433.78, + "end": 44435.48, + "probability": 0.987 + }, + { + "start": 44436.94, + "end": 44439.78, + "probability": 0.9102 + }, + { + "start": 44440.5, + "end": 44444.0, + "probability": 0.9716 + }, + { + "start": 44445.24, + "end": 44449.4, + "probability": 0.9919 + }, + { + "start": 44450.24, + "end": 44453.94, + "probability": 0.9949 + }, + { + "start": 44454.58, + "end": 44456.16, + "probability": 0.8562 + }, + { + "start": 44456.82, + "end": 44458.86, + "probability": 0.9971 + }, + { + "start": 44460.4, + "end": 44464.72, + "probability": 0.9658 + }, + { + "start": 44465.42, + "end": 44467.2, + "probability": 0.9758 + }, + { + "start": 44467.96, + "end": 44469.28, + "probability": 0.9688 + }, + { + "start": 44470.12, + "end": 44472.82, + "probability": 0.9939 + }, + { + "start": 44473.5, + "end": 44474.0, + "probability": 0.8944 + }, + { + "start": 44474.96, + "end": 44475.56, + "probability": 0.8677 + }, + { + "start": 44475.94, + "end": 44480.32, + "probability": 0.9708 + }, + { + "start": 44480.32, + "end": 44483.74, + "probability": 0.9902 + }, + { + "start": 44484.94, + "end": 44485.7, + "probability": 0.6509 + }, + { + "start": 44487.86, + "end": 44490.06, + "probability": 0.8812 + }, + { + "start": 44490.06, + "end": 44495.6, + "probability": 0.988 + }, + { + "start": 44496.9, + "end": 44498.9, + "probability": 0.9975 + }, + { + "start": 44499.48, + "end": 44501.3, + "probability": 0.9915 + }, + { + "start": 44502.1, + "end": 44503.52, + "probability": 0.9699 + }, + { + "start": 44505.14, + "end": 44505.52, + "probability": 0.7897 + }, + { + "start": 44505.96, + "end": 44508.3, + "probability": 0.9825 + }, + { + "start": 44508.8, + "end": 44514.64, + "probability": 0.9844 + }, + { + "start": 44514.64, + "end": 44518.96, + "probability": 0.9972 + }, + { + "start": 44520.06, + "end": 44522.18, + "probability": 0.9849 + }, + { + "start": 44523.68, + "end": 44526.38, + "probability": 0.998 + }, + { + "start": 44527.32, + "end": 44531.32, + "probability": 0.9937 + }, + { + "start": 44531.52, + "end": 44533.8, + "probability": 0.9603 + }, + { + "start": 44533.94, + "end": 44536.32, + "probability": 0.998 + }, + { + "start": 44537.36, + "end": 44540.58, + "probability": 0.9615 + }, + { + "start": 44541.36, + "end": 44543.42, + "probability": 0.803 + }, + { + "start": 44544.1, + "end": 44547.88, + "probability": 0.8967 + }, + { + "start": 44548.64, + "end": 44553.14, + "probability": 0.8128 + }, + { + "start": 44554.4, + "end": 44554.82, + "probability": 0.7376 + }, + { + "start": 44555.12, + "end": 44556.05, + "probability": 0.593 + }, + { + "start": 44556.16, + "end": 44557.12, + "probability": 0.8844 + }, + { + "start": 44557.12, + "end": 44557.32, + "probability": 0.7381 + }, + { + "start": 44557.44, + "end": 44560.36, + "probability": 0.9782 + }, + { + "start": 44560.62, + "end": 44560.62, + "probability": 0.0471 + }, + { + "start": 44561.62, + "end": 44562.3, + "probability": 0.086 + }, + { + "start": 44563.16, + "end": 44564.72, + "probability": 0.2125 + }, + { + "start": 44564.84, + "end": 44565.74, + "probability": 0.3717 + }, + { + "start": 44566.04, + "end": 44566.24, + "probability": 0.1856 + }, + { + "start": 44566.98, + "end": 44567.6, + "probability": 0.7513 + }, + { + "start": 44569.62, + "end": 44570.54, + "probability": 0.8388 + }, + { + "start": 44570.72, + "end": 44571.98, + "probability": 0.9515 + }, + { + "start": 44575.43, + "end": 44578.1, + "probability": 0.6175 + }, + { + "start": 44578.62, + "end": 44580.46, + "probability": 0.8197 + }, + { + "start": 44581.08, + "end": 44583.7, + "probability": 0.9877 + }, + { + "start": 44583.7, + "end": 44586.79, + "probability": 0.9966 + }, + { + "start": 44587.72, + "end": 44588.84, + "probability": 0.992 + }, + { + "start": 44588.94, + "end": 44589.62, + "probability": 0.9681 + }, + { + "start": 44589.74, + "end": 44594.56, + "probability": 0.999 + }, + { + "start": 44595.16, + "end": 44596.52, + "probability": 0.9971 + }, + { + "start": 44597.06, + "end": 44600.96, + "probability": 0.9236 + }, + { + "start": 44602.54, + "end": 44606.12, + "probability": 0.9884 + }, + { + "start": 44606.34, + "end": 44608.04, + "probability": 0.9906 + }, + { + "start": 44608.66, + "end": 44609.26, + "probability": 0.7944 + }, + { + "start": 44609.46, + "end": 44611.2, + "probability": 0.9915 + }, + { + "start": 44611.66, + "end": 44615.86, + "probability": 0.9954 + }, + { + "start": 44616.42, + "end": 44620.26, + "probability": 0.9879 + }, + { + "start": 44620.86, + "end": 44621.34, + "probability": 0.571 + }, + { + "start": 44621.4, + "end": 44624.68, + "probability": 0.9888 + }, + { + "start": 44625.5, + "end": 44627.92, + "probability": 0.9608 + }, + { + "start": 44627.92, + "end": 44630.52, + "probability": 0.9983 + }, + { + "start": 44631.26, + "end": 44633.0, + "probability": 0.8593 + }, + { + "start": 44633.86, + "end": 44637.2, + "probability": 0.814 + }, + { + "start": 44637.94, + "end": 44641.22, + "probability": 0.9973 + }, + { + "start": 44641.24, + "end": 44645.62, + "probability": 0.9663 + }, + { + "start": 44645.94, + "end": 44647.78, + "probability": 0.9872 + }, + { + "start": 44648.18, + "end": 44649.8, + "probability": 0.8721 + }, + { + "start": 44649.94, + "end": 44651.14, + "probability": 0.9954 + }, + { + "start": 44651.62, + "end": 44652.34, + "probability": 0.6229 + }, + { + "start": 44652.9, + "end": 44654.39, + "probability": 0.9837 + }, + { + "start": 44655.16, + "end": 44657.18, + "probability": 0.9283 + }, + { + "start": 44657.28, + "end": 44658.64, + "probability": 0.9839 + }, + { + "start": 44659.16, + "end": 44664.78, + "probability": 0.9706 + }, + { + "start": 44665.2, + "end": 44670.68, + "probability": 0.9878 + }, + { + "start": 44671.16, + "end": 44673.04, + "probability": 0.9917 + }, + { + "start": 44673.56, + "end": 44674.34, + "probability": 0.6858 + }, + { + "start": 44674.58, + "end": 44674.84, + "probability": 0.8704 + }, + { + "start": 44674.9, + "end": 44676.04, + "probability": 0.7413 + }, + { + "start": 44676.2, + "end": 44680.23, + "probability": 0.9395 + }, + { + "start": 44681.18, + "end": 44682.32, + "probability": 0.9204 + }, + { + "start": 44682.35, + "end": 44686.54, + "probability": 0.8482 + }, + { + "start": 44687.22, + "end": 44687.96, + "probability": 0.2642 + }, + { + "start": 44688.6, + "end": 44690.26, + "probability": 0.7822 + }, + { + "start": 44690.3, + "end": 44690.58, + "probability": 0.892 + }, + { + "start": 44690.94, + "end": 44691.38, + "probability": 0.4903 + }, + { + "start": 44694.12, + "end": 44695.82, + "probability": 0.5062 + }, + { + "start": 44695.94, + "end": 44697.08, + "probability": 0.7224 + }, + { + "start": 44697.12, + "end": 44699.24, + "probability": 0.6198 + }, + { + "start": 44699.46, + "end": 44702.5, + "probability": 0.8182 + }, + { + "start": 44702.64, + "end": 44704.24, + "probability": 0.954 + }, + { + "start": 44704.32, + "end": 44705.48, + "probability": 0.8507 + }, + { + "start": 44705.62, + "end": 44707.04, + "probability": 0.6796 + }, + { + "start": 44707.1, + "end": 44707.7, + "probability": 0.9238 + }, + { + "start": 44708.42, + "end": 44709.28, + "probability": 0.4235 + }, + { + "start": 44709.46, + "end": 44711.12, + "probability": 0.758 + }, + { + "start": 44711.48, + "end": 44712.6, + "probability": 0.8075 + }, + { + "start": 44712.64, + "end": 44713.96, + "probability": 0.9277 + }, + { + "start": 44714.72, + "end": 44716.3, + "probability": 0.9033 + }, + { + "start": 44716.8, + "end": 44718.5, + "probability": 0.9703 + }, + { + "start": 44718.56, + "end": 44719.92, + "probability": 0.9615 + }, + { + "start": 44720.4, + "end": 44720.8, + "probability": 0.6127 + }, + { + "start": 44722.09, + "end": 44722.66, + "probability": 0.6399 + }, + { + "start": 44722.78, + "end": 44724.04, + "probability": 0.7801 + }, + { + "start": 44724.18, + "end": 44725.34, + "probability": 0.9359 + }, + { + "start": 44725.88, + "end": 44727.36, + "probability": 0.9453 + }, + { + "start": 44728.14, + "end": 44728.48, + "probability": 0.9595 + }, + { + "start": 44729.66, + "end": 44730.64, + "probability": 0.9513 + }, + { + "start": 44737.48, + "end": 44740.92, + "probability": 0.4708 + }, + { + "start": 44741.58, + "end": 44745.72, + "probability": 0.8226 + }, + { + "start": 44746.96, + "end": 44748.58, + "probability": 0.8256 + }, + { + "start": 44748.68, + "end": 44750.48, + "probability": 0.8033 + }, + { + "start": 44750.48, + "end": 44751.88, + "probability": 0.8607 + }, + { + "start": 44752.84, + "end": 44753.12, + "probability": 0.9746 + }, + { + "start": 44756.1, + "end": 44756.8, + "probability": 0.2532 + }, + { + "start": 44756.92, + "end": 44758.56, + "probability": 0.6971 + }, + { + "start": 44758.9, + "end": 44763.44, + "probability": 0.728 + }, + { + "start": 44764.48, + "end": 44765.84, + "probability": 0.9917 + }, + { + "start": 44765.88, + "end": 44767.18, + "probability": 0.7812 + }, + { + "start": 44767.28, + "end": 44768.82, + "probability": 0.9968 + }, + { + "start": 44768.92, + "end": 44770.34, + "probability": 0.9895 + }, + { + "start": 44771.76, + "end": 44773.72, + "probability": 0.3575 + }, + { + "start": 44773.72, + "end": 44774.0, + "probability": 0.755 + }, + { + "start": 44774.4, + "end": 44775.66, + "probability": 0.826 + }, + { + "start": 44775.78, + "end": 44777.06, + "probability": 0.9362 + }, + { + "start": 44777.44, + "end": 44778.74, + "probability": 0.9761 + }, + { + "start": 44778.78, + "end": 44780.06, + "probability": 0.9666 + }, + { + "start": 44780.1, + "end": 44781.38, + "probability": 0.7453 + }, + { + "start": 44781.94, + "end": 44783.28, + "probability": 0.4655 + }, + { + "start": 44783.38, + "end": 44785.5, + "probability": 0.7829 + }, + { + "start": 44786.16, + "end": 44788.98, + "probability": 0.8688 + }, + { + "start": 44796.96, + "end": 44801.24, + "probability": 0.4079 + }, + { + "start": 44801.26, + "end": 44802.98, + "probability": 0.3459 + }, + { + "start": 44803.04, + "end": 44804.68, + "probability": 0.6038 + }, + { + "start": 44804.74, + "end": 44805.96, + "probability": 0.4197 + }, + { + "start": 44806.0, + "end": 44807.62, + "probability": 0.784 + }, + { + "start": 44809.99, + "end": 44812.72, + "probability": 0.5559 + }, + { + "start": 44812.76, + "end": 44816.0, + "probability": 0.6654 + }, + { + "start": 44816.14, + "end": 44817.24, + "probability": 0.8335 + }, + { + "start": 44817.6, + "end": 44818.68, + "probability": 0.8359 + }, + { + "start": 44818.78, + "end": 44820.98, + "probability": 0.9726 + }, + { + "start": 44821.02, + "end": 44822.56, + "probability": 0.7963 + }, + { + "start": 44823.44, + "end": 44825.5, + "probability": 0.9655 + }, + { + "start": 44826.02, + "end": 44828.74, + "probability": 0.8502 + }, + { + "start": 44830.24, + "end": 44833.2, + "probability": 0.8148 + }, + { + "start": 44833.98, + "end": 44835.9, + "probability": 0.9067 + }, + { + "start": 44837.1, + "end": 44838.72, + "probability": 0.9515 + }, + { + "start": 44838.82, + "end": 44839.96, + "probability": 0.9119 + }, + { + "start": 44840.3, + "end": 44842.44, + "probability": 0.7236 + }, + { + "start": 44842.46, + "end": 44843.54, + "probability": 0.8323 + }, + { + "start": 44843.66, + "end": 44845.12, + "probability": 0.8741 + }, + { + "start": 44845.18, + "end": 44846.78, + "probability": 0.9295 + }, + { + "start": 44847.32, + "end": 44849.08, + "probability": 0.9696 + }, + { + "start": 44849.24, + "end": 44850.52, + "probability": 0.961 + }, + { + "start": 44850.62, + "end": 44851.22, + "probability": 0.9661 + }, + { + "start": 44851.9, + "end": 44853.82, + "probability": 0.8436 + }, + { + "start": 44854.64, + "end": 44855.7, + "probability": 0.667 + }, + { + "start": 44855.76, + "end": 44857.56, + "probability": 0.7771 + }, + { + "start": 44857.8, + "end": 44859.54, + "probability": 0.6114 + }, + { + "start": 44864.98, + "end": 44866.64, + "probability": 0.5083 + }, + { + "start": 44867.86, + "end": 44868.88, + "probability": 0.5811 + }, + { + "start": 44869.0, + "end": 44871.06, + "probability": 0.8745 + }, + { + "start": 44871.38, + "end": 44873.3, + "probability": 0.9515 + }, + { + "start": 44875.02, + "end": 44875.72, + "probability": 0.9736 + }, + { + "start": 44876.6, + "end": 44877.88, + "probability": 0.875 + }, + { + "start": 44878.72, + "end": 44879.54, + "probability": 0.9003 + }, + { + "start": 44880.1, + "end": 44883.3, + "probability": 0.8021 + }, + { + "start": 44883.84, + "end": 44884.56, + "probability": 0.8246 + }, + { + "start": 44884.68, + "end": 44885.94, + "probability": 0.8141 + }, + { + "start": 44886.0, + "end": 44887.56, + "probability": 0.8639 + }, + { + "start": 44887.64, + "end": 44889.72, + "probability": 0.8359 + }, + { + "start": 44892.02, + "end": 44892.46, + "probability": 0.9297 + }, + { + "start": 44892.98, + "end": 44894.4, + "probability": 0.9526 + }, + { + "start": 44894.5, + "end": 44896.66, + "probability": 0.9629 + }, + { + "start": 44896.76, + "end": 44899.6, + "probability": 0.8549 + }, + { + "start": 44900.06, + "end": 44902.22, + "probability": 0.7688 + }, + { + "start": 44902.24, + "end": 44903.96, + "probability": 0.8188 + }, + { + "start": 44904.06, + "end": 44905.24, + "probability": 0.693 + }, + { + "start": 44905.32, + "end": 44907.2, + "probability": 0.7765 + }, + { + "start": 44907.24, + "end": 44908.62, + "probability": 0.8568 + }, + { + "start": 44908.68, + "end": 44910.48, + "probability": 0.9814 + }, + { + "start": 44910.6, + "end": 44911.7, + "probability": 0.5781 + }, + { + "start": 44911.82, + "end": 44913.66, + "probability": 0.6608 + }, + { + "start": 44913.68, + "end": 44914.98, + "probability": 0.6628 + }, + { + "start": 44915.04, + "end": 44915.76, + "probability": 0.8327 + }, + { + "start": 44916.38, + "end": 44918.6, + "probability": 0.8513 + }, + { + "start": 44922.18, + "end": 44931.18, + "probability": 0.6026 + }, + { + "start": 44932.34, + "end": 44936.02, + "probability": 0.915 + }, + { + "start": 44937.86, + "end": 44940.94, + "probability": 0.7671 + }, + { + "start": 44941.02, + "end": 44943.8, + "probability": 0.8566 + }, + { + "start": 44944.4, + "end": 44946.16, + "probability": 0.6264 + }, + { + "start": 44946.8, + "end": 44951.54, + "probability": 0.8891 + }, + { + "start": 44952.76, + "end": 44954.26, + "probability": 0.968 + }, + { + "start": 44955.02, + "end": 44958.0, + "probability": 0.9559 + }, + { + "start": 44958.94, + "end": 44959.32, + "probability": 0.9458 + }, + { + "start": 44960.62, + "end": 44961.62, + "probability": 0.8177 + }, + { + "start": 44962.44, + "end": 44964.44, + "probability": 0.9634 + }, + { + "start": 44965.76, + "end": 44967.52, + "probability": 0.7823 + }, + { + "start": 44967.96, + "end": 44970.14, + "probability": 0.638 + }, + { + "start": 44970.2, + "end": 44971.9, + "probability": 0.933 + }, + { + "start": 44971.94, + "end": 44973.74, + "probability": 0.8406 + }, + { + "start": 44973.74, + "end": 44975.6, + "probability": 0.9095 + }, + { + "start": 44975.6, + "end": 44977.22, + "probability": 0.8752 + }, + { + "start": 44978.12, + "end": 44980.7, + "probability": 0.915 + }, + { + "start": 44981.16, + "end": 44982.84, + "probability": 0.8153 + }, + { + "start": 44983.06, + "end": 44984.8, + "probability": 0.771 + }, + { + "start": 44984.98, + "end": 44986.18, + "probability": 0.7731 + }, + { + "start": 44986.26, + "end": 44988.56, + "probability": 0.801 + }, + { + "start": 44988.58, + "end": 44990.72, + "probability": 0.8802 + }, + { + "start": 44991.44, + "end": 44993.54, + "probability": 0.0273 + }, + { + "start": 44993.54, + "end": 44995.22, + "probability": 0.0767 + }, + { + "start": 44995.26, + "end": 44996.57, + "probability": 0.4351 + }, + { + "start": 44996.86, + "end": 44998.72, + "probability": 0.8553 + }, + { + "start": 44998.76, + "end": 45000.16, + "probability": 0.83 + }, + { + "start": 45001.18, + "end": 45002.86, + "probability": 0.7598 + }, + { + "start": 45002.94, + "end": 45007.3, + "probability": 0.4175 + }, + { + "start": 45007.3, + "end": 45007.79, + "probability": 0.6454 + }, + { + "start": 45010.82, + "end": 45012.22, + "probability": 0.8143 + }, + { + "start": 45012.34, + "end": 45013.74, + "probability": 0.9544 + }, + { + "start": 45013.84, + "end": 45015.44, + "probability": 0.9124 + }, + { + "start": 45016.24, + "end": 45017.8, + "probability": 0.833 + }, + { + "start": 45019.82, + "end": 45021.76, + "probability": 0.7677 + }, + { + "start": 45021.76, + "end": 45022.9, + "probability": 0.7219 + }, + { + "start": 45023.02, + "end": 45024.42, + "probability": 0.8551 + }, + { + "start": 45024.52, + "end": 45025.16, + "probability": 0.9291 + }, + { + "start": 45026.18, + "end": 45030.14, + "probability": 0.9776 + }, + { + "start": 45033.42, + "end": 45037.24, + "probability": 0.9412 + }, + { + "start": 45041.0, + "end": 45042.08, + "probability": 0.4041 + }, + { + "start": 45042.18, + "end": 45043.64, + "probability": 0.7291 + }, + { + "start": 45043.86, + "end": 45045.34, + "probability": 0.7839 + }, + { + "start": 45045.44, + "end": 45047.18, + "probability": 0.9211 + }, + { + "start": 45047.24, + "end": 45047.94, + "probability": 0.7922 + }, + { + "start": 45048.66, + "end": 45049.4, + "probability": 0.8942 + }, + { + "start": 45049.54, + "end": 45051.24, + "probability": 0.9904 + }, + { + "start": 45051.34, + "end": 45052.98, + "probability": 0.8844 + }, + { + "start": 45053.1, + "end": 45055.05, + "probability": 0.6028 + }, + { + "start": 45055.72, + "end": 45057.2, + "probability": 0.9794 + }, + { + "start": 45057.28, + "end": 45058.6, + "probability": 0.9263 + }, + { + "start": 45058.68, + "end": 45059.36, + "probability": 0.9053 + }, + { + "start": 45059.92, + "end": 45062.4, + "probability": 0.9631 + }, + { + "start": 45063.16, + "end": 45065.06, + "probability": 0.98 + }, + { + "start": 45065.06, + "end": 45067.14, + "probability": 0.909 + }, + { + "start": 45067.58, + "end": 45069.18, + "probability": 0.3027 + }, + { + "start": 45069.32, + "end": 45070.84, + "probability": 0.7255 + }, + { + "start": 45072.04, + "end": 45074.04, + "probability": 0.8726 + }, + { + "start": 45074.1, + "end": 45075.66, + "probability": 0.6922 + }, + { + "start": 45075.84, + "end": 45078.6, + "probability": 0.8073 + }, + { + "start": 45079.22, + "end": 45081.32, + "probability": 0.4729 + }, + { + "start": 45081.56, + "end": 45082.12, + "probability": 0.4375 + }, + { + "start": 45084.16, + "end": 45087.16, + "probability": 0.8499 + }, + { + "start": 45087.72, + "end": 45090.62, + "probability": 0.8828 + }, + { + "start": 45090.7, + "end": 45092.26, + "probability": 0.946 + }, + { + "start": 45092.34, + "end": 45093.86, + "probability": 0.9606 + }, + { + "start": 45093.94, + "end": 45094.64, + "probability": 0.9714 + }, + { + "start": 45095.96, + "end": 45096.68, + "probability": 0.8683 + }, + { + "start": 45096.76, + "end": 45098.12, + "probability": 0.604 + }, + { + "start": 45098.24, + "end": 45099.72, + "probability": 0.7854 + }, + { + "start": 45099.88, + "end": 45100.66, + "probability": 0.9759 + }, + { + "start": 45101.34, + "end": 45103.74, + "probability": 0.8749 + }, + { + "start": 45105.2, + "end": 45109.04, + "probability": 0.9562 + }, + { + "start": 45109.56, + "end": 45110.7, + "probability": 0.8982 + }, + { + "start": 45110.74, + "end": 45112.3, + "probability": 0.8218 + }, + { + "start": 45112.48, + "end": 45113.94, + "probability": 0.7862 + }, + { + "start": 45114.9, + "end": 45117.04, + "probability": 0.7899 + }, + { + "start": 45117.14, + "end": 45118.7, + "probability": 0.9353 + }, + { + "start": 45118.78, + "end": 45119.42, + "probability": 0.938 + }, + { + "start": 45120.1, + "end": 45122.88, + "probability": 0.9347 + }, + { + "start": 45123.96, + "end": 45125.66, + "probability": 0.8123 + }, + { + "start": 45125.76, + "end": 45127.72, + "probability": 0.8239 + }, + { + "start": 45127.82, + "end": 45129.44, + "probability": 0.9193 + }, + { + "start": 45129.58, + "end": 45130.14, + "probability": 0.8457 + }, + { + "start": 45130.86, + "end": 45132.47, + "probability": 0.914 + }, + { + "start": 45133.24, + "end": 45135.32, + "probability": 0.9449 + }, + { + "start": 45136.48, + "end": 45138.48, + "probability": 0.8543 + }, + { + "start": 45138.72, + "end": 45140.2, + "probability": 0.6958 + }, + { + "start": 45140.3, + "end": 45141.74, + "probability": 0.8863 + }, + { + "start": 45141.86, + "end": 45142.98, + "probability": 0.9684 + }, + { + "start": 45143.1, + "end": 45145.1, + "probability": 0.8467 + }, + { + "start": 45145.85, + "end": 45148.16, + "probability": 0.889 + }, + { + "start": 45148.32, + "end": 45150.08, + "probability": 0.8659 + }, + { + "start": 45150.76, + "end": 45152.6, + "probability": 0.9211 + }, + { + "start": 45153.94, + "end": 45155.76, + "probability": 0.712 + }, + { + "start": 45155.88, + "end": 45158.32, + "probability": 0.8702 + }, + { + "start": 45158.42, + "end": 45159.9, + "probability": 0.9099 + }, + { + "start": 45160.76, + "end": 45162.56, + "probability": 0.8816 + }, + { + "start": 45162.64, + "end": 45163.86, + "probability": 0.9683 + }, + { + "start": 45163.98, + "end": 45165.8, + "probability": 0.9666 + }, + { + "start": 45165.98, + "end": 45167.1, + "probability": 0.5038 + }, + { + "start": 45167.18, + "end": 45168.86, + "probability": 0.7375 + }, + { + "start": 45169.84, + "end": 45171.28, + "probability": 0.7198 + }, + { + "start": 45171.4, + "end": 45172.88, + "probability": 0.805 + }, + { + "start": 45173.0, + "end": 45174.44, + "probability": 0.6255 + }, + { + "start": 45175.2, + "end": 45175.92, + "probability": 0.8821 + }, + { + "start": 45177.38, + "end": 45178.32, + "probability": 0.9529 + }, + { + "start": 45179.44, + "end": 45181.16, + "probability": 0.9713 + }, + { + "start": 45181.2, + "end": 45182.86, + "probability": 0.8774 + }, + { + "start": 45182.98, + "end": 45183.74, + "probability": 0.6156 + }, + { + "start": 45184.84, + "end": 45186.22, + "probability": 0.8207 + }, + { + "start": 45186.4, + "end": 45187.76, + "probability": 0.9777 + }, + { + "start": 45187.86, + "end": 45189.24, + "probability": 0.7325 + }, + { + "start": 45190.08, + "end": 45191.66, + "probability": 0.935 + }, + { + "start": 45192.58, + "end": 45194.1, + "probability": 0.8741 + }, + { + "start": 45194.14, + "end": 45195.32, + "probability": 0.4991 + }, + { + "start": 45195.38, + "end": 45196.94, + "probability": 0.8446 + }, + { + "start": 45197.68, + "end": 45199.36, + "probability": 0.9452 + }, + { + "start": 45199.64, + "end": 45202.1, + "probability": 0.7397 + }, + { + "start": 45202.18, + "end": 45203.84, + "probability": 0.8993 + }, + { + "start": 45203.9, + "end": 45206.1, + "probability": 0.6609 + }, + { + "start": 45206.1, + "end": 45207.62, + "probability": 0.7974 + }, + { + "start": 45207.78, + "end": 45209.32, + "probability": 0.7617 + }, + { + "start": 45209.36, + "end": 45210.72, + "probability": 0.895 + }, + { + "start": 45210.82, + "end": 45212.5, + "probability": 0.8294 + }, + { + "start": 45212.56, + "end": 45214.46, + "probability": 0.3787 + }, + { + "start": 45214.62, + "end": 45218.22, + "probability": 0.7539 + }, + { + "start": 45218.36, + "end": 45219.86, + "probability": 0.8765 + }, + { + "start": 45221.6, + "end": 45222.66, + "probability": 0.5336 + }, + { + "start": 45223.2, + "end": 45223.54, + "probability": 0.1094 + }, + { + "start": 45224.82, + "end": 45226.56, + "probability": 0.8385 + }, + { + "start": 45226.84, + "end": 45230.28, + "probability": 0.845 + }, + { + "start": 45230.4, + "end": 45232.35, + "probability": 0.9121 + }, + { + "start": 45233.84, + "end": 45235.88, + "probability": 0.0948 + }, + { + "start": 45236.9, + "end": 45238.9, + "probability": 0.0771 + }, + { + "start": 45240.02, + "end": 45240.9, + "probability": 0.2062 + }, + { + "start": 45283.12, + "end": 45288.22, + "probability": 0.9641 + }, + { + "start": 45288.22, + "end": 45291.84, + "probability": 0.9161 + }, + { + "start": 45291.94, + "end": 45296.5, + "probability": 0.8439 + }, + { + "start": 45299.56, + "end": 45300.72, + "probability": 0.8208 + }, + { + "start": 45300.86, + "end": 45302.92, + "probability": 0.9698 + }, + { + "start": 45303.04, + "end": 45306.86, + "probability": 0.9892 + }, + { + "start": 45307.86, + "end": 45312.62, + "probability": 0.908 + }, + { + "start": 45312.68, + "end": 45317.68, + "probability": 0.8917 + }, + { + "start": 45318.12, + "end": 45319.88, + "probability": 0.7559 + }, + { + "start": 45335.22, + "end": 45336.52, + "probability": 0.4144 + }, + { + "start": 45345.34, + "end": 45348.12, + "probability": 0.7197 + }, + { + "start": 45349.42, + "end": 45350.52, + "probability": 0.9062 + }, + { + "start": 45351.56, + "end": 45359.06, + "probability": 0.9915 + }, + { + "start": 45359.62, + "end": 45362.16, + "probability": 0.9583 + }, + { + "start": 45362.76, + "end": 45366.8, + "probability": 0.9926 + }, + { + "start": 45366.8, + "end": 45371.6, + "probability": 0.9939 + }, + { + "start": 45372.62, + "end": 45376.44, + "probability": 0.9618 + }, + { + "start": 45376.44, + "end": 45381.04, + "probability": 0.9917 + }, + { + "start": 45382.06, + "end": 45384.76, + "probability": 0.9796 + }, + { + "start": 45385.64, + "end": 45388.08, + "probability": 0.9897 + }, + { + "start": 45388.9, + "end": 45394.02, + "probability": 0.9657 + }, + { + "start": 45394.42, + "end": 45395.92, + "probability": 0.9849 + }, + { + "start": 45396.82, + "end": 45401.32, + "probability": 0.9873 + }, + { + "start": 45401.82, + "end": 45405.58, + "probability": 0.7708 + }, + { + "start": 45406.48, + "end": 45412.8, + "probability": 0.802 + }, + { + "start": 45412.8, + "end": 45417.9, + "probability": 0.9922 + }, + { + "start": 45418.8, + "end": 45422.7, + "probability": 0.9929 + }, + { + "start": 45423.32, + "end": 45425.52, + "probability": 0.8318 + }, + { + "start": 45426.1, + "end": 45429.0, + "probability": 0.9942 + }, + { + "start": 45429.0, + "end": 45433.78, + "probability": 0.9988 + }, + { + "start": 45434.44, + "end": 45441.76, + "probability": 0.9893 + }, + { + "start": 45442.64, + "end": 45443.36, + "probability": 0.1055 + }, + { + "start": 45444.28, + "end": 45446.26, + "probability": 0.665 + }, + { + "start": 45447.19, + "end": 45449.82, + "probability": 0.0617 + }, + { + "start": 45449.82, + "end": 45449.82, + "probability": 0.057 + }, + { + "start": 45449.82, + "end": 45449.82, + "probability": 0.009 + }, + { + "start": 45449.82, + "end": 45450.03, + "probability": 0.074 + }, + { + "start": 45452.16, + "end": 45452.16, + "probability": 0.2457 + }, + { + "start": 45452.16, + "end": 45455.88, + "probability": 0.1841 + }, + { + "start": 45456.12, + "end": 45457.62, + "probability": 0.6361 + }, + { + "start": 45457.62, + "end": 45458.8, + "probability": 0.7153 + }, + { + "start": 45458.98, + "end": 45459.02, + "probability": 0.4072 + }, + { + "start": 45459.02, + "end": 45459.96, + "probability": 0.6452 + }, + { + "start": 45460.06, + "end": 45460.76, + "probability": 0.9368 + }, + { + "start": 45460.86, + "end": 45461.96, + "probability": 0.5621 + }, + { + "start": 45462.06, + "end": 45462.82, + "probability": 0.7616 + }, + { + "start": 45463.21, + "end": 45463.28, + "probability": 0.0646 + }, + { + "start": 45463.28, + "end": 45464.9, + "probability": 0.9695 + }, + { + "start": 45465.76, + "end": 45466.9, + "probability": 0.1667 + }, + { + "start": 45467.92, + "end": 45470.04, + "probability": 0.009 + }, + { + "start": 45470.44, + "end": 45470.64, + "probability": 0.0099 + }, + { + "start": 45470.64, + "end": 45470.64, + "probability": 0.101 + }, + { + "start": 45470.64, + "end": 45473.12, + "probability": 0.5186 + }, + { + "start": 45473.6, + "end": 45474.06, + "probability": 0.2565 + }, + { + "start": 45474.06, + "end": 45475.12, + "probability": 0.0764 + }, + { + "start": 45475.28, + "end": 45476.58, + "probability": 0.6834 + }, + { + "start": 45477.28, + "end": 45479.14, + "probability": 0.6461 + }, + { + "start": 45480.06, + "end": 45480.06, + "probability": 0.1473 + }, + { + "start": 45480.06, + "end": 45480.82, + "probability": 0.6658 + }, + { + "start": 45481.84, + "end": 45484.12, + "probability": 0.8374 + }, + { + "start": 45484.12, + "end": 45486.79, + "probability": 0.154 + }, + { + "start": 45487.72, + "end": 45490.04, + "probability": 0.1225 + }, + { + "start": 45490.26, + "end": 45492.72, + "probability": 0.799 + }, + { + "start": 45492.94, + "end": 45494.7, + "probability": 0.9165 + }, + { + "start": 45495.72, + "end": 45496.54, + "probability": 0.2781 + }, + { + "start": 45496.54, + "end": 45498.98, + "probability": 0.8062 + }, + { + "start": 45498.98, + "end": 45499.4, + "probability": 0.7665 + }, + { + "start": 45499.82, + "end": 45502.86, + "probability": 0.6888 + }, + { + "start": 45502.92, + "end": 45504.92, + "probability": 0.3405 + }, + { + "start": 45504.92, + "end": 45507.48, + "probability": 0.0877 + }, + { + "start": 45508.45, + "end": 45512.44, + "probability": 0.8246 + }, + { + "start": 45512.5, + "end": 45513.52, + "probability": 0.9536 + }, + { + "start": 45513.92, + "end": 45514.64, + "probability": 0.9599 + }, + { + "start": 45515.08, + "end": 45516.56, + "probability": 0.8947 + }, + { + "start": 45516.66, + "end": 45520.1, + "probability": 0.9844 + }, + { + "start": 45520.62, + "end": 45523.9, + "probability": 0.939 + }, + { + "start": 45523.94, + "end": 45527.74, + "probability": 0.9531 + }, + { + "start": 45528.46, + "end": 45530.8, + "probability": 0.9895 + }, + { + "start": 45531.58, + "end": 45532.36, + "probability": 0.6406 + }, + { + "start": 45533.4, + "end": 45537.3, + "probability": 0.9488 + }, + { + "start": 45537.76, + "end": 45538.3, + "probability": 0.6518 + }, + { + "start": 45538.7, + "end": 45543.12, + "probability": 0.9648 + }, + { + "start": 45543.58, + "end": 45544.77, + "probability": 0.9858 + }, + { + "start": 45544.96, + "end": 45545.44, + "probability": 0.0314 + }, + { + "start": 45546.52, + "end": 45546.68, + "probability": 0.0891 + }, + { + "start": 45546.68, + "end": 45550.8, + "probability": 0.9918 + }, + { + "start": 45551.54, + "end": 45553.24, + "probability": 0.7112 + }, + { + "start": 45553.6, + "end": 45560.1, + "probability": 0.9782 + }, + { + "start": 45561.18, + "end": 45564.04, + "probability": 0.9412 + }, + { + "start": 45564.7, + "end": 45566.44, + "probability": 0.7346 + }, + { + "start": 45567.2, + "end": 45570.48, + "probability": 0.9607 + }, + { + "start": 45571.02, + "end": 45574.14, + "probability": 0.9941 + }, + { + "start": 45574.14, + "end": 45577.42, + "probability": 0.8542 + }, + { + "start": 45578.16, + "end": 45578.56, + "probability": 0.7306 + }, + { + "start": 45580.88, + "end": 45582.14, + "probability": 0.5805 + }, + { + "start": 45583.48, + "end": 45584.58, + "probability": 0.6399 + }, + { + "start": 45585.75, + "end": 45588.72, + "probability": 0.6363 + }, + { + "start": 45588.78, + "end": 45592.44, + "probability": 0.9795 + }, + { + "start": 45592.68, + "end": 45594.63, + "probability": 0.991 + }, + { + "start": 45595.76, + "end": 45597.56, + "probability": 0.9836 + }, + { + "start": 45597.72, + "end": 45598.12, + "probability": 0.7098 + }, + { + "start": 45598.86, + "end": 45601.58, + "probability": 0.927 + }, + { + "start": 45602.08, + "end": 45602.86, + "probability": 0.6331 + }, + { + "start": 45603.1, + "end": 45605.18, + "probability": 0.11 + }, + { + "start": 45605.36, + "end": 45606.76, + "probability": 0.7342 + }, + { + "start": 45606.76, + "end": 45608.9, + "probability": 0.8208 + }, + { + "start": 45609.02, + "end": 45611.6, + "probability": 0.5413 + }, + { + "start": 45614.42, + "end": 45616.6, + "probability": 0.1274 + }, + { + "start": 45616.98, + "end": 45616.98, + "probability": 0.5473 + }, + { + "start": 45616.98, + "end": 45618.27, + "probability": 0.6561 + }, + { + "start": 45618.48, + "end": 45619.83, + "probability": 0.1241 + }, + { + "start": 45620.8, + "end": 45621.74, + "probability": 0.733 + }, + { + "start": 45622.38, + "end": 45625.22, + "probability": 0.7412 + }, + { + "start": 45625.56, + "end": 45628.5, + "probability": 0.9388 + }, + { + "start": 45628.56, + "end": 45629.22, + "probability": 0.7699 + }, + { + "start": 45629.72, + "end": 45634.72, + "probability": 0.04 + }, + { + "start": 45639.84, + "end": 45640.76, + "probability": 0.1632 + }, + { + "start": 45642.38, + "end": 