diff --git "a/11508/metadata.json" "b/11508/metadata.json" new file mode 100644--- /dev/null +++ "b/11508/metadata.json" @@ -0,0 +1,22937 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11508", + "quality_score": 0.8389, + "per_segment_quality_scores": [ + { + "start": 50.08, + "end": 50.48, + "probability": 0.0735 + }, + { + "start": 51.51, + "end": 52.02, + "probability": 0.1095 + }, + { + "start": 52.02, + "end": 54.46, + "probability": 0.6721 + }, + { + "start": 55.66, + "end": 59.36, + "probability": 0.9902 + }, + { + "start": 60.02, + "end": 62.1, + "probability": 0.7312 + }, + { + "start": 62.36, + "end": 63.1, + "probability": 0.7106 + }, + { + "start": 64.0, + "end": 65.3, + "probability": 0.9587 + }, + { + "start": 65.48, + "end": 67.16, + "probability": 0.8603 + }, + { + "start": 67.48, + "end": 69.24, + "probability": 0.8145 + }, + { + "start": 69.44, + "end": 70.18, + "probability": 0.7145 + }, + { + "start": 70.2, + "end": 71.22, + "probability": 0.6444 + }, + { + "start": 71.92, + "end": 76.38, + "probability": 0.9149 + }, + { + "start": 76.6, + "end": 79.46, + "probability": 0.7805 + }, + { + "start": 79.68, + "end": 83.52, + "probability": 0.3519 + }, + { + "start": 83.66, + "end": 87.08, + "probability": 0.9054 + }, + { + "start": 87.42, + "end": 91.08, + "probability": 0.7553 + }, + { + "start": 91.5, + "end": 92.24, + "probability": 0.784 + }, + { + "start": 93.26, + "end": 93.52, + "probability": 0.037 + }, + { + "start": 93.52, + "end": 97.64, + "probability": 0.9194 + }, + { + "start": 98.24, + "end": 102.04, + "probability": 0.66 + }, + { + "start": 102.04, + "end": 106.24, + "probability": 0.8299 + }, + { + "start": 106.66, + "end": 108.36, + "probability": 0.3055 + }, + { + "start": 108.4, + "end": 111.74, + "probability": 0.9769 + }, + { + "start": 112.32, + "end": 116.88, + "probability": 0.6732 + }, + { + "start": 117.0, + "end": 118.6, + "probability": 0.1201 + }, + { + "start": 118.82, + "end": 120.86, + "probability": 0.959 + }, + { + "start": 120.98, + "end": 121.98, + "probability": 0.9375 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.2, + "end": 124.2, + "probability": 0.6482 + }, + { + "start": 124.74, + "end": 125.58, + "probability": 0.7465 + }, + { + "start": 129.25, + "end": 130.92, + "probability": 0.6662 + }, + { + "start": 130.92, + "end": 132.92, + "probability": 0.5635 + }, + { + "start": 133.1, + "end": 134.3, + "probability": 0.7261 + }, + { + "start": 134.9, + "end": 136.82, + "probability": 0.1445 + }, + { + "start": 137.38, + "end": 138.56, + "probability": 0.6203 + }, + { + "start": 139.08, + "end": 142.14, + "probability": 0.3812 + }, + { + "start": 146.25, + "end": 151.54, + "probability": 0.1886 + }, + { + "start": 151.66, + "end": 153.52, + "probability": 0.1186 + }, + { + "start": 154.04, + "end": 155.88, + "probability": 0.3063 + }, + { + "start": 156.32, + "end": 157.44, + "probability": 0.3016 + }, + { + "start": 160.22, + "end": 160.22, + "probability": 0.0207 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.24, + "end": 296.4, + "probability": 0.4323 + }, + { + "start": 297.92, + "end": 299.2, + "probability": 0.8409 + }, + { + "start": 300.32, + "end": 304.64, + "probability": 0.9134 + }, + { + "start": 306.56, + "end": 308.64, + "probability": 0.9892 + }, + { + "start": 313.46, + "end": 314.1, + "probability": 0.4661 + }, + { + "start": 314.64, + "end": 317.06, + "probability": 0.9901 + }, + { + "start": 319.12, + "end": 325.24, + "probability": 0.8424 + }, + { + "start": 326.0, + "end": 327.9, + "probability": 0.9976 + }, + { + "start": 330.94, + "end": 333.2, + "probability": 0.9138 + }, + { + "start": 334.28, + "end": 336.24, + "probability": 0.9968 + }, + { + "start": 337.6, + "end": 339.82, + "probability": 0.7317 + }, + { + "start": 339.82, + "end": 343.1, + "probability": 0.9935 + }, + { + "start": 343.76, + "end": 346.38, + "probability": 0.9766 + }, + { + "start": 346.7, + "end": 348.5, + "probability": 0.8738 + }, + { + "start": 350.52, + "end": 355.62, + "probability": 0.9818 + }, + { + "start": 356.22, + "end": 362.58, + "probability": 0.8585 + }, + { + "start": 363.32, + "end": 371.68, + "probability": 0.9553 + }, + { + "start": 372.96, + "end": 374.52, + "probability": 0.8187 + }, + { + "start": 375.62, + "end": 378.66, + "probability": 0.5615 + }, + { + "start": 378.72, + "end": 385.18, + "probability": 0.7408 + }, + { + "start": 386.24, + "end": 394.42, + "probability": 0.9827 + }, + { + "start": 394.42, + "end": 399.26, + "probability": 0.9663 + }, + { + "start": 401.04, + "end": 403.64, + "probability": 