45645.52, + "probability": 0.7007 + }, + { + "start": 45645.52, + "end": 45647.16, + "probability": 0.3259 + }, + { + "start": 45647.74, + "end": 45648.28, + "probability": 0.005 + }, + { + "start": 45649.26, + "end": 45650.1, + "probability": 0.031 + }, + { + "start": 45650.62, + "end": 45653.6, + "probability": 0.6418 + }, + { + "start": 45653.94, + "end": 45655.26, + "probability": 0.5953 + }, + { + "start": 45656.1, + "end": 45659.82, + "probability": 0.0693 + }, + { + "start": 45660.58, + "end": 45661.44, + "probability": 0.1834 + }, + { + "start": 45663.03, + "end": 45665.68, + "probability": 0.9653 + }, + { + "start": 45665.94, + "end": 45667.96, + "probability": 0.9199 + }, + { + "start": 45668.08, + "end": 45669.49, + "probability": 0.9776 + }, + { + "start": 45670.82, + "end": 45672.96, + "probability": 0.9822 + }, + { + "start": 45673.3, + "end": 45673.8, + "probability": 0.9722 + }, + { + "start": 45674.74, + "end": 45676.81, + "probability": 0.8909 + }, + { + "start": 45677.8, + "end": 45679.7, + "probability": 0.767 + }, + { + "start": 45682.2, + "end": 45686.0, + "probability": 0.8646 + }, + { + "start": 45687.54, + "end": 45691.14, + "probability": 0.8137 + }, + { + "start": 45691.56, + "end": 45694.34, + "probability": 0.9416 + }, + { + "start": 45695.42, + "end": 45697.32, + "probability": 0.995 + }, + { + "start": 45697.84, + "end": 45703.42, + "probability": 0.9136 + }, + { + "start": 45703.72, + "end": 45705.19, + "probability": 0.9869 + }, + { + "start": 45706.14, + "end": 45707.66, + "probability": 0.9223 + }, + { + "start": 45708.72, + "end": 45711.1, + "probability": 0.9615 + }, + { + "start": 45712.36, + "end": 45714.84, + "probability": 0.9824 + }, + { + "start": 45714.86, + "end": 45717.02, + "probability": 0.9629 + }, + { + "start": 45717.5, + "end": 45720.4, + "probability": 0.9547 + }, + { + "start": 45720.66, + "end": 45724.84, + "probability": 0.9095 + }, + { + "start": 45727.34, + "end": 45730.28, + "probability": 0.9979 + }, + { + "start": 45730.28, + "end": 45733.8, + "probability": 0.9136 + }, + { + "start": 45734.8, + "end": 45735.83, + "probability": 0.9908 + }, + { + "start": 45736.82, + "end": 45740.7, + "probability": 0.9602 + }, + { + "start": 45742.0, + "end": 45747.1, + "probability": 0.9927 + }, + { + "start": 45748.36, + "end": 45755.28, + "probability": 0.9902 + }, + { + "start": 45758.3, + "end": 45762.22, + "probability": 0.9562 + }, + { + "start": 45762.4, + "end": 45764.4, + "probability": 0.9824 + }, + { + "start": 45764.98, + "end": 45767.86, + "probability": 0.9478 + }, + { + "start": 45768.38, + "end": 45770.04, + "probability": 0.8524 + }, + { + "start": 45770.5, + "end": 45773.22, + "probability": 0.9965 + }, + { + "start": 45773.62, + "end": 45774.52, + "probability": 0.9595 + }, + { + "start": 45774.94, + "end": 45775.82, + "probability": 0.8825 + }, + { + "start": 45776.52, + "end": 45779.28, + "probability": 0.9775 + }, + { + "start": 45779.9, + "end": 45780.22, + "probability": 0.8738 + }, + { + "start": 45780.76, + "end": 45782.06, + "probability": 0.9275 + }, + { + "start": 45782.12, + "end": 45784.02, + "probability": 0.8221 + }, + { + "start": 45784.5, + "end": 45787.64, + "probability": 0.9987 + }, + { + "start": 45787.64, + "end": 45790.79, + "probability": 0.9981 + }, + { + "start": 45791.48, + "end": 45791.86, + "probability": 0.5563 + }, + { + "start": 45792.58, + "end": 45797.74, + "probability": 0.9518 + }, + { + "start": 45798.26, + "end": 45799.24, + "probability": 0.8413 + }, + { + "start": 45799.78, + "end": 45803.98, + "probability": 0.8056 + }, + { + "start": 45804.68, + "end": 45805.72, + "probability": 0.9004 + }, + { + "start": 45806.92, + "end": 45808.5, + "probability": 0.9681 + }, + { + "start": 45809.14, + "end": 45811.68, + "probability": 0.7366 + }, + { + "start": 45813.3, + "end": 45816.94, + "probability": 0.9127 + }, + { + "start": 45817.44, + "end": 45820.0, + "probability": 0.817 + }, + { + "start": 45820.88, + "end": 45827.22, + "probability": 0.9995 + }, + { + "start": 45828.62, + "end": 45829.34, + "probability": 0.9329 + }, + { + "start": 45831.52, + "end": 45834.1, + "probability": 0.999 + }, + { + "start": 45834.72, + "end": 45836.11, + "probability": 0.9683 + }, + { + "start": 45836.62, + "end": 45837.94, + "probability": 0.9888 + }, + { + "start": 45838.28, + "end": 45842.34, + "probability": 0.9479 + }, + { + "start": 45843.08, + "end": 45843.78, + "probability": 0.8377 + }, + { + "start": 45844.64, + "end": 45845.58, + "probability": 0.9881 + }, + { + "start": 45846.3, + "end": 45850.44, + "probability": 0.9961 + }, + { + "start": 45851.94, + "end": 45855.32, + "probability": 0.8723 + }, + { + "start": 45855.84, + "end": 45857.1, + "probability": 0.6788 + }, + { + "start": 45857.3, + "end": 45858.6, + "probability": 0.8119 + }, + { + "start": 45859.06, + "end": 45865.26, + "probability": 0.9888 + }, + { + "start": 45865.44, + "end": 45865.98, + "probability": 0.7331 + }, + { + "start": 45866.74, + "end": 45867.6, + "probability": 0.6103 + }, + { + "start": 45868.22, + "end": 45869.1, + "probability": 0.8776 + }, + { + "start": 45869.16, + "end": 45872.6, + "probability": 0.7156 + }, + { + "start": 45873.08, + "end": 45875.12, + "probability": 0.7695 + }, + { + "start": 45875.28, + "end": 45875.72, + "probability": 0.7731 + }, + { + "start": 45877.0, + "end": 45877.88, + "probability": 0.8479 + }, + { + "start": 45879.4, + "end": 45880.92, + "probability": 0.0397 + }, + { + "start": 45892.82, + "end": 45894.8, + "probability": 0.8848 + }, + { + "start": 45894.8, + "end": 45895.9, + "probability": 0.8636 + }, + { + "start": 45899.19, + "end": 45903.06, + "probability": 0.79 + }, + { + "start": 45904.04, + "end": 45904.96, + "probability": 0.8159 + }, + { + "start": 45905.04, + "end": 45905.74, + "probability": 0.9027 + }, + { + "start": 45906.16, + "end": 45909.16, + "probability": 0.9951 + }, + { + "start": 45909.16, + "end": 45910.12, + "probability": 0.6456 + }, + { + "start": 45910.68, + "end": 45911.33, + "probability": 0.5847 + }, + { + "start": 45911.9, + "end": 45913.72, + "probability": 0.3803 + }, + { + "start": 45917.22, + "end": 45919.02, + "probability": 0.3232 + }, + { + "start": 45919.3, + "end": 45919.68, + "probability": 0.0783 + }, + { + "start": 45920.09, + "end": 45922.96, + "probability": 0.5942 + }, + { + "start": 45923.06, + "end": 45923.92, + "probability": 0.6927 + }, + { + "start": 45924.88, + "end": 45927.42, + "probability": 0.9096 + }, + { + "start": 45927.64, + "end": 45928.26, + "probability": 0.9346 + }, + { + "start": 45929.4, + "end": 45930.5, + "probability": 0.7022 + }, + { + "start": 45930.68, + "end": 45932.76, + "probability": 0.959 + }, + { + "start": 45933.18, + "end": 45935.38, + "probability": 0.9347 + }, + { + "start": 45937.16, + "end": 45941.14, + "probability": 0.9763 + }, + { + "start": 45941.32, + "end": 45943.78, + "probability": 0.1501 + }, + { + "start": 45944.1, + "end": 45945.09, + "probability": 0.6606 + }, + { + "start": 45946.7, + "end": 45949.54, + "probability": 0.9881 + }, + { + "start": 45949.78, + "end": 45952.14, + "probability": 0.8021 + }, + { + "start": 45953.44, + "end": 45956.12, + "probability": 0.98 + }, + { + "start": 45956.26, + "end": 45956.62, + "probability": 0.8076 + }, + { + "start": 45956.72, + "end": 45957.08, + "probability": 0.9152 + }, + { + "start": 45957.08, + "end": 45957.98, + "probability": 0.7228 + }, + { + "start": 45958.22, + "end": 45960.32, + "probability": 0.9723 + }, + { + "start": 45961.02, + "end": 45966.84, + "probability": 0.8356 + }, + { + "start": 45967.0, + "end": 45969.68, + "probability": 0.9681 + }, + { + "start": 45970.64, + "end": 45975.22, + "probability": 0.9964 + }, + { + "start": 45975.57, + "end": 45977.64, + "probability": 0.8442 + }, + { + "start": 45977.78, + "end": 45979.42, + "probability": 0.9921 + }, + { + "start": 45981.46, + "end": 45981.5, + "probability": 0.0015 + }, + { + "start": 45982.4, + "end": 45982.72, + "probability": 0.0313 + }, + { + "start": 45982.72, + "end": 45984.38, + "probability": 0.2746 + }, + { + "start": 45984.92, + "end": 45986.36, + "probability": 0.8079 + }, + { + "start": 45986.56, + "end": 45989.0, + "probability": 0.1298 + }, + { + "start": 45989.48, + "end": 45990.02, + "probability": 0.3828 + }, + { + "start": 45990.61, + "end": 45992.01, + "probability": 0.5237 + }, + { + "start": 45992.22, + "end": 45992.62, + "probability": 0.1009 + }, + { + "start": 45992.84, + "end": 45994.47, + "probability": 0.968 + }, + { + "start": 45995.22, + "end": 45997.84, + "probability": 0.4806 + }, + { + "start": 45997.84, + "end": 46000.46, + "probability": 0.9637 + }, + { + "start": 46000.84, + "end": 46002.34, + "probability": 0.8524 + }, + { + "start": 46002.66, + "end": 46003.08, + "probability": 0.2837 + }, + { + "start": 46003.08, + "end": 46005.76, + "probability": 0.4619 + }, + { + "start": 46006.28, + "end": 46007.2, + "probability": 0.0975 + }, + { + "start": 46007.48, + "end": 46008.46, + "probability": 0.6044 + }, + { + "start": 46008.46, + "end": 46008.64, + "probability": 0.3645 + }, + { + "start": 46008.82, + "end": 46009.0, + "probability": 0.0904 + }, + { + "start": 46009.0, + "end": 46010.36, + "probability": 0.8221 + }, + { + "start": 46010.66, + "end": 46011.42, + "probability": 0.3935 + }, + { + "start": 46011.42, + "end": 46015.26, + "probability": 0.7139 + }, + { + "start": 46015.46, + "end": 46016.36, + "probability": 0.3987 + }, + { + "start": 46018.5, + "end": 46020.44, + "probability": 0.8523 + }, + { + "start": 46021.6, + "end": 46023.3, + "probability": 0.9856 + }, + { + "start": 46023.48, + "end": 46024.8, + "probability": 0.8218 + }, + { + "start": 46024.9, + "end": 46025.8, + "probability": 0.8257 + }, + { + "start": 46025.96, + "end": 46027.56, + "probability": 0.7621 + }, + { + "start": 46027.66, + "end": 46029.2, + "probability": 0.9357 + }, + { + "start": 46030.0, + "end": 46033.44, + "probability": 0.9659 + }, + { + "start": 46034.36, + "end": 46038.38, + "probability": 0.7849 + }, + { + "start": 46039.2, + "end": 46043.48, + "probability": 0.9864 + }, + { + "start": 46044.32, + "end": 46046.46, + "probability": 0.9226 + }, + { + "start": 46046.46, + "end": 46050.06, + "probability": 0.9637 + }, + { + "start": 46050.6, + "end": 46053.32, + "probability": 0.9124 + }, + { + "start": 46054.06, + "end": 46054.82, + "probability": 0.8149 + }, + { + "start": 46054.84, + "end": 46057.0, + "probability": 0.87 + }, + { + "start": 46057.18, + "end": 46058.44, + "probability": 0.9505 + }, + { + "start": 46058.58, + "end": 46059.68, + "probability": 0.9473 + }, + { + "start": 46060.24, + "end": 46063.56, + "probability": 0.91 + }, + { + "start": 46064.06, + "end": 46065.72, + "probability": 0.9585 + }, + { + "start": 46066.2, + "end": 46070.46, + "probability": 0.9625 + }, + { + "start": 46071.9, + "end": 46072.94, + "probability": 0.5942 + }, + { + "start": 46074.64, + "end": 46078.28, + "probability": 0.9385 + }, + { + "start": 46078.56, + "end": 46083.64, + "probability": 0.9974 + }, + { + "start": 46084.02, + "end": 46084.12, + "probability": 0.263 + }, + { + "start": 46084.12, + "end": 46084.74, + "probability": 0.777 + }, + { + "start": 46084.8, + "end": 46085.38, + "probability": 0.8427 + }, + { + "start": 46085.58, + "end": 46085.92, + "probability": 0.3955 + }, + { + "start": 46086.24, + "end": 46087.1, + "probability": 0.533 + }, + { + "start": 46087.4, + "end": 46089.84, + "probability": 0.9744 + }, + { + "start": 46090.92, + "end": 46091.84, + "probability": 0.5861 + }, + { + "start": 46091.92, + "end": 46094.74, + "probability": 0.9416 + }, + { + "start": 46107.14, + "end": 46110.58, + "probability": 0.7516 + }, + { + "start": 46111.82, + "end": 46116.48, + "probability": 0.9902 + }, + { + "start": 46117.54, + "end": 46119.32, + "probability": 0.9517 + }, + { + "start": 46120.22, + "end": 46126.92, + "probability": 0.9072 + }, + { + "start": 46130.1, + "end": 46133.62, + "probability": 0.5813 + }, + { + "start": 46134.36, + "end": 46139.08, + "probability": 0.9406 + }, + { + "start": 46140.18, + "end": 46143.26, + "probability": 0.7881 + }, + { + "start": 46143.88, + "end": 46147.16, + "probability": 0.9733 + }, + { + "start": 46147.94, + "end": 46148.84, + "probability": 0.6915 + }, + { + "start": 46149.48, + "end": 46152.18, + "probability": 0.9865 + }, + { + "start": 46152.92, + "end": 46159.62, + "probability": 0.9658 + }, + { + "start": 46160.26, + "end": 46163.76, + "probability": 0.8875 + }, + { + "start": 46164.78, + "end": 46168.36, + "probability": 0.9794 + }, + { + "start": 46168.94, + "end": 46172.98, + "probability": 0.9815 + }, + { + "start": 46174.26, + "end": 46176.94, + "probability": 0.9196 + }, + { + "start": 46177.7, + "end": 46181.58, + "probability": 0.9214 + }, + { + "start": 46182.14, + "end": 46186.3, + "probability": 0.9973 + }, + { + "start": 46187.02, + "end": 46188.36, + "probability": 0.9756 + }, + { + "start": 46189.3, + "end": 46190.56, + "probability": 0.7726 + }, + { + "start": 46191.48, + "end": 46191.88, + "probability": 0.7574 + }, + { + "start": 46191.98, + "end": 46193.04, + "probability": 0.8836 + }, + { + "start": 46193.34, + "end": 46197.82, + "probability": 0.9803 + }, + { + "start": 46198.48, + "end": 46201.54, + "probability": 0.9935 + }, + { + "start": 46201.64, + "end": 46207.0, + "probability": 0.9822 + }, + { + "start": 46207.44, + "end": 46208.2, + "probability": 0.8367 + }, + { + "start": 46208.7, + "end": 46211.04, + "probability": 0.8541 + }, + { + "start": 46211.6, + "end": 46212.64, + "probability": 0.9805 + }, + { + "start": 46213.2, + "end": 46216.86, + "probability": 0.9776 + }, + { + "start": 46217.42, + "end": 46222.04, + "probability": 0.8493 + }, + { + "start": 46222.76, + "end": 46226.66, + "probability": 0.9885 + }, + { + "start": 46229.16, + "end": 46231.26, + "probability": 0.7434 + }, + { + "start": 46232.06, + "end": 46233.2, + "probability": 0.141 + }, + { + "start": 46233.36, + "end": 46235.6, + "probability": 0.9141 + }, + { + "start": 46236.0, + "end": 46237.98, + "probability": 0.8576 + }, + { + "start": 46238.56, + "end": 46241.6, + "probability": 0.9762 + }, + { + "start": 46242.3, + "end": 46244.3, + "probability": 0.9844 + }, + { + "start": 46244.72, + "end": 46246.42, + "probability": 0.9172 + }, + { + "start": 46246.62, + "end": 46249.38, + "probability": 0.9243 + }, + { + "start": 46249.86, + "end": 46252.16, + "probability": 0.9683 + }, + { + "start": 46253.84, + "end": 46256.22, + "probability": 0.9658 + }, + { + "start": 46257.1, + "end": 46262.14, + "probability": 0.9364 + }, + { + "start": 46263.18, + "end": 46264.24, + "probability": 0.6728 + }, + { + "start": 46265.06, + "end": 46269.94, + "probability": 0.9971 + }, + { + "start": 46270.0, + "end": 46273.64, + "probability": 0.9991 + }, + { + "start": 46274.12, + "end": 46275.6, + "probability": 0.9771 + }, + { + "start": 46276.06, + "end": 46277.8, + "probability": 0.6392 + }, + { + "start": 46278.48, + "end": 46284.42, + "probability": 0.9501 + }, + { + "start": 46285.04, + "end": 46288.44, + "probability": 0.9945 + }, + { + "start": 46288.66, + "end": 46290.56, + "probability": 0.9616 + }, + { + "start": 46290.66, + "end": 46290.92, + "probability": 0.7402 + }, + { + "start": 46291.56, + "end": 46292.42, + "probability": 0.6444 + }, + { + "start": 46292.8, + "end": 46296.0, + "probability": 0.9169 + }, + { + "start": 46308.08, + "end": 46309.22, + "probability": 0.5732 + }, + { + "start": 46309.3, + "end": 46310.32, + "probability": 0.7826 + }, + { + "start": 46310.78, + "end": 46313.44, + "probability": 0.9687 + }, + { + "start": 46313.52, + "end": 46314.64, + "probability": 0.9379 + }, + { + "start": 46315.02, + "end": 46315.72, + "probability": 0.9208 + }, + { + "start": 46315.82, + "end": 46316.94, + "probability": 0.8305 + }, + { + "start": 46318.3, + "end": 46319.22, + "probability": 0.6698 + }, + { + "start": 46320.78, + "end": 46324.42, + "probability": 0.9985 + }, + { + "start": 46324.52, + "end": 46325.66, + "probability": 0.9215 + }, + { + "start": 46327.0, + "end": 46329.79, + "probability": 0.9951 + }, + { + "start": 46330.08, + "end": 46332.0, + "probability": 0.8882 + }, + { + "start": 46332.74, + "end": 46333.96, + "probability": 0.7226 + }, + { + "start": 46335.6, + "end": 46336.48, + "probability": 0.4938 + }, + { + "start": 46339.22, + "end": 46342.99, + "probability": 0.997 + }, + { + "start": 46347.2, + "end": 46348.06, + "probability": 0.6177 + }, + { + "start": 46349.9, + "end": 46350.84, + "probability": 0.3671 + }, + { + "start": 46353.22, + "end": 46354.24, + "probability": 0.9146 + }, + { + "start": 46356.0, + "end": 46356.94, + "probability": 0.9398 + }, + { + "start": 46357.04, + "end": 46357.94, + "probability": 0.965 + }, + { + "start": 46358.04, + "end": 46360.72, + "probability": 0.8939 + }, + { + "start": 46361.22, + "end": 46361.93, + "probability": 0.9717 + }, + { + "start": 46363.24, + "end": 46364.62, + "probability": 0.9873 + }, + { + "start": 46365.36, + "end": 46367.58, + "probability": 0.937 + }, + { + "start": 46368.92, + "end": 46369.38, + "probability": 0.8233 + }, + { + "start": 46370.04, + "end": 46373.04, + "probability": 0.9924 + }, + { + "start": 46373.16, + "end": 46374.16, + "probability": 0.9605 + }, + { + "start": 46375.04, + "end": 46379.04, + "probability": 0.6782 + }, + { + "start": 46379.58, + "end": 46384.4, + "probability": 0.8615 + }, + { + "start": 46385.5, + "end": 46386.5, + "probability": 0.2763 + }, + { + "start": 46387.04, + "end": 46387.48, + "probability": 0.0387 + }, + { + "start": 46388.12, + "end": 46388.86, + "probability": 0.4299 + }, + { + "start": 46389.98, + "end": 46390.92, + "probability": 0.9362 + }, + { + "start": 46391.5, + "end": 46395.3, + "probability": 0.9686 + }, + { + "start": 46397.48, + "end": 46398.2, + "probability": 0.9894 + }, + { + "start": 46399.2, + "end": 46401.3, + "probability": 0.9594 + }, + { + "start": 46401.4, + "end": 46402.56, + "probability": 0.8292 + }, + { + "start": 46403.36, + "end": 46404.2, + "probability": 0.9551 + }, + { + "start": 46405.5, + "end": 46407.86, + "probability": 0.9229 + }, + { + "start": 46408.66, + "end": 46409.36, + "probability": 0.8729 + }, + { + "start": 46410.82, + "end": 46411.8, + "probability": 0.8307 + }, + { + "start": 46411.94, + "end": 46412.64, + "probability": 0.8076 + }, + { + "start": 46413.24, + "end": 46414.47, + "probability": 0.4562 + }, + { + "start": 46416.32, + "end": 46417.34, + "probability": 0.9382 + }, + { + "start": 46418.9, + "end": 46419.44, + "probability": 0.5338 + }, + { + "start": 46420.38, + "end": 46421.66, + "probability": 0.8526 + }, + { + "start": 46423.18, + "end": 46424.46, + "probability": 0.9695 + }, + { + "start": 46425.52, + "end": 46427.76, + "probability": 0.8026 + }, + { + "start": 46428.44, + "end": 46429.28, + "probability": 0.8259 + }, + { + "start": 46430.12, + "end": 46432.24, + "probability": 0.9173 + }, + { + "start": 46432.78, + "end": 46433.64, + "probability": 0.7672 + }, + { + "start": 46434.3, + "end": 46436.68, + "probability": 0.9823 + }, + { + "start": 46437.68, + "end": 46439.32, + "probability": 0.9169 + }, + { + "start": 46439.48, + "end": 46441.2, + "probability": 0.9668 + }, + { + "start": 46441.7, + "end": 46442.62, + "probability": 0.7397 + }, + { + "start": 46442.72, + "end": 46445.9, + "probability": 0.9957 + }, + { + "start": 46446.54, + "end": 46447.84, + "probability": 0.9452 + }, + { + "start": 46449.76, + "end": 46453.0, + "probability": 0.9643 + }, + { + "start": 46453.34, + "end": 46454.06, + "probability": 0.9784 + }, + { + "start": 46454.4, + "end": 46457.16, + "probability": 0.955 + }, + { + "start": 46458.22, + "end": 46459.1, + "probability": 0.8849 + }, + { + "start": 46459.66, + "end": 46461.04, + "probability": 0.9844 + }, + { + "start": 46462.32, + "end": 46464.54, + "probability": 0.9229 + }, + { + "start": 46465.38, + "end": 46466.8, + "probability": 0.9806 + }, + { + "start": 46466.9, + "end": 46468.19, + "probability": 0.9865 + }, + { + "start": 46469.16, + "end": 46470.14, + "probability": 0.9849 + }, + { + "start": 46484.86, + "end": 46485.1, + "probability": 0.3176 + }, + { + "start": 46485.1, + "end": 46485.1, + "probability": 0.0287 + }, + { + "start": 46485.1, + "end": 46485.1, + "probability": 0.0205 + }, + { + "start": 46485.1, + "end": 46485.1, + "probability": 0.1209 + }, + { + "start": 46485.1, + "end": 46485.56, + "probability": 0.2039 + }, + { + "start": 46486.74, + "end": 46489.84, + "probability": 0.6791 + }, + { + "start": 46491.54, + "end": 46494.44, + "probability": 0.7804 + }, + { + "start": 46494.92, + "end": 46499.42, + "probability": 0.9524 + }, + { + "start": 46500.24, + "end": 46501.2, + "probability": 0.9658 + }, + { + "start": 46501.5, + "end": 46502.44, + "probability": 0.5524 + }, + { + "start": 46502.82, + "end": 46504.04, + "probability": 0.9779 + }, + { + "start": 46504.64, + "end": 46504.86, + "probability": 0.095 + }, + { + "start": 46505.32, + "end": 46507.28, + "probability": 0.9932 + }, + { + "start": 46507.94, + "end": 46509.8, + "probability": 0.9341 + }, + { + "start": 46510.12, + "end": 46510.68, + "probability": 0.8227 + }, + { + "start": 46510.88, + "end": 46511.46, + "probability": 0.9544 + }, + { + "start": 46511.62, + "end": 46511.9, + "probability": 0.8121 + }, + { + "start": 46513.2, + "end": 46514.02, + "probability": 0.5448 + }, + { + "start": 46514.96, + "end": 46516.5, + "probability": 0.985 + }, + { + "start": 46529.82, + "end": 46531.94, + "probability": 0.5478 + }, + { + "start": 46533.4, + "end": 46537.26, + "probability": 0.9803 + }, + { + "start": 46538.7, + "end": 46540.6, + "probability": 0.823 + }, + { + "start": 46540.68, + "end": 46541.6, + "probability": 0.8859 + }, + { + "start": 46541.66, + "end": 46543.32, + "probability": 0.986 + }, + { + "start": 46544.78, + "end": 46551.58, + "probability": 0.9958 + }, + { + "start": 46552.58, + "end": 46553.88, + "probability": 0.9604 + }, + { + "start": 46555.2, + "end": 46559.04, + "probability": 0.9932 + }, + { + "start": 46560.0, + "end": 46561.54, + "probability": 0.8706 + }, + { + "start": 46561.62, + "end": 46565.9, + "probability": 0.9824 + }, + { + "start": 46567.62, + "end": 46570.06, + "probability": 0.9898 + }, + { + "start": 46571.04, + "end": 46572.53, + "probability": 0.7941 + }, + { + "start": 46573.84, + "end": 46576.36, + "probability": 0.9985 + }, + { + "start": 46577.1, + "end": 46582.8, + "probability": 0.987 + }, + { + "start": 46583.66, + "end": 46587.44, + "probability": 0.9166 + }, + { + "start": 46588.14, + "end": 46590.96, + "probability": 0.5757 + }, + { + "start": 46591.78, + "end": 46597.28, + "probability": 0.9851 + }, + { + "start": 46597.42, + "end": 46598.6, + "probability": 0.9917 + }, + { + "start": 46599.66, + "end": 46602.04, + "probability": 0.9955 + }, + { + "start": 46602.06, + "end": 46604.78, + "probability": 0.9971 + }, + { + "start": 46605.84, + "end": 46609.28, + "probability": 0.9941 + }, + { + "start": 46610.04, + "end": 46613.58, + "probability": 0.7852 + }, + { + "start": 46614.48, + "end": 46616.24, + "probability": 0.9631 + }, + { + "start": 46617.28, + "end": 46621.42, + "probability": 0.9953 + }, + { + "start": 46622.78, + "end": 46626.6, + "probability": 0.994 + }, + { + "start": 46626.6, + "end": 46630.98, + "probability": 0.9956 + }, + { + "start": 46630.98, + "end": 46635.74, + "probability": 0.9939 + }, + { + "start": 46636.72, + "end": 46642.72, + "probability": 0.9333 + }, + { + "start": 46643.54, + "end": 46644.82, + "probability": 0.6826 + }, + { + "start": 46645.18, + "end": 46646.84, + "probability": 0.9951 + }, + { + "start": 46647.62, + "end": 46651.16, + "probability": 0.9956 + }, + { + "start": 46652.02, + "end": 46656.12, + "probability": 0.9978 + }, + { + "start": 46656.54, + "end": 46658.86, + "probability": 0.9354 + }, + { + "start": 46660.26, + "end": 46663.22, + "probability": 0.9938 + }, + { + "start": 46663.76, + "end": 46665.48, + "probability": 0.9777 + }, + { + "start": 46666.4, + "end": 46668.22, + "probability": 0.9434 + }, + { + "start": 46668.5, + "end": 46673.58, + "probability": 0.9325 + }, + { + "start": 46673.84, + "end": 46680.22, + "probability": 0.9833 + }, + { + "start": 46681.0, + "end": 46681.78, + "probability": 0.9503 + }, + { + "start": 46682.88, + "end": 46685.44, + "probability": 0.9977 + }, + { + "start": 46686.1, + "end": 46687.52, + "probability": 0.7947 + }, + { + "start": 46688.76, + "end": 46695.48, + "probability": 0.9936 + }, + { + "start": 46696.4, + "end": 46701.14, + "probability": 0.996 + }, + { + "start": 46701.96, + "end": 46704.11, + "probability": 0.9961 + }, + { + "start": 46705.54, + "end": 46708.9, + "probability": 0.9689 + }, + { + "start": 46709.9, + "end": 46712.06, + "probability": 0.9406 + }, + { + "start": 46713.6, + "end": 46717.8, + "probability": 0.9755 + }, + { + "start": 46717.8, + "end": 46722.88, + "probability": 0.9993 + }, + { + "start": 46723.72, + "end": 46729.3, + "probability": 0.8945 + }, + { + "start": 46729.94, + "end": 46733.22, + "probability": 0.9986 + }, + { + "start": 46733.58, + "end": 46733.74, + "probability": 0.671 + }, + { + "start": 46736.36, + "end": 46737.1, + "probability": 0.6529 + }, + { + "start": 46737.14, + "end": 46740.64, + "probability": 0.7866 + }, + { + "start": 46767.3, + "end": 46768.94, + "probability": 0.4982 + }, + { + "start": 46768.98, + "end": 46770.66, + "probability": 0.7075 + }, + { + "start": 46771.94, + "end": 46774.43, + "probability": 0.9967 + }, + { + "start": 46775.36, + "end": 46779.88, + "probability": 0.9949 + }, + { + "start": 46780.82, + "end": 46781.88, + "probability": 0.8174 + }, + { + "start": 46782.84, + "end": 46783.7, + "probability": 0.7612 + }, + { + "start": 46784.5, + "end": 46786.02, + "probability": 0.9298 + }, + { + "start": 46787.86, + "end": 46792.46, + "probability": 0.9986 + }, + { + "start": 46793.98, + "end": 46797.46, + "probability": 0.9987 + }, + { + "start": 46797.54, + "end": 46799.21, + "probability": 0.8128 + }, + { + "start": 46800.74, + "end": 46803.26, + "probability": 0.9949 + }, + { + "start": 46804.92, + "end": 46805.41, + "probability": 0.3489 + }, + { + "start": 46806.2, + "end": 46807.72, + "probability": 0.7162 + }, + { + "start": 46809.04, + "end": 46810.64, + "probability": 0.9771 + }, + { + "start": 46813.9, + "end": 46817.2, + "probability": 0.871 + }, + { + "start": 46819.3, + "end": 46821.67, + "probability": 0.9386 + }, + { + "start": 46823.72, + "end": 46825.6, + "probability": 0.9739 + }, + { + "start": 46827.6, + "end": 46829.74, + "probability": 0.9315 + }, + { + "start": 46830.48, + "end": 46832.92, + "probability": 0.8555 + }, + { + "start": 46833.66, + "end": 46839.78, + "probability": 0.9966 + }, + { + "start": 46840.26, + "end": 46841.38, + "probability": 0.611 + }, + { + "start": 46841.9, + "end": 46844.66, + "probability": 0.9792 + }, + { + "start": 46845.2, + "end": 46846.34, + "probability": 0.8765 + }, + { + "start": 46847.36, + "end": 46848.5, + "probability": 0.9841 + }, + { + "start": 46848.58, + "end": 46849.48, + "probability": 0.7669 + }, + { + "start": 46849.68, + "end": 46850.06, + "probability": 0.7662 + }, + { + "start": 46850.1, + "end": 46851.28, + "probability": 0.9302 + }, + { + "start": 46852.16, + "end": 46856.06, + "probability": 0.9724 + }, + { + "start": 46857.06, + "end": 46858.76, + "probability": 0.998 + }, + { + "start": 46859.08, + "end": 46860.74, + "probability": 0.998 + }, + { + "start": 46861.66, + "end": 46863.58, + "probability": 0.9896 + }, + { + "start": 46864.26, + "end": 46866.46, + "probability": 0.9956 + }, + { + "start": 46866.98, + "end": 46870.06, + "probability": 0.8701 + }, + { + "start": 46870.22, + "end": 46872.58, + "probability": 0.9873 + }, + { + "start": 46872.86, + "end": 46874.54, + "probability": 0.7999 + }, + { + "start": 46875.86, + "end": 46878.82, + "probability": 0.9846 + }, + { + "start": 46878.9, + "end": 46884.1, + "probability": 0.9946 + }, + { + "start": 46884.92, + "end": 46886.04, + "probability": 0.7871 + }, + { + "start": 46886.16, + "end": 46887.78, + "probability": 0.7443 + }, + { + "start": 46887.96, + "end": 46891.82, + "probability": 0.9849 + }, + { + "start": 46892.28, + "end": 46895.14, + "probability": 0.9834 + }, + { + "start": 46895.14, + "end": 46897.2, + "probability": 0.9618 + }, + { + "start": 46897.6, + "end": 46899.68, + "probability": 0.9712 + }, + { + "start": 46900.04, + "end": 46901.12, + "probability": 0.8685 + }, + { + "start": 46901.74, + "end": 46902.52, + "probability": 0.7401 + }, + { + "start": 46902.94, + "end": 46904.08, + "probability": 0.98 + }, + { + "start": 46904.36, + "end": 46906.86, + "probability": 0.9572 + }, + { + "start": 46907.04, + "end": 46909.32, + "probability": 0.9925 + }, + { + "start": 46909.88, + "end": 46914.58, + "probability": 0.9982 + }, + { + "start": 46914.7, + "end": 46915.88, + "probability": 0.6858 + }, + { + "start": 46916.04, + "end": 46916.62, + "probability": 0.8354 + }, + { + "start": 46917.04, + "end": 46919.1, + "probability": 0.9541 + }, + { + "start": 46919.36, + "end": 46924.04, + "probability": 0.9193 + }, + { + "start": 46924.34, + "end": 46926.52, + "probability": 0.9799 + }, + { + "start": 46926.94, + "end": 46927.9, + "probability": 0.6011 + }, + { + "start": 46928.02, + "end": 46929.24, + "probability": 0.8875 + }, + { + "start": 46930.03, + "end": 46931.52, + "probability": 0.8877 + }, + { + "start": 46932.04, + "end": 46933.24, + "probability": 0.9888 + }, + { + "start": 46934.16, + "end": 46936.22, + "probability": 0.8776 + }, + { + "start": 46936.78, + "end": 46939.04, + "probability": 0.9988 + }, + { + "start": 46939.04, + "end": 46942.48, + "probability": 0.9597 + }, + { + "start": 46943.14, + "end": 46945.56, + "probability": 0.9937 + }, + { + "start": 46945.64, + "end": 46946.41, + "probability": 0.912 + }, + { + "start": 46947.44, + "end": 46950.4, + "probability": 0.9946 + }, + { + "start": 46950.48, + "end": 46952.88, + "probability": 0.6357 + }, + { + "start": 46953.52, + "end": 46957.7, + "probability": 0.9648 + }, + { + "start": 46958.9, + "end": 46960.08, + "probability": 0.6348 + }, + { + "start": 46960.18, + "end": 46962.42, + "probability": 0.9683 + }, + { + "start": 46962.42, + "end": 46963.5, + "probability": 0.9306 + }, + { + "start": 46963.66, + "end": 46966.24, + "probability": 0.941 + }, + { + "start": 46966.24, + "end": 46969.14, + "probability": 0.9946 + }, + { + "start": 46969.84, + "end": 46970.82, + "probability": 0.7662 + }, + { + "start": 46971.28, + "end": 46974.7, + "probability": 0.9813 + }, + { + "start": 46975.44, + "end": 46976.08, + "probability": 0.8767 + }, + { + "start": 46976.94, + "end": 46977.96, + "probability": 0.7699 + }, + { + "start": 46978.64, + "end": 46979.52, + "probability": 0.8193 + }, + { + "start": 46979.98, + "end": 46982.82, + "probability": 0.9861 + }, + { + "start": 46984.06, + "end": 46985.33, + "probability": 0.9927 + }, + { + "start": 46986.08, + "end": 46989.07, + "probability": 0.9907 + }, + { + "start": 46990.22, + "end": 46997.46, + "probability": 0.9968 + }, + { + "start": 46997.9, + "end": 46998.0, + "probability": 0.0749 + }, + { + "start": 46998.0, + "end": 46998.36, + "probability": 0.4557 + }, + { + "start": 46998.98, + "end": 47001.86, + "probability": 0.9908 + }, + { + "start": 47001.86, + "end": 47005.34, + "probability": 0.9576 + }, + { + "start": 47005.9, + "end": 47008.58, + "probability": 0.995 + }, + { + "start": 47008.76, + "end": 47010.94, + "probability": 0.3753 + }, + { + "start": 47011.58, + "end": 47012.82, + "probability": 0.8446 + }, + { + "start": 47013.26, + "end": 47016.4, + "probability": 0.9381 + }, + { + "start": 47016.72, + "end": 47018.14, + "probability": 0.9189 + }, + { + "start": 47018.56, + "end": 47022.08, + "probability": 0.9642 + }, + { + "start": 47023.22, + "end": 47024.48, + "probability": 0.8015 + }, + { + "start": 47025.01, + "end": 47033.12, + "probability": 0.0823 + }, + { + "start": 47033.38, + "end": 47035.74, + "probability": 0.0825 + }, + { + "start": 47036.26, + "end": 47038.5, + "probability": 0.4032 + }, + { + "start": 47041.42, + "end": 47041.6, + "probability": 0.2485 + }, + { + "start": 47044.02, + "end": 47044.52, + "probability": 0.0972 + }, + { + "start": 47044.52, + "end": 47045.32, + "probability": 0.0485 + }, + { + "start": 47047.52, + "end": 47048.39, + "probability": 0.2873 + }, + { + "start": 47050.2, + "end": 47051.08, + "probability": 0.1471 + }, + { + "start": 47060.12, + "end": 47060.94, + "probability": 0.3824 + }, + { + "start": 47061.78, + "end": 47062.64, + "probability": 0.0284 + }, + { + "start": 47062.92, + "end": 47064.9, + "probability": 0.0648 + }, + { + "start": 47067.58, + "end": 47069.22, + "probability": 0.6996 + }, + { + "start": 47069.8, + "end": 47072.1, + "probability": 0.6647 + }, + { + "start": 47073.82, + "end": 47075.52, + "probability": 0.9114 + }, + { + "start": 47076.22, + "end": 47080.94, + "probability": 0.9684 + }, + { + "start": 47080.94, + "end": 47085.12, + "probability": 0.9998 + }, + { + "start": 47086.88, + "end": 47092.08, + "probability": 0.9774 + }, + { + "start": 47092.68, + "end": 47097.4, + "probability": 0.8504 + }, + { + "start": 47098.06, + "end": 47098.86, + "probability": 0.6346 + }, + { + "start": 47100.12, + "end": 47100.8, + "probability": 0.51 + }, + { + "start": 47101.6, + "end": 47104.88, + "probability": 0.9956 + }, + { + "start": 47106.02, + "end": 47110.44, + "probability": 0.9813 + }, + { + "start": 47110.66, + "end": 47112.92, + "probability": 0.9863 + }, + { + "start": 47113.42, + "end": 47114.68, + "probability": 0.6925 + }, + { + "start": 47116.66, + "end": 47117.43, + "probability": 0.905 + }, + { + "start": 47118.44, + "end": 47121.45, + "probability": 0.9971 + }, + { + "start": 47123.02, + "end": 47123.88, + "probability": 0.9807 + }, + { + "start": 47124.68, + "end": 47126.46, + "probability": 0.9425 + }, + { + "start": 47127.14, + "end": 47128.98, + "probability": 0.9854 + }, + { + "start": 47129.64, + "end": 47131.32, + "probability": 0.9928 + }, + { + "start": 47131.86, + "end": 47135.96, + "probability": 0.9772 + }, + { + "start": 47136.58, + "end": 47139.26, + "probability": 0.9995 + }, + { + "start": 47139.68, + "end": 47141.7, + "probability": 0.964 + }, + { + "start": 47142.38, + "end": 47145.78, + "probability": 0.9663 + }, + { + "start": 47145.88, + "end": 47147.82, + "probability": 0.9826 + }, + { + "start": 47148.18, + "end": 47150.86, + "probability": 0.9893 + }, + { + "start": 47152.0, + "end": 47156.0, + "probability": 0.9426 + }, + { + "start": 47156.78, + "end": 47160.62, + "probability": 0.97 + }, + { + "start": 47160.76, + "end": 47161.78, + "probability": 0.5777 + }, + { + "start": 47162.04, + "end": 47163.78, + "probability": 0.8944 + }, + { + "start": 47164.46, + "end": 47165.0, + "probability": 0.5518 + }, + { + "start": 47165.74, + "end": 47169.7, + "probability": 0.9917 + }, + { + "start": 47170.1, + "end": 47170.74, + "probability": 0.8835 + }, + { + "start": 47170.82, + "end": 47171.54, + "probability": 0.8657 + }, + { + "start": 47172.58, + "end": 47174.44, + "probability": 0.9452 + }, + { + "start": 47174.56, + "end": 47175.5, + "probability": 0.9736 + }, + { + "start": 47175.7, + "end": 47176.11, + "probability": 0.8117 + }, + { + "start": 47176.38, + "end": 47177.56, + "probability": 0.9684 + }, + { + "start": 47178.04, + "end": 47180.1, + "probability": 0.9553 + }, + { + "start": 47180.22, + "end": 47183.83, + "probability": 0.9876 + }, + { + "start": 47184.94, + "end": 47187.6, + "probability": 0.8574 + }, + { + "start": 47188.66, + "end": 47189.87, + "probability": 0.9868 + }, + { + "start": 47190.96, + "end": 47193.58, + "probability": 0.9993 + }, + { + "start": 47194.2, + "end": 47198.06, + "probability": 0.9865 + }, + { + "start": 47198.64, + "end": 47204.08, + "probability": 0.9971 + }, + { + "start": 47204.48, + "end": 47205.26, + "probability": 0.4663 + }, + { + "start": 47205.86, + "end": 47208.96, + "probability": 0.9309 + }, + { + "start": 47209.92, + "end": 47212.18, + "probability": 0.9609 + }, + { + "start": 47213.2, + "end": 47213.78, + "probability": 0.6981 + }, + { + "start": 47214.88, + "end": 47216.64, + "probability": 0.8986 + }, + { + "start": 47217.28, + "end": 47219.25, + "probability": 0.9963 + }, + { + "start": 47220.0, + "end": 47221.96, + "probability": 0.9965 + }, + { + "start": 47222.98, + "end": 47225.84, + "probability": 0.9789 + }, + { + "start": 47226.64, + "end": 47229.12, + "probability": 0.9214 + }, + { + "start": 47230.0, + "end": 47231.54, + "probability": 0.8252 + }, + { + "start": 47232.14, + "end": 47235.56, + "probability": 0.9813 + }, + { + "start": 47236.2, + "end": 47238.4, + "probability": 0.9553 + }, + { + "start": 47239.76, + "end": 47241.94, + "probability": 0.9453 + }, + { + "start": 47242.74, + "end": 47244.66, + "probability": 0.9958 + }, + { + "start": 47245.2, + "end": 47245.98, + "probability": 0.981 + }, + { + "start": 47247.4, + "end": 47252.06, + "probability": 0.6544 + }, + { + "start": 47252.3, + "end": 47252.3, + "probability": 0.2084 + }, + { + "start": 47252.3, + "end": 47253.04, + "probability": 0.513 + }, + { + "start": 47254.64, + "end": 47260.1, + "probability": 0.9887 + }, + { + "start": 47260.6, + "end": 47262.1, + "probability": 0.9829 + }, + { + "start": 47262.7, + "end": 47263.7, + "probability": 0.8965 + }, + { + "start": 47264.28, + "end": 47268.5, + "probability": 0.9918 + }, + { + "start": 47268.98, + "end": 47269.5, + "probability": 0.7896 + }, + { + "start": 47269.68, + "end": 47270.42, + "probability": 0.5562 + }, + { + "start": 47270.66, + "end": 47272.54, + "probability": 0.845 + }, + { + "start": 47272.58, + "end": 47273.04, + "probability": 0.5183 + }, + { + "start": 47273.16, + "end": 47274.16, + "probability": 0.9874 + }, + { + "start": 47274.66, + "end": 47275.26, + "probability": 0.8551 + }, + { + "start": 47275.34, + "end": 47276.64, + "probability": 0.8235 + }, + { + "start": 47277.1, + "end": 47277.62, + "probability": 0.5755 + }, + { + "start": 47277.9, + "end": 47279.28, + "probability": 0.3202 + }, + { + "start": 47280.28, + "end": 47282.66, + "probability": 0.8803 + }, + { + "start": 47284.06, + "end": 47284.06, + "probability": 0.8207 + }, + { + "start": 47284.06, + "end": 47284.06, + "probability": 0.1345 + }, + { + "start": 47284.06, + "end": 47284.08, + "probability": 0.2548 + }, + { + "start": 47300.48, + "end": 47304.96, + "probability": 0.0584 + }, + { + "start": 47306.42, + "end": 47306.74, + "probability": 0.0895 + }, + { + "start": 47320.74, + "end": 47323.5, + "probability": 0.7416 + }, + { + "start": 47323.8, + "end": 47326.9, + "probability": 0.9932 + }, + { + "start": 47327.78, + "end": 47331.04, + "probability": 0.9956 + }, + { + "start": 47331.1, + "end": 47334.7, + "probability": 0.9932 + }, + { + "start": 47334.7, + "end": 47337.82, + "probability": 0.9292 + }, + { + "start": 47338.98, + "end": 47342.18, + "probability": 0.9829 + }, + { + "start": 47342.74, + "end": 47346.42, + "probability": 0.9871 + }, + { + "start": 47348.0, + "end": 47349.18, + "probability": 0.9629 + }, + { + "start": 47349.74, + "end": 47354.12, + "probability": 0.9891 + }, + { + "start": 47354.6, + "end": 47355.74, + "probability": 0.993 + }, + { + "start": 47355.8, + "end": 47357.1, + "probability": 0.5279 + }, + { + "start": 47357.96, + "end": 47361.84, + "probability": 0.8187 + }, + { + "start": 47363.14, + "end": 47364.37, + "probability": 0.9971 + }, + { + "start": 47364.63, + "end": 47368.76, + "probability": 0.8879 + }, + { + "start": 47369.68, + "end": 47373.34, + "probability": 0.9556 + }, + { + "start": 47374.22, + "end": 47376.92, + "probability": 0.6891 + }, + { + "start": 47377.42, + "end": 47377.98, + "probability": 0.7312 + }, + { + "start": 47378.06, + "end": 47379.38, + "probability": 0.7203 + }, + { + "start": 47379.46, + "end": 47379.76, + "probability": 0.9261 + }, + { + "start": 47379.86, + "end": 47380.82, + "probability": 0.9119 + }, + { + "start": 47382.06, + "end": 47382.3, + "probability": 0.9209 + }, + { + "start": 47383.16, + "end": 47388.18, + "probability": 0.9727 + }, + { + "start": 47388.22, + "end": 47388.84, + "probability": 0.9829 + }, + { + "start": 47388.88, + "end": 47392.28, + "probability": 0.9777 + }, + { + "start": 47393.28, + "end": 47395.24, + "probability": 0.9963 + }, + { + "start": 47397.44, + "end": 47398.48, + "probability": 0.9922 + }, + { + "start": 47398.6, + "end": 47399.74, + "probability": 0.7995 + }, + { + "start": 47399.86, + "end": 47401.82, + "probability": 0.9985 + }, + { + "start": 47401.92, + "end": 47403.92, + "probability": 0.9906 + }, + { + "start": 47404.82, + "end": 47405.84, + "probability": 0.7395 + }, + { + "start": 47406.8, + "end": 47410.72, + "probability": 0.9688 + }, + { + "start": 47410.98, + "end": 47413.66, + "probability": 0.9929 + }, + { + "start": 47413.8, + "end": 47414.42, + "probability": 0.7585 + }, + { + "start": 47414.42, + "end": 47415.18, + "probability": 0.9502 + }, + { + "start": 47415.34, + "end": 47415.8, + "probability": 0.5936 + }, + { + "start": 47417.78, + "end": 47421.6, + "probability": 0.992 + }, + { + "start": 47422.24, + "end": 47424.98, + "probability": 0.8993 + }, + { + "start": 47426.32, + "end": 47434.18, + "probability": 0.9766 + }, + { + "start": 47435.96, + "end": 47438.18, + "probability": 0.9539 + }, + { + "start": 47439.06, + "end": 47442.74, + "probability": 0.925 + }, + { + "start": 47444.74, + "end": 47448.68, + "probability": 0.9803 + }, + { + "start": 47449.48, + "end": 47452.22, + "probability": 0.9882 + }, + { + "start": 47453.58, + "end": 47457.72, + "probability": 0.9846 + }, + { + "start": 47458.26, + "end": 47461.5, + "probability": 0.9055 + }, + { + "start": 47462.22, + "end": 47463.02, + "probability": 0.7844 + }, + { + "start": 47465.24, + "end": 47468.72, + "probability": 0.993 + }, + { + "start": 47468.74, + "end": 47469.82, + "probability": 0.9329 + }, + { + "start": 47470.74, + "end": 47472.28, + "probability": 0.9901 + }, + { + "start": 47473.6, + "end": 47477.52, + "probability": 0.9455 + }, + { + "start": 47478.08, + "end": 47481.26, + "probability": 0.9639 + }, + { + "start": 47482.4, + "end": 47482.74, + "probability": 0.6784 + }, + { + "start": 47482.86, + "end": 47484.98, + "probability": 0.914 + }, + { + "start": 47485.08, + "end": 47486.52, + "probability": 0.9849 + }, + { + "start": 47486.56, + "end": 47490.42, + "probability": 0.9916 + }, + { + "start": 47490.46, + "end": 47490.9, + "probability": 0.9227 + }, + { + "start": 47492.28, + "end": 47495.02, + "probability": 0.9714 + }, + { + "start": 47495.1, + "end": 47496.6, + "probability": 0.9967 + }, + { + "start": 47496.76, + "end": 47498.36, + "probability": 0.7948 + }, + { + "start": 47498.44, + "end": 47498.94, + "probability": 0.6408 + }, + { + "start": 47499.08, + "end": 47499.6, + "probability": 0.7439 + }, + { + "start": 47500.14, + "end": 47502.72, + "probability": 0.9037 + }, + { + "start": 47502.9, + "end": 47503.9, + "probability": 0.9826 + }, + { + "start": 47504.78, + "end": 47507.36, + "probability": 0.7197 + }, + { + "start": 47507.5, + "end": 47507.8, + "probability": 0.6851 + }, + { + "start": 47507.9, + "end": 47510.56, + "probability": 0.9988 + }, + { + "start": 47510.78, + "end": 47513.22, + "probability": 0.6948 + }, + { + "start": 47513.5, + "end": 47514.05, + "probability": 0.6782 + }, + { + "start": 47531.26, + "end": 47532.56, + "probability": 0.6442 + }, + { + "start": 47534.16, + "end": 47535.04, + "probability": 0.9632 + }, + { + "start": 47536.04, + "end": 47537.94, + "probability": 0.6954 + }, + { + "start": 47539.94, + "end": 47542.0, + "probability": 0.8512 + }, + { + "start": 47543.26, + "end": 47550.64, + "probability": 0.9914 + }, + { + "start": 47550.92, + "end": 47553.94, + "probability": 0.9269 + }, + { + "start": 47558.05, + "end": 47564.06, + "probability": 0.9978 + }, + { + "start": 47564.74, + "end": 47565.66, + "probability": 0.8933 + }, + { + "start": 47566.48, + "end": 47567.72, + "probability": 0.9985 + }, + { + "start": 47570.26, + "end": 47573.84, + "probability": 0.9996 + }, + { + "start": 47574.94, + "end": 47576.78, + "probability": 0.8866 + }, + { + "start": 47577.84, + "end": 47580.36, + "probability": 0.7869 + }, + { + "start": 47582.0, + "end": 47584.36, + "probability": 0.9948 + }, + { + "start": 47585.04, + "end": 47587.54, + "probability": 0.961 + }, + { + "start": 47589.96, + "end": 47593.08, + "probability": 0.9612 + }, + { + "start": 47595.5, + "end": 47600.76, + "probability": 0.9476 + }, + { + "start": 47601.8, + "end": 47607.56, + "probability": 0.9775 + }, + { + "start": 47610.76, + "end": 47613.46, + "probability": 0.9842 + }, + { + "start": 47617.46, + "end": 47618.64, + "probability": 0.9792 + }, + { + "start": 47619.94, + "end": 47621.56, + "probability": 0.9554 + }, + { + "start": 47623.84, + "end": 47629.2, + "probability": 0.9882 + }, + { + "start": 47630.78, + "end": 47631.44, + "probability": 0.4993 + }, + { + "start": 47632.58, + "end": 47633.44, + "probability": 0.9139 + }, + { + "start": 47634.32, + "end": 47634.9, + "probability": 0.9813 + }, + { + "start": 47635.62, + "end": 47638.98, + "probability": 0.9849 + }, + { + "start": 47641.2, + "end": 47645.6, + "probability": 0.9766 + }, + { + "start": 47646.78, + "end": 47647.72, + "probability": 0.9087 + }, + { + "start": 47648.94, + "end": 47651.74, + "probability": 0.895 + }, + { + "start": 47653.54, + "end": 47657.34, + "probability": 0.9752 + }, + { + "start": 47658.14, + "end": 47661.58, + "probability": 0.9221 + }, + { + "start": 47663.9, + "end": 47664.98, + "probability": 0.9241 + }, + { + "start": 47665.5, + "end": 47666.5, + "probability": 0.9219 + }, + { + "start": 47667.4, + "end": 47668.78, + "probability": 0.9744 + }, + { + "start": 47670.52, + "end": 47675.9, + "probability": 0.9919 + }, + { + "start": 47675.9, + "end": 47680.28, + "probability": 0.9997 + }, + { + "start": 47681.32, + "end": 47683.24, + "probability": 0.9722 + }, + { + "start": 47686.72, + "end": 47689.58, + "probability": 0.9619 + }, + { + "start": 47690.48, + "end": 47691.14, + "probability": 0.8797 + }, + { + "start": 47691.7, + "end": 47693.47, + "probability": 0.9453 + }, + { + "start": 47694.86, + "end": 47697.56, + "probability": 0.9433 + }, + { + "start": 47699.7, + "end": 47705.1, + "probability": 0.9801 + }, + { + "start": 47705.18, + "end": 47706.06, + "probability": 0.8983 + }, + { + "start": 47706.68, + "end": 47710.18, + "probability": 0.9933 + }, + { + "start": 47712.52, + "end": 47715.3, + "probability": 0.9593 + }, + { + "start": 47717.12, + "end": 47717.12, + "probability": 0.4248 + }, + { + "start": 47717.12, + "end": 47717.5, + "probability": 0.6028 + }, + { + "start": 47717.88, + "end": 47719.3, + "probability": 0.7688 + }, + { + "start": 47719.36, + "end": 47724.4, + "probability": 0.9642 + }, + { + "start": 47724.86, + "end": 47730.44, + "probability": 0.9976 + }, + { + "start": 47731.06, + "end": 47731.96, + "probability": 0.8374 + }, + { + "start": 47732.64, + "end": 47733.7, + "probability": 0.9841 + }, + { + "start": 47734.4, + "end": 47735.3, + "probability": 0.8917 + }, + { + "start": 47736.18, + "end": 47738.68, + "probability": 0.9905 + }, + { + "start": 47738.76, + "end": 47740.92, + "probability": 0.924 + }, + { + "start": 47741.6, + "end": 47745.14, + "probability": 0.9815 + }, + { + "start": 47745.62, + "end": 47745.88, + "probability": 0.7805 + }, + { + "start": 47746.58, + "end": 47747.18, + "probability": 0.7382 + }, + { + "start": 47748.28, + "end": 47750.18, + "probability": 0.9244 + }, + { + "start": 47751.24, + "end": 47752.48, + "probability": 0.9029 + }, + { + "start": 47754.56, + "end": 47755.28, + "probability": 0.8853 + }, + { + "start": 47756.26, + "end": 47757.09, + "probability": 0.99 + }, + { + "start": 47758.06, + "end": 47758.24, + "probability": 0.8903 + }, + { + "start": 47759.86, + "end": 47760.68, + "probability": 0.2606 + }, + { + "start": 47760.7, + "end": 47761.08, + "probability": 0.2974 + }, + { + "start": 47761.2, + "end": 47762.18, + "probability": 0.6756 + }, + { + "start": 47762.2, + "end": 47762.48, + "probability": 0.4429 + }, + { + "start": 47763.73, + "end": 47764.96, + "probability": 0.619 + }, + { + "start": 47764.96, + "end": 47764.96, + "probability": 0.5869 + }, + { + "start": 47764.96, + "end": 47765.38, + "probability": 0.7983 + }, + { + "start": 47765.86, + "end": 47766.48, + "probability": 0.4476 + }, + { + "start": 47771.8, + "end": 47773.42, + "probability": 0.4035 + }, + { + "start": 47773.68, + "end": 47775.5, + "probability": 0.7317 + }, + { + "start": 47775.98, + "end": 47777.02, + "probability": 0.9763 + }, + { + "start": 47785.28, + "end": 47785.34, + "probability": 0.1638 + }, + { + "start": 47804.36, + "end": 47805.58, + "probability": 0.71 + }, + { + "start": 47809.84, + "end": 47810.68, + "probability": 0.7943 + }, + { + "start": 47811.74, + "end": 47813.54, + "probability": 0.7782 + }, + { + "start": 47814.8, + "end": 47818.18, + "probability": 0.998 + }, + { + "start": 47818.98, + "end": 47821.28, + "probability": 0.9966 + }, + { + "start": 47822.62, + "end": 47829.16, + "probability": 0.9806 + }, + { + "start": 47829.9, + "end": 47831.66, + "probability": 0.998 + }, + { + "start": 47832.18, + "end": 47837.28, + "probability": 0.9685 + }, + { + "start": 47837.76, + "end": 47842.98, + "probability": 0.9545 + }, + { + "start": 47843.44, + "end": 47848.1, + "probability": 0.9987 + }, + { + "start": 47849.54, + "end": 47851.22, + "probability": 0.936 + }, + { + "start": 47851.4, + "end": 47854.35, + "probability": 0.6522 + }, + { + "start": 47856.18, + "end": 47861.42, + "probability": 0.9956 + }, + { + "start": 47861.9, + "end": 47862.68, + "probability": 0.9538 + }, + { + "start": 47863.4, + "end": 47865.27, + "probability": 0.7376 + }, + { + "start": 47865.8, + "end": 47870.66, + "probability": 0.9084 + }, + { + "start": 47870.9, + "end": 47871.86, + "probability": 0.7627 + }, + { + "start": 47872.2, + "end": 47874.64, + "probability": 0.4494 + }, + { + "start": 47874.84, + "end": 47876.2, + "probability": 0.9102 + }, + { + "start": 47876.34, + "end": 47877.8, + "probability": 0.9213 + }, + { + "start": 47877.88, + "end": 47879.5, + "probability": 0.2128 + }, + { + "start": 47879.6, + "end": 47879.62, + "probability": 0.4098 + }, + { + "start": 47879.62, + "end": 47887.02, + "probability": 0.9185 + }, + { + "start": 47888.16, + "end": 47893.38, + "probability": 0.9886 + }, + { + "start": 47894.9, + "end": 47897.48, + "probability": 0.87 + }, + { + "start": 47898.0, + "end": 47904.98, + "probability": 0.9694 + }, + { + "start": 47905.78, + "end": 47906.94, + "probability": 0.9858 + }, + { + "start": 47907.12, + "end": 47907.8, + "probability": 0.7662 + }, + { + "start": 47908.04, + "end": 47910.28, + "probability": 0.6329 + }, + { + "start": 47910.4, + "end": 47911.36, + "probability": 0.7729 + }, + { + "start": 47911.74, + "end": 47915.1, + "probability": 0.9984 + }, + { + "start": 47915.5, + "end": 47920.08, + "probability": 0.9397 + }, + { + "start": 47920.32, + "end": 47921.74, + "probability": 0.8647 + }, + { + "start": 47925.06, + "end": 47934.0, + "probability": 0.9873 + }, + { + "start": 47934.0, + "end": 47938.78, + "probability": 0.9914 + }, + { + "start": 47939.72, + "end": 47940.48, + "probability": 0.9546 + }, + { + "start": 47941.88, + "end": 47945.28, + "probability": 0.9961 + }, + { + "start": 47946.38, + "end": 47949.06, + "probability": 0.9792 + }, + { + "start": 47950.5, + "end": 47955.74, + "probability": 0.9986 + }, + { + "start": 47956.5, + "end": 47960.06, + "probability": 0.9945 + }, + { + "start": 47960.54, + "end": 47962.98, + "probability": 0.988 + }, + { + "start": 47963.04, + "end": 47964.04, + "probability": 0.9319 + }, + { + "start": 47965.06, + "end": 47973.4, + "probability": 0.9912 + }, + { + "start": 47973.94, + "end": 47977.86, + "probability": 0.9534 + }, + { + "start": 47978.78, + "end": 47981.24, + "probability": 0.9447 + }, + { + "start": 47982.26, + "end": 47986.2, + "probability": 0.9764 + }, + { + "start": 47986.44, + "end": 47991.28, + "probability": 0.9961 + }, + { + "start": 47991.7, + "end": 47992.44, + "probability": 0.6525 + }, + { + "start": 47993.74, + "end": 47995.54, + "probability": 0.9363 + }, + { + "start": 47995.62, + "end": 47995.92, + "probability": 0.2704 + }, + { + "start": 47996.06, + "end": 47997.02, + "probability": 0.8894 + }, + { + "start": 47997.18, + "end": 47997.48, + "probability": 0.6146 + }, + { + "start": 47997.56, + "end": 47999.04, + "probability": 0.7136 + }, + { + "start": 47999.48, + "end": 48000.24, + "probability": 0.922 + }, + { + "start": 48000.72, + "end": 48001.66, + "probability": 0.7917 + }, + { + "start": 48001.74, + "end": 48002.1, + "probability": 0.4512 + }, + { + "start": 48002.24, + "end": 48003.28, + "probability": 0.8492 + }, + { + "start": 48003.32, + "end": 48003.58, + "probability": 0.2088 + }, + { + "start": 48003.64, + "end": 48004.58, + "probability": 0.9275 + }, + { + "start": 48004.64, + "end": 48004.98, + "probability": 0.5021 + }, + { + "start": 48005.4, + "end": 48008.42, + "probability": 0.9134 + }, + { + "start": 48020.08, + "end": 48020.58, + "probability": 0.6697 + }, + { + "start": 48021.6, + "end": 48022.7, + "probability": 0.5805 + }, + { + "start": 48023.4, + "end": 48026.28, + "probability": 0.8804 + }, + { + "start": 48027.2, + "end": 48029.92, + "probability": 0.8919 + }, + { + "start": 48031.52, + "end": 48031.92, + "probability": 0.9962 + }, + { + "start": 48032.5, + "end": 48034.08, + "probability": 0.9946 + }, + { + "start": 48036.14, + "end": 48041.38, + "probability": 0.9893 + }, + { + "start": 48041.58, + "end": 48043.64, + "probability": 0.9954 + }, + { + "start": 48044.38, + "end": 48047.29, + "probability": 0.5648 + }, + { + "start": 48048.5, + "end": 48050.28, + "probability": 0.9595 + }, + { + "start": 48050.38, + "end": 48051.3, + "probability": 0.9623 + }, + { + "start": 48052.14, + "end": 48058.42, + "probability": 0.9532 + }, + { + "start": 48059.48, + "end": 48062.58, + "probability": 0.9044 + }, + { + "start": 48064.3, + "end": 48066.02, + "probability": 0.9419 + }, + { + "start": 48067.38, + "end": 48069.0, + "probability": 0.9955 + }, + { + "start": 48069.38, + "end": 48074.6, + "probability": 0.9692 + }, + { + "start": 48075.3, + "end": 48077.74, + "probability": 0.9291 + }, + { + "start": 48078.74, + "end": 48080.7, + "probability": 0.8523 + }, + { + "start": 48081.84, + "end": 48082.8, + "probability": 0.9912 + }, + { + "start": 48083.66, + "end": 48086.6, + "probability": 0.71 + }, + { + "start": 48087.7, + "end": 48092.36, + "probability": 0.6644 + }, + { + "start": 48093.24, + "end": 48099.66, + "probability": 0.8283 + }, + { + "start": 48100.6, + "end": 48102.76, + "probability": 0.9749 + }, + { + "start": 48103.98, + "end": 48105.38, + "probability": 0.9888 + }, + { + "start": 48105.52, + "end": 48108.34, + "probability": 0.9951 + }, + { + "start": 48109.98, + "end": 48112.48, + "probability": 0.8955 + }, + { + "start": 48112.74, + "end": 48117.36, + "probability": 0.9019 + }, + { + "start": 48118.38, + "end": 48121.26, + "probability": 0.8273 + }, + { + "start": 48122.08, + "end": 48124.86, + "probability": 0.9633 + }, + { + "start": 48125.52, + "end": 48126.04, + "probability": 0.9595 + }, + { + "start": 48126.94, + "end": 48127.52, + "probability": 0.8668 + }, + { + "start": 48128.48, + "end": 48129.2, + "probability": 0.9529 + }, + { + "start": 48129.92, + "end": 48131.02, + "probability": 0.7517 + }, + { + "start": 48132.86, + "end": 48136.92, + "probability": 0.9868 + }, + { + "start": 48138.44, + "end": 48140.62, + "probability": 0.9777 + }, + { + "start": 48143.98, + "end": 48145.86, + "probability": 0.9152 + }, + { + "start": 48146.34, + "end": 48148.24, + "probability": 0.9945 + }, + { + "start": 48148.42, + "end": 48149.18, + "probability": 0.7841 + }, + { + "start": 48150.98, + "end": 48152.12, + "probability": 0.7185 + }, + { + "start": 48152.88, + "end": 48154.34, + "probability": 0.9819 + }, + { + "start": 48155.14, + "end": 48156.08, + "probability": 0.8352 + }, + { + "start": 48156.6, + "end": 48160.44, + "probability": 0.7957 + }, + { + "start": 48161.48, + "end": 48163.78, + "probability": 0.9631 + }, + { + "start": 48164.34, + "end": 48164.34, + "probability": 0.3601 + }, + { + "start": 48164.34, + "end": 48166.12, + "probability": 0.9858 + }, + { + "start": 48168.48, + "end": 48172.62, + "probability": 0.986 + }, + { + "start": 48173.04, + "end": 48173.24, + "probability": 0.7982 + }, + { + "start": 48173.92, + "end": 48174.38, + "probability": 0.5869 + }, + { + "start": 48174.42, + "end": 48175.78, + "probability": 0.4262 + }, + { + "start": 48176.08, + "end": 48177.56, + "probability": 0.5946 + }, + { + "start": 48192.66, + "end": 48195.11, + "probability": 0.7619 + }, + { + "start": 48196.52, + "end": 48198.78, + "probability": 0.983 + }, + { + "start": 48199.06, + "end": 48201.34, + "probability": 0.9778 + }, + { + "start": 48202.14, + "end": 48204.02, + "probability": 0.9963 + }, + { + "start": 48204.76, + "end": 48206.5, + "probability": 0.9937 + }, + { + "start": 48207.03, + "end": 48207.44, + "probability": 0.3774 + }, + { + "start": 48208.8, + "end": 48212.44, + "probability": 0.7878 + }, + { + "start": 48212.58, + "end": 48215.02, + "probability": 0.8349 + }, + { + "start": 48215.52, + "end": 48216.9, + "probability": 0.7917 + }, + { + "start": 48217.06, + "end": 48219.42, + "probability": 0.8867 + }, + { + "start": 48220.0, + "end": 48223.46, + "probability": 0.9957 + }, + { + "start": 48223.46, + "end": 48224.06, + "probability": 0.5182 + }, + { + "start": 48225.4, + "end": 48225.6, + "probability": 0.8762 + }, + { + "start": 48226.6, + "end": 48227.48, + "probability": 0.9338 + }, + { + "start": 48229.8, + "end": 48230.32, + "probability": 0.9771 + }, + { + "start": 48231.22, + "end": 48232.86, + "probability": 0.9185 + }, + { + "start": 48233.12, + "end": 48237.08, + "probability": 0.949 + }, + { + "start": 48237.1, + "end": 48238.38, + "probability": 0.8401 + }, + { + "start": 48238.9, + "end": 48240.32, + "probability": 0.9977 + }, + { + "start": 48241.74, + "end": 48244.28, + "probability": 0.6955 + }, + { + "start": 48245.12, + "end": 48250.02, + "probability": 0.97 + }, + { + "start": 48250.52, + "end": 48253.76, + "probability": 0.8835 + }, + { + "start": 48254.42, + "end": 48258.24, + "probability": 0.949 + }, + { + "start": 48258.98, + "end": 48261.94, + "probability": 0.9797 + }, + { + "start": 48262.46, + "end": 48262.74, + "probability": 0.3665 + }, + { + "start": 48266.62, + "end": 48269.28, + "probability": 0.7969 + }, + { + "start": 48287.36, + "end": 48289.4, + "probability": 0.9209 + }, + { + "start": 48289.5, + "end": 48290.46, + "probability": 0.9112 + }, + { + "start": 48291.34, + "end": 48294.0, + "probability": 0.7228 + }, + { + "start": 48295.18, + "end": 48298.14, + "probability": 0.3387 + }, + { + "start": 48298.64, + "end": 48298.64, + "probability": 0.505 + }, + { + "start": 48298.64, + "end": 48301.02, + "probability": 0.8264 + }, + { + "start": 48301.74, + "end": 48302.94, + "probability": 0.8353 + }, + { + "start": 48303.48, + "end": 48306.0, + "probability": 0.9985 + }, + { + "start": 48307.34, + "end": 48309.6, + "probability": 0.9796 + }, + { + "start": 48310.42, + "end": 48312.8, + "probability": 0.9935 + }, + { + "start": 48313.5, + "end": 48316.4, + "probability": 0.9948 + }, + { + "start": 48317.74, + "end": 48318.66, + "probability": 0.843 + }, + { + "start": 48319.36, + "end": 48321.78, + "probability": 0.996 + }, + { + "start": 48323.1, + "end": 48326.54, + "probability": 0.9293 + }, + { + "start": 48327.12, + "end": 48328.26, + "probability": 0.9956 + }, + { + "start": 48328.74, + "end": 48330.52, + "probability": 0.9885 + }, + { + "start": 48330.58, + "end": 48334.72, + "probability": 0.6847 + }, + { + "start": 48336.2, + "end": 48337.1, + "probability": 0.5186 + }, + { + "start": 48337.86, + "end": 48338.84, + "probability": 0.8262 + }, + { + "start": 48338.96, + "end": 48339.12, + "probability": 0.3546 + }, + { + "start": 48339.96, + "end": 48341.84, + "probability": 0.9782 + }, + { + "start": 48342.86, + "end": 48344.68, + "probability": 0.9639 + }, + { + "start": 48345.92, + "end": 48347.9, + "probability": 0.9933 + }, + { + "start": 48348.44, + "end": 48348.88, + "probability": 0.8633 + }, + { + "start": 48349.56, + "end": 48352.74, + "probability": 0.9893 + }, + { + "start": 48352.96, + "end": 48356.26, + "probability": 0.8336 + }, + { + "start": 48356.86, + "end": 48357.36, + "probability": 0.561 + }, + { + "start": 48357.4, + "end": 48359.94, + "probability": 0.7524 + }, + { + "start": 48361.85, + "end": 48363.7, + "probability": 0.9164 + }, + { + "start": 48366.22, + "end": 48368.76, + "probability": 0.5071 + }, + { + "start": 48372.7, + "end": 48373.76, + "probability": 0.2341 + }, + { + "start": 48374.16, + "end": 48378.46, + "probability": 0.8472 + }, + { + "start": 48379.66, + "end": 48380.12, + "probability": 0.5528 + }, + { + "start": 48380.14, + "end": 48382.3, + "probability": 0.6793 + }, + { + "start": 48383.5, + "end": 48387.48, + "probability": 0.9979 + }, + { + "start": 48389.44, + "end": 48389.92, + "probability": 0.829 + }, + { + "start": 48390.28, + "end": 48390.7, + "probability": 0.4444 + }, + { + "start": 48390.94, + "end": 48391.82, + "probability": 0.9922 + }, + { + "start": 48392.98, + "end": 48394.98, + "probability": 0.9961 + }, + { + "start": 48396.66, + "end": 48398.16, + "probability": 0.3333 + }, + { + "start": 48399.76, + "end": 48400.72, + "probability": 0.9878 + }, + { + "start": 48401.9, + "end": 48402.78, + "probability": 0.5307 + }, + { + "start": 48405.54, + "end": 48408.74, + "probability": 0.8402 + }, + { + "start": 48411.1, + "end": 48413.66, + "probability": 0.9839 + }, + { + "start": 48414.64, + "end": 48415.72, + "probability": 0.6517 + }, + { + "start": 48417.92, + "end": 48419.12, + "probability": 0.8574 + }, + { + "start": 48419.92, + "end": 48421.04, + "probability": 0.9163 + }, + { + "start": 48422.78, + "end": 48423.76, + "probability": 0.6292 + }, + { + "start": 48425.06, + "end": 48425.81, + "probability": 0.0049 + }, + { + "start": 48427.06, + "end": 48428.76, + "probability": 0.4746 + }, + { + "start": 48428.8, + "end": 48432.24, + "probability": 0.1434 + }, + { + "start": 48432.78, + "end": 48433.56, + "probability": 0.9476 + }, + { + "start": 48433.82, + "end": 48438.36, + "probability": 0.9713 + }, + { + "start": 48438.9, + "end": 48440.9, + "probability": 0.9438 + }, + { + "start": 48441.08, + "end": 48442.37, + "probability": 0.9984 + }, + { + "start": 48442.5, + "end": 48443.0, + "probability": 0.5883 + }, + { + "start": 48443.0, + "end": 48443.8, + "probability": 0.8201 + }, + { + "start": 48443.84, + "end": 48445.36, + "probability": 0.8564 + }, + { + "start": 48445.9, + "end": 48447.42, + "probability": 0.8585 + }, + { + "start": 48448.26, + "end": 48450.9, + "probability": 0.9991 + }, + { + "start": 48451.04, + "end": 48451.54, + "probability": 0.7657 + }, + { + "start": 48452.28, + "end": 48454.04, + "probability": 0.5732 + }, + { + "start": 48455.58, + "end": 48456.1, + "probability": 0.7798 + }, + { + "start": 48457.84, + "end": 48458.44, + "probability": 0.9153 + }, + { + "start": 48459.28, + "end": 48461.22, + "probability": 0.4279 + }, + { + "start": 48461.22, + "end": 48465.68, + "probability": 0.972 + }, + { + "start": 48465.84, + "end": 48467.62, + "probability": 0.8982 + }, + { + "start": 48468.18, + "end": 48471.1, + "probability": 0.8058 + }, + { + "start": 48471.78, + "end": 48472.49, + "probability": 0.7439 + }, + { + "start": 48474.52, + "end": 48475.48, + "probability": 0.9299 + }, + { + "start": 48475.62, + "end": 48479.78, + "probability": 0.9947 + }, + { + "start": 48480.52, + "end": 48482.24, + "probability": 0.9872 + }, + { + "start": 48483.24, + "end": 48487.54, + "probability": 0.9311 + }, + { + "start": 48488.12, + "end": 48491.84, + "probability": 0.8177 + }, + { + "start": 48492.32, + "end": 48495.08, + "probability": 0.9833 + }, + { + "start": 48495.72, + "end": 48497.1, + "probability": 0.9907 + }, + { + "start": 48498.08, + "end": 48500.9, + "probability": 0.9229 + }, + { + "start": 48501.88, + "end": 48504.85, + "probability": 