0.9991 + }, + { + "start": 403.82, + "end": 407.68, + "probability": 0.7687 + }, + { + "start": 408.74, + "end": 409.78, + "probability": 0.5461 + }, + { + "start": 410.5, + "end": 411.22, + "probability": 0.7085 + }, + { + "start": 411.36, + "end": 411.76, + "probability": 0.9511 + }, + { + "start": 412.83, + "end": 418.06, + "probability": 0.9679 + }, + { + "start": 418.06, + "end": 424.64, + "probability": 0.9939 + }, + { + "start": 425.38, + "end": 427.16, + "probability": 0.9287 + }, + { + "start": 429.04, + "end": 429.94, + "probability": 0.9216 + }, + { + "start": 432.5, + "end": 432.96, + "probability": 0.7309 + }, + { + "start": 433.02, + "end": 436.42, + "probability": 0.9709 + }, + { + "start": 437.06, + "end": 439.6, + "probability": 0.8462 + }, + { + "start": 440.34, + "end": 444.0, + "probability": 0.9825 + }, + { + "start": 444.4, + "end": 445.14, + "probability": 0.7585 + }, + { + "start": 446.54, + "end": 449.72, + "probability": 0.5622 + }, + { + "start": 450.8, + "end": 455.92, + "probability": 0.8735 + }, + { + "start": 456.26, + "end": 457.56, + "probability": 0.9706 + }, + { + "start": 460.46, + "end": 463.66, + "probability": 0.9713 + }, + { + "start": 468.8, + "end": 471.46, + "probability": 0.9774 + }, + { + "start": 471.46, + "end": 472.14, + "probability": 0.682 + }, + { + "start": 473.44, + "end": 474.04, + "probability": 0.5828 + }, + { + "start": 475.4, + "end": 477.28, + "probability": 0.998 + }, + { + "start": 478.14, + "end": 479.5, + "probability": 0.9467 + }, + { + "start": 479.66, + "end": 482.98, + "probability": 0.7957 + }, + { + "start": 483.22, + "end": 484.6, + "probability": 0.7179 + }, + { + "start": 485.38, + "end": 488.34, + "probability": 0.9099 + }, + { + "start": 488.74, + "end": 489.46, + "probability": 0.4683 + }, + { + "start": 489.52, + "end": 490.34, + "probability": 0.7399 + }, + { + "start": 490.38, + "end": 493.5, + "probability": 0.974 + }, + { + "start": 494.64, + "end": 498.22, + "probability": 0.9725 + }, + { + "start": 498.92, + "end": 501.34, + "probability": 0.9954 + }, + { + "start": 502.4, + "end": 505.92, + "probability": 0.906 + }, + { + "start": 506.58, + "end": 508.88, + "probability": 0.9455 + }, + { + "start": 509.48, + "end": 513.62, + "probability": 0.7543 + }, + { + "start": 514.16, + "end": 517.82, + "probability": 0.7705 + }, + { + "start": 518.42, + "end": 519.2, + "probability": 0.7742 + }, + { + "start": 519.34, + "end": 521.76, + "probability": 0.8028 + }, + { + "start": 521.84, + "end": 522.91, + "probability": 0.6771 + }, + { + "start": 523.74, + "end": 528.32, + "probability": 0.7085 + }, + { + "start": 529.08, + "end": 530.86, + "probability": 0.2502 + }, + { + "start": 531.28, + "end": 533.94, + "probability": 0.492 + }, + { + "start": 534.3, + "end": 542.16, + "probability": 0.9787 + }, + { + "start": 542.16, + "end": 546.36, + "probability": 0.994 + }, + { + "start": 547.72, + "end": 549.22, + "probability": 0.9735 + }, + { + "start": 549.36, + "end": 549.85, + "probability": 0.9863 + }, + { + "start": 550.4, + "end": 550.84, + "probability": 0.9961 + }, + { + "start": 553.78, + "end": 559.6, + "probability": 0.995 + }, + { + "start": 560.36, + "end": 564.42, + "probability": 0.8927 + }, + { + "start": 564.96, + "end": 567.3, + "probability": 0.7081 + }, + { + "start": 567.36, + "end": 568.86, + "probability": 0.6875 + }, + { + "start": 569.18, + "end": 570.7, + "probability": 0.761 + }, + { + "start": 570.96, + "end": 572.14, + "probability": 0.9124 + }, + { + "start": 574.98, + "end": 579.82, + "probability": 0.9785 + }, + { + "start": 580.9, + "end": 581.92, + "probability": 0.8933 + }, + { + "start": 583.42, + "end": 588.66, + "probability": 0.7422 + }, + { + "start": 589.04, + "end": 590.18, + "probability": 0.8499 + }, + { + "start": 590.9, + "end": 595.3, + "probability": 0.9542 + }, + { + "start": 595.48, + "end": 595.9, + "probability": 0.3808 + }, + { + "start": 596.02, + "end": 597.68, + "probability": 0.758 + }, + { + "start": 598.1, + "end": 602.1, + "probability": 0.9459 + }, + { + "start": 603.48, + "end": 605.94, + "probability": 0.7607 + }, + { + "start": 606.98, + "end": 612.14, + "probability": 0.9769 + }, + { + "start": 613.6, + "end": 616.98, + "probability": 0.9455 + }, + { + "start": 617.64, + "end": 619.12, + "probability": 0.8839 + }, + { + "start": 620.06, + "end": 621.98, + "probability": 0.992 + }, + { + "start": 622.16, + "end": 623.09, + "probability": 0.6398 + }, + { + "start": 623.86, + "end": 627.44, + "probability": 0.9694 + }, + { + "start": 630.28, + "end": 630.78, + "probability": 0.8644 + }, + { + "start": 631.44, + "end": 634.0, + "probability": 0.9963 + }, + { + "start": 634.72, + "end": 635.68, + "probability": 0.7911 + }, + { + "start": 636.48, + "end": 638.32, + "probability": 0.697 + }, + { + "start": 639.9, + "end": 641.04, + "probability": 0.7125 + }, + { + "start": 642.3, + "end": 645.35, + "probability": 0.8566 + }, + { + "start": 646.52, + "end": 649.96, + "probability": 0.8472 + }, + { + "start": 650.1, + "end": 651.5, + "probability": 0.4172 + }, + { + "start": 652.14, + "end": 653.6, + "probability": 0.1406 + }, + { + "start": 653.78, + "end": 656.88, + "probability": 0.2801 + }, + { + "start": 658.0, + "end": 663.56, + "probability": 0.7113 + }, + { + "start": 664.24, + "end": 667.68, + "probability": 0.9359 + }, + { + "start": 668.56, + "end": 669.12, + "probability": 0.7716 + }, + { + "start": 669.28, + "end": 669.98, + "probability": 0.9651 + }, + { + "start": 670.1, + "end": 673.67, + "probability": 0.9464 + }, + { + "start": 674.14, + "end": 674.48, + "probability": 0.491 + }, + { + "start": 674.54, + "end": 675.34, + "probability": 0.9515 + }, + { + "start": 675.44, + "end": 677.32, + "probability": 0.8068 + }, + { + "start": 677.52, + "end": 680.5, + "probability": 0.7517 + }, + { + "start": 682.19, + "end": 682.26, + "probability": 0.1741 + }, + { + "start": 682.26, + "end": 683.54, + "probability": 0.7759 + }, + { + "start": 683.7, + "end": 684.4, + "probability": 0.9022 + }, + { + "start": 684.94, + "end": 687.1, + "probability": 0.8223 + }, + { + "start": 687.96, + "end": 691.68, + "probability": 0.9382 + }, + { + "start": 692.32, + "end": 695.06, + "probability": 0.8448 + }, + { + "start": 695.72, + "end": 697.54, + "probability": 0.8081 + }, + { + "start": 698.7, + "end": 700.34, + "probability": 0.9513 + }, + { + "start": 701.16, + "end": 702.56, + "probability": 0.9829 + }, + { + "start": 702.76, + "end": 705.22, + "probability": 0.9834 + }, + { + "start": 706.56, + "end": 708.56, + "probability": 0.9989 + }, + { + "start": 711.4, + "end": 713.5, + "probability": 0.7753 + }, + { + "start": 714.02, + "end": 721.32, + "probability": 0.931 + }, + { + "start": 721.92, + "end": 723.52, + "probability": 0.7731 + }, + { + "start": 724.08, + "end": 727.24, + "probability": 0.9378 + }, + { + "start": 728.18, + "end": 731.58, + "probability": 0.866 + }, + { + "start": 731.64, + "end": 736.08, + "probability": 0.9669 + }, + { + "start": 736.1, + "end": 737.0, + "probability": 0.6407 + }, + { + "start": 737.1, + "end": 739.44, + "probability": 0.9393 + }, + { + "start": 739.5, + "end": 740.36, + "probability": 0.7996 + }, + { + "start": 740.72, + "end": 744.0, + "probability": 0.7785 + }, + { + "start": 744.04, + "end": 744.56, + "probability": 0.5409 + }, + { + "start": 745.68, + "end": 747.89, + "probability": 0.9397 + }, + { + "start": 748.46, + "end": 752.6, + "probability": 0.9849 + }, + { + "start": 754.32, + "end": 754.9, + "probability": 0.7892 + }, + { + "start": 755.56, + "end": 755.56, + "probability": 0.4878 + }, + { + "start": 755.56, + "end": 759.04, + "probability": 0.8854 + }, + { + "start": 759.28, + "end": 761.3, + "probability": 0.5036 + }, + { + "start": 761.46, + "end": 762.78, + "probability": 0.7233 + }, + { + "start": 762.84, + "end": 768.04, + "probability": 0.9902 + }, + { + "start": 768.84, + "end": 770.54, + "probability": 0.9948 + }, + { + "start": 770.64, + "end": 772.48, + "probability": 0.9829 + }, + { + "start": 773.26, + "end": 775.98, + "probability": 0.7965 + }, + { + "start": 776.64, + "end": 778.82, + "probability": 0.8712 + }, + { + "start": 779.8, + "end": 782.35, + "probability": 0.6533 + }, + { + "start": 782.8, + "end": 785.18, + "probability": 0.4934 + }, + { + "start": 786.29, + "end": 786.36, + "probability": 0.3487 + }, + { + "start": 786.36, + "end": 788.88, + "probability": 0.2329 + }, + { + "start": 789.08, + "end": 790.74, + "probability": 0.7658 + }, + { + "start": 791.04, + "end": 791.82, + "probability": 0.4671 + }, + { + "start": 791.82, + "end": 795.36, + "probability": 0.7055 + }, + { + "start": 795.42, + "end": 801.0, + "probability": 0.7328 + }, + { + "start": 801.46, + "end": 802.28, + "probability": 0.6604 + }, + { + "start": 802.94, + "end": 805.68, + "probability": 0.7849 + }, + { + "start": 806.32, + "end": 808.82, + "probability": 0.9219 + }, + { + "start": 809.38, + "end": 814.0, + "probability": 0.9211 + }, + { + "start": 814.42, + "end": 815.48, + "probability": 0.6614 + }, + { + "start": 816.78, + "end": 818.22, + "probability": 0.922 + }, + { + "start": 818.66, + "end": 