0.9951 + }, + { + "start": 48505.96, + "end": 48506.7, + "probability": 0.969 + }, + { + "start": 48507.26, + "end": 48508.68, + "probability": 0.7409 + }, + { + "start": 48510.66, + "end": 48511.95, + "probability": 0.9902 + }, + { + "start": 48512.18, + "end": 48513.42, + "probability": 0.9944 + }, + { + "start": 48513.76, + "end": 48515.56, + "probability": 0.7816 + }, + { + "start": 48516.34, + "end": 48518.0, + "probability": 0.7196 + }, + { + "start": 48518.3, + "end": 48520.06, + "probability": 0.998 + }, + { + "start": 48521.0, + "end": 48523.3, + "probability": 0.9738 + }, + { + "start": 48524.32, + "end": 48524.94, + "probability": 0.4615 + }, + { + "start": 48525.2, + "end": 48526.28, + "probability": 0.7949 + }, + { + "start": 48527.74, + "end": 48531.34, + "probability": 0.9595 + }, + { + "start": 48532.92, + "end": 48535.58, + "probability": 0.9819 + }, + { + "start": 48536.52, + "end": 48538.1, + "probability": 0.8826 + }, + { + "start": 48539.18, + "end": 48540.02, + "probability": 0.9952 + }, + { + "start": 48540.84, + "end": 48542.58, + "probability": 0.6663 + }, + { + "start": 48542.76, + "end": 48545.2, + "probability": 0.9977 + }, + { + "start": 48545.72, + "end": 48547.54, + "probability": 0.6548 + }, + { + "start": 48549.16, + "end": 48550.82, + "probability": 0.9961 + }, + { + "start": 48550.88, + "end": 48554.34, + "probability": 0.9893 + }, + { + "start": 48554.94, + "end": 48558.18, + "probability": 0.998 + }, + { + "start": 48558.66, + "end": 48559.1, + "probability": 0.8016 + }, + { + "start": 48559.16, + "end": 48559.42, + "probability": 0.8603 + }, + { + "start": 48559.54, + "end": 48560.0, + "probability": 0.8997 + }, + { + "start": 48560.04, + "end": 48564.96, + "probability": 0.9856 + }, + { + "start": 48564.96, + "end": 48567.58, + "probability": 0.9117 + }, + { + "start": 48567.68, + "end": 48569.4, + "probability": 0.9092 + }, + { + "start": 48569.44, + "end": 48570.02, + "probability": 0.684 + }, + { + "start": 48570.1, + "end": 48571.92, + "probability": 0.9861 + }, + { + "start": 48572.52, + "end": 48574.28, + "probability": 0.9758 + }, + { + "start": 48574.4, + "end": 48574.54, + "probability": 0.6194 + }, + { + "start": 48574.9, + "end": 48575.56, + "probability": 0.8589 + }, + { + "start": 48575.94, + "end": 48576.5, + "probability": 0.6305 + }, + { + "start": 48576.6, + "end": 48576.76, + "probability": 0.8984 + }, + { + "start": 48577.2, + "end": 48580.86, + "probability": 0.525 + }, + { + "start": 48581.64, + "end": 48582.38, + "probability": 0.5928 + }, + { + "start": 48582.52, + "end": 48583.66, + "probability": 0.8813 + }, + { + "start": 48585.1, + "end": 48585.5, + "probability": 0.692 + }, + { + "start": 48587.24, + "end": 48587.68, + "probability": 0.178 + }, + { + "start": 48587.68, + "end": 48587.68, + "probability": 0.1096 + }, + { + "start": 48587.68, + "end": 48588.8, + "probability": 0.7252 + }, + { + "start": 48589.92, + "end": 48591.0, + "probability": 0.6435 + }, + { + "start": 48603.52, + "end": 48605.94, + "probability": 0.5493 + }, + { + "start": 48606.74, + "end": 48608.34, + "probability": 0.6895 + }, + { + "start": 48609.4, + "end": 48612.62, + "probability": 0.1747 + }, + { + "start": 48613.34, + "end": 48615.24, + "probability": 0.1847 + }, + { + "start": 48616.77, + "end": 48617.86, + "probability": 0.3175 + }, + { + "start": 48618.56, + "end": 48628.16, + "probability": 0.0523 + }, + { + "start": 48629.38, + "end": 48629.38, + "probability": 0.1453 + }, + { + "start": 48629.38, + "end": 48629.96, + "probability": 0.394 + }, + { + "start": 48630.3, + "end": 48633.54, + "probability": 0.3229 + }, + { + "start": 48633.62, + "end": 48633.62, + "probability": 0.1868 + }, + { + "start": 48634.22, + "end": 48639.84, + "probability": 0.8983 + }, + { + "start": 48640.04, + "end": 48640.64, + "probability": 0.4794 + }, + { + "start": 48640.64, + "end": 48641.36, + "probability": 0.588 + }, + { + "start": 48641.82, + "end": 48643.61, + "probability": 0.6888 + }, + { + "start": 48644.62, + "end": 48645.38, + "probability": 0.0708 + }, + { + "start": 48645.7, + "end": 48646.66, + "probability": 0.7201 + }, + { + "start": 48647.0, + "end": 48648.36, + "probability": 0.2678 + }, + { + "start": 48648.36, + "end": 48648.7, + "probability": 0.2313 + }, + { + "start": 48649.36, + "end": 48652.88, + "probability": 0.5088 + }, + { + "start": 48653.38, + "end": 48655.22, + "probability": 0.4346 + }, + { + "start": 48655.34, + "end": 48656.48, + "probability": 0.6863 + }, + { + "start": 48656.72, + "end": 48658.34, + "probability": 0.67 + }, + { + "start": 48658.52, + "end": 48664.02, + "probability": 0.9476 + }, + { + "start": 48664.28, + "end": 48665.16, + "probability": 0.8069 + }, + { + "start": 48665.7, + "end": 48667.9, + "probability": 0.995 + }, + { + "start": 48668.04, + "end": 48669.58, + "probability": 0.9568 + }, + { + "start": 48670.72, + "end": 48672.6, + "probability": 0.8648 + }, + { + "start": 48674.0, + "end": 48676.72, + "probability": 0.9972 + }, + { + "start": 48676.72, + "end": 48681.06, + "probability": 0.996 + }, + { + "start": 48681.48, + "end": 48684.82, + "probability": 0.9836 + }, + { + "start": 48685.46, + "end": 48686.48, + "probability": 0.8032 + }, + { + "start": 48687.06, + "end": 48688.36, + "probability": 0.9728 + }, + { + "start": 48688.68, + "end": 48690.08, + "probability": 0.9123 + }, + { + "start": 48690.58, + "end": 48692.0, + "probability": 0.9697 + }, + { + "start": 48692.9, + "end": 48694.74, + "probability": 0.5096 + }, + { + "start": 48695.56, + "end": 48698.28, + "probability": 0.9387 + }, + { + "start": 48698.38, + "end": 48700.46, + "probability": 0.7443 + }, + { + "start": 48700.84, + "end": 48702.32, + "probability": 0.9543 + }, + { + "start": 48702.4, + "end": 48703.82, + "probability": 0.8149 + }, + { + "start": 48704.98, + "end": 48706.5, + "probability": 0.9707 + }, + { + "start": 48707.5, + "end": 48711.8, + "probability": 0.9711 + }, + { + "start": 48712.1, + "end": 48715.06, + "probability": 0.9499 + }, + { + "start": 48716.16, + "end": 48719.54, + "probability": 0.8887 + }, + { + "start": 48719.68, + "end": 48722.68, + "probability": 0.992 + }, + { + "start": 48723.22, + "end": 48728.52, + "probability": 0.9746 + }, + { + "start": 48729.4, + "end": 48733.64, + "probability": 0.9753 + }, + { + "start": 48733.74, + "end": 48735.74, + "probability": 0.9398 + }, + { + "start": 48735.86, + "end": 48737.2, + "probability": 0.8499 + }, + { + "start": 48737.22, + "end": 48738.68, + "probability": 0.5407 + }, + { + "start": 48738.82, + "end": 48739.44, + "probability": 0.7972 + }, + { + "start": 48740.28, + "end": 48745.88, + "probability": 0.9573 + }, + { + "start": 48746.34, + "end": 48747.48, + "probability": 0.8212 + }, + { + "start": 48748.36, + "end": 48749.7, + "probability": 0.9785 + }, + { + "start": 48750.26, + "end": 48754.22, + "probability": 0.957 + }, + { + "start": 48754.9, + "end": 48755.38, + "probability": 0.3794 + }, + { + "start": 48756.28, + "end": 48756.86, + "probability": 0.5452 + }, + { + "start": 48757.82, + "end": 48758.95, + "probability": 0.9858 + }, + { + "start": 48759.7, + "end": 48764.06, + "probability": 0.9331 + }, + { + "start": 48764.7, + "end": 48765.08, + "probability": 0.7935 + }, + { + "start": 48765.38, + "end": 48768.44, + "probability": 0.9943 + }, + { + "start": 48769.18, + "end": 48770.2, + "probability": 0.9834 + }, + { + "start": 48770.78, + "end": 48772.54, + "probability": 0.9561 + }, + { + "start": 48772.54, + "end": 48774.94, + "probability": 0.7512 + }, + { + "start": 48775.12, + "end": 48775.52, + "probability": 0.413 + }, + { + "start": 48775.66, + "end": 48778.02, + "probability": 0.598 + }, + { + "start": 48778.14, + "end": 48779.22, + "probability": 0.9903 + }, + { + "start": 48779.62, + "end": 48780.56, + "probability": 0.7949 + }, + { + "start": 48780.56, + "end": 48781.14, + "probability": 0.8606 + }, + { + "start": 48783.14, + "end": 48785.48, + "probability": 0.6524 + }, + { + "start": 48785.64, + "end": 48789.2, + "probability": 0.8103 + }, + { + "start": 48789.62, + "end": 48791.0, + "probability": 0.9763 + }, + { + "start": 48791.84, + "end": 48794.56, + "probability": 0.9956 + }, + { + "start": 48795.78, + "end": 48797.18, + "probability": 0.99 + }, + { + "start": 48797.5, + "end": 48801.36, + "probability": 0.936 + }, + { + "start": 48802.28, + "end": 48804.36, + "probability": 0.947 + }, + { + "start": 48804.46, + "end": 48804.5, + "probability": 0.3648 + }, + { + "start": 48804.58, + "end": 48805.86, + "probability": 0.7865 + }, + { + "start": 48806.28, + "end": 48809.7, + "probability": 0.945 + }, + { + "start": 48809.82, + "end": 48809.92, + "probability": 0.8532 + }, + { + "start": 48810.38, + "end": 48812.62, + "probability": 0.713 + }, + { + "start": 48813.54, + "end": 48815.04, + "probability": 0.9104 + }, + { + "start": 48815.58, + "end": 48817.08, + "probability": 0.9043 + }, + { + "start": 48818.02, + "end": 48819.3, + "probability": 0.7239 + }, + { + "start": 48819.46, + "end": 48820.46, + "probability": 0.7471 + }, + { + "start": 48820.96, + "end": 48824.4, + "probability": 0.9539 + }, + { + "start": 48825.04, + "end": 48825.5, + "probability": 0.4941 + }, + { + "start": 48825.54, + "end": 48827.98, + "probability": 0.9475 + }, + { + "start": 48828.6, + "end": 48830.04, + "probability": 0.8147 + }, + { + "start": 48830.52, + "end": 48831.3, + "probability": 0.6422 + }, + { + "start": 48831.38, + "end": 48832.12, + "probability": 0.9031 + }, + { + "start": 48832.14, + "end": 48832.7, + "probability": 0.4811 + }, + { + "start": 48832.8, + "end": 48833.38, + "probability": 0.5255 + }, + { + "start": 48833.84, + "end": 48834.46, + "probability": 0.4602 + }, + { + "start": 48835.2, + "end": 48835.58, + "probability": 0.4808 + }, + { + "start": 48836.72, + "end": 48838.58, + "probability": 0.9954 + }, + { + "start": 48838.74, + "end": 48840.12, + "probability": 0.8536 + }, + { + "start": 48840.58, + "end": 48842.65, + "probability": 0.7573 + }, + { + "start": 48842.7, + "end": 48842.98, + "probability": 0.0754 + }, + { + "start": 48843.0, + "end": 48844.49, + "probability": 0.9093 + }, + { + "start": 48845.16, + "end": 48846.52, + "probability": 0.9327 + }, + { + "start": 48847.1, + "end": 48852.28, + "probability": 0.9919 + }, + { + "start": 48852.82, + "end": 48857.1, + "probability": 0.9868 + }, + { + "start": 48857.66, + "end": 48858.9, + "probability": 0.9076 + }, + { + "start": 48859.5, + "end": 48865.94, + "probability": 0.9888 + }, + { + "start": 48867.16, + "end": 48869.84, + "probability": 0.9255 + }, + { + "start": 48870.26, + "end": 48871.58, + "probability": 0.5313 + }, + { + "start": 48872.0, + "end": 48874.5, + "probability": 0.939 + }, + { + "start": 48874.6, + "end": 48875.18, + "probability": 0.6797 + }, + { + "start": 48877.7, + "end": 48877.98, + "probability": 0.0615 + }, + { + "start": 48877.98, + "end": 48877.98, + "probability": 0.0458 + }, + { + "start": 48877.98, + "end": 48877.98, + "probability": 0.0249 + }, + { + "start": 48877.98, + "end": 48878.48, + "probability": 0.4242 + }, + { + "start": 48878.96, + "end": 48880.34, + "probability": 0.949 + }, + { + "start": 48891.67, + "end": 48893.88, + "probability": 0.9806 + }, + { + "start": 48893.9, + "end": 48899.62, + "probability": 0.9341 + }, + { + "start": 48899.7, + "end": 48900.9, + "probability": 0.6228 + }, + { + "start": 48901.14, + "end": 48904.86, + "probability": 0.8398 + }, + { + "start": 48905.54, + "end": 48906.48, + "probability": 0.4923 + }, + { + "start": 48906.8, + "end": 48909.84, + "probability": 0.7158 + }, + { + "start": 48909.84, + "end": 48911.7, + "probability": 0.7124 + }, + { + "start": 48911.72, + "end": 48912.48, + "probability": 0.8529 + }, + { + "start": 48912.54, + "end": 48916.1, + "probability": 0.6681 + }, + { + "start": 48916.76, + "end": 48917.64, + "probability": 0.7894 + }, + { + "start": 48917.86, + "end": 48919.95, + "probability": 0.9764 + }, + { + "start": 48920.12, + "end": 48922.26, + "probability": 0.549 + }, + { + "start": 48922.26, + "end": 48923.98, + "probability": 0.9832 + }, + { + "start": 48924.04, + "end": 48924.72, + "probability": 0.8762 + }, + { + "start": 48924.84, + "end": 48924.92, + "probability": 0.1703 + }, + { + "start": 48924.92, + "end": 48927.9, + "probability": 0.383 + }, + { + "start": 48928.12, + "end": 48929.32, + "probability": 0.816 + }, + { + "start": 48929.5, + "end": 48930.52, + "probability": 0.876 + }, + { + "start": 48930.52, + "end": 48932.26, + "probability": 0.17 + }, + { + "start": 48932.52, + "end": 48934.76, + "probability": 0.5073 + }, + { + "start": 48934.76, + "end": 48939.22, + "probability": 0.5747 + }, + { + "start": 48939.36, + "end": 48941.17, + "probability": 0.7619 + }, + { + "start": 48941.58, + "end": 48944.44, + "probability": 0.9308 + }, + { + "start": 48944.86, + "end": 48945.8, + "probability": 0.5374 + }, + { + "start": 48945.92, + "end": 48946.78, + "probability": 0.2543 + }, + { + "start": 48947.14, + "end": 48947.16, + "probability": 0.1664 + }, + { + "start": 48947.66, + "end": 48949.08, + "probability": 0.0451 + }, + { + "start": 48951.78, + "end": 48952.14, + "probability": 0.1333 + }, + { + "start": 48952.18, + "end": 48953.48, + "probability": 0.3614 + }, + { + "start": 48953.48, + "end": 48955.06, + "probability": 0.0558 + }, + { + "start": 48955.66, + "end": 48957.56, + "probability": 0.1477 + }, + { + "start": 48958.0, + "end": 48958.94, + "probability": 0.1913 + }, + { + "start": 48960.52, + "end": 48961.04, + "probability": 0.1194 + }, + { + "start": 48962.24, + "end": 48965.94, + "probability": 0.1732 + }, + { + "start": 48966.42, + "end": 48971.34, + "probability": 0.2276 + }, + { + "start": 48972.02, + "end": 48974.22, + "probability": 0.0121 + }, + { + "start": 48976.06, + "end": 48976.54, + "probability": 0.0829 + }, + { + "start": 48976.62, + "end": 48977.61, + "probability": 0.134 + }, + { + "start": 48980.34, + "end": 48980.48, + "probability": 0.0279 + }, + { + "start": 48980.48, + "end": 48980.48, + "probability": 0.1559 + }, + { + "start": 48980.48, + "end": 48980.48, + "probability": 0.0373 + }, + { + "start": 48980.48, + "end": 48980.48, + "probability": 0.1193 + }, + { + "start": 48980.48, + "end": 48980.48, + "probability": 0.0297 + }, + { + "start": 48980.48, + "end": 48985.05, + "probability": 0.5663 + }, + { + "start": 48985.96, + "end": 48986.78, + "probability": 0.7233 + }, + { + "start": 48987.72, + "end": 48990.16, + "probability": 0.9958 + }, + { + "start": 48991.91, + "end": 48994.4, + "probability": 0.9431 + }, + { + "start": 48994.54, + "end": 48995.28, + "probability": 0.9545 + }, + { + "start": 48996.04, + "end": 48997.18, + "probability": 0.9495 + }, + { + "start": 48997.48, + "end": 48998.78, + "probability": 0.9841 + }, + { + "start": 48998.94, + "end": 49000.88, + "probability": 0.9907 + }, + { + "start": 49001.16, + "end": 49001.64, + "probability": 0.8223 + }, + { + "start": 49001.82, + "end": 49007.02, + "probability": 0.9974 + }, + { + "start": 49007.08, + "end": 49007.5, + "probability": 0.6229 + }, + { + "start": 49008.02, + "end": 49009.02, + "probability": 0.9468 + }, + { + "start": 49009.62, + "end": 49010.26, + "probability": 0.8043 + }, + { + "start": 49010.46, + "end": 49013.02, + "probability": 0.9981 + }, + { + "start": 49014.04, + "end": 49014.72, + "probability": 0.5179 + }, + { + "start": 49014.9, + "end": 49018.62, + "probability": 0.9929 + }, + { + "start": 49018.62, + "end": 49022.9, + "probability": 0.9758 + }, + { + "start": 49023.42, + "end": 49028.12, + "probability": 0.99 + }, + { + "start": 49028.8, + "end": 49031.1, + "probability": 0.9891 + }, + { + "start": 49031.88, + "end": 49032.8, + "probability": 0.9591 + }, + { + "start": 49032.82, + "end": 49036.26, + "probability": 0.9921 + }, + { + "start": 49036.3, + "end": 49040.32, + "probability": 0.8785 + }, + { + "start": 49040.94, + "end": 49044.26, + "probability": 0.9884 + }, + { + "start": 49044.26, + "end": 49047.9, + "probability": 0.9906 + }, + { + "start": 49048.48, + "end": 49049.43, + "probability": 0.7912 + }, + { + "start": 49050.26, + "end": 49055.04, + "probability": 0.9924 + }, + { + "start": 49056.22, + "end": 49056.57, + "probability": 0.0107 + }, + { + "start": 49057.16, + "end": 49058.3, + "probability": 0.9858 + }, + { + "start": 49058.46, + "end": 49059.72, + "probability": 0.9597 + }, + { + "start": 49059.78, + "end": 49061.41, + "probability": 0.7476 + }, + { + "start": 49061.96, + "end": 49062.08, + "probability": 0.3289 + }, + { + "start": 49062.08, + "end": 49063.33, + "probability": 0.7763 + }, + { + "start": 49063.9, + "end": 49065.04, + "probability": 0.8101 + }, + { + "start": 49066.0, + "end": 49067.16, + "probability": 0.9778 + }, + { + "start": 49067.32, + "end": 49067.62, + "probability": 0.6761 + }, + { + "start": 49067.74, + "end": 49070.0, + "probability": 0.8357 + }, + { + "start": 49070.12, + "end": 49072.28, + "probability": 0.9406 + }, + { + "start": 49072.4, + "end": 49073.64, + "probability": 0.8676 + }, + { + "start": 49074.26, + "end": 49078.2, + "probability": 0.9728 + }, + { + "start": 49078.5, + "end": 49079.74, + "probability": 0.9037 + }, + { + "start": 49079.84, + "end": 49082.66, + "probability": 0.9957 + }, + { + "start": 49082.84, + "end": 49085.12, + "probability": 0.9935 + }, + { + "start": 49085.32, + "end": 49085.68, + "probability": 0.7768 + }, + { + "start": 49085.76, + "end": 49087.5, + "probability": 0.9316 + }, + { + "start": 49087.9, + "end": 49088.82, + "probability": 0.8531 + }, + { + "start": 49088.9, + "end": 49090.14, + "probability": 0.8019 + }, + { + "start": 49090.34, + "end": 49093.66, + "probability": 0.9707 + }, + { + "start": 49093.76, + "end": 49096.38, + "probability": 0.9992 + }, + { + "start": 49096.74, + "end": 49100.92, + "probability": 0.957 + }, + { + "start": 49101.44, + "end": 49104.88, + "probability": 0.9858 + }, + { + "start": 49105.46, + "end": 49107.3, + "probability": 0.9875 + }, + { + "start": 49107.46, + "end": 49110.38, + "probability": 0.9944 + }, + { + "start": 49110.74, + "end": 49112.46, + "probability": 0.8596 + }, + { + "start": 49113.94, + "end": 49116.68, + "probability": 0.8337 + }, + { + "start": 49116.86, + "end": 49119.14, + "probability": 0.8461 + }, + { + "start": 49119.48, + "end": 49123.94, + "probability": 0.9631 + }, + { + "start": 49124.54, + "end": 49127.16, + "probability": 0.9578 + }, + { + "start": 49127.28, + "end": 49127.76, + "probability": 0.7669 + }, + { + "start": 49128.0, + "end": 49129.52, + "probability": 0.5649 + }, + { + "start": 49129.64, + "end": 49131.5, + "probability": 0.61 + }, + { + "start": 49133.9, + "end": 49137.64, + "probability": 0.0903 + }, + { + "start": 49149.04, + "end": 49149.72, + "probability": 0.0095 + }, + { + "start": 49150.56, + "end": 49152.78, + "probability": 0.0188 + }, + { + "start": 49152.78, + "end": 49153.88, + "probability": 0.0667 + }, + { + "start": 49157.0, + "end": 49160.6, + "probability": 0.7328 + }, + { + "start": 49161.7, + "end": 49163.46, + "probability": 0.9243 + }, + { + "start": 49164.2, + "end": 49166.06, + "probability": 0.9565 + }, + { + "start": 49166.76, + "end": 49171.1, + "probability": 0.9982 + }, + { + "start": 49171.1, + "end": 49174.36, + "probability": 0.9994 + }, + { + "start": 49175.82, + "end": 49177.6, + "probability": 0.6634 + }, + { + "start": 49178.36, + "end": 49179.64, + "probability": 0.6597 + }, + { + "start": 49180.2, + "end": 49182.65, + "probability": 0.988 + }, + { + "start": 49183.4, + "end": 49185.08, + "probability": 0.9905 + }, + { + "start": 49185.58, + "end": 49189.86, + "probability": 0.9842 + }, + { + "start": 49191.44, + "end": 49193.66, + "probability": 0.9936 + }, + { + "start": 49193.66, + "end": 49198.72, + "probability": 0.985 + }, + { + "start": 49201.18, + "end": 49203.68, + "probability": 0.8788 + }, + { + "start": 49204.04, + "end": 49207.12, + "probability": 0.9929 + }, + { + "start": 49207.76, + "end": 49210.66, + "probability": 0.9793 + }, + { + "start": 49210.92, + "end": 49213.38, + "probability": 0.7615 + }, + { + "start": 49214.26, + "end": 49220.82, + "probability": 0.9971 + }, + { + "start": 49221.94, + "end": 49225.14, + "probability": 0.9947 + }, + { + "start": 49225.14, + "end": 49230.0, + "probability": 0.9867 + }, + { + "start": 49238.16, + "end": 49241.06, + "probability": 0.9844 + }, + { + "start": 49242.22, + "end": 49245.67, + "probability": 0.9893 + }, + { + "start": 49246.02, + "end": 49248.08, + "probability": 0.861 + }, + { + "start": 49248.5, + "end": 49249.06, + "probability": 0.9698 + }, + { + "start": 49249.56, + "end": 49250.34, + "probability": 0.7561 + }, + { + "start": 49250.38, + "end": 49251.42, + "probability": 0.8413 + }, + { + "start": 49252.1, + "end": 49254.2, + "probability": 0.9818 + }, + { + "start": 49254.92, + "end": 49256.68, + "probability": 0.9837 + }, + { + "start": 49256.78, + "end": 49261.32, + "probability": 0.9937 + }, + { + "start": 49262.52, + "end": 49265.74, + "probability": 0.9908 + }, + { + "start": 49265.74, + "end": 49268.82, + "probability": 0.9836 + }, + { + "start": 49269.5, + "end": 49274.74, + "probability": 0.9942 + }, + { + "start": 49276.68, + "end": 49281.3, + "probability": 0.9795 + }, + { + "start": 49281.44, + "end": 49282.4, + "probability": 0.9624 + }, + { + "start": 49282.78, + "end": 49285.82, + "probability": 0.9973 + }, + { + "start": 49285.96, + "end": 49289.4, + "probability": 0.9907 + }, + { + "start": 49290.92, + "end": 49292.64, + "probability": 0.8426 + }, + { + "start": 49292.68, + "end": 49293.64, + "probability": 0.9442 + }, + { + "start": 49294.14, + "end": 49296.96, + "probability": 0.9915 + }, + { + "start": 49297.68, + "end": 49303.2, + "probability": 0.9594 + }, + { + "start": 49304.04, + "end": 49304.88, + "probability": 0.7009 + }, + { + "start": 49304.96, + "end": 49307.68, + "probability": 0.9419 + }, + { + "start": 49307.86, + "end": 49315.72, + "probability": 0.9928 + }, + { + "start": 49316.98, + "end": 49317.82, + "probability": 0.6584 + }, + { + "start": 49317.96, + "end": 49319.52, + "probability": 0.9678 + }, + { + "start": 49319.8, + "end": 49321.06, + "probability": 0.7056 + }, + { + "start": 49321.22, + "end": 49323.33, + "probability": 0.9944 + }, + { + "start": 49324.52, + "end": 49329.58, + "probability": 0.936 + }, + { + "start": 49330.3, + "end": 49337.76, + "probability": 0.9893 + }, + { + "start": 49339.3, + "end": 49341.82, + "probability": 0.7047 + }, + { + "start": 49342.14, + "end": 49347.46, + "probability": 0.9928 + }, + { + "start": 49347.5, + "end": 49353.87, + "probability": 0.8969 + }, + { + "start": 49355.72, + "end": 49357.1, + "probability": 0.4675 + }, + { + "start": 49357.42, + "end": 49357.42, + "probability": 0.3647 + }, + { + "start": 49357.42, + "end": 49357.42, + "probability": 0.1197 + }, + { + "start": 49357.42, + "end": 49361.38, + "probability": 0.8225 + }, + { + "start": 49361.4, + "end": 49365.02, + "probability": 0.9749 + }, + { + "start": 49365.14, + "end": 49366.56, + "probability": 0.9976 + }, + { + "start": 49367.06, + "end": 49368.1, + "probability": 0.9374 + }, + { + "start": 49368.68, + "end": 49370.66, + "probability": 0.9004 + }, + { + "start": 49371.66, + "end": 49373.04, + "probability": 0.9566 + }, + { + "start": 49373.12, + "end": 49373.68, + "probability": 0.5545 + }, + { + "start": 49373.78, + "end": 49374.7, + "probability": 0.628 + }, + { + "start": 49374.88, + "end": 49377.62, + "probability": 0.9867 + }, + { + "start": 49378.68, + "end": 49378.7, + "probability": 0.4144 + }, + { + "start": 49378.7, + "end": 49379.36, + "probability": 0.7499 + }, + { + "start": 49379.7, + "end": 49382.22, + "probability": 0.9614 + }, + { + "start": 49403.01, + "end": 49405.9, + "probability": 0.6304 + }, + { + "start": 49407.55, + "end": 49409.38, + "probability": 0.6327 + }, + { + "start": 49410.24, + "end": 49411.98, + "probability": 0.6898 + }, + { + "start": 49412.12, + "end": 49414.1, + "probability": 0.5358 + }, + { + "start": 49417.99, + "end": 49422.36, + "probability": 0.9964 + }, + { + "start": 49424.22, + "end": 49426.06, + "probability": 0.7445 + }, + { + "start": 49426.06, + "end": 49433.28, + "probability": 0.9795 + }, + { + "start": 49433.66, + "end": 49434.6, + "probability": 0.7381 + }, + { + "start": 49435.32, + "end": 49435.46, + "probability": 0.6039 + }, + { + "start": 49435.98, + "end": 49437.32, + "probability": 0.5371 + }, + { + "start": 49438.4, + "end": 49438.72, + "probability": 0.775 + }, + { + "start": 49439.52, + "end": 49440.78, + "probability": 0.1171 + }, + { + "start": 49440.92, + "end": 49444.68, + "probability": 0.9947 + }, + { + "start": 49444.68, + "end": 49447.3, + "probability": 0.9995 + }, + { + "start": 49447.92, + "end": 49451.02, + "probability": 0.9973 + }, + { + "start": 49451.78, + "end": 49457.06, + "probability": 0.9897 + }, + { + "start": 49457.98, + "end": 49458.6, + "probability": 0.6834 + }, + { + "start": 49459.2, + "end": 49461.72, + "probability": 0.9946 + }, + { + "start": 49461.72, + "end": 49464.98, + "probability": 0.9426 + }, + { + "start": 49465.14, + "end": 49466.86, + "probability": 0.9883 + }, + { + "start": 49466.96, + "end": 49471.56, + "probability": 0.9707 + }, + { + "start": 49472.26, + "end": 49474.8, + "probability": 0.9519 + }, + { + "start": 49475.34, + "end": 49477.56, + "probability": 0.8151 + }, + { + "start": 49477.7, + "end": 49479.02, + "probability": 0.9771 + }, + { + "start": 49479.94, + "end": 49482.94, + "probability": 0.9636 + }, + { + "start": 49483.6, + "end": 49485.96, + "probability": 0.99 + }, + { + "start": 49485.98, + "end": 49488.66, + "probability": 0.9963 + }, + { + "start": 49489.3, + "end": 49492.62, + "probability": 0.973 + }, + { + "start": 49493.16, + "end": 49496.04, + "probability": 0.8769 + }, + { + "start": 49496.6, + "end": 49499.14, + "probability": 0.9795 + }, + { + "start": 49500.16, + "end": 49501.32, + "probability": 0.9512 + }, + { + "start": 49501.46, + "end": 49503.3, + "probability": 0.9541 + }, + { + "start": 49505.58, + "end": 49507.82, + "probability": 0.9979 + }, + { + "start": 49507.9, + "end": 49511.76, + "probability": 0.9949 + }, + { + "start": 49513.06, + "end": 49516.0, + "probability": 0.9943 + }, + { + "start": 49516.0, + "end": 49518.8, + "probability": 0.9963 + }, + { + "start": 49519.38, + "end": 49522.02, + "probability": 0.9475 + }, + { + "start": 49522.5, + "end": 49525.7, + "probability": 0.9947 + }, + { + "start": 49526.86, + "end": 49529.66, + "probability": 0.9386 + }, + { + "start": 49529.96, + "end": 49531.92, + "probability": 0.8922 + }, + { + "start": 49532.42, + "end": 49533.82, + "probability": 0.984 + }, + { + "start": 49534.76, + "end": 49537.68, + "probability": 0.9575 + }, + { + "start": 49538.26, + "end": 49541.42, + "probability": 0.9797 + }, + { + "start": 49542.0, + "end": 49543.16, + "probability": 0.9929 + }, + { + "start": 49544.16, + "end": 49547.32, + "probability": 0.9556 + }, + { + "start": 49547.9, + "end": 49550.72, + "probability": 0.715 + }, + { + "start": 49551.18, + "end": 49552.76, + "probability": 0.9233 + }, + { + "start": 49553.32, + "end": 49555.94, + "probability": 0.9346 + }, + { + "start": 49556.68, + "end": 49560.02, + "probability": 0.8276 + }, + { + "start": 49560.8, + "end": 49563.34, + "probability": 0.9873 + }, + { + "start": 49563.38, + "end": 49566.8, + "probability": 0.9318 + }, + { + "start": 49567.92, + "end": 49571.52, + "probability": 0.8075 + }, + { + "start": 49572.26, + "end": 49572.72, + "probability": 0.9818 + }, + { + "start": 49573.58, + "end": 49578.18, + "probability": 0.9928 + }, + { + "start": 49578.38, + "end": 49578.94, + "probability": 0.7523 + }, + { + "start": 49579.76, + "end": 49583.34, + "probability": 0.9918 + }, + { + "start": 49583.34, + "end": 49586.64, + "probability": 0.9962 + }, + { + "start": 49587.66, + "end": 49588.92, + "probability": 0.9283 + }, + { + "start": 49589.0, + "end": 49594.5, + "probability": 0.9561 + }, + { + "start": 49595.06, + "end": 49595.56, + "probability": 0.8647 + }, + { + "start": 49595.9, + "end": 49598.08, + "probability": 0.9268 + }, + { + "start": 49599.2, + "end": 49601.12, + "probability": 0.5005 + }, + { + "start": 49601.26, + "end": 49603.28, + "probability": 0.6917 + }, + { + "start": 49603.78, + "end": 49604.16, + "probability": 0.0236 + }, + { + "start": 49609.68, + "end": 49612.32, + "probability": 0.8095 + }, + { + "start": 49612.94, + "end": 49613.8, + "probability": 0.955 + }, + { + "start": 49614.32, + "end": 49615.44, + "probability": 0.9198 + }, + { + "start": 49617.52, + "end": 49618.38, + "probability": 0.3161 + }, + { + "start": 49618.38, + "end": 49620.39, + "probability": 0.5867 + }, + { + "start": 49620.68, + "end": 49620.84, + "probability": 0.2164 + }, + { + "start": 49621.42, + "end": 49621.84, + "probability": 0.0383 + }, + { + "start": 49626.96, + "end": 49629.04, + "probability": 0.5851 + }, + { + "start": 49629.04, + "end": 49634.24, + "probability": 0.958 + }, + { + "start": 49634.36, + "end": 49634.81, + "probability": 0.9008 + }, + { + "start": 49635.52, + "end": 49636.5, + "probability": 0.9792 + }, + { + "start": 49636.68, + "end": 49638.36, + "probability": 0.4909 + }, + { + "start": 49638.4, + "end": 49639.05, + "probability": 0.9633 + }, + { + "start": 49639.18, + "end": 49640.62, + "probability": 0.9949 + }, + { + "start": 49644.1, + "end": 49649.9, + "probability": 0.8888 + }, + { + "start": 49649.96, + "end": 49650.85, + "probability": 0.1692 + }, + { + "start": 49651.78, + "end": 49656.08, + "probability": 0.9898 + }, + { + "start": 49656.68, + "end": 49657.96, + "probability": 0.8296 + }, + { + "start": 49658.74, + "end": 49660.26, + "probability": 0.9967 + }, + { + "start": 49661.36, + "end": 49663.06, + "probability": 0.846 + }, + { + "start": 49664.6, + "end": 49668.96, + "probability": 0.999 + }, + { + "start": 49669.08, + "end": 49674.2, + "probability": 0.9988 + }, + { + "start": 49675.0, + "end": 49677.72, + "probability": 0.9976 + }, + { + "start": 49677.72, + "end": 49681.7, + "probability": 0.9961 + }, + { + "start": 49682.5, + "end": 49685.46, + "probability": 0.9663 + }, + { + "start": 49685.46, + "end": 49688.86, + "probability": 0.9957 + }, + { + "start": 49689.46, + "end": 49693.82, + "probability": 0.9966 + }, + { + "start": 49694.32, + "end": 49694.76, + "probability": 0.7722 + }, + { + "start": 49695.18, + "end": 49698.42, + "probability": 0.9666 + }, + { + "start": 49698.82, + "end": 49700.94, + "probability": 0.9425 + }, + { + "start": 49701.7, + "end": 49707.02, + "probability": 0.9976 + }, + { + "start": 49707.46, + "end": 49710.36, + "probability": 0.9946 + }, + { + "start": 49710.48, + "end": 49713.36, + "probability": 0.999 + }, + { + "start": 49713.96, + "end": 49717.84, + "probability": 0.9983 + }, + { + "start": 49717.84, + "end": 49722.16, + "probability": 0.9991 + }, + { + "start": 49722.68, + "end": 49723.36, + "probability": 0.9982 + }, + { + "start": 49724.58, + "end": 49728.46, + "probability": 0.9725 + }, + { + "start": 49729.12, + "end": 49730.12, + "probability": 0.665 + }, + { + "start": 49730.78, + "end": 49732.94, + "probability": 0.6698 + }, + { + "start": 49733.36, + "end": 49735.1, + "probability": 0.6576 + }, + { + "start": 49735.22, + "end": 49735.86, + "probability": 0.9195 + }, + { + "start": 49736.24, + "end": 49740.42, + "probability": 0.9898 + }, + { + "start": 49741.56, + "end": 49743.3, + "probability": 0.6331 + }, + { + "start": 49743.7, + "end": 49748.68, + "probability": 0.9899 + }, + { + "start": 49749.38, + "end": 49750.38, + "probability": 0.8241 + }, + { + "start": 49751.04, + "end": 49753.32, + "probability": 0.905 + }, + { + "start": 49754.48, + "end": 49761.86, + "probability": 0.9825 + }, + { + "start": 49762.28, + "end": 49763.56, + "probability": 0.7734 + }, + { + "start": 49763.98, + "end": 49769.42, + "probability": 0.9594 + }, + { + "start": 49769.9, + "end": 49771.24, + "probability": 0.8083 + }, + { + "start": 49772.82, + "end": 49774.3, + "probability": 0.8351 + }, + { + "start": 49774.78, + "end": 49778.4, + "probability": 0.9193 + }, + { + "start": 49778.78, + "end": 49782.48, + "probability": 0.9818 + }, + { + "start": 49783.04, + "end": 49785.43, + "probability": 0.9978 + }, + { + "start": 49786.04, + "end": 49789.2, + "probability": 0.9941 + }, + { + "start": 49789.32, + "end": 49790.08, + "probability": 0.8546 + }, + { + "start": 49790.16, + "end": 49790.44, + "probability": 0.783 + }, + { + "start": 49790.62, + "end": 49794.1, + "probability": 0.8757 + }, + { + "start": 49794.24, + "end": 49796.96, + "probability": 0.5814 + }, + { + "start": 49797.44, + "end": 49798.88, + "probability": 0.924 + }, + { + "start": 49799.04, + "end": 49801.4, + "probability": 0.9559 + }, + { + "start": 49802.64, + "end": 49804.54, + "probability": 0.9457 + }, + { + "start": 49805.36, + "end": 49806.5, + "probability": 0.9971 + }, + { + "start": 49807.38, + "end": 49811.64, + "probability": 0.9833 + }, + { + "start": 49812.1, + "end": 49815.0, + "probability": 0.6625 + }, + { + "start": 49816.38, + "end": 49817.66, + "probability": 0.493 + }, + { + "start": 49817.72, + "end": 49818.1, + "probability": 0.3659 + }, + { + "start": 49818.24, + "end": 49819.14, + "probability": 0.6445 + }, + { + "start": 49819.14, + "end": 49819.48, + "probability": 0.5405 + }, + { + "start": 49819.6, + "end": 49820.74, + "probability": 0.7881 + }, + { + "start": 49821.0, + "end": 49821.62, + "probability": 0.4903 + }, + { + "start": 49825.92, + "end": 49826.86, + "probability": 0.0482 + }, + { + "start": 49826.86, + "end": 49828.74, + "probability": 0.7543 + }, + { + "start": 49834.88, + "end": 49836.46, + "probability": 0.0318 + }, + { + "start": 49838.42, + "end": 49841.28, + "probability": 0.0582 + }, + { + "start": 49843.38, + "end": 49850.2, + "probability": 0.0077 + }, + { + "start": 49886.42, + "end": 49889.24, + "probability": 0.0368 + }, + { + "start": 49889.24, + "end": 49890.56, + "probability": 0.0766 + }, + { + "start": 49891.2, + "end": 49891.2, + "probability": 0.2746 + }, + { + "start": 49891.22, + "end": 49895.36, + "probability": 0.1087 + }, + { + "start": 49897.29, + "end": 49898.98, + "probability": 0.2668 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.0, + "end": 49899.0, + "probability": 0.0 + }, + { + "start": 49899.44, + "end": 49899.44, + "probability": 0.1103 + }, + { + "start": 49899.44, + "end": 49899.44, + "probability": 0.018 + }, + { + "start": 49899.44, + "end": 49900.12, + "probability": 0.3438 + }, + { + "start": 49900.86, + "end": 49901.36, + "probability": 0.5347 + }, + { + "start": 49901.46, + "end": 49902.56, + "probability": 0.8675 + }, + { + "start": 49902.62, + "end": 49904.06, + "probability": 0.8176 + }, + { + "start": 49904.52, + "end": 49905.48, + "probability": 0.8395 + }, + { + "start": 49905.6, + "end": 49907.58, + "probability": 0.8951 + }, + { + "start": 49908.02, + "end": 49908.9, + "probability": 0.841 + }, + { + "start": 49909.02, + "end": 49913.08, + "probability": 0.8933 + }, + { + "start": 49913.7, + "end": 49917.6, + "probability": 0.91 + }, + { + "start": 49918.44, + "end": 49920.34, + "probability": 0.9656 + }, + { + "start": 49921.06, + "end": 49925.0, + "probability": 0.9951 + }, + { + "start": 49925.7, + "end": 49929.44, + "probability": 0.9909 + }, + { + "start": 49929.48, + "end": 49931.46, + "probability": 0.9199 + }, + { + "start": 49931.94, + "end": 49935.1, + "probability": 0.9704 + }, + { + "start": 49935.94, + "end": 49937.78, + "probability": 0.907 + }, + { + "start": 49938.54, + "end": 49941.42, + "probability": 0.9923 + }, + { + "start": 49942.22, + "end": 49943.24, + "probability": 0.8232 + }, + { + "start": 49944.24, + "end": 49946.4, + "probability": 0.895 + }, + { + "start": 49947.06, + "end": 49948.14, + "probability": 0.9778 + }, + { + "start": 49948.92, + "end": 49952.82, + "probability": 0.9447 + }, + { + "start": 49953.34, + "end": 49957.59, + "probability": 0.8547 + }, + { + "start": 49958.5, + "end": 49958.84, + "probability": 0.9235 + }, + { + "start": 49959.54, + "end": 49964.84, + "probability": 0.9564 + }, + { + "start": 49965.1, + "end": 49966.1, + "probability": 0.3072 + }, + { + "start": 49966.24, + "end": 49966.98, + "probability": 0.9467 + }, + { + "start": 49967.66, + "end": 49968.04, + "probability": 0.1457 + }, + { + "start": 49968.36, + "end": 49969.06, + "probability": 0.6346 + }, + { + "start": 49969.2, + "end": 49970.94, + "probability": 0.6251 + }, + { + "start": 49971.0, + "end": 49975.18, + "probability": 0.876 + }, + { + "start": 49975.18, + "end": 49978.36, + "probability": 0.9115 + }, + { + "start": 49978.36, + "end": 49979.32, + "probability": 0.0521 + }, + { + "start": 49979.32, + "end": 49979.9, + "probability": 0.3389 + }, + { + "start": 49980.32, + "end": 49981.6, + "probability": 0.051 + }, + { + "start": 49982.44, + "end": 49989.02, + "probability": 0.0347 + }, + { + "start": 49989.02, + "end": 49989.02, + "probability": 0.3263 + }, + { + "start": 49989.02, + "end": 49989.02, + "probability": 0.1043 + }, + { + "start": 49989.02, + "end": 49991.58, + "probability": 0.4712 + }, + { + "start": 49992.14, + "end": 49993.22, + "probability": 0.2217 + }, + { + "start": 49993.82, + "end": 49994.34, + "probability": 0.1755 + }, + { + "start": 49996.34, + "end": 49996.98, + "probability": 0.0405 + }, + { + "start": 49998.08, + "end": 50000.26, + "probability": 0.331 + }, + { + "start": 50000.94, + "end": 50002.02, + "probability": 0.5701 + }, + { + "start": 50002.18, + "end": 50003.88, + "probability": 0.2539 + }, + { + "start": 50003.88, + "end": 50007.86, + "probability": 0.2247 + }, + { + "start": 50007.92, + "end": 50009.66, + "probability": 0.3199 + }, + { + "start": 50009.88, + "end": 50010.84, + "probability": 0.1224 + }, + { + "start": 50010.84, + "end": 50011.26, + "probability": 0.0499 + }, + { + "start": 50013.5, + "end": 50020.88, + "probability": 0.0888 + }, + { + "start": 50023.22, + "end": 50027.06, + "probability": 0.6843 + }, + { + "start": 50027.46, + "end": 50029.74, + "probability": 0.5037 + }, + { + "start": 50035.0, + "end": 50037.98, + "probability": 0.8824 + }, + { + "start": 50038.26, + "end": 50041.22, + "probability": 0.9773 + }, + { + "start": 50041.28, + "end": 50044.2, + "probability": 0.9897 + }, + { + "start": 50045.34, + "end": 50047.18, + "probability": 0.992 + }, + { + "start": 50047.92, + "end": 50048.44, + "probability": 0.5029 + }, + { + "start": 50048.54, + "end": 50049.54, + "probability": 0.9782 + }, + { + "start": 50049.86, + "end": 50050.9, + "probability": 0.8342 + }, + { + "start": 50051.2, + "end": 50052.54, + "probability": 0.9871 + }, + { + "start": 50052.7, + "end": 50053.6, + "probability": 0.8952 + }, + { + "start": 50053.98, + "end": 50056.76, + "probability": 0.9958 + }, + { + "start": 50057.3, + "end": 50058.38, + "probability": 0.993 + }, + { + "start": 50058.48, + "end": 50059.46, + "probability": 0.9957 + }, + { + "start": 50059.52, + "end": 50063.08, + "probability": 0.9929 + }, + { + "start": 50063.78, + "end": 50065.78, + "probability": 0.9651 + }, + { + "start": 50066.98, + "end": 50069.8, + "probability": 0.9893 + }, + { + "start": 50069.96, + "end": 50073.06, + "probability": 0.9322 + }, + { + "start": 50073.38, + "end": 50074.6, + "probability": 0.8713 + }, + { + "start": 50075.16, + "end": 50076.52, + "probability": 0.9856 + }, + { + "start": 50076.74, + "end": 50080.24, + "probability": 0.9871 + }, + { + "start": 50080.24, + "end": 50084.56, + "probability": 0.9902 + }, + { + "start": 50085.22, + "end": 50086.28, + "probability": 0.8015 + }, + { + "start": 50086.66, + "end": 50090.56, + "probability": 0.9762 + }, + { + "start": 50090.84, + "end": 50094.2, + "probability": 0.9835 + }, + { + "start": 50094.26, + "end": 50095.14, + "probability": 0.8456 + }, + { + "start": 50095.5, + "end": 50097.78, + "probability": 0.9765 + }, + { + "start": 50098.42, + "end": 50099.96, + "probability": 0.9966 + }, + { + "start": 50100.06, + "end": 50101.32, + "probability": 0.9988 + }, + { + "start": 50101.38, + "end": 50102.92, + "probability": 0.9954 + }, + { + "start": 50103.12, + "end": 50104.16, + "probability": 0.9935 + }, + { + "start": 50104.22, + "end": 50105.84, + "probability": 0.999 + }, + { + "start": 50106.1, + "end": 50107.46, + "probability": 0.7635 + }, + { + "start": 50108.4, + "end": 50109.98, + "probability": 0.9286 + }, + { + "start": 50110.16, + "end": 50110.68, + "probability": 0.7177 + }, + { + "start": 50111.18, + "end": 50111.82, + "probability": 0.5313 + }, + { + "start": 50111.82, + "end": 50113.7, + "probability": 0.8112 + }, + { + "start": 50115.3, + "end": 50116.04, + "probability": 0.487 + }, + { + "start": 50116.38, + "end": 50118.54, + "probability": 0.6928 + }, + { + "start": 50119.0, + "end": 50120.14, + "probability": 0.688 + }, + { + "start": 50120.22, + "end": 50120.52, + "probability": 0.435 + }, + { + "start": 50120.72, + "end": 50121.48, + "probability": 0.6557 + }, + { + "start": 50121.5, + "end": 50121.84, + "probability": 0.5517 + }, + { + "start": 50121.86, + "end": 50122.72, + "probability": 0.5453 + }, + { + "start": 50122.8, + "end": 50122.9, + "probability": 0.0312 + }, + { + "start": 50123.0, + "end": 50124.7, + "probability": 0.8312 + }, + { + "start": 50124.84, + "end": 50126.78, + "probability": 0.4753 + }, + { + "start": 50126.9, + "end": 50127.84, + "probability": 0.9019 + }, + { + "start": 50127.88, + "end": 50129.42, + "probability": 0.7585 + }, + { + "start": 50131.78, + "end": 50134.32, + "probability": 0.847 + }, + { + "start": 50134.94, + "end": 50136.0, + "probability": 0.1717 + }, + { + "start": 50136.14, + "end": 50138.7, + "probability": 0.478 + }, + { + "start": 50138.7, + "end": 50140.66, + "probability": 0.5178 + }, + { + "start": 50140.98, + "end": 50142.86, + "probability": 0.8806 + }, + { + "start": 50143.26, + "end": 50144.56, + "probability": 0.3841 + }, + { + "start": 50144.58, + "end": 50145.78, + "probability": 0.507 + }, + { + "start": 50145.88, + "end": 50147.37, + "probability": 0.7462 + }, + { + "start": 50147.52, + "end": 50149.88, + "probability": 0.9727 + }, + { + "start": 50150.0, + "end": 50152.16, + "probability": 0.8566 + }, + { + "start": 50152.36, + "end": 50153.32, + "probability": 0.4528 + }, + { + "start": 50153.42, + "end": 50155.13, + "probability": 0.7326 + }, + { + "start": 50155.46, + "end": 50158.41, + "probability": 0.9987 + }, + { + "start": 50159.98, + "end": 50161.76, + "probability": 0.986 + }, + { + "start": 50162.4, + "end": 50163.74, + "probability": 0.9255 + }, + { + "start": 50164.84, + "end": 50167.08, + "probability": 0.9025 + }, + { + "start": 50167.72, + "end": 50170.06, + "probability": 0.9973 + }, + { + "start": 50170.6, + "end": 50174.5, + "probability": 0.9622 + }, + { + "start": 50175.44, + "end": 50181.44, + "probability": 0.9969 + }, + { + "start": 50182.02, + "end": 50183.54, + "probability": 0.9834 + }, + { + "start": 50184.08, + "end": 50185.72, + "probability": 0.7964 + }, + { + "start": 50186.58, + "end": 50190.22, + "probability": 0.9834 + }, + { + "start": 50190.84, + "end": 50192.7, + "probability": 0.7849 + }, + { + "start": 50193.32, + "end": 50193.94, + "probability": 0.7279 + }, + { + "start": 50194.5, + "end": 50195.96, + "probability": 0.5217 + }, + { + "start": 50201.68, + "end": 50202.54, + "probability": 0.0265 + }, + { + "start": 50202.54, + "end": 50202.54, + "probability": 0.26 + }, + { + "start": 50202.54, + "end": 50202.54, + "probability": 0.2116 + }, + { + "start": 50202.54, + "end": 50207.98, + "probability": 0.5259 + }, + { + "start": 50208.15, + "end": 50210.0, + "probability": 0.1926 + }, + { + "start": 50211.88, + "end": 50212.24, + "probability": 0.1138 + }, + { + "start": 50212.24, + "end": 50212.26, + "probability": 0.2441 + }, + { + "start": 50212.26, + "end": 50212.26, + "probability": 0.2359 + }, + { + "start": 50212.26, + "end": 50212.9, + "probability": 0.4045 + }, + { + "start": 50212.92, + "end": 50214.6, + "probability": 0.3693 + }, + { + "start": 50214.76, + "end": 50215.88, + "probability": 0.51 + }, + { + "start": 50215.98, + "end": 50216.26, + "probability": 0.3611 + }, + { + "start": 50216.26, + "end": 50216.58, + "probability": 0.7644 + }, + { + "start": 50216.58, + "end": 50217.24, + "probability": 0.0852 + }, + { + "start": 50219.68, + "end": 50220.7, + "probability": 0.0135 + }, + { + "start": 50225.1, + "end": 50227.6, + "probability": 0.4799 + }, + { + "start": 50227.6, + "end": 50227.64, + "probability": 0.0552 + }, + { + "start": 50227.64, + "end": 50229.22, + "probability": 0.2561 + }, + { + "start": 50229.38, + "end": 50229.94, + "probability": 0.6642 + }, + { + "start": 50230.08, + "end": 50230.9, + "probability": 0.6721 + }, + { + "start": 50231.18, + "end": 50232.94, + "probability": 0.0836 + }, + { + "start": 50233.66, + "end": 50234.56, + "probability": 0.4672 + }, + { + "start": 50234.58, + "end": 50234.58, + "probability": 0.5267 + }, + { + "start": 50234.72, + "end": 50235.06, + "probability": 0.0073 + }, + { + "start": 50235.06, + "end": 50235.62, + "probability": 0.3784 + }, + { + "start": 50236.44, + "end": 50238.3, + "probability": 0.1676 + }, + { + "start": 50238.42, + "end": 50239.56, + "probability": 0.3599 + }, + { + "start": 50239.66, + "end": 50240.32, + "probability": 0.7318 + }, + { + "start": 50240.4, + "end": 50241.82, + "probability": 0.5132 + }, + { + "start": 50242.78, + "end": 50247.08, + "probability": 0.9102 + }, + { + "start": 50247.76, + "end": 50250.06, + "probability": 0.9724 + }, + { + "start": 50250.6, + "end": 50251.84, + "probability": 0.8815 + }, + { + "start": 50251.96, + "end": 50254.64, + "probability": 0.1251 + }, + { + "start": 50254.64, + "end": 50261.42, + "probability": 0.9688 + }, + { + "start": 50261.68, + "end": 50262.84, + "probability": 0.8601 + }, + { + "start": 50263.24, + "end": 50264.9, + "probability": 0.9912 + }, + { + "start": 50265.2, + "end": 50267.06, + "probability": 0.9952 + }, + { + "start": 50267.62, + "end": 50270.22, + "probability": 0.9945 + }, + { + "start": 50270.82, + "end": 50271.84, + "probability": 0.4018 + }, + { + "start": 50272.26, + "end": 50273.88, + "probability": 0.8786 + }, + { + "start": 50274.24, + "end": 50275.7, + "probability": 0.7522 + }, + { + "start": 50276.14, + "end": 50277.48, + "probability": 0.7698 + }, + { + "start": 50278.02, + "end": 50280.98, + "probability": 0.6606 + }, + { + "start": 50281.5, + "end": 50287.4, + "probability": 0.9528 + }, + { + "start": 50288.1, + "end": 50291.64, + "probability": 0.9268 + }, + { + "start": 50292.2, + "end": 50295.52, + "probability": 0.9961 + }, + { + "start": 50296.08, + "end": 50297.96, + "probability": 0.9775 + }, + { + "start": 50298.52, + "end": 50300.83, + "probability": 0.9945 + }, + { + "start": 50301.88, + "end": 50309.12, + "probability": 0.9172 + }, + { + "start": 50309.96, + "end": 50314.44, + "probability": 0.944 + }, + { + "start": 50314.86, + "end": 50316.6, + "probability": 0.9031 + }, + { + "start": 50317.22, + "end": 50317.82, + "probability": 0.3897 + }, + { + "start": 50317.82, + "end": 50320.74, + "probability": 0.9733 + }, + { + "start": 50321.14, + "end": 50324.68, + "probability": 0.9669 + }, + { + "start": 50324.84, + "end": 50324.98, + "probability": 0.0799 + }, + { + "start": 50324.98, + "end": 50325.12, + "probability": 0.6222 + }, + { + "start": 50325.22, + "end": 50326.54, + "probability": 0.9875 + }, + { + "start": 50326.64, + "end": 50327.84, + "probability": 0.9086 + }, + { + "start": 50327.84, + "end": 50327.96, + "probability": 0.3649 + }, + { + "start": 50327.96, + "end": 50329.22, + "probability": 0.4142 + }, + { + "start": 50330.28, + "end": 50333.52, + "probability": 0.9951 + }, + { + "start": 50333.7, + "end": 50335.18, + "probability": 0.9736 + }, + { + "start": 50335.6, + "end": 50337.54, + "probability": 0.9851 + }, + { + "start": 50338.02, + "end": 50343.1, + "probability": 0.9966 + }, + { + "start": 50343.56, + "end": 50348.2, + "probability": 0.8718 + }, + { + "start": 50348.62, + "end": 50350.35, + "probability": 0.9829 + }, + { + "start": 50350.88, + "end": 50354.33, + "probability": 0.9981 + }, + { + "start": 50354.82, + "end": 50355.32, + "probability": 0.3167 + }, + { + "start": 50355.32, + "end": 50355.74, + "probability": 0.6648 + }, + { + "start": 50356.22, + "end": 50358.92, + "probability": 0.5558 + }, + { + "start": 50359.1, + "end": 50359.76, + "probability": 0.8135 + }, + { + "start": 50360.12, + "end": 50361.54, + "probability": 0.9056 + }, + { + "start": 50364.14, + "end": 50365.0, + "probability": 0.0086 + }, + { + "start": 50365.38, + "end": 50366.56, + "probability": 0.0373 + }, + { + "start": 50368.22, + "end": 50369.22, + "probability": 0.7041 + }, + { + "start": 50377.22, + "end": 50379.32, + "probability": 0.8328 + }, + { + "start": 50380.06, + "end": 50381.64, + "probability": 0.775 + }, + { + "start": 50381.86, + "end": 50382.82, + "probability": 0.782 + }, + { + "start": 50383.28, + "end": 50384.68, + "probability": 0.8641 + }, + { + "start": 50384.72, + "end": 50386.16, + "probability": 0.976 + }, + { + "start": 50386.34, + "end": 50387.56, + "probability": 0.588 + }, + { + "start": 50391.2, + "end": 50393.58, + "probability": 0.5407 + }, + { + "start": 50393.86, + "end": 50396.8, + "probability": 0.9939 + }, + { + "start": 50397.02, + "end": 50398.0, + "probability": 0.9275 + }, + { + "start": 50398.4, + "end": 50399.36, + "probability": 0.6793 + }, + { + "start": 50399.46, + "end": 50400.5, + "probability": 0.8607 + }, + { + "start": 50401.0, + "end": 50404.7, + "probability": 0.9856 + }, + { + "start": 50405.56, + "end": 50410.3, + "probability": 0.9591 + }, + { + "start": 50410.82, + "end": 50411.48, + "probability": 0.775 + }, + { + "start": 50411.96, + "end": 50414.14, + "probability": 0.9202 + }, + { + "start": 50414.64, + "end": 50415.18, + "probability": 0.4029 + }, + { + "start": 50415.44, + "end": 50416.56, + "probability": 0.9902 + }, + { + "start": 50417.46, + "end": 50418.88, + "probability": 0.4941 + }, + { + "start": 50419.54, + "end": 50423.98, + "probability": 0.8582 + }, + { + "start": 50424.48, + "end": 50426.78, + "probability": 0.9883 + }, + { + "start": 50427.96, + "end": 50432.84, + "probability": 0.9919 + }, + { + "start": 50433.08, + "end": 50433.78, + "probability": 0.5827 + }, + { + "start": 50433.86, + "end": 50437.12, + "probability": 0.9036 + }, + { + "start": 50437.26, + "end": 50438.78, + "probability": 0.8625 + }, + { + "start": 50438.92, + "end": 50439.84, + "probability": 0.5348 + }, + { + "start": 50440.48, + "end": 50442.92, + "probability": 0.9968 + }, + { + "start": 50442.92, + "end": 50445.54, + "probability": 0.998 + }, + { + "start": 50445.68, + "end": 50449.14, + "probability": 0.8081 + }, + { + "start": 50449.34, + "end": 50450.4, + "probability": 0.6346 + }, + { + "start": 50454.4, + "end": 50457.56, + "probability": 0.9685 + }, + { + "start": 50457.66, + "end": 50459.86, + "probability": 0.9052 + }, + { + "start": 50460.14, + "end": 50461.34, + "probability": 0.8087 + }, + { + "start": 50461.42, + "end": 50462.44, + "probability": 0.9458 + }, + { + "start": 50462.94, + "end": 50464.49, + "probability": 0.9512 + }, + { + "start": 50465.32, + "end": 50468.04, + "probability": 0.9828 + }, + { + "start": 50468.8, + "end": 50472.38, + "probability": 0.9736 + }, + { + "start": 50473.46, + "end": 50476.58, + "probability": 0.729 + }, + { + "start": 50477.22, + "end": 50482.84, + "probability": 0.9756 + }, + { + "start": 50483.72, + "end": 50486.62, + "probability": 0.8521 + }, + { + "start": 50487.24, + "end": 50489.64, + "probability": 0.9928 + }, + { + "start": 50490.2, + "end": 50491.96, + "probability": 0.2696 + }, + { + "start": 50492.7, + "end": 50493.8, + "probability": 0.0944 + }, + { + "start": 50493.8, + "end": 50498.86, + "probability": 0.9752 + }, + { + "start": 50498.86, + "end": 50502.86, + "probability": 0.8997 + }, + { + "start": 50502.94, + "end": 50502.94, + "probability": 0.5126 + }, + { + "start": 50502.94, + "end": 50503.38, + "probability": 0.2808 + }, + { + "start": 50503.46, + "end": 50503.84, + "probability": 0.7535 + }, + { + "start": 50504.24, + "end": 50507.42, + "probability": 0.9631 + }, + { + "start": 50507.46, + "end": 50509.32, + "probability": 0.865 + }, + { + "start": 50510.06, + "end": 50511.44, + "probability": 0.955 + }, + { + "start": 50512.22, + "end": 50516.3, + "probability": 0.9896 + }, + { + "start": 50516.76, + "end": 50517.8, + "probability": 0.8553 + }, + { + "start": 50518.34, + "end": 50521.88, + "probability": 0.9365 + }, + { + "start": 50523.03, + "end": 50525.26, + "probability": 0.9512 + }, + { + "start": 50525.32, + "end": 50527.02, + "probability": 0.8849 + }, + { + "start": 50527.46, + "end": 50530.88, + "probability": 0.9978 + }, + { + "start": 50530.88, + "end": 50534.22, + "probability": 0.9972 + }, + { + "start": 50534.34, + "end": 50536.84, + "probability": 0.9639 + }, + { + "start": 50537.96, + "end": 50540.14, + "probability": 0.8516 + }, + { + "start": 50540.42, + "end": 50544.21, + "probability": 0.936 + }, + { + "start": 50545.16, + "end": 50547.18, + "probability": 0.9917 + }, + { + "start": 50547.24, + "end": 50549.6, + "probability": 0.9917 + }, + { + "start": 50549.6, + "end": 50553.12, + "probability": 0.99 + }, + { + "start": 50554.28, + "end": 50555.02, + "probability": 0.2742 + }, + { + "start": 50555.04, + "end": 50556.22, + "probability": 0.5905 + }, + { + "start": 50556.42, + "end": 50557.38, + "probability": 0.5274 + }, + { + "start": 50557.6, + "end": 50558.7, + "probability": 0.6867 + }, + { + "start": 50558.78, + "end": 50563.66, + "probability": 0.8824 + }, + { + "start": 50564.02, + "end": 50565.46, + "probability": 0.9836 + }, + { + "start": 50565.88, + "end": 50567.44, + "probability": 0.8429 + }, + { + "start": 50567.74, + "end": 50569.02, + "probability": 0.9827 + }, + { + "start": 50569.16, + "end": 50571.02, + "probability": 0.9349 + }, + { + "start": 50571.48, + "end": 50576.25, + "probability": 0.6498 + }, + { + "start": 50576.52, + "end": 50582.1, + "probability": 0.9937 + }, + { + "start": 50583.0, + "end": 50583.9, + "probability": 0.8896 + }, + { + "start": 50584.36, + "end": 50588.48, + "probability": 0.9843 + }, + { + "start": 50588.64, + "end": 50589.92, + "probability": 0.8235 + }, + { + "start": 50590.02, + "end": 50591.34, + "probability": 0.978 + }, + { + "start": 50591.48, + "end": 50593.46, + "probability": 0.8233 + }, + { + "start": 50593.52, + "end": 50594.8, + "probability": 0.8875 + }, + { + "start": 50595.34, + "end": 50596.68, + "probability": 0.9131 + }, + { + "start": 50598.0, + "end": 50599.14, + "probability": 0.4323 + }, + { + "start": 50599.22, + "end": 50603.56, + "probability": 0.6307 + }, + { + "start": 50604.97, + "end": 50608.76, + "probability": 0.3689 + }, + { + "start": 50608.8, + "end": 50610.92, + "probability": 0.6186 + }, + { + "start": 50611.02, + "end": 50612.32, + "probability": 0.7375 + }, + { + "start": 50612.57, + "end": 50613.78, + "probability": 0.7337 + }, + { + "start": 50613.96, + "end": 50615.12, + "probability": 0.6677 + }, + { + "start": 50616.78, + "end": 50616.86, + "probability": 0.226 + }, + { + "start": 50617.04, + "end": 50618.14, + "probability": 0.7122 + }, + { + "start": 50618.14, + "end": 50619.44, + "probability": 0.7226 + }, + { + "start": 50619.7, + "end": 50622.08, + "probability": 0.5295 + }, + { + "start": 50622.3, + "end": 50623.26, + "probability": 0.8378 + }, + { + "start": 50623.66, + "end": 50624.92, + "probability": 0.5923 + }, + { + "start": 50625.31, + "end": 50627.16, + "probability": 0.65 + }, + { + "start": 50627.22, + "end": 50627.94, + "probability": 0.7606 + }, + { + "start": 50628.06, + "end": 50630.46, + "probability": 0.9696 + }, + { + "start": 50631.16, + "end": 50633.8, + "probability": 0.997 + }, + { + "start": 50634.68, + "end": 50635.6, + "probability": 0.8735 + }, + { + "start": 50637.72, + "end": 50643.36, + "probability": 0.9495 + }, + { + "start": 50643.98, + "end": 50644.32, + "probability": 0.9248 + }, + { + "start": 50645.3, + "end": 50648.82, + "probability": 0.6453 + }, + { + "start": 50648.98, + "end": 50650.96, + "probability": 0.895 + }, + { + "start": 50651.04, + "end": 50652.54, + "probability": 0.1953 + }, + { + "start": 50652.62, + "end": 50652.9, + "probability": 0.3586 + }, + { + "start": 50653.02, + "end": 50654.78, + "probability": 0.3706 + }, + { + "start": 50654.96, + "end": 50656.6, + "probability": 0.782 + }, + { + "start": 50656.98, + "end": 50659.32, + "probability": 0.7101 + }, + { + "start": 50660.0, + "end": 50661.94, + "probability": 0.2809 + }, + { + "start": 50662.06, + "end": 50665.52, + "probability": 0.9236 + }, + { + "start": 50665.58, + "end": 50667.71, + "probability": 0.9751 + }, + { + "start": 50669.02, + "end": 50669.78, + "probability": 0.6415 + }, + { + "start": 50669.8, + "end": 50671.66, + "probability": 0.6107 + }, + { + "start": 50671.66, + "end": 50672.76, + "probability": 0.2883 + }, + { + "start": 50672.78, + "end": 50674.12, + "probability": 0.5803 + }, + { + "start": 50674.9, + "end": 50675.38, + "probability": 0.9428 + }, + { + "start": 50675.48, + "end": 50678.38, + "probability": 0.9829 + }, + { + "start": 50678.54, + "end": 50679.84, + "probability": 0.9274 + }, + { + "start": 50679.84, + "end": 50681.8, + "probability": 0.7593 + }, + { + "start": 50681.9, + "end": 50682.62, + "probability": 0.7873 + }, + { + "start": 50682.62, + "end": 50684.26, + "probability": 0.9974 + }, + { + "start": 50684.34, + "end": 50684.9, + "probability": 0.9229 + }, + { + "start": 50685.12, + "end": 50686.4, + "probability": 0.8035 + }, + { + "start": 50686.42, + "end": 50688.37, + "probability": 0.8098 + }, + { + "start": 50689.0, + "end": 50691.32, + "probability": 0.9157 + }, + { + "start": 50691.42, + "end": 50692.7, + "probability": 0.9644 + }, + { + "start": 50692.8, + "end": 50694.52, + "probability": 0.9849 + }, + { + "start": 50695.42, + "end": 50696.8, + "probability": 0.9932 + }, + { + "start": 50696.91, + "end": 50698.39, + "probability": 0.8264 + }, + { + "start": 50698.94, + "end": 50701.38, + "probability": 0.6188 + }, + { + "start": 50701.44, + "end": 50702.66, + "probability": 0.5316 + }, + { + "start": 50702.84, + "end": 50703.12, + "probability": 0.2223 + }, + { + "start": 50703.12, + "end": 50705.12, + "probability": 0.7131 + }, + { + "start": 50706.16, + "end": 50709.12, + "probability": 0.7951 + }, + { + "start": 50709.2, + "end": 50710.2, + "probability": 0.9375 + }, + { + "start": 50710.88, + "end": 50711.84, + "probability": 0.7649 + }, + { + "start": 50711.86, + "end": 50713.55, + "probability": 0.7174 + }, + { + "start": 50713.56, + "end": 50717.46, + "probability": 0.2363 + }, + { + "start": 50717.72, + "end": 50719.56, + "probability": 0.6958 + }, + { + "start": 50719.68, + "end": 50720.55, + "probability": 0.8001 + }, + { + "start": 50721.52, + "end": 50722.12, + "probability": 0.9156 + }, + { + "start": 50722.18, + "end": 50725.1, + "probability": 0.9172 + }, + { + "start": 50725.16, + "end": 50727.32, + "probability": 0.615 + }, + { + "start": 50727.48, + "end": 50729.48, + "probability": 0.2237 + }, + { + "start": 50729.48, + "end": 50730.08, + "probability": 0.1845 + }, + { + "start": 50730.24, + "end": 50730.7, + "probability": 0.7208 + }, + { + "start": 50730.77, + "end": 50734.54, + "probability": 0.0478 + }, + { + "start": 50734.54, + "end": 50737.7, + "probability": 0.7563 + }, + { + "start": 50737.9, + "end": 50740.42, + "probability": 0.6367 + }, + { + "start": 50740.5, + "end": 50743.38, + "probability": 0.6729 + }, + { + "start": 50743.38, + "end": 50745.18, + "probability": 0.604 + }, + { + "start": 50745.18, + "end": 50746.68, + "probability": 0.9634 + }, + { + "start": 50746.88, + "end": 50746.88, + "probability": 0.0566 + }, + { + "start": 50746.88, + "end": 50747.44, + "probability": 0.5984 + }, + { + "start": 50747.56, + "end": 50748.6, + "probability": 0.6104 + }, + { + "start": 50748.76, + "end": 50749.24, + "probability": 0.8662 + }, + { + "start": 50749.32, + "end": 50753.19, + "probability": 0.9578 + }, + { + "start": 50753.58, + "end": 50755.03, + "probability": 0.9507 + }, + { + "start": 50755.3, + "end": 50758.7, + "probability": 0.3243 + }, + { + "start": 50760.04, + "end": 50760.56, + "probability": 0.1443 + }, + { + "start": 50762.86, + "end": 50763.38, + "probability": 0.2609 + }, + { + "start": 50763.8, + "end": 50769.26, + "probability": 0.8065 + }, + { + "start": 50769.34, + "end": 50770.5, + "probability": 0.8581 + }, + { + "start": 50770.58, + "end": 50772.54, + "probability": 0.7715 + }, + { + "start": 50772.62, + "end": 50774.86, + "probability": 0.629 + }, + { + "start": 50775.06, + "end": 50777.42, + "probability": 0.5899 + }, + { + "start": 50777.44, + "end": 50777.44, + "probability": 0.1527 + }, + { + "start": 50777.44, + "end": 50778.13, + "probability": 0.3811 + }, + { + "start": 50778.74, + "end": 50781.6, + "probability": 0.3813 + }, + { + "start": 50781.6, + "end": 50782.32, + "probability": 0.9655 + }, + { + "start": 50782.54, + "end": 50785.92, + "probability": 0.8798 + }, + { + "start": 50786.04, + "end": 50787.03, + "probability": 0.8535 + }, + { + "start": 50787.84, + "end": 50790.86, + "probability": 0.916 + }, + { + "start": 50791.28, + "end": 50792.38, + "probability": 0.7137 + }, + { + "start": 50792.48, + "end": 50793.44, + "probability": 0.8268 + }, + { + "start": 50793.68, + "end": 50796.36, + "probability": 0.6462 + }, + { + "start": 50796.76, + "end": 50802.26, + "probability": 0.9087 + }, + { + "start": 50802.34, + "end": 50802.9, + "probability": 0.9512 + }, + { + "start": 50803.2, + "end": 50804.32, + "probability": 0.7475 + }, + { + "start": 50804.8, + "end": 50805.82, + "probability": 0.5817 + }, + { + "start": 50805.96, + "end": 50806.68, + "probability": 0.5287 + }, + { + "start": 50806.72, + "end": 50807.8, + "probability": 0.5895 + }, + { + "start": 50807.88, + "end": 50808.28, + "probability": 0.4817 + }, + { + "start": 50808.28, + "end": 50809.12, + "probability": 0.7862 + }, + { + "start": 50809.22, + "end": 50809.76, + "probability": 0.9593 + }, + { + "start": 50809.76, + "end": 50810.6, + "probability": 0.4158 + }, + { + "start": 50810.68, + "end": 50811.88, + "probability": 0.4171 + }, + { + "start": 50812.12, + "end": 50812.74, + "probability": 0.8833 + }, + { + "start": 50813.26, + "end": 50814.3, + "probability": 0.9082 + }, + { + "start": 50814.32, + "end": 50814.82, + "probability": 0.7666 + }, + { + "start": 50815.0, + "end": 50821.84, + "probability": 0.1234 + }, + { + "start": 50821.9, + "end": 50825.22, + "probability": 0.9216 + }, + { + "start": 50825.56, + "end": 50829.32, + "probability": 0.9878 + }, + { + "start": 50829.42, + "end": 50830.16, + "probability": 0.6804 + }, + { + "start": 50830.26, + "end": 50830.98, + "probability": 0.7565 + }, + { + "start": 50831.3, + "end": 50832.42, + "probability": 0.9785 + }, + { + "start": 50832.54, + "end": 50833.62, + "probability": 0.2598 + }, + { + "start": 50833.8, + "end": 50835.04, + "probability": 0.7855 + }, + { + "start": 50835.08, + "end": 50835.66, + "probability": 0.9274 + }, + { + "start": 50835.82, + "end": 50837.73, + "probability": 0.9785 + }, + { + "start": 50837.78, + "end": 50839.64, + "probability": 0.9675 + }, + { + "start": 50840.12, + "end": 50842.36, + "probability": 0.9906 + }, + { + "start": 50842.98, + "end": 50845.98, + "probability": 0.8525 + }, + { + "start": 50846.08, + "end": 50847.54, + "probability": 0.9465 + }, + { + "start": 50848.1, + "end": 50848.6, + "probability": 0.7726 + }, + { + "start": 50849.22, + "end": 50850.12, + "probability": 0.9962 + }, + { + "start": 50850.24, + "end": 50850.24, + "probability": 0.5097 + }, + { + "start": 50850.24, + "end": 50851.82, + "probability": 0.5886 + }, + { + "start": 50851.96, + "end": 50852.86, + "probability": 0.1457 + }, + { + "start": 50852.92, + "end": 50856.46, + "probability": 0.9564 + }, + { + "start": 50856.5, + "end": 50858.5, + "probability": 0.9703 + }, + { + "start": 50858.88, + "end": 50860.1, + "probability": 0.6685 + }, + { + "start": 50860.16, + "end": 50863.78, + "probability": 0.9546 + }, + { + "start": 50863.82, + "end": 50865.02, + "probability": 0.5658 + }, + { + "start": 50865.16, + "end": 50866.32, + "probability": 0.4343 + }, + { + "start": 50866.34, + "end": 50867.76, + "probability": 