819.88, + "probability": 0.7513 + }, + { + "start": 819.96, + "end": 823.48, + "probability": 0.9847 + }, + { + "start": 824.74, + "end": 826.72, + "probability": 0.9858 + }, + { + "start": 827.32, + "end": 829.9, + "probability": 0.9972 + }, + { + "start": 830.74, + "end": 833.06, + "probability": 0.8275 + }, + { + "start": 833.8, + "end": 835.52, + "probability": 0.898 + }, + { + "start": 836.54, + "end": 839.24, + "probability": 0.955 + }, + { + "start": 841.88, + "end": 843.8, + "probability": 0.6082 + }, + { + "start": 843.86, + "end": 846.08, + "probability": 0.8541 + }, + { + "start": 846.64, + "end": 849.52, + "probability": 0.9927 + }, + { + "start": 850.66, + "end": 851.44, + "probability": 0.5042 + }, + { + "start": 852.92, + "end": 855.3, + "probability": 0.9139 + }, + { + "start": 855.84, + "end": 857.36, + "probability": 0.9525 + }, + { + "start": 857.48, + "end": 858.28, + "probability": 0.9653 + }, + { + "start": 859.5, + "end": 861.39, + "probability": 0.9976 + }, + { + "start": 862.5, + "end": 863.06, + "probability": 0.7428 + }, + { + "start": 863.1, + "end": 863.46, + "probability": 0.4806 + }, + { + "start": 863.62, + "end": 866.36, + "probability": 0.9792 + }, + { + "start": 866.5, + "end": 868.3, + "probability": 0.5767 + }, + { + "start": 870.08, + "end": 870.56, + "probability": 0.457 + }, + { + "start": 872.0, + "end": 872.0, + "probability": 0.0932 + }, + { + "start": 872.0, + "end": 873.53, + "probability": 0.9933 + }, + { + "start": 874.48, + "end": 876.0, + "probability": 0.6475 + }, + { + "start": 876.06, + "end": 879.84, + "probability": 0.8054 + }, + { + "start": 880.12, + "end": 881.22, + "probability": 0.9127 + }, + { + "start": 881.46, + "end": 882.84, + "probability": 0.9758 + }, + { + "start": 883.14, + "end": 884.13, + "probability": 0.9321 + }, + { + "start": 885.02, + "end": 888.34, + "probability": 0.9673 + }, + { + "start": 888.6, + "end": 889.72, + "probability": 0.3315 + }, + { + "start": 890.86, + "end": 892.16, + "probability": 0.8462 + }, + { + "start": 892.58, + "end": 898.96, + "probability": 0.9736 + }, + { + "start": 899.26, + "end": 901.48, + "probability": 0.9831 + }, + { + "start": 901.74, + "end": 903.24, + "probability": 0.3115 + }, + { + "start": 903.32, + "end": 904.74, + "probability": 0.572 + }, + { + "start": 904.84, + "end": 905.9, + "probability": 0.6645 + }, + { + "start": 906.08, + "end": 906.9, + "probability": 0.1634 + }, + { + "start": 907.3, + "end": 908.16, + "probability": 0.6367 + }, + { + "start": 908.84, + "end": 912.26, + "probability": 0.9927 + }, + { + "start": 912.48, + "end": 913.26, + "probability": 0.9967 + }, + { + "start": 914.0, + "end": 914.22, + "probability": 0.3225 + }, + { + "start": 914.22, + "end": 917.54, + "probability": 0.7622 + }, + { + "start": 917.96, + "end": 919.48, + "probability": 0.9403 + }, + { + "start": 920.22, + "end": 921.7, + "probability": 0.4711 + }, + { + "start": 921.7, + "end": 922.66, + "probability": 0.0704 + }, + { + "start": 923.62, + "end": 925.3, + "probability": 0.9124 + }, + { + "start": 925.72, + "end": 928.48, + "probability": 0.8642 + }, + { + "start": 928.78, + "end": 931.98, + "probability": 0.7892 + }, + { + "start": 932.96, + "end": 933.84, + "probability": 0.9219 + }, + { + "start": 935.06, + "end": 938.04, + "probability": 0.9397 + }, + { + "start": 939.22, + "end": 940.54, + "probability": 0.9242 + }, + { + "start": 940.64, + "end": 941.94, + "probability": 0.9548 + }, + { + "start": 942.06, + "end": 943.26, + "probability": 0.9565 + }, + { + "start": 943.34, + "end": 943.36, + "probability": 0.6299 + }, + { + "start": 944.48, + "end": 945.56, + "probability": 0.7301 + }, + { + "start": 945.98, + "end": 945.98, + "probability": 0.1678 + }, + { + "start": 945.98, + "end": 946.68, + "probability": 0.5954 + }, + { + "start": 947.06, + "end": 947.72, + "probability": 0.7772 + }, + { + "start": 947.8, + "end": 950.88, + "probability": 0.9705 + }, + { + "start": 950.98, + "end": 952.68, + "probability": 0.8335 + }, + { + "start": 953.34, + "end": 954.04, + "probability": 0.9027 + }, + { + "start": 955.54, + "end": 958.88, + "probability": 0.9873 + }, + { + "start": 959.32, + "end": 966.0, + "probability": 0.9982 + }, + { + "start": 966.66, + "end": 970.02, + "probability": 0.9762 + }, + { + "start": 971.22, + "end": 971.22, + "probability": 0.5846 + }, + { + "start": 972.42, + "end": 975.14, + "probability": 0.8951 + }, + { + "start": 975.5, + "end": 979.76, + "probability": 0.9329 + }, + { + "start": 979.76, + "end": 983.22, + "probability": 0.9731 + }, + { + "start": 984.26, + "end": 987.5, + "probability": 0.9486 + }, + { + "start": 987.86, + "end": 988.94, + "probability": 0.8914 + }, + { + "start": 989.34, + "end": 991.14, + "probability": 0.7538 + }, + { + "start": 991.3, + "end": 992.92, + "probability": 0.7089 + }, + { + "start": 993.56, + "end": 997.0, + "probability": 0.8933 + }, + { + "start": 997.0, + "end": 1000.5, + "probability": 0.8887 + }, + { + "start": 1000.78, + "end": 1001.52, + "probability": 0.736 + }, + { + "start": 1001.7, + "end": 1002.82, + "probability": 0.9531 + }, + { + "start": 1003.3, + "end": 1006.04, + "probability": 0.9868 + }, + { + "start": 1007.74, + "end": 1008.68, + "probability": 0.8904 + }, + { + "start": 1009.32, + "end": 1011.76, + "probability": 0.7761 + }, + { + "start": 1012.18, + "end": 1016.44, + "probability": 0.9972 + }, + { + "start": 1016.7, + "end": 1018.46, + "probability": 0.9351 + }, + { + "start": 1018.98, + "end": 1021.58, + "probability": 0.5029 + }, + { + "start": 1022.14, + "end": 1023.44, + "probability": 0.8975 + }, + { + "start": 1023.78, + "end": 1025.62, + "probability": 0.831 + }, + { + "start": 1026.0, + "end": 1031.06, + "probability": 0.741 + }, + { + "start": 1031.54, + "end": 1032.66, + "probability": 0.9714 + }, + { + "start": 1032.74, + "end": 1034.62, + "probability": 0.935 + }, + { + "start": 1034.72, + "end": 1038.54, + "probability": 0.9842 + }, + { + "start": 1039.04, + "end": 1040.38, + "probability": 0.9884 + }, + { + "start": 1040.64, + "end": 1040.9, + "probability": 0.8733 + }, + { + "start": 1040.98, + "end": 1042.62, + "probability": 0.9684 + }, + { + "start": 1042.98, + "end": 1045.62, + "probability": 0.9967 + }, + { + "start": 1045.62, + "end": 1052.24, + "probability": 0.8213 + }, + { + "start": 1052.38, + "end": 1055.92, + "probability": 0.9088 + }, + { + "start": 1056.48, + "end": 1060.22, + "probability": 0.9906 + }, + { + "start": 1060.22, + "end": 1064.7, + "probability": 0.9348 + }, + { + "start": 1064.82, + "end": 1065.72, + "probability": 0.9907 + }, + { + "start": 1065.82, + "end": 1066.64, + "probability": 0.9825 + }, + { + "start": 1066.7, + "end": 1068.72, + "probability": 0.9656 + }, + { + "start": 1069.78, + "end": 1071.7, + "probability": 0.703 + }, + { + "start": 1071.85, + "end": 1074.12, + "probability": 0.9941 + }, + { + "start": 1074.82, + "end": 1075.92, + "probability": 0.9573 + }, + { + "start": 1075.96, + "end": 1076.58, + "probability": 0.7503 + }, + { + "start": 1076.7, + "end": 1078.64, + "probability": 0.9374 + }, + { + "start": 1079.06, + "end": 1083.28, + "probability": 0.9156 + }, + { + "start": 1083.48, + "end": 1084.38, + "probability": 0.9287 + }, + { + "start": 1085.16, + "end": 1086.52, + "probability": 0.3624 + }, + { + "start": 1086.6, + "end": 1089.92, + "probability": 0.6208 + }, + { + "start": 1090.64, + "end": 1092.48, + "probability": 0.9888 + }, + { + "start": 1092.5, + "end": 1092.9, + "probability": 0.6946 + }, + { + "start": 1092.98, + "end": 1094.38, + "probability": 0.9627 + }, + { + "start": 1094.82, + "end": 1098.86, + "probability": 0.6383 + }, + { + "start": 1098.94, + "end": 1102.72, + "probability": 0.9941 + }, + { + "start": 1103.32, + "end": 1107.22, + "probability": 0.9986 + }, + { + "start": 1107.82, + "end": 1108.32, + "probability": 0.6387 + }, + { + "start": 1108.44, + "end": 1109.46, + "probability": 0.9578 + }, + { + "start": 1109.56, + "end": 1110.8, + "probability": 0.7536 + }, + { + "start": 1110.94, + "end": 1111.52, + "probability": 0.3467 + }, + { + "start": 1111.52, + "end": 1113.06, + "probability": 0.5443 + }, + { + "start": 1115.32, + "end": 1115.4, + "probability": 0.0171 + }, + { + "start": 1115.4, + "end": 1115.51, + "probability": 0.0944 + }, + { + "start": 1116.18, + "end": 1116.58, + "probability": 0.7619 + }, + { + "start": 1116.58, + "end": 1118.1, + "probability": 0.8691 + }, + { + "start": 1118.16, + "end": 1119.86, + "probability": 0.3745 + }, + { + "start": 1120.02, + "end": 1121.2, + "probability": 0.8219 + }, + { + "start": 1121.5, + "end": 1122.66, + "probability": 0.912 + }, + { + "start": 1123.02, + "end": 1124.88, + "probability": 0.9683 + }, + { + "start": 1125.1, + "end": 1125.82, + "probability": 0.9113 + }, + { + "start": 1138.76, + "end": 1138.96, + "probability": 0.8164 + }, + { + "start": 1139.86, + "end": 1139.94, + "probability": 0.0855 + }, + { + "start": 1139.94, + "end": 1140.74, + "probability": 0.1075 + }, + { + "start": 1140.82, + "end": 1143.56, + "probability": 0.694 + }, + { + "start": 1144.18, + "end": 1148.6, + "probability": 0.8394 + }, + { + "start": 1149.44, + "end": 