0.7296 + }, + { + "start": 50867.92, + "end": 50868.64, + "probability": 0.8726 + }, + { + "start": 50868.78, + "end": 50871.27, + "probability": 0.5058 + }, + { + "start": 50872.12, + "end": 50874.57, + "probability": 0.8142 + }, + { + "start": 50874.68, + "end": 50874.88, + "probability": 0.2123 + }, + { + "start": 50875.9, + "end": 50876.56, + "probability": 0.5895 + }, + { + "start": 50877.94, + "end": 50879.42, + "probability": 0.9634 + }, + { + "start": 50884.24, + "end": 50885.56, + "probability": 0.7806 + }, + { + "start": 50886.1, + "end": 50888.14, + "probability": 0.7847 + }, + { + "start": 50888.2, + "end": 50889.84, + "probability": 0.9138 + }, + { + "start": 50890.56, + "end": 50890.84, + "probability": 0.1739 + }, + { + "start": 50890.84, + "end": 50897.96, + "probability": 0.5034 + }, + { + "start": 50898.12, + "end": 50898.4, + "probability": 0.7816 + }, + { + "start": 50898.56, + "end": 50898.86, + "probability": 0.6653 + }, + { + "start": 50898.92, + "end": 50899.22, + "probability": 0.7045 + }, + { + "start": 50899.3, + "end": 50899.64, + "probability": 0.8698 + }, + { + "start": 50900.24, + "end": 50902.78, + "probability": 0.7428 + }, + { + "start": 50902.78, + "end": 50903.1, + "probability": 0.7723 + }, + { + "start": 50903.28, + "end": 50904.16, + "probability": 0.9561 + }, + { + "start": 50905.82, + "end": 50906.92, + "probability": 0.6728 + }, + { + "start": 50906.98, + "end": 50910.26, + "probability": 0.9981 + }, + { + "start": 50912.24, + "end": 50915.68, + "probability": 0.9185 + }, + { + "start": 50916.6, + "end": 50920.94, + "probability": 0.9522 + }, + { + "start": 50921.04, + "end": 50921.32, + "probability": 0.8064 + }, + { + "start": 50921.36, + "end": 50922.16, + "probability": 0.3743 + }, + { + "start": 50922.16, + "end": 50922.4, + "probability": 0.587 + }, + { + "start": 50924.5, + "end": 50927.06, + "probability": 0.998 + }, + { + "start": 50927.06, + "end": 50930.28, + "probability": 0.9963 + }, + { + "start": 50931.48, + "end": 50932.8, + "probability": 0.5298 + }, + { + "start": 50932.92, + "end": 50933.76, + "probability": 0.9451 + }, + { + "start": 50934.2, + "end": 50934.8, + "probability": 0.2226 + }, + { + "start": 50935.22, + "end": 50936.0, + "probability": 0.7035 + }, + { + "start": 50936.0, + "end": 50936.56, + "probability": 0.6577 + }, + { + "start": 50936.6, + "end": 50939.18, + "probability": 0.7563 + }, + { + "start": 50939.74, + "end": 50941.3, + "probability": 0.6741 + }, + { + "start": 50941.3, + "end": 50945.02, + "probability": 0.9683 + }, + { + "start": 50945.2, + "end": 50946.88, + "probability": 0.9915 + }, + { + "start": 50946.96, + "end": 50948.3, + "probability": 0.8791 + }, + { + "start": 50948.46, + "end": 50952.0, + "probability": 0.7988 + }, + { + "start": 50953.16, + "end": 50955.8, + "probability": 0.322 + }, + { + "start": 50957.2, + "end": 50957.5, + "probability": 0.0478 + }, + { + "start": 50957.5, + "end": 50962.44, + "probability": 0.6383 + }, + { + "start": 50962.6, + "end": 50963.06, + "probability": 0.0292 + }, + { + "start": 50963.06, + "end": 50965.04, + "probability": 0.7069 + }, + { + "start": 50965.14, + "end": 50966.64, + "probability": 0.7044 + }, + { + "start": 50966.84, + "end": 50967.04, + "probability": 0.7651 + }, + { + "start": 50967.04, + "end": 50967.4, + "probability": 0.5228 + }, + { + "start": 50967.62, + "end": 50969.04, + "probability": 0.9929 + }, + { + "start": 50969.14, + "end": 50970.0, + "probability": 0.7753 + }, + { + "start": 50970.08, + "end": 50971.04, + "probability": 0.6325 + }, + { + "start": 50971.04, + "end": 50974.16, + "probability": 0.9821 + }, + { + "start": 50974.24, + "end": 50974.46, + "probability": 0.9218 + }, + { + "start": 50974.58, + "end": 50976.56, + "probability": 0.9352 + }, + { + "start": 50976.6, + "end": 50978.9, + "probability": 0.4793 + }, + { + "start": 50979.48, + "end": 50984.02, + "probability": 0.8488 + }, + { + "start": 50984.6, + "end": 50985.7, + "probability": 0.9146 + }, + { + "start": 50988.38, + "end": 50991.5, + "probability": 0.5518 + }, + { + "start": 50992.22, + "end": 50994.3, + "probability": 0.4379 + }, + { + "start": 50994.46, + "end": 50997.88, + "probability": 0.771 + }, + { + "start": 50997.96, + "end": 50999.58, + "probability": 0.8974 + }, + { + "start": 50999.58, + "end": 50999.6, + "probability": 0.2746 + }, + { + "start": 50999.6, + "end": 51000.18, + "probability": 0.2035 + }, + { + "start": 51000.86, + "end": 51001.74, + "probability": 0.0017 + }, + { + "start": 51001.82, + "end": 51006.53, + "probability": 0.9521 + }, + { + "start": 51006.64, + "end": 51008.1, + "probability": 0.9502 + }, + { + "start": 51008.28, + "end": 51008.5, + "probability": 0.4036 + }, + { + "start": 51008.5, + "end": 51009.16, + "probability": 0.3718 + }, + { + "start": 51009.4, + "end": 51011.0, + "probability": 0.9842 + }, + { + "start": 51012.6, + "end": 51015.7, + "probability": 0.5288 + }, + { + "start": 51015.9, + "end": 51016.38, + "probability": 0.0743 + }, + { + "start": 51016.38, + "end": 51016.4, + "probability": 0.2308 + }, + { + "start": 51016.64, + "end": 51018.9, + "probability": 0.3956 + }, + { + "start": 51019.01, + "end": 51021.18, + "probability": 0.3618 + }, + { + "start": 51021.18, + "end": 51021.88, + "probability": 0.065 + }, + { + "start": 51021.94, + "end": 51023.36, + "probability": 0.3898 + }, + { + "start": 51023.52, + "end": 51024.43, + "probability": 0.9708 + }, + { + "start": 51024.7, + "end": 51026.64, + "probability": 0.8237 + }, + { + "start": 51027.2, + "end": 51031.48, + "probability": 0.9607 + }, + { + "start": 51031.52, + "end": 51032.06, + "probability": 0.2344 + }, + { + "start": 51032.26, + "end": 51032.38, + "probability": 0.2524 + }, + { + "start": 51032.38, + "end": 51036.24, + "probability": 0.9767 + }, + { + "start": 51037.34, + "end": 51037.74, + "probability": 0.0831 + }, + { + "start": 51038.66, + "end": 51041.3, + "probability": 0.271 + }, + { + "start": 51041.36, + "end": 51041.92, + "probability": 0.8046 + }, + { + "start": 51042.74, + "end": 51042.8, + "probability": 0.0174 + }, + { + "start": 51042.9, + "end": 51043.52, + "probability": 0.6709 + }, + { + "start": 51043.58, + "end": 51044.72, + "probability": 0.7506 + }, + { + "start": 51044.9, + "end": 51045.46, + "probability": 0.9628 + }, + { + "start": 51045.94, + "end": 51046.3, + "probability": 0.7246 + }, + { + "start": 51046.48, + "end": 51047.5, + "probability": 0.889 + }, + { + "start": 51047.62, + "end": 51048.64, + "probability": 0.7021 + }, + { + "start": 51050.34, + "end": 51051.26, + "probability": 0.6354 + }, + { + "start": 51052.48, + "end": 51055.78, + "probability": 0.7848 + }, + { + "start": 51055.84, + "end": 51055.94, + "probability": 0.3174 + }, + { + "start": 51056.0, + "end": 51056.21, + "probability": 0.6661 + }, + { + "start": 51056.52, + "end": 51057.7, + "probability": 0.9829 + }, + { + "start": 51058.94, + "end": 51061.54, + "probability": 0.012 + }, + { + "start": 51062.06, + "end": 51063.24, + "probability": 0.0408 + }, + { + "start": 51064.1, + "end": 51065.66, + "probability": 0.0754 + }, + { + "start": 51066.6, + "end": 51066.6, + "probability": 0.1284 + }, + { + "start": 51067.03, + "end": 51069.56, + "probability": 0.7253 + }, + { + "start": 51070.5, + "end": 51073.24, + "probability": 0.5002 + }, + { + "start": 51073.3, + "end": 51074.58, + "probability": 0.3032 + }, + { + "start": 51076.11, + "end": 51079.3, + "probability": 0.7156 + }, + { + "start": 51079.7, + "end": 51081.68, + "probability": 0.9904 + }, + { + "start": 51081.74, + "end": 51085.9, + "probability": 0.2805 + }, + { + "start": 51085.92, + "end": 51086.4, + "probability": 0.5388 + }, + { + "start": 51086.72, + "end": 51087.12, + "probability": 0.254 + }, + { + "start": 51087.22, + "end": 51087.62, + "probability": 0.4524 + }, + { + "start": 51087.82, + "end": 51088.7, + "probability": 0.859 + }, + { + "start": 51088.96, + "end": 51091.42, + "probability": 0.9919 + }, + { + "start": 51091.42, + "end": 51094.2, + "probability": 0.8488 + }, + { + "start": 51094.2, + "end": 51097.92, + "probability": 0.7373 + }, + { + "start": 51097.96, + "end": 51101.78, + "probability": 0.9922 + }, + { + "start": 51101.78, + "end": 51106.36, + "probability": 0.9985 + }, + { + "start": 51106.46, + "end": 51107.77, + "probability": 0.9943 + }, + { + "start": 51107.9, + "end": 51108.86, + "probability": 0.7917 + }, + { + "start": 51108.98, + "end": 51112.86, + "probability": 0.9958 + }, + { + "start": 51113.2, + "end": 51115.44, + "probability": 0.988 + }, + { + "start": 51115.5, + "end": 51115.9, + "probability": 0.4451 + }, + { + "start": 51116.0, + "end": 51117.08, + "probability": 0.6318 + }, + { + "start": 51117.3, + "end": 51118.5, + "probability": 0.771 + }, + { + "start": 51118.58, + "end": 51119.84, + "probability": 0.8052 + }, + { + "start": 51120.5, + "end": 51123.32, + "probability": 0.9932 + }, + { + "start": 51123.58, + "end": 51124.9, + "probability": 0.7637 + }, + { + "start": 51125.04, + "end": 51125.28, + "probability": 0.1897 + }, + { + "start": 51125.3, + "end": 51126.28, + "probability": 0.8989 + }, + { + "start": 51126.4, + "end": 51127.36, + "probability": 0.9902 + }, + { + "start": 51131.39, + "end": 51133.78, + "probability": 0.9282 + }, + { + "start": 51138.82, + "end": 51141.41, + "probability": 0.1815 + }, + { + "start": 51142.0, + "end": 51143.72, + "probability": 0.6501 + }, + { + "start": 51143.88, + "end": 51144.68, + "probability": 0.5251 + }, + { + "start": 51145.02, + "end": 51145.6, + "probability": 0.1116 + }, + { + "start": 51145.6, + "end": 51146.84, + "probability": 0.244 + }, + { + "start": 51147.2, + "end": 51149.76, + "probability": 0.1539 + }, + { + "start": 51149.76, + "end": 51152.19, + "probability": 0.4765 + }, + { + "start": 51152.88, + "end": 51154.42, + "probability": 0.156 + }, + { + "start": 51154.78, + "end": 51157.28, + "probability": 0.6426 + }, + { + "start": 51157.34, + "end": 51157.74, + "probability": 0.4535 + }, + { + "start": 51157.8, + "end": 51158.36, + "probability": 0.7479 + }, + { + "start": 51159.06, + "end": 51159.9, + "probability": 0.4993 + }, + { + "start": 51160.04, + "end": 51162.16, + "probability": 0.3619 + }, + { + "start": 51162.16, + "end": 51163.06, + "probability": 0.2167 + }, + { + "start": 51163.28, + "end": 51164.0, + "probability": 0.1066 + }, + { + "start": 51164.16, + "end": 51165.12, + "probability": 0.7927 + }, + { + "start": 51165.26, + "end": 51166.52, + "probability": 0.7903 + }, + { + "start": 51166.74, + "end": 51169.84, + "probability": 0.8893 + }, + { + "start": 51169.9, + "end": 51174.38, + "probability": 0.9538 + }, + { + "start": 51174.44, + "end": 51175.12, + "probability": 0.5076 + }, + { + "start": 51175.26, + "end": 51178.68, + "probability": 0.4834 + }, + { + "start": 51178.68, + "end": 51178.68, + "probability": 0.255 + }, + { + "start": 51178.68, + "end": 51178.74, + "probability": 0.6504 + }, + { + "start": 51178.74, + "end": 51178.74, + "probability": 0.1622 + }, + { + "start": 51178.74, + "end": 51184.32, + "probability": 0.4977 + }, + { + "start": 51184.6, + "end": 51186.34, + "probability": 0.8079 + }, + { + "start": 51186.81, + "end": 51186.88, + "probability": 0.267 + }, + { + "start": 51187.02, + "end": 51189.78, + "probability": 0.9018 + }, + { + "start": 51190.04, + "end": 51194.9, + "probability": 0.9211 + }, + { + "start": 51197.28, + "end": 51199.28, + "probability": 0.8731 + }, + { + "start": 51199.3, + "end": 51199.4, + "probability": 0.0658 + }, + { + "start": 51199.4, + "end": 51199.82, + "probability": 0.0542 + }, + { + "start": 51199.88, + "end": 51200.06, + "probability": 0.2163 + }, + { + "start": 51200.06, + "end": 51201.28, + "probability": 0.6349 + }, + { + "start": 51202.0, + "end": 51203.12, + "probability": 0.921 + }, + { + "start": 51203.62, + "end": 51207.9, + "probability": 0.5462 + }, + { + "start": 51208.52, + "end": 51208.54, + "probability": 0.0503 + }, + { + "start": 51208.54, + "end": 51211.62, + "probability": 0.5812 + }, + { + "start": 51211.78, + "end": 51212.42, + "probability": 0.2665 + }, + { + "start": 51212.76, + "end": 51213.64, + "probability": 0.0893 + }, + { + "start": 51213.74, + "end": 51214.19, + "probability": 0.6462 + }, + { + "start": 51214.46, + "end": 51215.64, + "probability": 0.505 + }, + { + "start": 51216.14, + "end": 51219.16, + "probability": 0.2198 + }, + { + "start": 51219.16, + "end": 51219.16, + "probability": 0.1523 + }, + { + "start": 51219.16, + "end": 51223.07, + "probability": 0.8808 + }, + { + "start": 51223.94, + "end": 51226.5, + "probability": 0.9943 + }, + { + "start": 51226.64, + "end": 51228.54, + "probability": 0.9285 + }, + { + "start": 51228.8, + "end": 51229.9, + "probability": 0.9395 + }, + { + "start": 51230.88, + "end": 51232.51, + "probability": 0.6846 + }, + { + "start": 51233.42, + "end": 51236.14, + "probability": 0.8191 + }, + { + "start": 51236.58, + "end": 51238.04, + "probability": 0.9772 + }, + { + "start": 51238.12, + "end": 51238.54, + "probability": 0.9465 + }, + { + "start": 51238.62, + "end": 51239.42, + "probability": 0.9072 + }, + { + "start": 51239.6, + "end": 51241.1, + "probability": 0.8307 + }, + { + "start": 51241.14, + "end": 51242.44, + "probability": 0.9201 + }, + { + "start": 51242.72, + "end": 51245.0, + "probability": 0.9781 + }, + { + "start": 51245.54, + "end": 51247.16, + "probability": 0.9867 + }, + { + "start": 51247.18, + "end": 51249.42, + "probability": 0.9985 + }, + { + "start": 51249.98, + "end": 51252.56, + "probability": 0.9974 + }, + { + "start": 51253.14, + "end": 51254.21, + "probability": 0.8792 + }, + { + "start": 51255.0, + "end": 51258.16, + "probability": 0.9941 + }, + { + "start": 51258.64, + "end": 51259.86, + "probability": 0.875 + }, + { + "start": 51260.52, + "end": 51262.22, + "probability": 0.4819 + }, + { + "start": 51262.92, + "end": 51264.5, + "probability": 0.7736 + }, + { + "start": 51264.94, + "end": 51268.9, + "probability": 0.9731 + }, + { + "start": 51270.1, + "end": 51273.14, + "probability": 0.9933 + }, + { + "start": 51273.5, + "end": 51277.34, + "probability": 0.9928 + }, + { + "start": 51278.14, + "end": 51279.64, + "probability": 0.6731 + }, + { + "start": 51280.32, + "end": 51283.28, + "probability": 0.9924 + }, + { + "start": 51283.48, + "end": 51286.56, + "probability": 0.9971 + }, + { + "start": 51287.14, + "end": 51290.76, + "probability": 0.9926 + }, + { + "start": 51290.76, + "end": 51293.58, + "probability": 0.9714 + }, + { + "start": 51293.9, + "end": 51295.51, + "probability": 0.7791 + }, + { + "start": 51296.14, + "end": 51297.06, + "probability": 0.7163 + }, + { + "start": 51297.32, + "end": 51298.18, + "probability": 0.5452 + }, + { + "start": 51298.46, + "end": 51301.16, + "probability": 0.9413 + }, + { + "start": 51301.92, + "end": 51303.4, + "probability": 0.9614 + }, + { + "start": 51303.58, + "end": 51305.02, + "probability": 0.9854 + }, + { + "start": 51305.38, + "end": 51308.36, + "probability": 0.9481 + }, + { + "start": 51309.1, + "end": 51310.18, + "probability": 0.2909 + }, + { + "start": 51310.82, + "end": 51311.12, + "probability": 0.0034 + }, + { + "start": 51311.12, + "end": 51311.12, + "probability": 0.1232 + }, + { + "start": 51311.12, + "end": 51316.24, + "probability": 0.851 + }, + { + "start": 51316.38, + "end": 51319.86, + "probability": 0.9819 + }, + { + "start": 51320.24, + "end": 51323.4, + "probability": 0.6089 + }, + { + "start": 51323.5, + "end": 51324.22, + "probability": 0.8848 + }, + { + "start": 51328.26, + "end": 51329.02, + "probability": 0.9006 + }, + { + "start": 51332.22, + "end": 51333.7, + "probability": 0.2511 + }, + { + "start": 51333.76, + "end": 51335.74, + "probability": 0.9873 + }, + { + "start": 51335.9, + "end": 51339.46, + "probability": 0.0544 + }, + { + "start": 51339.5, + "end": 51342.08, + "probability": 0.2173 + }, + { + "start": 51342.32, + "end": 51343.26, + "probability": 0.6792 + }, + { + "start": 51343.5, + "end": 51345.08, + "probability": 0.7559 + }, + { + "start": 51345.24, + "end": 51347.52, + "probability": 0.3505 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.0, + "end": 51453.0, + "probability": 0.0 + }, + { + "start": 51453.46, + "end": 51455.29, + "probability": 0.2495 + }, + { + "start": 51455.46, + "end": 51455.48, + "probability": 0.2683 + }, + { + "start": 51455.48, + "end": 51457.32, + "probability": 0.5194 + }, + { + "start": 51457.44, + "end": 51458.76, + "probability": 0.0878 + }, + { + "start": 51471.82, + "end": 51472.54, + "probability": 0.4694 + }, + { + "start": 51472.58, + "end": 51473.84, + "probability": 0.55 + }, + { + "start": 51475.0, + "end": 51476.4, + "probability": 0.9688 + }, + { + "start": 51476.58, + "end": 51477.3, + "probability": 0.8411 + }, + { + "start": 51477.42, + "end": 51477.96, + "probability": 0.7346 + }, + { + "start": 51477.96, + "end": 51478.84, + "probability": 0.1743 + }, + { + "start": 51478.92, + "end": 51479.8, + "probability": 0.6154 + }, + { + "start": 51479.8, + "end": 51480.64, + "probability": 0.9145 + }, + { + "start": 51480.72, + "end": 51482.52, + "probability": 0.7722 + }, + { + "start": 51482.6, + "end": 51491.12, + "probability": 0.9938 + }, + { + "start": 51491.36, + "end": 51493.2, + "probability": 0.9826 + }, + { + "start": 51493.52, + "end": 51495.22, + "probability": 0.936 + }, + { + "start": 51495.38, + "end": 51497.5, + "probability": 0.943 + }, + { + "start": 51497.94, + "end": 51502.12, + "probability": 0.9983 + }, + { + "start": 51502.6, + "end": 51506.73, + "probability": 0.9863 + }, + { + "start": 51507.24, + "end": 51508.26, + "probability": 0.7995 + }, + { + "start": 51508.36, + "end": 51510.62, + "probability": 0.9882 + }, + { + "start": 51511.4, + "end": 51513.14, + "probability": 0.9907 + }, + { + "start": 51513.22, + "end": 51514.26, + "probability": 0.7425 + }, + { + "start": 51514.26, + "end": 51516.28, + "probability": 0.9409 + }, + { + "start": 51516.76, + "end": 51518.76, + "probability": 0.9973 + }, + { + "start": 51519.38, + "end": 51521.5, + "probability": 0.9767 + }, + { + "start": 51522.38, + "end": 51523.92, + "probability": 0.5081 + }, + { + "start": 51524.14, + "end": 51526.42, + "probability": 0.9456 + }, + { + "start": 51526.46, + "end": 51531.06, + "probability": 0.9952 + }, + { + "start": 51532.28, + "end": 51534.02, + "probability": 0.8971 + }, + { + "start": 51534.2, + "end": 51536.14, + "probability": 0.9927 + }, + { + "start": 51536.18, + "end": 51541.52, + "probability": 0.9974 + }, + { + "start": 51542.14, + "end": 51545.96, + "probability": 0.9966 + }, + { + "start": 51546.66, + "end": 51549.9, + "probability": 0.9695 + }, + { + "start": 51550.42, + "end": 51553.46, + "probability": 0.9657 + }, + { + "start": 51553.82, + "end": 51555.9, + "probability": 0.8532 + }, + { + "start": 51555.9, + "end": 51558.94, + "probability": 0.8748 + }, + { + "start": 51559.62, + "end": 51563.36, + "probability": 0.9355 + }, + { + "start": 51563.98, + "end": 51564.48, + "probability": 0.8828 + }, + { + "start": 51565.02, + "end": 51567.7, + "probability": 0.9506 + }, + { + "start": 51569.4, + "end": 51571.74, + "probability": 0.9749 + }, + { + "start": 51571.74, + "end": 51575.06, + "probability": 0.9868 + }, + { + "start": 51575.6, + "end": 51579.02, + "probability": 0.9342 + }, + { + "start": 51579.58, + "end": 51581.26, + "probability": 0.9852 + }, + { + "start": 51581.68, + "end": 51584.24, + "probability": 0.991 + }, + { + "start": 51584.76, + "end": 51589.06, + "probability": 0.9941 + }, + { + "start": 51589.2, + "end": 51591.94, + "probability": 0.9949 + }, + { + "start": 51592.72, + "end": 51595.5, + "probability": 0.9929 + }, + { + "start": 51595.62, + "end": 51597.02, + "probability": 0.9435 + }, + { + "start": 51597.84, + "end": 51601.32, + "probability": 0.8928 + }, + { + "start": 51601.32, + "end": 51605.78, + "probability": 0.7807 + }, + { + "start": 51606.52, + "end": 51610.34, + "probability": 0.7925 + }, + { + "start": 51610.82, + "end": 51613.64, + "probability": 0.9528 + }, + { + "start": 51614.32, + "end": 51617.24, + "probability": 0.9588 + }, + { + "start": 51617.4, + "end": 51618.68, + "probability": 0.9912 + }, + { + "start": 51619.2, + "end": 51620.9, + "probability": 0.9119 + }, + { + "start": 51621.72, + "end": 51626.36, + "probability": 0.9976 + }, + { + "start": 51627.93, + "end": 51630.04, + "probability": 0.9277 + }, + { + "start": 51631.06, + "end": 51633.19, + "probability": 0.9635 + }, + { + "start": 51633.74, + "end": 51636.67, + "probability": 0.9683 + }, + { + "start": 51637.18, + "end": 51638.54, + "probability": 0.9688 + }, + { + "start": 51638.74, + "end": 51639.32, + "probability": 0.7049 + }, + { + "start": 51639.74, + "end": 51645.68, + "probability": 0.979 + }, + { + "start": 51645.72, + "end": 51650.98, + "probability": 0.9819 + }, + { + "start": 51651.5, + "end": 51654.9, + "probability": 0.8273 + }, + { + "start": 51655.22, + "end": 51656.76, + "probability": 0.7892 + }, + { + "start": 51657.22, + "end": 51660.34, + "probability": 0.9814 + }, + { + "start": 51660.56, + "end": 51660.56, + "probability": 0.5398 + }, + { + "start": 51660.76, + "end": 51663.32, + "probability": 0.9649 + }, + { + "start": 51663.66, + "end": 51665.12, + "probability": 0.9335 + }, + { + "start": 51665.4, + "end": 51666.62, + "probability": 0.681 + }, + { + "start": 51666.84, + "end": 51667.36, + "probability": 0.1545 + }, + { + "start": 51667.46, + "end": 51669.68, + "probability": 0.9375 + }, + { + "start": 51670.02, + "end": 51671.64, + "probability": 0.8499 + }, + { + "start": 51671.98, + "end": 51673.84, + "probability": 0.9952 + }, + { + "start": 51674.18, + "end": 51675.62, + "probability": 0.9641 + }, + { + "start": 51675.9, + "end": 51677.12, + "probability": 0.9746 + }, + { + "start": 51677.22, + "end": 51678.12, + "probability": 0.8745 + }, + { + "start": 51678.42, + "end": 51680.66, + "probability": 0.8096 + }, + { + "start": 51680.78, + "end": 51680.98, + "probability": 0.7229 + }, + { + "start": 51681.06, + "end": 51683.62, + "probability": 0.959 + }, + { + "start": 51684.0, + "end": 51685.33, + "probability": 0.8896 + }, + { + "start": 51685.46, + "end": 51686.64, + "probability": 0.9727 + }, + { + "start": 51687.1, + "end": 51689.94, + "probability": 0.9155 + }, + { + "start": 51690.22, + "end": 51693.7, + "probability": 0.8331 + }, + { + "start": 51694.08, + "end": 51694.94, + "probability": 0.6498 + }, + { + "start": 51694.94, + "end": 51694.98, + "probability": 0.6569 + }, + { + "start": 51694.98, + "end": 51695.4, + "probability": 0.6112 + }, + { + "start": 51695.44, + "end": 51697.26, + "probability": 0.47 + }, + { + "start": 51697.26, + "end": 51699.66, + "probability": 0.9719 + }, + { + "start": 51699.82, + "end": 51702.44, + "probability": 0.8763 + }, + { + "start": 51702.44, + "end": 51702.88, + "probability": 0.4153 + }, + { + "start": 51703.28, + "end": 51704.28, + "probability": 0.8438 + }, + { + "start": 51704.98, + "end": 51706.88, + "probability": 0.0938 + }, + { + "start": 51706.88, + "end": 51707.82, + "probability": 0.3396 + }, + { + "start": 51707.82, + "end": 51708.14, + "probability": 0.1524 + }, + { + "start": 51708.32, + "end": 51708.44, + "probability": 0.2954 + }, + { + "start": 51708.44, + "end": 51710.83, + "probability": 0.7376 + }, + { + "start": 51711.32, + "end": 51713.76, + "probability": 0.4837 + }, + { + "start": 51722.06, + "end": 51723.34, + "probability": 0.3813 + }, + { + "start": 51724.12, + "end": 51725.36, + "probability": 0.8024 + }, + { + "start": 51726.14, + "end": 51726.76, + "probability": 0.9329 + }, + { + "start": 51727.04, + "end": 51727.7, + "probability": 0.8572 + }, + { + "start": 51728.39, + "end": 51730.61, + "probability": 0.91 + }, + { + "start": 51733.09, + "end": 51735.34, + "probability": 0.851 + }, + { + "start": 51735.58, + "end": 51737.88, + "probability": 0.5363 + }, + { + "start": 51738.5, + "end": 51740.04, + "probability": 0.9046 + }, + { + "start": 51740.36, + "end": 51744.7, + "probability": 0.8804 + }, + { + "start": 51747.62, + "end": 51750.66, + "probability": 0.5286 + }, + { + "start": 51752.02, + "end": 51753.02, + "probability": 0.8199 + }, + { + "start": 51753.44, + "end": 51757.44, + "probability": 0.9778 + }, + { + "start": 51758.08, + "end": 51759.78, + "probability": 0.9674 + }, + { + "start": 51761.14, + "end": 51763.04, + "probability": 0.9779 + }, + { + "start": 51765.64, + "end": 51768.7, + "probability": 0.9973 + }, + { + "start": 51768.96, + "end": 51772.4, + "probability": 0.9948 + }, + { + "start": 51773.7, + "end": 51778.36, + "probability": 0.9888 + }, + { + "start": 51778.98, + "end": 51783.84, + "probability": 0.9955 + }, + { + "start": 51784.52, + "end": 51785.88, + "probability": 0.9806 + }, + { + "start": 51787.44, + "end": 51788.12, + "probability": 0.9435 + }, + { + "start": 51788.24, + "end": 51791.64, + "probability": 0.9946 + }, + { + "start": 51791.8, + "end": 51792.62, + "probability": 0.7333 + }, + { + "start": 51792.68, + "end": 51793.24, + "probability": 0.6197 + }, + { + "start": 51793.6, + "end": 51794.1, + "probability": 0.3907 + }, + { + "start": 51794.52, + "end": 51795.56, + "probability": 0.9888 + }, + { + "start": 51795.7, + "end": 51796.14, + "probability": 0.8289 + }, + { + "start": 51796.56, + "end": 51797.04, + "probability": 0.688 + }, + { + "start": 51797.18, + "end": 51798.06, + "probability": 0.8544 + }, + { + "start": 51798.16, + "end": 51798.92, + "probability": 0.7529 + }, + { + "start": 51799.3, + "end": 51801.22, + "probability": 0.9974 + }, + { + "start": 51801.96, + "end": 51802.02, + "probability": 0.0186 + }, + { + "start": 51802.02, + "end": 51802.38, + "probability": 0.4214 + }, + { + "start": 51802.7, + "end": 51806.81, + "probability": 0.9289 + }, + { + "start": 51807.1, + "end": 51807.76, + "probability": 0.9272 + }, + { + "start": 51807.8, + "end": 51808.9, + "probability": 0.9684 + }, + { + "start": 51809.0, + "end": 51810.42, + "probability": 0.9551 + }, + { + "start": 51811.38, + "end": 51813.22, + "probability": 0.9932 + }, + { + "start": 51813.38, + "end": 51814.82, + "probability": 0.9556 + }, + { + "start": 51815.1, + "end": 51815.86, + "probability": 0.4025 + }, + { + "start": 51815.92, + "end": 51817.22, + "probability": 0.0389 + }, + { + "start": 51817.3, + "end": 51818.16, + "probability": 0.7948 + }, + { + "start": 51818.2, + "end": 51818.66, + "probability": 0.5065 + }, + { + "start": 51818.88, + "end": 51819.26, + "probability": 0.0179 + }, + { + "start": 51819.32, + "end": 51821.22, + "probability": 0.9561 + }, + { + "start": 51821.26, + "end": 51822.08, + "probability": 0.7409 + }, + { + "start": 51822.1, + "end": 51823.01, + "probability": 0.9043 + }, + { + "start": 51824.0, + "end": 51824.0, + "probability": 0.07 + }, + { + "start": 51824.04, + "end": 51827.24, + "probability": 0.7393 + }, + { + "start": 51827.78, + "end": 51828.86, + "probability": 0.9308 + }, + { + "start": 51829.38, + "end": 51831.56, + "probability": 0.8896 + }, + { + "start": 51831.56, + "end": 51832.04, + "probability": 0.135 + }, + { + "start": 51832.04, + "end": 51832.58, + "probability": 0.8838 + }, + { + "start": 51832.68, + "end": 51834.12, + "probability": 0.917 + }, + { + "start": 51835.18, + "end": 51836.72, + "probability": 0.9163 + }, + { + "start": 51839.28, + "end": 51840.32, + "probability": 0.0377 + }, + { + "start": 51841.0, + "end": 51842.5, + "probability": 0.2918 + }, + { + "start": 51842.86, + "end": 51844.24, + "probability": 0.3451 + }, + { + "start": 51847.18, + "end": 51847.6, + "probability": 0.1758 + }, + { + "start": 51847.6, + "end": 51847.6, + "probability": 0.5665 + }, + { + "start": 51847.6, + "end": 51850.24, + "probability": 0.6884 + }, + { + "start": 51850.3, + "end": 51850.3, + "probability": 0.7422 + }, + { + "start": 51850.3, + "end": 51851.7, + "probability": 0.618 + }, + { + "start": 51851.76, + "end": 51852.42, + "probability": 0.6041 + }, + { + "start": 51852.54, + "end": 51854.21, + "probability": 0.7717 + }, + { + "start": 51855.4, + "end": 51857.98, + "probability": 0.7538 + }, + { + "start": 51858.06, + "end": 51859.17, + "probability": 0.5688 + }, + { + "start": 51859.48, + "end": 51861.74, + "probability": 0.8551 + }, + { + "start": 51862.0, + "end": 51864.34, + "probability": 0.9932 + }, + { + "start": 51864.7, + "end": 51865.3, + "probability": 0.2277 + }, + { + "start": 51865.52, + "end": 51870.02, + "probability": 0.9518 + }, + { + "start": 51870.74, + "end": 51872.86, + "probability": 0.98 + }, + { + "start": 51873.0, + "end": 51876.42, + "probability": 0.998 + }, + { + "start": 51876.5, + "end": 51878.8, + "probability": 0.9861 + }, + { + "start": 51879.4, + "end": 51881.26, + "probability": 0.9621 + }, + { + "start": 51882.16, + "end": 51883.4, + "probability": 0.9655 + }, + { + "start": 51884.2, + "end": 51888.8, + "probability": 0.9092 + }, + { + "start": 51889.46, + "end": 51891.98, + "probability": 0.9408 + }, + { + "start": 51892.58, + "end": 51893.16, + "probability": 0.7882 + }, + { + "start": 51893.78, + "end": 51894.66, + "probability": 0.8251 + }, + { + "start": 51895.3, + "end": 51897.4, + "probability": 0.9127 + }, + { + "start": 51898.16, + "end": 51899.12, + "probability": 0.8965 + }, + { + "start": 51899.64, + "end": 51901.42, + "probability": 0.898 + }, + { + "start": 51901.7, + "end": 51903.22, + "probability": 0.7728 + }, + { + "start": 51903.56, + "end": 51906.62, + "probability": 0.0038 + }, + { + "start": 51906.62, + "end": 51907.44, + "probability": 0.1048 + }, + { + "start": 51907.56, + "end": 51908.54, + "probability": 0.6411 + }, + { + "start": 51909.72, + "end": 51912.74, + "probability": 0.9679 + }, + { + "start": 51912.84, + "end": 51913.44, + "probability": 0.9213 + }, + { + "start": 51913.9, + "end": 51914.9, + "probability": 0.4143 + }, + { + "start": 51915.12, + "end": 51915.26, + "probability": 0.0707 + }, + { + "start": 51915.26, + "end": 51915.56, + "probability": 0.6003 + }, + { + "start": 51915.86, + "end": 51917.77, + "probability": 0.9064 + }, + { + "start": 51917.78, + "end": 51919.2, + "probability": 0.56 + }, + { + "start": 51919.36, + "end": 51921.76, + "probability": 0.5923 + }, + { + "start": 51921.76, + "end": 51924.16, + "probability": 0.8394 + }, + { + "start": 51928.0, + "end": 51928.0, + "probability": 0.1231 + }, + { + "start": 51928.0, + "end": 51928.0, + "probability": 0.0743 + }, + { + "start": 51928.0, + "end": 51928.0, + "probability": 0.0851 + }, + { + "start": 51928.0, + "end": 51932.2, + "probability": 0.8186 + }, + { + "start": 51932.6, + "end": 51935.16, + "probability": 0.6298 + }, + { + "start": 51935.18, + "end": 51936.22, + "probability": 0.7103 + }, + { + "start": 51936.22, + "end": 51936.78, + "probability": 0.6841 + }, + { + "start": 51937.0, + "end": 51939.22, + "probability": 0.9907 + }, + { + "start": 51939.28, + "end": 51943.16, + "probability": 0.063 + }, + { + "start": 51943.16, + "end": 51943.74, + "probability": 0.525 + }, + { + "start": 51943.74, + "end": 51943.84, + "probability": 0.5114 + }, + { + "start": 51943.92, + "end": 51944.08, + "probability": 0.0654 + }, + { + "start": 51944.08, + "end": 51944.2, + "probability": 0.4581 + }, + { + "start": 51944.32, + "end": 51945.48, + "probability": 0.9751 + }, + { + "start": 51945.48, + "end": 51946.0, + "probability": 0.3181 + }, + { + "start": 51946.02, + "end": 51949.86, + "probability": 0.7682 + }, + { + "start": 51950.6, + "end": 51950.6, + "probability": 0.0316 + }, + { + "start": 51950.6, + "end": 51951.58, + "probability": 0.9102 + }, + { + "start": 51952.12, + "end": 51953.78, + "probability": 0.813 + }, + { + "start": 51953.88, + "end": 51954.44, + "probability": 0.0253 + }, + { + "start": 51955.02, + "end": 51955.36, + "probability": 0.122 + }, + { + "start": 51955.36, + "end": 51955.62, + "probability": 0.019 + }, + { + "start": 51955.62, + "end": 51956.54, + "probability": 0.6038 + }, + { + "start": 51956.8, + "end": 51959.94, + "probability": 0.7224 + }, + { + "start": 51960.1, + "end": 51965.78, + "probability": 0.7564 + }, + { + "start": 51965.84, + "end": 51966.08, + "probability": 0.2324 + }, + { + "start": 51966.62, + "end": 51968.02, + "probability": 0.1817 + }, + { + "start": 51968.02, + "end": 51968.96, + "probability": 0.4665 + }, + { + "start": 51969.36, + "end": 51971.42, + "probability": 0.3162 + }, + { + "start": 51971.88, + "end": 51972.84, + "probability": 0.839 + }, + { + "start": 51972.92, + "end": 51974.94, + "probability": 0.4145 + }, + { + "start": 51975.06, + "end": 51975.88, + "probability": 0.6935 + }, + { + "start": 51976.14, + "end": 51977.22, + "probability": 0.5577 + }, + { + "start": 51977.24, + "end": 51980.04, + "probability": 0.7173 + }, + { + "start": 51980.2, + "end": 51981.6, + "probability": 0.1778 + }, + { + "start": 51982.0, + "end": 51982.0, + "probability": 0.1411 + }, + { + "start": 51982.0, + "end": 51983.9, + "probability": 0.1351 + }, + { + "start": 51983.9, + "end": 51984.32, + "probability": 0.1256 + }, + { + "start": 51984.54, + "end": 51988.5, + "probability": 0.8899 + }, + { + "start": 51989.88, + "end": 51990.98, + "probability": 0.6556 + }, + { + "start": 51991.12, + "end": 51991.62, + "probability": 0.3352 + }, + { + "start": 51991.86, + "end": 51994.36, + "probability": 0.7195 + }, + { + "start": 51998.48, + "end": 52000.46, + "probability": 0.6726 + }, + { + "start": 52000.54, + "end": 52001.56, + "probability": 0.5366 + }, + { + "start": 52002.04, + "end": 52003.94, + "probability": 0.0733 + }, + { + "start": 52003.98, + "end": 52004.44, + "probability": 0.6046 + }, + { + "start": 52004.44, + "end": 52004.51, + "probability": 0.6147 + }, + { + "start": 52006.24, + "end": 52008.54, + "probability": 0.1296 + }, + { + "start": 52009.3, + "end": 52009.91, + "probability": 0.8647 + }, + { + "start": 52010.08, + "end": 52011.62, + "probability": 0.6624 + }, + { + "start": 52011.9, + "end": 52013.64, + "probability": 0.4943 + }, + { + "start": 52013.8, + "end": 52013.92, + "probability": 0.1284 + }, + { + "start": 52013.96, + "end": 52017.96, + "probability": 0.4983 + }, + { + "start": 52020.22, + "end": 52023.18, + "probability": 0.6891 + }, + { + "start": 52023.3, + "end": 52025.54, + "probability": 0.0718 + }, + { + "start": 52025.74, + "end": 52027.27, + "probability": 0.9939 + }, + { + "start": 52028.5, + "end": 52030.0, + "probability": 0.7689 + }, + { + "start": 52031.3, + "end": 52033.82, + "probability": 0.5133 + }, + { + "start": 52034.6, + "end": 52035.4, + "probability": 0.7492 + }, + { + "start": 52035.88, + "end": 52037.04, + "probability": 0.9749 + }, + { + "start": 52037.1, + "end": 52037.56, + "probability": 0.9312 + }, + { + "start": 52037.72, + "end": 52041.3, + "probability": 0.9147 + }, + { + "start": 52042.72, + "end": 52046.74, + "probability": 0.9351 + }, + { + "start": 52047.38, + "end": 52050.9, + "probability": 0.9883 + }, + { + "start": 52051.0, + "end": 52054.09, + "probability": 0.9697 + }, + { + "start": 52054.7, + "end": 52058.72, + "probability": 0.8791 + }, + { + "start": 52060.04, + "end": 52062.1, + "probability": 0.7241 + }, + { + "start": 52062.3, + "end": 52063.48, + "probability": 0.9741 + }, + { + "start": 52064.2, + "end": 52066.6, + "probability": 0.6301 + }, + { + "start": 52067.0, + "end": 52067.98, + "probability": 0.816 + }, + { + "start": 52067.98, + "end": 52068.5, + "probability": 0.6625 + }, + { + "start": 52068.6, + "end": 52068.86, + "probability": 0.7211 + }, + { + "start": 52068.96, + "end": 52069.66, + "probability": 0.4616 + }, + { + "start": 52069.7, + "end": 52070.3, + "probability": 0.2684 + }, + { + "start": 52070.88, + "end": 52072.7, + "probability": 0.6949 + }, + { + "start": 52073.14, + "end": 52076.59, + "probability": 0.8867 + }, + { + "start": 52077.12, + "end": 52077.56, + "probability": 0.457 + }, + { + "start": 52077.64, + "end": 52078.52, + "probability": 0.8309 + }, + { + "start": 52078.7, + "end": 52080.74, + "probability": 0.8563 + }, + { + "start": 52080.74, + "end": 52081.61, + "probability": 0.6163 + }, + { + "start": 52082.08, + "end": 52082.36, + "probability": 0.7387 + }, + { + "start": 52083.04, + "end": 52084.3, + "probability": 0.5918 + }, + { + "start": 52084.36, + "end": 52086.64, + "probability": 0.6739 + }, + { + "start": 52086.98, + "end": 52088.94, + "probability": 0.8517 + }, + { + "start": 52088.98, + "end": 52089.94, + "probability": 0.5886 + }, + { + "start": 52090.16, + "end": 52094.08, + "probability": 0.7639 + }, + { + "start": 52095.3, + "end": 52095.38, + "probability": 0.1193 + }, + { + "start": 52095.38, + "end": 52095.38, + "probability": 0.6723 + }, + { + "start": 52095.38, + "end": 52098.09, + "probability": 0.7926 + }, + { + "start": 52101.74, + "end": 52104.98, + "probability": 0.0305 + }, + { + "start": 52104.98, + "end": 52106.46, + "probability": 0.0245 + }, + { + "start": 52106.5, + "end": 52109.14, + "probability": 0.9755 + }, + { + "start": 52109.8, + "end": 52111.06, + "probability": 0.017 + }, + { + "start": 52111.28, + "end": 52114.74, + "probability": 0.6855 + }, + { + "start": 52114.88, + "end": 52116.88, + "probability": 0.7678 + }, + { + "start": 52117.06, + "end": 52118.04, + "probability": 0.5823 + }, + { + "start": 52118.14, + "end": 52118.26, + "probability": 0.8303 + }, + { + "start": 52118.38, + "end": 52120.54, + "probability": 0.8365 + }, + { + "start": 52120.86, + "end": 52121.52, + "probability": 0.8015 + }, + { + "start": 52121.7, + "end": 52123.64, + "probability": 0.4843 + }, + { + "start": 52123.76, + "end": 52125.08, + "probability": 0.8065 + }, + { + "start": 52125.72, + "end": 52126.34, + "probability": 0.4741 + }, + { + "start": 52127.1, + "end": 52129.14, + "probability": 0.95 + }, + { + "start": 52129.54, + "end": 52130.06, + "probability": 0.6564 + }, + { + "start": 52130.14, + "end": 52131.36, + "probability": 0.524 + }, + { + "start": 52131.44, + "end": 52132.56, + "probability": 0.882 + }, + { + "start": 52132.62, + "end": 52134.88, + "probability": 0.1196 + }, + { + "start": 52135.82, + "end": 52137.38, + "probability": 0.4742 + }, + { + "start": 52138.96, + "end": 52141.96, + "probability": 0.5474 + }, + { + "start": 52142.12, + "end": 52142.28, + "probability": 0.3416 + }, + { + "start": 52142.28, + "end": 52143.71, + "probability": 0.4283 + }, + { + "start": 52144.2, + "end": 52144.84, + "probability": 0.8219 + }, + { + "start": 52145.66, + "end": 52147.4, + "probability": 0.709 + }, + { + "start": 52148.06, + "end": 52149.96, + "probability": 0.9877 + }, + { + "start": 52150.92, + "end": 52154.21, + "probability": 0.9674 + }, + { + "start": 52155.24, + "end": 52161.04, + "probability": 0.9978 + }, + { + "start": 52161.74, + "end": 52163.78, + "probability": 0.9872 + }, + { + "start": 52164.9, + "end": 52166.56, + "probability": 0.9784 + }, + { + "start": 52167.78, + "end": 52170.54, + "probability": 0.9873 + }, + { + "start": 52170.66, + "end": 52171.42, + "probability": 0.991 + }, + { + "start": 52171.94, + "end": 52174.66, + "probability": 0.917 + }, + { + "start": 52174.98, + "end": 52176.1, + "probability": 0.8716 + }, + { + "start": 52176.5, + "end": 52177.48, + "probability": 0.6151 + }, + { + "start": 52178.22, + "end": 52179.3, + "probability": 0.9504 + }, + { + "start": 52179.48, + "end": 52180.86, + "probability": 0.5738 + }, + { + "start": 52181.0, + "end": 52182.46, + "probability": 0.961 + }, + { + "start": 52183.02, + "end": 52184.6, + "probability": 0.9752 + }, + { + "start": 52185.22, + "end": 52187.4, + "probability": 0.9388 + }, + { + "start": 52188.02, + "end": 52189.24, + "probability": 0.9551 + }, + { + "start": 52189.3, + "end": 52192.76, + "probability": 0.7456 + }, + { + "start": 52192.86, + "end": 52194.06, + "probability": 0.9731 + }, + { + "start": 52195.16, + "end": 52196.62, + "probability": 0.9952 + }, + { + "start": 52197.08, + "end": 52200.18, + "probability": 0.9943 + }, + { + "start": 52200.78, + "end": 52202.94, + "probability": 0.9839 + }, + { + "start": 52203.76, + "end": 52206.0, + "probability": 0.9935 + }, + { + "start": 52206.72, + "end": 52206.88, + "probability": 0.6777 + }, + { + "start": 52208.96, + "end": 52211.04, + "probability": 0.3233 + }, + { + "start": 52211.46, + "end": 52213.02, + "probability": 0.7928 + }, + { + "start": 52213.22, + "end": 52213.94, + "probability": 0.8594 + }, + { + "start": 52214.46, + "end": 52217.1, + "probability": 0.8859 + }, + { + "start": 52218.36, + "end": 52221.32, + "probability": 0.8378 + }, + { + "start": 52221.94, + "end": 52224.84, + "probability": 0.7576 + }, + { + "start": 52224.88, + "end": 52226.32, + "probability": 0.5164 + }, + { + "start": 52226.36, + "end": 52226.64, + "probability": 0.7212 + }, + { + "start": 52229.48, + "end": 52229.76, + "probability": 0.1026 + }, + { + "start": 52229.76, + "end": 52229.76, + "probability": 0.4219 + }, + { + "start": 52229.76, + "end": 52229.76, + "probability": 0.085 + }, + { + "start": 52229.76, + "end": 52229.76, + "probability": 0.4345 + }, + { + "start": 52229.76, + "end": 52232.82, + "probability": 0.9565 + }, + { + "start": 52233.06, + "end": 52237.02, + "probability": 0.99 + }, + { + "start": 52237.1, + "end": 52238.36, + "probability": 0.5863 + }, + { + "start": 52238.4, + "end": 52241.72, + "probability": 0.9678 + }, + { + "start": 52242.2, + "end": 52245.74, + "probability": 0.9287 + }, + { + "start": 52246.0, + "end": 52246.22, + "probability": 0.6734 + }, + { + "start": 52247.49, + "end": 52252.78, + "probability": 0.4971 + }, + { + "start": 52254.22, + "end": 52258.48, + "probability": 0.1767 + }, + { + "start": 52258.48, + "end": 52258.48, + "probability": 0.1164 + }, + { + "start": 52258.48, + "end": 52258.48, + "probability": 0.1997 + }, + { + "start": 52258.48, + "end": 52259.19, + "probability": 0.7648 + }, + { + "start": 52260.34, + "end": 52260.84, + "probability": 0.3906 + }, + { + "start": 52261.08, + "end": 52265.76, + "probability": 0.9903 + }, + { + "start": 52266.2, + "end": 52268.76, + "probability": 0.9867 + }, + { + "start": 52268.96, + "end": 52269.28, + "probability": 0.7417 + }, + { + "start": 52269.3, + "end": 52272.88, + "probability": 0.939 + }, + { + "start": 52272.88, + "end": 52273.96, + "probability": 0.9287 + }, + { + "start": 52273.96, + "end": 52274.32, + "probability": 0.4424 + }, + { + "start": 52274.72, + "end": 52276.98, + "probability": 0.9964 + }, + { + "start": 52277.08, + "end": 52278.2, + "probability": 0.5964 + }, + { + "start": 52278.26, + "end": 52278.6, + "probability": 0.1189 + }, + { + "start": 52278.6, + "end": 52279.27, + "probability": 0.303 + }, + { + "start": 52279.3, + "end": 52279.84, + "probability": 0.725 + }, + { + "start": 52279.84, + "end": 52280.54, + "probability": 0.4981 + }, + { + "start": 52280.58, + "end": 52280.9, + "probability": 0.8784 + }, + { + "start": 52281.24, + "end": 52282.46, + "probability": 0.7205 + }, + { + "start": 52282.48, + "end": 52284.2, + "probability": 0.7692 + }, + { + "start": 52285.64, + "end": 52286.16, + "probability": 0.9558 + }, + { + "start": 52286.26, + "end": 52287.98, + "probability": 0.9774 + }, + { + "start": 52288.42, + "end": 52291.9, + "probability": 0.9937 + }, + { + "start": 52292.08, + "end": 52293.76, + "probability": 0.9504 + }, + { + "start": 52293.84, + "end": 52294.9, + "probability": 0.9572 + }, + { + "start": 52294.96, + "end": 52296.94, + "probability": 0.7458 + }, + { + "start": 52297.88, + "end": 52298.58, + "probability": 0.4603 + }, + { + "start": 52298.72, + "end": 52298.72, + "probability": 0.1172 + }, + { + "start": 52298.72, + "end": 52298.92, + "probability": 0.3165 + }, + { + "start": 52299.16, + "end": 52300.82, + "probability": 0.8964 + }, + { + "start": 52300.92, + "end": 52301.46, + "probability": 0.9012 + }, + { + "start": 52301.84, + "end": 52302.3, + "probability": 0.4249 + }, + { + "start": 52302.3, + "end": 52302.75, + "probability": 0.483 + }, + { + "start": 52303.86, + "end": 52304.92, + "probability": 0.4655 + }, + { + "start": 52305.2, + "end": 52305.44, + "probability": 0.2807 + }, + { + "start": 52306.24, + "end": 52307.0, + "probability": 0.8481 + }, + { + "start": 52307.72, + "end": 52312.44, + "probability": 0.9421 + }, + { + "start": 52312.94, + "end": 52314.1, + "probability": 0.9915 + }, + { + "start": 52314.26, + "end": 52314.96, + "probability": 0.9001 + }, + { + "start": 52315.02, + "end": 52317.1, + "probability": 0.8537 + }, + { + "start": 52318.44, + "end": 52319.42, + "probability": 0.7461 + }, + { + "start": 52321.44, + "end": 52327.22, + "probability": 0.5289 + }, + { + "start": 52327.88, + "end": 52331.38, + "probability": 0.8786 + }, + { + "start": 52331.5, + "end": 52337.02, + "probability": 0.8 + }, + { + "start": 52337.56, + "end": 52339.74, + "probability": 0.5852 + }, + { + "start": 52340.19, + "end": 52343.24, + "probability": 0.7746 + }, + { + "start": 52343.44, + "end": 52345.74, + "probability": 0.0259 + }, + { + "start": 52345.74, + "end": 52350.8, + "probability": 0.1366 + }, + { + "start": 52350.94, + "end": 52350.94, + "probability": 0.0025 + }, + { + "start": 52353.94, + "end": 52354.9, + "probability": 0.1879 + }, + { + "start": 52357.89, + "end": 52362.18, + "probability": 0.6987 + }, + { + "start": 52362.7, + "end": 52363.1, + "probability": 0.0071 + }, + { + "start": 52363.24, + "end": 52369.22, + "probability": 0.5506 + }, + { + "start": 52369.54, + "end": 52370.4, + "probability": 0.7203 + }, + { + "start": 52371.36, + "end": 52374.9, + "probability": 0.3918 + }, + { + "start": 52377.28, + "end": 52379.14, + "probability": 0.0554 + }, + { + "start": 52379.92, + "end": 52380.48, + "probability": 0.3354 + }, + { + "start": 52380.76, + "end": 52382.64, + "probability": 0.8757 + }, + { + "start": 52382.7, + "end": 52384.22, + "probability": 0.9728 + }, + { + "start": 52384.64, + "end": 52387.06, + "probability": 0.2577 + }, + { + "start": 52387.06, + "end": 52388.52, + "probability": 0.325 + }, + { + "start": 52388.54, + "end": 52391.0, + "probability": 0.5192 + }, + { + "start": 52394.16, + "end": 52394.96, + "probability": 0.6709 + }, + { + "start": 52395.0, + "end": 52399.42, + "probability": 0.5287 + }, + { + "start": 52399.76, + "end": 52402.96, + "probability": 0.9797 + }, + { + "start": 52403.16, + "end": 52407.32, + "probability": 0.9667 + }, + { + "start": 52407.52, + "end": 52412.54, + "probability": 0.9774 + }, + { + "start": 52413.3, + "end": 52414.42, + "probability": 0.7343 + }, + { + "start": 52414.66, + "end": 52415.5, + "probability": 0.9468 + }, + { + "start": 52415.58, + "end": 52417.6, + "probability": 0.9928 + }, + { + "start": 52418.18, + "end": 52423.34, + "probability": 0.9824 + }, + { + "start": 52423.84, + "end": 52424.84, + "probability": 0.9914 + }, + { + "start": 52425.08, + "end": 52425.96, + "probability": 0.9535 + }, + { + "start": 52426.8, + "end": 52432.72, + "probability": 0.9948 + }, + { + "start": 52432.92, + "end": 52434.74, + "probability": 0.9578 + }, + { + "start": 52435.14, + "end": 52436.34, + "probability": 0.8035 + }, + { + "start": 52436.96, + "end": 52440.3, + "probability": 0.9873 + }, + { + "start": 52440.44, + "end": 52441.46, + "probability": 0.8879 + }, + { + "start": 52441.52, + "end": 52442.2, + "probability": 0.524 + }, + { + "start": 52442.32, + "end": 52443.34, + "probability": 0.9872 + }, + { + "start": 52443.78, + "end": 52444.92, + "probability": 0.8373 + }, + { + "start": 52445.34, + "end": 52446.42, + "probability": 0.8495 + }, + { + "start": 52446.74, + "end": 52449.02, + "probability": 0.974 + }, + { + "start": 52449.04, + "end": 52449.78, + "probability": 0.8129 + }, + { + "start": 52450.12, + "end": 52455.16, + "probability": 0.9937 + }, + { + "start": 52455.66, + "end": 52459.04, + "probability": 0.9697 + }, + { + "start": 52460.38, + "end": 52463.46, + "probability": 0.988 + }, + { + "start": 52463.54, + "end": 52464.22, + "probability": 0.7399 + }, + { + "start": 52464.32, + "end": 52465.18, + "probability": 0.7136 + }, + { + "start": 52465.9, + "end": 52468.5, + "probability": 0.9974 + }, + { + "start": 52468.5, + "end": 52472.92, + "probability": 0.9959 + }, + { + "start": 52474.74, + "end": 52474.78, + "probability": 0.102 + }, + { + "start": 52474.78, + "end": 52474.8, + "probability": 0.0931 + }, + { + "start": 52474.8, + "end": 52476.34, + "probability": 0.9211 + }, + { + "start": 52476.84, + "end": 52478.14, + "probability": 0.9402 + }, + { + "start": 52478.22, + "end": 52481.64, + "probability": 0.9971 + }, + { + "start": 52482.69, + "end": 52483.04, + "probability": 0.49 + }, + { + "start": 52483.04, + "end": 52484.18, + "probability": 0.9717 + }, + { + "start": 52484.18, + "end": 52484.7, + "probability": 0.7628 + }, + { + "start": 52484.78, + "end": 52485.96, + "probability": 0.9839 + }, + { + "start": 52486.2, + "end": 52487.34, + "probability": 0.3107 + }, + { + "start": 52487.48, + "end": 52492.66, + "probability": 0.9631 + }, + { + "start": 52492.68, + "end": 52494.38, + "probability": 0.2122 + }, + { + "start": 52494.38, + "end": 52497.5, + "probability": 0.9892 + }, + { + "start": 52499.44, + "end": 52500.62, + "probability": 0.5505 + }, + { + "start": 52501.3, + "end": 52501.5, + "probability": 0.1478 + }, + { + "start": 52501.5, + "end": 52502.96, + "probability": 0.3065 + }, + { + "start": 52503.3, + "end": 52504.62, + "probability": 0.7694 + }, + { + "start": 52504.72, + "end": 52507.06, + "probability": 0.8291 + }, + { + "start": 52507.06, + "end": 52508.1, + "probability": 0.2473 + }, + { + "start": 52508.2, + "end": 52510.76, + "probability": 0.7243 + }, + { + "start": 52511.4, + "end": 52512.61, + "probability": 0.9482 + }, + { + "start": 52513.08, + "end": 52515.96, + "probability": 0.9287 + }, + { + "start": 52516.18, + "end": 52518.34, + "probability": 0.8864 + }, + { + "start": 52518.34, + "end": 52521.62, + "probability": 0.9866 + }, + { + "start": 52521.68, + "end": 52522.84, + "probability": 0.3692 + }, + { + "start": 52523.28, + "end": 52525.58, + "probability": 0.4324 + }, + { + "start": 52526.28, + "end": 52526.28, + "probability": 0.0381 + }, + { + "start": 52526.28, + "end": 52528.61, + "probability": 0.8267 + }, + { + "start": 52528.98, + "end": 52533.2, + "probability": 0.991 + }, + { + "start": 52533.88, + "end": 52536.14, + "probability": 0.9985 + }, + { + "start": 52536.14, + "end": 52538.7, + "probability": 0.2745 + }, + { + "start": 52538.7, + "end": 52540.3, + "probability": 0.9202 + }, + { + "start": 52540.4, + "end": 52541.3, + "probability": 0.1919 + }, + { + "start": 52541.7, + "end": 52544.84, + "probability": 0.9856 + }, + { + "start": 52545.1, + "end": 52547.8, + "probability": 0.8892 + }, + { + "start": 52548.02, + "end": 52550.14, + "probability": 0.3108 + }, + { + "start": 52550.22, + "end": 52552.59, + "probability": 0.9958 + }, + { + "start": 52553.94, + "end": 52555.54, + "probability": 0.9681 + }, + { + "start": 52557.18, + "end": 52560.47, + "probability": 0.0342 + }, + { + "start": 52561.38, + "end": 52563.44, + "probability": 0.9623 + }, + { + "start": 52563.48, + "end": 52566.12, + "probability": 0.9971 + }, + { + "start": 52566.52, + "end": 52568.46, + "probability": 0.8039 + }, + { + "start": 52569.6, + "end": 52571.12, + "probability": 0.018 + }, + { + "start": 52572.0, + "end": 52572.28, + "probability": 0.0512 + }, + { + "start": 52572.28, + "end": 52572.77, + "probability": 0.15 + }, + { + "start": 52573.5, + "end": 52575.58, + "probability": 0.5824 + }, + { + "start": 52575.7, + "end": 52577.1, + "probability": 0.7829 + }, + { + "start": 52577.18, + "end": 52579.06, + "probability": 0.7923 + }, + { + "start": 52579.12, + "end": 52581.62, + "probability": 0.8911 + }, + { + "start": 52582.02, + "end": 52587.3, + "probability": 0.9434 + }, + { + "start": 52587.32, + "end": 52588.48, + "probability": 0.7967 + }, + { + "start": 52588.7, + "end": 52592.46, + "probability": 0.9978 + }, + { + "start": 52592.88, + "end": 52593.3, + "probability": 0.7927 + }, + { + "start": 52593.36, + "end": 52597.4, + "probability": 0.9919 + }, + { + "start": 52598.26, + "end": 52603.6, + "probability": 0.9846 + }, + { + "start": 52604.5, + "end": 52606.7, + "probability": 0.9834 + }, + { + "start": 52606.8, + "end": 52611.92, + "probability": 0.9879 + }, + { + "start": 52612.28, + "end": 52613.67, + "probability": 0.998 + }, + { + "start": 52614.58, + "end": 52615.56, + "probability": 0.9577 + }, + { + "start": 52615.64, + "end": 52617.84, + "probability": 0.9709 + }, + { + "start": 52617.88, + "end": 52621.46, + "probability": 0.9956 + }, + { + "start": 52621.92, + "end": 52627.62, + "probability": 0.9722 + }, + { + "start": 52628.34, + "end": 52629.18, + "probability": 0.8364 + }, + { + "start": 52629.56, + "end": 52630.98, + "probability": 0.9741 + }, + { + "start": 52631.06, + "end": 52632.44, + "probability": 0.941 + }, + { + "start": 52633.08, + "end": 52636.03, + "probability": 0.9561 + }, + { + "start": 52637.14, + "end": 52637.9, + "probability": 0.8339 + }, + { + "start": 52638.38, + "end": 52640.78, + "probability": 0.984 + }, + { + "start": 52640.86, + "end": 52641.54, + "probability": 0.7464 + }, + { + "start": 52642.1, + "end": 52643.76, + "probability": 0.7216 + }, + { + "start": 52643.88, + "end": 52645.95, + "probability": 0.9604 + }, + { + "start": 52646.42, + "end": 52647.98, + "probability": 0.6754 + }, + { + "start": 52648.1, + "end": 52651.42, + "probability": 0.8863 + }, + { + "start": 52651.58, + "end": 52655.7, + "probability": 0.762 + }, + { + "start": 52655.8, + "end": 52657.2, + "probability": 0.7258 + }, + { + "start": 52657.26, + "end": 52659.72, + "probability": 0.9125 + }, + { + "start": 52659.8, + "end": 52660.41, + "probability": 0.9902 + }, + { + "start": 52660.8, + "end": 52662.18, + "probability": 0.98 + }, + { + "start": 52663.66, + "end": 52667.84, + "probability": 0.9412 + }, + { + "start": 52668.88, + "end": 52669.98, + "probability": 0.8759 + }, + { + "start": 52670.04, + "end": 52670.34, + "probability": 0.8762 + }, + { + "start": 52670.48, + "end": 52672.42, + "probability": 0.8738 + }, + { + "start": 52672.76, + "end": 52673.36, + "probability": 0.9049 + }, + { + "start": 52673.42, + "end": 52676.18, + "probability": 0.9518 + }, + { + "start": 52676.64, + "end": 52678.12, + "probability": 0.9968 + }, + { + "start": 52678.34, + "end": 52680.16, + "probability": 0.9935 + }, + { + "start": 52680.86, + "end": 52682.47, + "probability": 0.9824 + }, + { + "start": 52683.12, + "end": 52686.1, + "probability": 0.8593 + }, + { + "start": 52686.52, + "end": 52692.26, + "probability": 0.9906 + }, + { + "start": 52692.36, + "end": 52694.54, + "probability": 0.9941 + }, + { + "start": 52694.68, + "end": 52695.08, + "probability": 0.8271 + }, + { + "start": 52695.84, + "end": 52697.15, + "probability": 0.9609 + }, + { + "start": 52697.44, + "end": 52700.9, + "probability": 0.7533 + }, + { + "start": 52701.28, + "end": 52702.4, + "probability": 0.956 + }, + { + "start": 52702.42, + "end": 52703.8, + "probability": 0.88 + }, + { + "start": 52704.18, + "end": 52708.76, + "probability": 0.9669 + }, + { + "start": 52709.26, + "end": 52713.06, + "probability": 0.9517 + }, + { + "start": 52713.1, + "end": 52714.28, + "probability": 0.7373 + }, + { + "start": 52714.36, + "end": 52717.1, + "probability": 0.9952 + }, + { + "start": 52717.68, + "end": 52718.14, + "probability": 0.7112 + }, + { + "start": 52718.3, + "end": 52719.44, + "probability": 0.8973 + }, + { + "start": 52719.96, + "end": 52722.02, + "probability": 0.9385 + }, + { + "start": 52722.34, + "end": 52724.22, + "probability": 0.989 + }, + { + "start": 52724.66, + "end": 52725.38, + "probability": 0.9932 + }, + { + "start": 52726.0, + "end": 52728.24, + "probability": 0.9974 + }, + { + "start": 52728.54, + "end": 52730.58, + "probability": 0.9861 + }, + { + "start": 52730.72, + "end": 52731.84, + "probability": 0.9013 + }, + { + "start": 52732.26, + "end": 52733.4, + "probability": 0.9715 + }, + { + "start": 52733.56, + "end": 52735.02, + "probability": 0.8858 + }, + { + "start": 52735.04, + "end": 52736.52, + "probability": 0.9537 + }, + { + "start": 52736.84, + "end": 52740.16, + "probability": 0.998 + }, + { + "start": 52740.56, + "end": 52745.38, + "probability": 0.9419 + }, + { + "start": 52746.0, + "end": 52748.24, + "probability": 0.8598 + }, + { + "start": 52748.76, + "end": 52753.92, + "probability": 0.9868 + }, + { + "start": 52754.46, + "end": 52756.64, + "probability": 0.8098 + }, + { + "start": 52756.84, + "end": 52759.46, + "probability": 0.9741 + }, + { + "start": 52760.06, + "end": 52760.98, + "probability": 0.7431 + }, + { + "start": 52761.1, + "end": 52763.04, + "probability": 0.9982 + }, + { + "start": 52763.4, + "end": 52764.84, + "probability": 0.9954 + }, + { + "start": 52765.02, + "end": 52768.9, + "probability": 0.9567 + }, + { + "start": 52769.34, + "end": 52771.4, + "probability": 0.9984 + }, + { + "start": 52771.74, + "end": 52775.56, + "probability": 0.9941 + }, + { + "start": 52775.56, + "end": 52778.64, + "probability": 0.9996 + }, + { + "start": 52779.2, + "end": 52782.62, + "probability": 0.9659 + }, + { + "start": 52782.76, + "end": 52784.8, + "probability": 0.9398 + }, + { + "start": 52784.98, + "end": 52785.76, + "probability": 0.9662 + }, + { + "start": 52789.88, + "end": 52791.42, + "probability": 0.938 + }, + { + "start": 52791.8, + "end": 52792.58, + "probability": 0.5615 + }, + { + "start": 52792.96, + "end": 52793.1, + "probability": 0.9237 + }, + { + "start": 52793.82, + "end": 52795.03, + "probability": 0.9694 + }, + { + "start": 52797.14, + "end": 52801.66, + "probability": 0.9922 + }, + { + "start": 52801.8, + "end": 52802.9, + "probability": 0.7882 + }, + { + "start": 52803.38, + "end": 52804.54, + "probability": 0.8749 + }, + { + "start": 52805.12, + "end": 52808.82, + "probability": 0.9951 + }, + { + "start": 52809.3, + "end": 52810.25, + "probability": 0.9378 + }, + { + "start": 52811.84, + "end": 52813.1, + "probability": 0.4524 + }, + { + "start": 52814.62, + "end": 52814.62, + "probability": 0.2369 + }, + { + "start": 52814.62, + "end": 52816.13, + "probability": 0.4125 + }, + { + "start": 52818.32, + "end": 52822.04, + "probability": 0.7215 + }, + { + "start": 52822.64, + "end": 52825.8, + "probability": 0.958 + }, + { + "start": 52826.3, + "end": 52829.26, + "probability": 0.9833 + }, + { + "start": 52829.74, + "end": 52833.18, + "probability": 0.6537 + }, + { + "start": 52833.32, + "end": 52833.38, + "probability": 0.1227 + }, + { + "start": 52833.38, + "end": 52833.38, + "probability": 0.0188 + }, + { + "start": 52833.38, + "end": 52833.38, + "probability": 0.2609 + }, + { + "start": 52833.38, + "end": 52833.38, + "probability": 0.1183 + }, + { + "start": 52833.38, + "end": 52834.48, + "probability": 0.2994 + }, + { + "start": 52834.62, + "end": 52836.7, + "probability": 0.6906 + }, + { + "start": 52837.0, + "end": 52837.56, + "probability": 0.2567 + }, + { + "start": 52837.58, + "end": 52837.72, + "probability": 0.1161 + }, + { + "start": 52838.3, + "end": 52839.94, + "probability": 0.2397 + }, + { + "start": 52840.02, + "end": 52840.94, + "probability": 0.8053 + }, + { + "start": 52841.48, + "end": 52842.16, + "probability": 0.7748 + }, + { + "start": 52843.08, + "end": 52846.57, + "probability": 0.5335 + }, + { + "start": 52846.78, + "end": 52848.1, + "probability": 0.5415 + }, + { + "start": 52848.44, + "end": 52850.56, + "probability": 0.932 + }, + { + "start": 52850.94, + "end": 52852.26, + "probability": 0.1879 + }, + { + "start": 52852.26, + "end": 52853.36, + "probability": 0.8 + }, + { + "start": 52853.4, + "end": 52854.61, + "probability": 0.7207 + }, + { + "start": 52855.02, + "end": 52862.6, + "probability": 0.9626 + }, + { + "start": 52862.68, + "end": 52866.46, + "probability": 0.9799 + }, + { + "start": 52866.86, + "end": 52868.1, + "probability": 0.9678 + }, + { + "start": 52868.24, + "end": 52870.42, + "probability": 0.0881 + }, + { + "start": 52871.48, + "end": 52873.36, + "probability": 0.0773 + }, + { + "start": 52873.52, + "end": 52875.6, + "probability": 0.3093 + }, + { + "start": 52875.6, + "end": 52875.72, + "probability": 0.3056 + }, + { + "start": 52875.72, + "end": 52876.78, + "probability": 0.0932 + }, + { + "start": 52877.1, + "end": 52877.48, + "probability": 0.8842 + }, + { + "start": 52883.2, + "end": 52885.88, + "probability": 0.6543 + }, + { + "start": 52886.86, + "end": 52890.26, + "probability": 0.5361 + }, + { + "start": 52890.28, + "end": 52890.32, + "probability": 0.357 + }, + { + "start": 52890.42, + "end": 52890.97, + "probability": 0.3939 + }, + { + "start": 52891.52, + "end": 52892.62, + "probability": 0.646 + }, + { + "start": 52892.7, + "end": 52893.2, + "probability": 0.8844 + }, + { + "start": 52893.28, + "end": 52894.26, + "probability": 0.5869 + }, + { + "start": 52894.98, + "end": 52896.64, + "probability": 0.7168 + }, + { + "start": 52896.86, + "end": 52900.3, + "probability": 0.0185 + }, + { + "start": 52900.3, + "end": 52900.36, + "probability": 0.1106 + }, + { + "start": 52900.36, + "end": 52900.36, + "probability": 0.0378 + }, + { + "start": 52900.36, + "end": 52901.3, + "probability": 0.2213 + }, + { + "start": 52902.22, + "end": 52905.04, + "probability": 0.9344 + }, + { + "start": 52905.12, + "end": 52908.8, + "probability": 0.6658 + }, + { + "start": 52909.86, + "end": 52911.02, + "probability": 0.7388 + }, + { + "start": 52911.14, + "end": 52914.16, + "probability": 0.9718 + }, + { + "start": 52914.24, + "end": 52916.08, + "probability": 0.9692 + }, + { + "start": 52916.42, + "end": 52917.72, + "probability": 0.9766 + }, + { + "start": 52917.86, + "end": 52919.48, + "probability": 0.4964 + }, + { + "start": 52920.42, + "end": 52924.08, + "probability": 0.8444 + }, + { + "start": 52924.08, + "end": 52928.0, + "probability": 0.632 + }, + { + "start": 52928.78, + "end": 52931.32, + "probability": 0.7484 + }, + { + "start": 52931.48, + "end": 52934.22, + "probability": 0.3016 + }, + { + "start": 52934.42, + "end": 52936.14, + "probability": 0.3208 + }, + { + "start": 52936.22, + "end": 52939.68, + "probability": 0.426 + }, + { + "start": 52940.62, + "end": 52940.82, + "probability": 0.3234 + }, + { + "start": 52941.44, + "end": 52945.38, + "probability": 0.3569 + }, + { + "start": 52945.6, + "end": 52946.38, + "probability": 0.5567 + }, + { + "start": 52946.5, + "end": 52947.12, + "probability": 0.2952 + }, + { + "start": 52947.66, + "end": 52949.9, + "probability": 0.9971 + }, + { + "start": 52950.5, + "end": 52952.88, + "probability": 0.9973 + }, + { + "start": 52953.02, + "end": 52954.0, + "probability": 0.999 + }, + { + "start": 52954.52, + "end": 52957.22, + "probability": 0.9972 + }, + { + "start": 52957.28, + "end": 52958.94, + "probability": 0.5545 + }, + { + "start": 52959.0, + "end": 52959.5, + "probability": 0.3635 + }, + { + "start": 52959.6, + "end": 52960.22, + "probability": 0.8111 + }, + { + "start": 52960.96, + "end": 52963.5, + "probability": 0.6196 + }, + { + "start": 52963.58, + "end": 52963.88, + "probability": 0.7689 + }, + { + "start": 52964.26, + "end": 52965.76, + "probability": 0.8445 + }, + { + "start": 52966.44, + "end": 52967.6, + "probability": 0.1257 + }, + { + "start": 52967.62, + "end": 52968.64, + "probability": 0.9001 + }, + { + "start": 52968.8, + "end": 52969.67, + "probability": 0.5702 + }, + { + "start": 52970.06, + "end": 52971.01, + "probability": 0.8535 + }, + { + "start": 52971.42, + "end": 52971.94, + "probability": 0.9053 + }, + { + "start": 52972.04, + "end": 52973.66, + "probability": 0.937 + }, + { + "start": 52973.7, + "end": 52974.4, + "probability": 0.2737 + }, + { + "start": 52975.06, + "end": 52978.04, + "probability": 0.2211 + }, + { + "start": 52978.56, + "end": 52979.72, + "probability": 0.2731 + }, + { + "start": 52980.12, + "end": 52981.0, + "probability": 0.9402 + }, + { + "start": 52981.1, + "end": 52984.04, + "probability": 0.9437 + }, + { + "start": 52984.12, + "end": 52984.73, + "probability": 0.6685 + }, + { + "start": 52985.06, + "end": 52987.98, + "probability": 0.4468 + }, + { + "start": 52988.1, + "end": 52990.68, + "probability": 0.0993 + }, + { + "start": 52991.1, + "end": 52992.32, + "probability": 0.4847 + }, + { + "start": 52993.0, + "end": 52994.3, + "probability": 0.1685 + }, + { + "start": 52994.46, + "end": 52994.52, + "probability": 0.0877 + }, + { + "start": 52994.52, + "end": 52994.52, + "probability": 0.2026 + }, + { + "start": 52994.52, + "end": 52995.3, + "probability": 0.8295 + }, + { + "start": 52995.42, + "end": 52997.92, + "probability": 0.9491 + }, + { + "start": 52997.92, + "end": 52999.56, + "probability": 0.1951 + }, + { + "start": 52999.94, + "end": 53002.62, + "probability": 0.8063 + }, + { + "start": 53002.7, + "end": 53005.82, + "probability": 0.8395 + }, + { + "start": 53005.82, + "end": 53007.16, + "probability": 0.0612 + }, + { + "start": 53007.28, + "end": 53009.86, + "probability": 0.9902 + }, + { + "start": 53009.86, + "end": 53010.92, + "probability": 0.7827 + }, + { + "start": 53011.38, + "end": 53012.54, + "probability": 0.71 + }, + { + "start": 53013.5, + "end": 53017.86, + "probability": 0.8515 + }, + { + "start": 53017.9, + "end": 53019.46, + "probability": 0.9808 + }, + { + "start": 53020.16, + "end": 53024.12, + "probability": 0.6712 + }, + { + "start": 53024.12, + "end": 53027.76, + "probability": 0.9551 + }, + { + "start": 53028.36, + "end": 53032.4, + "probability": 0.8796 + }, + { + "start": 53032.72, + "end": 53035.78, + "probability": 0.8454 + }, + { + "start": 53036.66, + "end": 53038.42, + "probability": 0.5245 + }, + { + "start": 53040.0, + "end": 53041.6, + "probability": 0.687 + }, + { + "start": 53041.82, + "end": 53043.58, + "probability": 0.5274 + }, + { + "start": 53043.58, + "end": 53044.76, + "probability": 0.2808 + }, + { + "start": 53045.34, + "end": 53046.01, + "probability": 0.1927 + }, + { + "start": 53048.24, + "end": 53048.24, + "probability": 0.0063 + }, + { + "start": 53048.68, + "end": 53052.94, + "probability": 0.9839 + }, + { + "start": 53053.1, + "end": 53053.88, + "probability": 0.4712 + }, + { + "start": 53053.88, + "end": 53056.8, + "probability": 0.8609 + }, + { + "start": 53057.22, + "end": 53057.92, + "probability": 0.7886 + }, + { + "start": 53058.06, + "end": 53061.84, + "probability": 0.8746 + }, + { + "start": 53062.0, + "end": 53063.1, + "probability": 0.8501 + }, + { + "start": 53063.44, + "end": 53064.7, + "probability": 0.9756 + }, + { + "start": 53065.32, + "end": 53066.66, + "probability": 0.7218 + }, + { + "start": 53067.16, + "end": 53069.44, + "probability": 0.9686 + }, + { + "start": 53069.58, + "end": 53071.18, + "probability": 0.9917 + }, + { + "start": 53071.56, + "end": 53074.5, + "probability": 0.7517 + }, + { + "start": 53074.72, + "end": 53077.68, + "probability": 0.9482 + }, + { + "start": 53078.7, + "end": 53078.8, + "probability": 0.4126 + }, + { + "start": 53079.38, + "end": 53081.28, + "probability": 0.3152 + }, + { + "start": 53082.86, + "end": 53084.92, + "probability": 0.8557 + }, + { + "start": 53085.46, + "end": 53087.4, + "probability": 0.9471 + }, + { + "start": 53087.52, + "end": 53088.84, + "probability": 0.8488 + }, + { + "start": 53089.52, + "end": 53092.04, + "probability": 0.9699 + }, + { + "start": 53092.46, + "end": 53095.14, + "probability": 0.9938 + }, + { + "start": 53095.14, + "end": 53099.04, + "probability": 0.9941 + }, + { + "start": 53100.06, + "end": 53101.78, + "probability": 0.8865 + }, + { + "start": 53101.92, + "end": 53105.84, + "probability": 0.9889 + }, + { + "start": 53106.44, + "end": 53108.6, + "probability": 0.9801 + }, + { + "start": 53108.94, + "end": 53110.82, + "probability": 0.9648 + }, + { + "start": 53111.8, + "end": 53116.46, + "probability": 0.9932 + }, + { + "start": 53117.36, + "end": 53118.7, + "probability": 0.6526 + }, + { + "start": 53119.06, + "end": 53121.44, + "probability": 0.9981 + }, + { + "start": 53121.78, + "end": 53125.28, + "probability": 0.9972 + }, + { + "start": 53125.72, + "end": 53125.92, + "probability": 0.4602 + }, + { + "start": 53126.1, + "end": 53128.16, + "probability": 0.821 + }, + { + "start": 53128.62, + "end": 53132.88, + "probability": 0.9969 + }, + { + "start": 53135.96, + "end": 53139.38, + "probability": 0.9282 + }, + { + "start": 53139.48, + "end": 53142.2, + "probability": 0.9927 + }, + { + "start": 53142.2, + "end": 53145.3, + "probability": 0.9995 + }, + { + "start": 53146.0, + "end": 53150.32, + "probability": 0.9947 + }, + { + "start": 53150.8, + "end": 53153.4, + "probability": 0.9927 + }, + { + "start": 53153.8, + "end": 53157.02, + "probability": 0.9984 + }, + { + "start": 53157.7, + "end": 53162.6, + "probability": 0.9984 + }, + { + "start": 53163.22, + "end": 53167.92, + "probability": 0.9956 + }, + { + "start": 53167.92, + "end": 53173.06, + "probability": 0.7723 + }, + { + "start": 53173.56, + "end": 53174.72, + "probability": 0.5574 + }, + { + "start": 53174.82, + "end": 53180.74, + "probability": 0.9702 + }, + { + "start": 53181.06, + "end": 53182.54, + "probability": 0.8888 + }, + { + "start": 53182.58, + "end": 53183.82, + "probability": 0.8899 + }, + { + "start": 53184.2, + "end": 53184.3, + "probability": 0.5089 + }, + { + "start": 53184.3, + "end": 53184.76, + "probability": 0.3841 + }, + { + "start": 53185.9, + "end": 53191.16, + "probability": 0.9064 + }, + { + "start": 53191.44, + "end": 53192.32, + "probability": 0.6281 + }, + { + "start": 53192.71, + "end": 53195.02, + "probability": 0.9181 + }, + { + "start": 53195.16, + "end": 53196.0, + "probability": 0.6253 + }, + { + "start": 53196.08, + "end": 53198.64, + "probability": 0.9235 + }, + { + "start": 53198.74, + "end": 53199.86, + "probability": 0.0087 + }, + { + "start": 53199.86, + "end": 53200.08, + "probability": 0.2365 + }, + { + "start": 53200.26, + "end": 53201.7, + "probability": 0.2421 + }, + { + "start": 53202.44, + "end": 53203.08, + "probability": 0.1127 + }, + { + "start": 53203.3, + "end": 53203.42, + "probability": 0.0592 + }, + { + "start": 53203.42, + "end": 53203.42, + "probability": 0.3058 + }, + { + "start": 53203.42, + "end": 53203.82, + "probability": 0.3186 + }, + { + "start": 53204.3, + "end": 53205.52, + "probability": 0.2285 + }, + { + "start": 53205.94, + "end": 53205.94, + "probability": 0.1866 + }, + { + "start": 53205.94, + "end": 53206.38, + "probability": 0.1151 + }, + { + "start": 53206.68, + "end": 53207.27, + "probability": 0.683 + }, + { + "start": 53209.48, + "end": 53209.84, + "probability": 0.096 + }, + { + "start": 53212.02, + "end": 53213.16, + "probability": 0.338 + }, + { + "start": 53213.16, + "end": 53213.2, + "probability": 0.3478 + }, + { + "start": 53213.2, + "end": 53215.01, + "probability": 0.1185 + }, + { + "start": 53217.5, + "end": 53219.24, + "probability": 0.5715 + }, + { + "start": 53219.26, + "end": 53220.12, + "probability": 0.7117 + }, + { + "start": 53220.64, + "end": 53221.34, + "probability": 0.7749 + }, + { + "start": 53221.4, + "end": 53222.06, + "probability": 0.7693 + }, + { + "start": 53222.12, + "end": 53222.94, + "probability": 0.2141 + }, + { + "start": 53223.24, + "end": 53224.96, + "probability": 0.1707 + }, + { + "start": 53225.56, + "end": 53225.72, + "probability": 0.1113 + }, + { + "start": 53225.76, + "end": 53228.03, + "probability": 0.9565 + }, + { + "start": 53228.44, + "end": 53229.54, + "probability": 0.2747 + }, + { + "start": 53240.61, + "end": 53242.28, + "probability": 0.5855 + }, + { + "start": 53243.08, + "end": 53243.96, + "probability": 0.614 + }, + { + "start": 53244.06, + "end": 53245.39, + "probability": 0.5574 + }, + { + "start": 53247.44, + "end": 53248.08, + "probability": 0.3575 + }, + { + "start": 53248.54, + "end": 53248.54, + "probability": 0.0355 + }, + { + "start": 53248.54, + "end": 53249.1, + "probability": 0.0047 + }, + { + "start": 53249.1, + "end": 53250.8, + "probability": 0.0487 + }, + { + "start": 53250.8, + "end": 53251.54, + "probability": 0.0968 + }, + { + "start": 53252.4, + "end": 53253.24, + "probability": 0.0641 + }, + { + "start": 53254.46, + "end": 53254.64, + "probability": 0.0804 + }, + { + "start": 53255.86, + "end": 53256.18, + "probability": 0.0429 + }, + { + "start": 53256.18, + "end": 53257.0, + "probability": 0.0691 + }, + { + "start": 53257.46, + "end": 53261.62, + "probability": 0.8553 + }, + { + "start": 53262.24, + "end": 53266.64, + "probability": 0.6692 + }, + { + "start": 53268.38, + "end": 53269.84, + "probability": 0.9464 + }, + { + "start": 53269.96, + "end": 53272.19, + "probability": 0.8567 + }, + { + "start": 53274.42, + "end": 53275.38, + "probability": 0.0435 + }, + { + "start": 53275.58, + "end": 53275.58, + "probability": 0.364 + }, + { + "start": 53275.58, + "end": 53277.82, + "probability": 0.7165 + }, + { + "start": 53277.86, + "end": 53279.48, + "probability": 0.359 + }, + { + "start": 53279.48, + "end": 53283.62, + "probability": 0.612 + }, + { + "start": 53283.8, + "end": 53284.54, + "probability": 0.7938 + }, + { + "start": 53285.26, + "end": 53286.42, + "probability": 0.4438 + }, + { + "start": 53286.42, + "end": 53288.8, + "probability": 0.749 + }, + { + "start": 53288.88, + "end": 53289.6, + "probability": 0.4146 + }, + { + "start": 53290.66, + "end": 53291.58, + "probability": 0.9041 + }, + { + "start": 53292.14, + "end": 53293.22, + "probability": 0.816 + }, + { + "start": 53293.54, + "end": 53294.76, + "probability": 0.6553 + }, + { + "start": 53294.84, + "end": 53295.96, + "probability": 0.8402 + }, + { + "start": 53296.46, + "end": 53296.62, + "probability": 0.484 + }, + { + "start": 53297.7, + "end": 53298.5, + "probability": 0.4934 + }, + { + "start": 53299.62, + "end": 53301.14, + "probability": 0.7968 + }, + { + "start": 53301.8, + "end": 53303.3, + "probability": 0.8047 + }, + { + "start": 53304.04, + "end": 53304.3, + "probability": 0.8411 + }, + { + "start": 53304.88, + "end": 53305.76, + "probability": 0.6785 + }, + { + "start": 53306.06, + "end": 53307.34, + "probability": 0.645 + }, + { + "start": 53307.4, + "end": 53308.6, + "probability": 0.6947 + }, + { + "start": 53309.04, + "end": 53311.96, + "probability": 0.8528 + }, + { + "start": 53312.22, + "end": 53315.06, + "probability": 0.9106 + }, + { + "start": 53315.86, + "end": 53317.8, + "probability": 0.7823 + }, + { + "start": 53318.54, + "end": 53318.92, + "probability": 0.7192 + }, + { + "start": 53319.9, + "end": 53323.08, + "probability": 0.8929 + }, + { + "start": 53324.3, + "end": 53324.76, + "probability": 0.9868 + }, + { + "start": 53326.42, + "end": 53327.58, + "probability": 0.839 + }, + { + "start": 53328.02, + "end": 53329.38, + "probability": 0.8565 + }, + { + "start": 53329.84, + "end": 53331.12, + "probability": 0.9092 + }, + { + "start": 53333.44, + "end": 53334.48, + "probability": 0.9878 + }, + { + "start": 53335.92, + "end": 53337.32, + "probability": 0.6442 + }, + { + "start": 53338.22, + "end": 53338.54, + "probability": 0.7627 + }, + { + "start": 53340.08, + "end": 53340.88, + "probability": 0.9576 + }, + { + "start": 53341.74, + "end": 53343.5, + "probability": 0.8896 + }, + { + "start": 53344.28, + "end": 53345.8, + "probability": 0.9859 + }, + { + "start": 53346.34, + "end": 53348.12, + "probability": 0.969 + }, + { + "start": 53348.86, + "end": 53350.84, + "probability": 0.9665 + }, + { + "start": 53351.84, + "end": 53353.78, + "probability": 0.9517 + }, + { + "start": 53354.48, + "end": 53357.08, + "probability": 0.9738 + }, + { + "start": 53359.39, + "end": 53362.26, + "probability": 0.4548 + }, + { + "start": 53362.34, + "end": 53363.5, + "probability": 0.6173 + }, + { + "start": 53363.64, + "end": 53364.88, + "probability": 0.9124 + }, + { + "start": 53365.02, + "end": 53366.36, + "probability": 0.9462 + }, + { + "start": 53366.44, + "end": 53367.68, + "probability": 0.7951 + }, + { + "start": 53368.2, + "end": 53369.7, + "probability": 0.9607 + }, + { + "start": 53370.12, + "end": 53371.38, + "probability": 0.8959 + }, + { + "start": 53371.62, + "end": 53373.12, + "probability": 0.9455 + }, + { + "start": 53373.8, + "end": 53378.12, + "probability": 0.7834 + }, + { + "start": 53378.86, + "end": 53379.58, + "probability": 0.9827 + }, + { + "start": 53380.14, + "end": 53380.84, + "probability": 0.965 + }, + { + "start": 53381.44, + "end": 53382.8, + "probability": 0.9531 + }, + { + "start": 53385.14, + "end": 53391.46, + "probability": 0.9568 + }, + { + "start": 53392.8, + "end": 53393.32, + "probability": 0.9697 + }, + { + "start": 53394.26, + "end": 53395.44, + "probability": 0.6706 + }, + { + "start": 53396.3, + "end": 53396.54, + "probability": 0.7098 + }, + { + "start": 53397.72, + "end": 53398.72, + "probability": 0.5423 + }, + { + "start": 53400.06, + "end": 53402.18, + "probability": 0.6874 + }, + { + "start": 53403.26, + "end": 53406.98, + "probability": 0.9212 + }, + { + "start": 53407.76, + "end": 53409.12, + "probability": 0.6371 + }, + { + "start": 53409.26, + "end": 53410.74, + "probability": 0.5436 + }, + { + "start": 53410.78, + "end": 53411.64, + "probability": 0.496 + }, + { + "start": 53411.82, + "end": 53413.32, + "probability": 0.6167 + }, + { + "start": 53413.78, + "end": 53416.98, + "probability": 0.7272 + }, + { + "start": 53417.96, + "end": 53421.16, + "probability": 0.9268 + }, + { + "start": 53422.14, + "end": 53422.58, + "probability": 0.7405 + }, + { + "start": 53423.36, + "end": 53425.44, + "probability": 0.837 + }, + { + "start": 53426.88, + "end": 53429.06, + "probability": 0.5226 + }, + { + "start": 53429.84, + "end": 53430.9, + "probability": 0.8789 + }, + { + "start": 53431.82, + "end": 53432.18, + "probability": 0.8942 + }, + { + "start": 53433.04, + "end": 53437.08, + "probability": 0.8242 + }, + { + "start": 53438.18, + "end": 53439.44, + "probability": 0.7939 + }, + { + "start": 53440.06, + "end": 53441.88, + "probability": 0.9645 + }, + { + "start": 53442.24, + "end": 53443.52, + "probability": 0.8878 + }, + { + "start": 53443.64, + "end": 53444.98, + "probability": 0.8678 + }, + { + "start": 53445.98, + "end": 53449.66, + "probability": 0.9414 + }, + { + "start": 53452.91, + "end": 53456.28, + "probability": 0.7723 + }, + { + "start": 53458.22, + "end": 53458.64, + "probability": 0.5839 + }, + { + "start": 53458.74, + "end": 53459.72, + "probability": 0.7222 + }, + { + "start": 53459.86, + "end": 53461.02, + "probability": 0.5293 + }, + { + "start": 53464.12, + "end": 53464.8, + "probability": 0.7813 + }, + { + "start": 53465.6, + "end": 53466.8, + "probability": 0.7135 + }, + { + "start": 53466.86, + "end": 53467.84, + "probability": 0.5321 + }, + { + "start": 53467.92, + "end": 53469.34, + "probability": 0.5894 + }, + { + "start": 53472.22, + "end": 53475.58, + "probability": 0.8022 + }, + { + "start": 53477.88, + "end": 53481.4, + "probability": 0.8804 + }, + { + "start": 53486.16, + "end": 53486.4, + "probability": 0.6984 + }, + { + "start": 53487.14, + "end": 53491.54, + "probability": 0.4973 + }, + { + "start": 53492.56, + "end": 53493.72, + "probability": 0.8678 + }, + { + "start": 53495.02, + "end": 53497.94, + "probability": 0.9226 + }, + { + "start": 53498.0, + "end": 53499.36, + "probability": 0.8149 + }, + { + "start": 53499.44, + "end": 53500.46, + "probability": 0.7925 + }, + { + "start": 53503.62, + "end": 53504.14, + "probability": 0.9629 + }, + { + "start": 53505.2, + "end": 53505.98, + "probability": 0.9732 + }, + { + "start": 53507.16, + "end": 53508.8, + "probability": 0.9919 + }, + { + "start": 53509.14, + "end": 53510.56, + "probability": 0.8239 + }, + { + "start": 53510.6, + "end": 53513.44, + "probability": 0.7309 + }, + { + "start": 53514.7, + "end": 53517.56, + "probability": 0.869 + }, + { + "start": 53518.56, + "end": 53520.62, + "probability": 0.8562 + }, + { + "start": 53521.56, + "end": 53523.26, + "probability": 0.8564 + }, + { + "start": 53524.1, + "end": 53526.62, + "probability": 0.9417 + }, + { + "start": 53527.36, + "end": 53531.31, + "probability": 0.7174 + }, + { + "start": 53532.74, + "end": 53533.76, + "probability": 0.7371 + }, + { + "start": 53534.76, + "end": 53536.14, + "probability": 0.98 + }, + { + "start": 53536.7, + "end": 53538.44, + "probability": 0.9809 + }, + { + "start": 53538.54, + "end": 53539.5, + "probability": 0.8531 + }, + { + "start": 53539.58, + "end": 53540.78, + "probability": 0.905 + }, + { + "start": 53540.82, + "end": 53542.56, + "probability": 0.5002 + }, + { + "start": 53543.16, + "end": 53543.64, + "probability": 0.5516 + }, + { + "start": 53546.42, + "end": 53548.6, + "probability": 0.6948 + }, + { + "start": 53550.48, + "end": 53553.26, + "probability": 0.7601 + }, + { + "start": 53557.22, + "end": 53558.4, + "probability": 0.668 + }, + { + "start": 53559.68, + "end": 53560.16, + "probability": 0.658 + }, + { + "start": 53561.54, + "end": 53562.4, + "probability": 0.7906 + }, + { + "start": 53563.24, + "end": 53564.84, + "probability": 0.9616 + }, + { + "start": 53565.7, + "end": 53566.38, + "probability": 0.9569 + }, + { + "start": 53567.16, + "end": 53568.58, + "probability": 0.8511 + }, + { + "start": 53569.62, + "end": 53569.96, + "probability": 0.9805 + }, + { + "start": 53570.76, + "end": 53571.46, + "probability": 0.7902 + }, + { + "start": 53573.64, + "end": 53574.66, + "probability": 0.3216 + }, + { + "start": 53575.42, + "end": 53578.86, + "probability": 0.7263 + }, + { + "start": 53580.1, + "end": 53580.86, + "probability": 0.8791 + }, + { + "start": 53583.14, + "end": 53584.18, + "probability": 0.7758 + }, + { + "start": 53585.3, + "end": 53586.82, + "probability": 0.9304 + }, + { + "start": 53589.44, + "end": 53590.04, + "probability": 0.376 + }, + { + "start": 53591.06, + "end": 53594.48, + "probability": 0.4655 + }, + { + "start": 53595.62, + "end": 53596.86, + "probability": 0.9046 + }, + { + "start": 53599.86, + "end": 53602.32, + "probability": 0.6988 + }, + { + "start": 53602.92, + "end": 53603.4, + "probability": 0.5782 + }, + { + "start": 53604.22, + "end": 53605.08, + "probability": 0.7454 + }, + { + "start": 53606.6, + "end": 53607.5, + "probability": 0.9722 + }, + { + "start": 53608.84, + "end": 53609.92, + "probability": 0.9066 + }, + { + "start": 53612.39, + "end": 53614.94, + "probability": 0.9179 + }, + { + "start": 53616.04, + "end": 53619.18, + "probability": 0.7477 + }, + { + "start": 53620.0, + "end": 53621.56, + "probability": 0.9294 + }, + { + "start": 53622.76, + "end": 53626.34, + "probability": 0.8862 + }, + { + "start": 53627.44, + "end": 53628.66, + "probability": 0.8993 + }, + { + "start": 53629.86, + "end": 53631.42, + "probability": 0.96 + }, + { + "start": 53632.34, + "end": 53633.8, + "probability": 0.693 + }, + { + "start": 53634.98, + "end": 53636.34, + "probability": 0.7033 + }, + { + "start": 53636.36, + "end": 53641.24, + "probability": 0.7983 + }, + { + "start": 53641.58, + "end": 53644.12, + "probability": 0.9135 + }, + { + "start": 53644.64, + "end": 53645.46, + "probability": 0.2432 + }, + { + "start": 53645.58, + "end": 53646.6, + "probability": 0.6908 + }, + { + "start": 53646.6, + "end": 53647.72, + "probability": 0.5218 + }, + { + "start": 53648.64, + "end": 53651.7, + "probability": 0.6783 + }, + { + "start": 53651.88, + "end": 53653.04, + "probability": 0.5602 + }, + { + "start": 53653.77, + "end": 53654.1, + "probability": 0.334 + }, + { + "start": 53654.22, + "end": 53655.3, + "probability": 0.579 + }, + { + "start": 53655.36, + "end": 53656.3, + "probability": 0.6258 + }, + { + "start": 53656.32, + "end": 53657.38, + "probability": 0.7039 + }, + { + "start": 53657.44, + "end": 53658.4, + "probability": 0.6655 + }, + { + "start": 53658.48, + "end": 53660.48, + "probability": 0.7375 + }, + { + "start": 53660.58, + "end": 53661.24, + "probability": 0.8206 + }, + { + "start": 53661.76, + "end": 53662.7, + "probability": 0.2088 + }, + { + "start": 53662.78, + "end": 53663.78, + "probability": 0.3079 + }, + { + "start": 53663.9, + "end": 53664.78, + "probability": 0.5965 + }, + { + "start": 53664.9, + "end": 53665.42, + "probability": 0.839 + }, + { + "start": 53666.12, + "end": 53666.5, + "probability": 0.7822 + }, + { + "start": 53666.94, + "end": 53667.96, + "probability": 0.6713 + }, + { + "start": 53668.02, + "end": 53669.08, + "probability": 0.9151 + }, + { + "start": 53669.16, + "end": 53670.34, + "probability": 0.7308 + }, + { + "start": 53670.42, + "end": 53671.4, + "probability": 0.5594 + }, + { + "start": 53671.5, + "end": 53672.36, + "probability": 0.5926 + }, + { + "start": 53672.4, + "end": 53673.5, + "probability": 0.8783 + }, + { + "start": 53673.52, + "end": 53674.44, + "probability": 0.8074 + }, + { + "start": 53674.52, + "end": 53676.3, + "probability": 0.9285 + }, + { + "start": 53676.32, + "end": 53677.8, + "probability": 0.7996 + }, + { + "start": 53677.9, + "end": 53679.86, + "probability": 0.9567 + }, + { + "start": 53680.48, + "end": 53680.48, + "probability": 0.0309 + }, + { + "start": 53680.48, + "end": 53680.97, + "probability": 0.1312 + }, + { + "start": 53681.06, + "end": 53682.14, + "probability": 0.3834 + }, + { + "start": 53682.16, + "end": 53683.14, + "probability": 0.547 + }, + { + "start": 53684.54, + "end": 53685.2, + "probability": 0.6593 + }, + { + "start": 53686.32, + "end": 53687.89, + "probability": 0.8549 + }, + { + "start": 53688.44, + "end": 53689.26, + "probability": 0.8273 + }, + { + "start": 53689.66, + "end": 53692.78, + "probability": 0.793 + }, + { + "start": 53693.4, + "end": 53695.22, + "probability": 0.8931 + }, + { + "start": 53695.96, + "end": 53696.2, + "probability": 0.9795 + }, + { + "start": 53698.08, + "end": 53698.58, + "probability": 0.7751 + }, + { + "start": 53698.68, + "end": 53699.62, + "probability": 0.8274 + }, + { + "start": 53699.7, + "end": 53701.14, + "probability": 0.6111 + }, + { + "start": 53701.64, + "end": 53702.9, + "probability": 0.9879 + }, + { + "start": 53703.0, + "end": 53704.58, + "probability": 0.8679 + }, + { + "start": 53705.68, + "end": 53708.52, + "probability": 0.856 + }, + { + "start": 53709.24, + "end": 53710.82, + "probability": 0.8429 + }, + { + "start": 53711.16, + "end": 53712.8, + "probability": 0.8722 + }, + { + "start": 53712.86, + "end": 53714.34, + "probability": 0.811 + }, + { + "start": 53714.96, + "end": 53717.04, + "probability": 0.9777 + }, + { + "start": 53718.7, + "end": 53719.4, + "probability": 0.8771 + }, + { + "start": 53719.48, + "end": 53720.88, + "probability": 0.8833 + }, + { + "start": 53720.98, + "end": 53722.94, + "probability": 0.77 + }, + { + "start": 53724.1, + "end": 53725.0, + "probability": 0.887 + }, + { + "start": 53726.12, + "end": 53727.58, + "probability": 0.9373 + }, + { + "start": 53727.68, + "end": 53728.66, + "probability": 0.9501 + }, + { + "start": 53728.72, + "end": 53729.56, + "probability": 0.915 + }, + { + "start": 53729.6, + "end": 53730.68, + "probability": 0.943 + }, + { + "start": 53730.68, + "end": 53732.14, + "probability": 0.8439 + }, + { + "start": 53732.24, + "end": 53733.24, + "probability": 0.614 + }, + { + "start": 53733.24, + "end": 53734.94, + "probability": 0.5999 + }, + { + "start": 53737.1, + "end": 53737.52, + "probability": 0.7745 + }, + { + "start": 53739.62, + "end": 53740.66, + "probability": 0.7905 + }, + { + "start": 53741.2, + "end": 53743.72, + "probability": 0.9219 + }, + { + "start": 53744.6, + "end": 53745.62, + "probability": 0.9052 + }, + { + "start": 53746.64, + "end": 53747.42, + "probability": 0.9882 + }, + { + "start": 53747.96, + "end": 53748.7, + "probability": 0.9565 + }, + { + "start": 53749.49, + "end": 53751.24, + "probability": 0.0765 + }, + { + "start": 53751.24, + "end": 53753.04, + "probability": 0.1274 + }, + { + "start": 53753.19, + "end": 53757.78, + "probability": 0.9427 + }, + { + "start": 53759.32, + "end": 53759.44, + "probability": 0.5118 + }, + { + "start": 53759.56, + "end": 53760.84, + "probability": 0.2601 + }, + { + "start": 53760.92, + "end": 53762.54, + "probability": 0.9793 + }, + { + "start": 53762.66, + "end": 53763.56, + "probability": 0.3659 + }, + { + "start": 53766.4, + "end": 53766.5, + "probability": 0.0039 + }, + { + "start": 53770.2, + "end": 53771.06, + "probability": 0.0144 + }, + { + "start": 53773.06, + "end": 53773.22, + "probability": 0.0107 + }, + { + "start": 53879.12, + "end": 53879.12, + "probability": 0.1706 + }, + { + "start": 53879.12, + "end": 53880.74, + "probability": 0.5825 + }, + { + "start": 53880.8, + "end": 53880.8, + "probability": 0.0286 + }, + { + "start": 53880.8, + "end": 53880.8, + "probability": 0.0171 + }, + { + "start": 53880.8, + "end": 53880.8, + "probability": 0.8598 + }, + { + "start": 53880.82, + "end": 53883.5, + "probability": 0.3827 + }, + { + "start": 53885.48, + "end": 53885.82, + "probability": 0.7546 + }, + { + "start": 53885.84, + "end": 53886.84, + "probability": 0.5973 + }, + { + "start": 53886.96, + "end": 53889.22, + "probability": 0.4211 + }, + { + "start": 53889.34, + "end": 53890.18, + "probability": 0.5368 + }, + { + "start": 53890.26, + "end": 53893.16, + "probability": 0.8917 + }, + { + "start": 53894.3, + "end": 53897.16, + "probability": 0.7189 + }, + { + "start": 53898.06, + "end": 53899.04, + "probability": 0.5865 + }, + { + "start": 53899.2, + "end": 53902.24, + "probability": 0.9156 + }, + { + "start": 53903.08, + "end": 53903.84, + "probability": 0.7398 + }, + { + "start": 53904.04, + "end": 53904.04, + "probability": 0.1899 + }, + { + "start": 53904.04, + "end": 53906.14, + "probability": 0.7684 + }, + { + "start": 53918.88, + "end": 53919.76, + "probability": 0.7093 + }, + { + "start": 53919.76, + "end": 53921.0, + "probability": 0.6893 + }, + { + "start": 53921.14, + "end": 53925.36, + "probability": 0.7214 + }, + { + "start": 53926.2, + "end": 53931.92, + "probability": 0.7942 + }, + { + "start": 53933.04, + "end": 53934.12, + "probability": 0.7075 + }, + { + "start": 53935.98, + "end": 53938.68, + "probability": 0.8389 + }, + { + "start": 53939.4, + "end": 53940.26, + "probability": 0.9205 + }, + { + "start": 53944.72, + "end": 53945.1, + "probability": 0.807 + }, + { + "start": 53947.96, + "end": 53957.28, + "probability": 0.6387 + }, + { + "start": 53958.16, + "end": 53960.98, + "probability": 0.8781 + }, + { + "start": 53962.54, + "end": 53965.46, + "probability": 0.8391 + }, + { + "start": 53967.5, + "end": 53968.48, + "probability": 0.9598 + }, + { + "start": 53969.44, + "end": 53971.82, + "probability": 0.9976 + }, + { + "start": 53971.82, + "end": 53975.46, + "probability": 0.9951 + }, + { + "start": 53976.22, + "end": 53977.66, + "probability": 0.8512 + }, + { + "start": 53978.68, + "end": 53980.84, + "probability": 0.9787 + }, + { + "start": 53980.84, + "end": 53983.76, + "probability": 0.9954 + }, + { + "start": 53991.18, + "end": 53996.02, + "probability": 0.9819 + }, + { + "start": 53997.32, + "end": 54000.24, + "probability": 0.9765 + }, + { + "start": 54000.88, + "end": 54001.84, + "probability": 0.94 + }, + { + "start": 54002.02, + "end": 54004.02, + "probability": 0.969 + }, + { + "start": 54005.56, + "end": 54006.92, + "probability": 0.9056 + }, + { + "start": 54007.94, + "end": 54011.92, + "probability": 0.9797 + }, + { + "start": 54011.92, + "end": 54015.46, + "probability": 0.999 + }, + { + "start": 54016.44, + "end": 54019.9, + "probability": 0.9966 + }, + { + "start": 54020.98, + "end": 54023.12, + "probability": 0.9887 + }, + { + "start": 54023.12, + "end": 54027.3, + "probability": 0.9861 + }, + { + "start": 54028.52, + "end": 54031.42, + "probability": 0.995 + }, + { + "start": 54032.3, + "end": 54034.98, + "probability": 0.9984 + }, + { + "start": 54035.72, + "end": 54038.7, + "probability": 0.9718 + }, + { + "start": 54039.48, + "end": 54040.9, + "probability": 0.9941 + }, + { + "start": 54041.58, + "end": 54045.14, + "probability": 0.9883 + }, + { + "start": 54045.14, + "end": 54048.48, + "probability": 0.9974 + }, + { + "start": 54048.94, + "end": 54050.04, + "probability": 0.8696 + }, + { + "start": 54050.78, + "end": 54053.36, + "probability": 0.9652 + }, + { + "start": 54054.74, + "end": 54057.72, + "probability": 0.9752 + }, + { + "start": 54058.5, + "end": 54061.56, + "probability": 0.9944 + }, + { + "start": 54061.56, + "end": 54065.9, + "probability": 0.998 + }, + { + "start": 54066.34, + "end": 54067.36, + "probability": 0.912 + }, + { + "start": 54068.36, + "end": 54068.64, + "probability": 0.562 + }, + { + "start": 54068.8, + "end": 54071.6, + "probability": 0.9919 + }, + { + "start": 54072.32, + "end": 54073.86, + "probability": 0.9775 + }, + { + "start": 54074.64, + "end": 54080.64, + "probability": 0.9861 + }, + { + "start": 54082.24, + "end": 54082.8, + "probability": 0.8037 + }, + { + "start": 54083.68, + "end": 54085.65, + "probability": 0.9871 + }, + { + "start": 54085.9, + "end": 54090.4, + "probability": 0.9861 + }, + { + "start": 54091.4, + "end": 54096.4, + "probability": 0.9546 + }, + { + "start": 54097.56, + "end": 54098.18, + "probability": 0.578 + }, + { + "start": 54098.98, + "end": 54101.4, + "probability": 0.895 + }, + { + "start": 54102.16, + "end": 54104.36, + "probability": 0.9827 + }, + { + "start": 54105.26, + "end": 54105.78, + "probability": 0.9691 + }, + { + "start": 54106.76, + "end": 54109.52, + "probability": 0.979 + }, + { + "start": 54109.7, + "end": 54111.0, + "probability": 0.9979 + }, + { + "start": 54111.64, + "end": 54112.62, + "probability": 0.953 + }, + { + "start": 54114.86, + "end": 54117.3, + "probability": 0.9944 + }, + { + "start": 54118.4, + "end": 54124.06, + "probability": 0.9456 + }, + { + "start": 54124.7, + "end": 54128.78, + "probability": 0.8309 + }, + { + "start": 54128.78, + "end": 54131.6, + "probability": 0.9916 + }, + { + "start": 54132.12, + "end": 54136.32, + "probability": 0.9924 + }, + { + "start": 54136.32, + "end": 54140.52, + "probability": 0.9862 + }, + { + "start": 54141.04, + "end": 54141.22, + "probability": 0.7151 + }, + { + "start": 54143.14, + "end": 54145.18, + "probability": 0.9233 + }, + { + "start": 54145.58, + "end": 54148.2, + "probability": 0.8829 + }, + { + "start": 54148.2, + "end": 54148.64, + "probability": 0.761 + }, + { + "start": 54148.78, + "end": 54149.44, + "probability": 0.3536 + }, + { + "start": 54149.64, + "end": 54151.7, + "probability": 0.6027 + }, + { + "start": 54152.12, + "end": 54153.64, + "probability": 0.7424 + }, + { + "start": 54153.94, + "end": 54154.54, + "probability": 0.7817 + }, + { + "start": 54155.26, + "end": 54157.06, + "probability": 0.9271 + }, + { + "start": 54157.16, + "end": 54157.7, + "probability": 0.824 + }, + { + "start": 54157.8, + "end": 54158.28, + "probability": 0.8911 + }, + { + "start": 54160.86, + "end": 54161.34, + "probability": 0.9564 + }, + { + "start": 54162.02, + "end": 54163.28, + "probability": 0.6267 + }, + { + "start": 54163.38, + "end": 54168.24, + "probability": 0.9858 + }, + { + "start": 54169.04, + "end": 54170.18, + "probability": 0.9872 + }, + { + "start": 54170.34, + "end": 54175.54, + "probability": 0.9817 + }, + { + "start": 54176.12, + "end": 54181.14, + "probability": 0.95 + }, + { + "start": 54181.64, + "end": 54183.94, + "probability": 0.977 + }, + { + "start": 54184.44, + "end": 54186.1, + "probability": 0.999 + }, + { + "start": 54186.56, + "end": 54190.27, + "probability": 0.9246 + }, + { + "start": 54191.04, + "end": 54191.9, + "probability": 0.8618 + }, + { + "start": 54192.84, + "end": 54195.86, + "probability": 0.6981 + }, + { + "start": 54195.98, + "end": 54197.52, + "probability": 0.7274 + }, + { + "start": 54198.48, + "end": 54203.36, + "probability": 0.968 + }, + { + "start": 54204.04, + "end": 54208.04, + "probability": 0.9948 + }, + { + "start": 54208.6, + "end": 54210.6, + "probability": 0.9923 + }, + { + "start": 54211.84, + "end": 54217.18, + "probability": 0.9823 + }, + { + "start": 54217.28, + "end": 54218.59, + "probability": 0.9854 + }, + { + "start": 54219.26, + "end": 54220.96, + "probability": 0.9439 + }, + { + "start": 54221.74, + "end": 54224.14, + "probability": 0.9977 + }, + { + "start": 54224.8, + "end": 54227.26, + "probability": 0.9875 + }, + { + "start": 54228.2, + "end": 54234.9, + "probability": 0.9875 + }, + { + "start": 54234.9, + "end": 54238.18, + "probability": 0.9848 + }, + { + "start": 54238.42, + "end": 54240.54, + "probability": 0.4212 + }, + { + "start": 54240.54, + "end": 54241.9, + "probability": 0.875 + }, + { + "start": 54242.32, + "end": 54242.7, + "probability": 0.0075 + } + ], + "segments_count": 18533, + "words_count": 87974, + "avg_words_per_segment": 4.7469, + "avg_segment_duration": 1.8139, + "avg_words_per_minute": 96.2099, + "plenum_id": "119080", + "duration": 54863.77, + "title": null, + "plenum_date": "2023-07-05" +} \ No newline at end of file