1150.46, + "probability": 0.6097 + }, + { + "start": 1150.48, + "end": 1152.2, + "probability": 0.7598 + }, + { + "start": 1152.34, + "end": 1153.06, + "probability": 0.5511 + }, + { + "start": 1153.18, + "end": 1154.79, + "probability": 0.76 + }, + { + "start": 1155.86, + "end": 1160.18, + "probability": 0.8719 + }, + { + "start": 1160.88, + "end": 1165.08, + "probability": 0.9799 + }, + { + "start": 1165.84, + "end": 1170.54, + "probability": 0.9213 + }, + { + "start": 1170.54, + "end": 1175.82, + "probability": 0.99 + }, + { + "start": 1175.82, + "end": 1181.44, + "probability": 0.9775 + }, + { + "start": 1181.92, + "end": 1184.94, + "probability": 0.9989 + }, + { + "start": 1185.96, + "end": 1187.82, + "probability": 0.9878 + }, + { + "start": 1188.0, + "end": 1190.0, + "probability": 0.9935 + }, + { + "start": 1190.52, + "end": 1193.38, + "probability": 0.9555 + }, + { + "start": 1194.54, + "end": 1195.8, + "probability": 0.9771 + }, + { + "start": 1195.96, + "end": 1196.22, + "probability": 0.6524 + }, + { + "start": 1196.38, + "end": 1200.68, + "probability": 0.7859 + }, + { + "start": 1201.02, + "end": 1202.82, + "probability": 0.9756 + }, + { + "start": 1203.3, + "end": 1204.19, + "probability": 0.9136 + }, + { + "start": 1204.9, + "end": 1206.26, + "probability": 0.6864 + }, + { + "start": 1206.64, + "end": 1207.9, + "probability": 0.865 + }, + { + "start": 1208.94, + "end": 1211.74, + "probability": 0.9559 + }, + { + "start": 1211.78, + "end": 1211.98, + "probability": 0.7259 + }, + { + "start": 1212.06, + "end": 1214.5, + "probability": 0.9919 + }, + { + "start": 1215.38, + "end": 1218.16, + "probability": 0.7272 + }, + { + "start": 1218.68, + "end": 1220.74, + "probability": 0.8134 + }, + { + "start": 1221.26, + "end": 1222.06, + "probability": 0.6953 + }, + { + "start": 1222.14, + "end": 1224.98, + "probability": 0.9204 + }, + { + "start": 1225.34, + "end": 1227.4, + "probability": 0.9642 + }, + { + "start": 1227.94, + "end": 1230.76, + "probability": 0.8357 + }, + { + "start": 1231.34, + "end": 1235.42, + "probability": 0.956 + }, + { + "start": 1235.6, + "end": 1237.0, + "probability": 0.9951 + }, + { + "start": 1237.08, + "end": 1239.16, + "probability": 0.9238 + }, + { + "start": 1241.08, + "end": 1243.9, + "probability": 0.9808 + }, + { + "start": 1244.32, + "end": 1246.23, + "probability": 0.9531 + }, + { + "start": 1246.52, + "end": 1247.78, + "probability": 0.8281 + }, + { + "start": 1247.94, + "end": 1249.06, + "probability": 0.4848 + }, + { + "start": 1249.12, + "end": 1249.88, + "probability": 0.8592 + }, + { + "start": 1249.9, + "end": 1250.48, + "probability": 0.707 + }, + { + "start": 1251.3, + "end": 1259.03, + "probability": 0.8003 + }, + { + "start": 1259.68, + "end": 1260.17, + "probability": 0.6201 + }, + { + "start": 1261.14, + "end": 1262.44, + "probability": 0.9058 + }, + { + "start": 1263.1, + "end": 1265.72, + "probability": 0.9919 + }, + { + "start": 1266.88, + "end": 1267.82, + "probability": 0.933 + }, + { + "start": 1268.2, + "end": 1269.36, + "probability": 0.9957 + }, + { + "start": 1269.5, + "end": 1270.46, + "probability": 0.9169 + }, + { + "start": 1271.5, + "end": 1273.34, + "probability": 0.9658 + }, + { + "start": 1273.86, + "end": 1278.7, + "probability": 0.8894 + }, + { + "start": 1279.34, + "end": 1280.92, + "probability": 0.994 + }, + { + "start": 1281.2, + "end": 1282.4, + "probability": 0.8943 + }, + { + "start": 1282.86, + "end": 1284.62, + "probability": 0.9089 + }, + { + "start": 1285.82, + "end": 1288.11, + "probability": 0.7998 + }, + { + "start": 1289.2, + "end": 1290.78, + "probability": 0.8859 + }, + { + "start": 1291.4, + "end": 1294.26, + "probability": 0.9483 + }, + { + "start": 1294.66, + "end": 1296.26, + "probability": 0.8596 + }, + { + "start": 1296.96, + "end": 1297.71, + "probability": 0.8611 + }, + { + "start": 1298.46, + "end": 1300.78, + "probability": 0.9297 + }, + { + "start": 1301.16, + "end": 1303.0, + "probability": 0.9211 + }, + { + "start": 1303.12, + "end": 1303.52, + "probability": 0.9121 + }, + { + "start": 1303.78, + "end": 1303.88, + "probability": 0.242 + }, + { + "start": 1304.36, + "end": 1305.22, + "probability": 0.9416 + }, + { + "start": 1305.98, + "end": 1307.14, + "probability": 0.9125 + }, + { + "start": 1307.2, + "end": 1309.04, + "probability": 0.933 + }, + { + "start": 1309.44, + "end": 1313.74, + "probability": 0.9907 + }, + { + "start": 1314.24, + "end": 1315.6, + "probability": 0.8254 + }, + { + "start": 1315.76, + "end": 1317.28, + "probability": 0.893 + }, + { + "start": 1318.02, + "end": 1319.78, + "probability": 0.9805 + }, + { + "start": 1320.18, + "end": 1322.58, + "probability": 0.8346 + }, + { + "start": 1322.84, + "end": 1323.58, + "probability": 0.6208 + }, + { + "start": 1323.72, + "end": 1325.68, + "probability": 0.3414 + }, + { + "start": 1326.06, + "end": 1326.96, + "probability": 0.6444 + }, + { + "start": 1327.14, + "end": 1329.62, + "probability": 0.9629 + }, + { + "start": 1330.06, + "end": 1330.84, + "probability": 0.7771 + }, + { + "start": 1331.12, + "end": 1331.96, + "probability": 0.0282 + }, + { + "start": 1331.96, + "end": 1331.96, + "probability": 0.0564 + }, + { + "start": 1332.06, + "end": 1334.48, + "probability": 0.3326 + }, + { + "start": 1349.13, + "end": 1354.2, + "probability": 0.0225 + }, + { + "start": 1354.2, + "end": 1355.5, + "probability": 0.0948 + }, + { + "start": 1356.22, + "end": 1356.22, + "probability": 0.0567 + }, + { + "start": 1356.72, + "end": 1357.48, + "probability": 0.2433 + }, + { + "start": 1357.56, + "end": 1359.64, + "probability": 0.0386 + }, + { + "start": 1359.66, + "end": 1361.18, + "probability": 0.4848 + }, + { + "start": 1362.9, + "end": 1365.16, + "probability": 0.7616 + }, + { + "start": 1365.78, + "end": 1367.4, + "probability": 0.734 + }, + { + "start": 1368.88, + "end": 1370.5, + "probability": 0.9775 + }, + { + "start": 1372.18, + "end": 1374.05, + "probability": 0.797 + }, + { + "start": 1375.58, + "end": 1380.7, + "probability": 0.9402 + }, + { + "start": 1382.32, + "end": 1386.12, + "probability": 0.9869 + }, + { + "start": 1388.74, + "end": 1397.66, + "probability": 0.9272 + }, + { + "start": 1397.82, + "end": 1397.92, + "probability": 0.1644 + }, + { + "start": 1398.08, + "end": 1398.78, + "probability": 0.0292 + }, + { + "start": 1399.66, + "end": 1401.28, + "probability": 0.8369 + }, + { + "start": 1402.7, + "end": 1409.41, + "probability": 0.9197 + }, + { + "start": 1410.52, + "end": 1414.24, + "probability": 0.9604 + }, + { + "start": 1416.34, + "end": 1419.22, + "probability": 0.9209 + }, + { + "start": 1420.56, + "end": 1421.16, + "probability": 0.0035 + }, + { + "start": 1424.48, + "end": 1425.96, + "probability": 0.2896 + }, + { + "start": 1426.98, + "end": 1427.78, + "probability": 0.6839 + }, + { + "start": 1428.42, + "end": 1430.08, + "probability": 0.4016 + }, + { + "start": 1430.08, + "end": 1434.6, + "probability": 0.9481 + }, + { + "start": 1434.88, + "end": 1436.04, + "probability": 0.5348 + }, + { + "start": 1436.32, + "end": 1439.6, + "probability": 0.7317 + }, + { + "start": 1439.68, + "end": 1441.92, + "probability": 0.774 + }, + { + "start": 1442.22, + "end": 1443.19, + "probability": 0.9839 + }, + { + "start": 1443.86, + "end": 1445.76, + "probability": 0.8852 + }, + { + "start": 1446.16, + "end": 1448.92, + "probability": 0.432 + }, + { + "start": 1449.26, + "end": 1452.12, + "probability": 0.7535 + }, + { + "start": 1452.38, + "end": 1454.31, + "probability": 0.6681 + }, + { + "start": 1454.34, + "end": 1455.68, + "probability": 0.5844 + }, + { + "start": 1455.9, + "end": 1461.4, + "probability": 0.9526 + }, + { + "start": 1462.4, + "end": 1465.26, + "probability": 0.9907 + }, + { + "start": 1467.32, + "end": 1472.68, + "probability": 0.9951 + }, + { + "start": 1473.64, + "end": 1479.48, + "probability": 0.9966 + }, + { + "start": 1481.02, + "end": 1486.42, + "probability": 0.9779 + }, + { + "start": 1487.42, + "end": 1491.88, + "probability": 0.9749 + }, + { + "start": 1493.1, + "end": 1494.74, + "probability": 0.9854 + }, + { + "start": 1495.74, + "end": 1499.8, + "probability": 0.7197 + }, + { + "start": 1501.22, + "end": 1503.84, + "probability": 0.8856 + }, + { + "start": 1503.84, + "end": 1511.12, + "probability": 0.9714 + }, + { + "start": 1511.26, + "end": 1516.8, + "probability": 0.9331 + }, + { + "start": 1518.18, + "end": 1523.68, + "probability": 0.9339 + }, + { + "start": 1523.69, + "end": 1530.88, + "probability": 0.9985 + }, + { + "start": 1530.92, + "end": 1532.0, + "probability": 0.9194 + }, + { + "start": 1533.18, + "end": 1536.74, + "probability": 0.9964 + }, + { + "start": 1538.44, + "end": 1544.7, + "probability": 0.9775 + }, + { + "start": 1546.02, + "end": 1551.22, + "probability": 0.9954 + }, + { + "start": 1552.2, + "end": 1554.36, + "probability": 0.0617 + }, + { + "start": 1554.46, + "end": 1554.46, + "probability": 0.0647 + }, + { + "start": 1554.46, + "end": 1556.34, + "probability": 0.6373 + }, + { + "start": 1557.12, + "end": 1558.28, + "probability": 0.7382 + }, + { + "start": 1559.3, + "end": 1563.04, + "probability": 0.9471 + }, + { + "start": 1564.24, + "end": 1567.62, + "probability": 0.9574 + }, + { + "start": 1569.08, + "end": 1570.26, + "probability": 0.8457 + }, + { + "start": 1571.58, + "end": 1574.88, + "probability": 0.921 + }, + { + "start": 1576.24, + "end": 1577.0, + "probability": 0.7736 + }, + { + "start": 1578.02, + "end": 1579.24, + "probability": 0.8911 + }, + { + "start": 1580.12, + "end": 1584.24, + "probability": 0.9894 + }, + { + "start": 1584.9, + "end": 1588.52, + "probability": 0.8868 + }, + { + "start": 1589.1, + "end": 1592.5, + "probability": 0.9916 + }, + { + "start": 1593.66, + "end": 1595.58, + "probability": 0.9434 + }, + { + "start": 1597.24, + "end": 1599.92, + "probability": 0.9912 + }, + { + "start": 1599.98, + "end": 1601.08, + "probability": 0.0119 + }, + { + "start": 1601.24, + "end": 1603.06, + "probability": 0.186 + }, + { + "start": 1603.06, + "end": 1603.06, + "probability": 0.2084 + }, + { + "start": 1603.06, + "end": 1607.54, + "probability": 0.6437 + }, + { + "start": 1607.9, + "end": 1609.08, + "probability": 0.1082 + }, + { + "start": 1609.86, + "end": 1610.08, + "probability": 0.0019 + }, + { + "start": 1610.08, + "end": 1612.88, + "probability": 0.2652 + }, + { + "start": 1613.3, + "end": 1614.4, + "probability": 0.8389 + }, + { + "start": 1615.16, + "end": 1620.08, + "probability": 0.929 + }, + { + "start": 1620.24, + "end": 1623.9, + "probability": 0.2194 + }, + { + "start": 1624.38, + "end": 1625.82, + "probability": 0.6289 + }, + { + "start": 1626.14, + "end": 1628.5, + "probability": 0.7281 + }, + { + "start": 1628.6, + "end": 1629.54, + "probability": 0.5421 + }, + { + "start": 1630.14, + "end": 1630.94, + "probability": 0.0498 + }, + { + "start": 1630.94, + "end": 1632.94, + "probability": 0.5303 + }, + { + "start": 1632.94, + "end": 1637.27, + "probability": 0.6706 + }, + { + "start": 1637.54, + "end": 1638.02, + "probability": 0.0838 + }, + { + "start": 1638.02, + "end": 1638.02, + "probability": 0.3037 + }, + { + "start": 1638.16, + "end": 1641.14, + "probability": 0.6216 + }, + { + "start": 1641.34, + "end": 1642.72, + "probability": 0.9724 + }, + { + "start": 1642.98, + "end": 1644.36, + "probability": 0.94 + }, + { + "start": 1644.44, + "end": 1645.88, + "probability": 0.8817 + }, + { + "start": 1645.88, + "end": 1648.66, + "probability": 0.946 + }, + { + "start": 1649.1, + "end": 1650.24, + "probability": 0.7811 + }, + { + "start": 1651.06, + "end": 1653.5, + "probability": 0.9251 + }, + { + "start": 1653.64, + "end": 1661.1, + "probability": 0.6904 + }, + { + "start": 1661.76, + "end": 1663.72, + "probability": 0.9165 + }, + { + "start": 1664.5, + "end": 1666.76, + "probability": 0.9955 + }, + { + "start": 1667.96, + "end": 1669.68, + "probability": 0.9831 + }, + { + "start": 1670.54, + "end": 1672.74, + "probability": 0.8873 + }, + { + "start": 1672.96, + "end": 1677.2, + "probability": 0.9733 + }, + { + "start": 1677.56, + "end": 1679.0, + "probability": 0.8351 + }, + { + "start": 1679.72, + "end": 1682.6, + "probability": 0.9697 + }, + { + "start": 1683.2, + "end": 1687.8, + "probability": 0.9855 + }, + { + "start": 1688.32, + "end": 1689.76, + "probability": 0.9176 + }, + { + "start": 1690.0, + "end": 1690.0, + "probability": 0.0239 + }, + { + "start": 1690.0, + "end": 1690.0, + "probability": 0.4134 + }, + { + "start": 1690.0, + "end": 1692.82, + "probability": 0.7211 + }, + { + "start": 1693.14, + "end": 1693.9, + "probability": 0.5429 + }, + { + "start": 1694.26, + "end": 1696.0, + "probability": 0.9571 + }, + { + "start": 1696.68, + "end": 1698.95, + "probability": 0.8538 + }, + { + "start": 1699.92, + "end": 1703.38, + "probability": 0.9801 + }, + { + "start": 1703.98, + "end": 1711.12, + "probability": 0.6437 + }, + { + "start": 1711.2, + "end": 1712.43, + "probability": 0.8604 + }, + { + "start": 1712.72, + "end": 1714.23, + "probability": 0.85 + }, + { + "start": 1714.78, + "end": 1715.34, + "probability": 0.7241 + }, + { + "start": 1715.38, + "end": 1716.43, + "probability": 0.9587 + }, + { + "start": 1716.96, + "end": 1719.98, + "probability": 0.7926 + }, + { + "start": 1720.26, + "end": 1722.78, + "probability": 0.9811 + }, + { + "start": 1723.02, + "end": 1723.74, + "probability": 0.7299 + }, + { + "start": 1725.12, + "end": 1727.42, + "probability": 0.5735 + }, + { + "start": 1730.04, + "end": 1733.86, + "probability": 0.2479 + }, + { + "start": 1734.08, + "end": 1735.48, + "probability": 0.2637 + }, + { + "start": 1736.14, + "end": 1736.54, + "probability": 0.1929 + }, + { + "start": 1736.64, + "end": 1736.84, + "probability": 0.2223 + }, + { + "start": 1737.02, + "end": 1737.6, + "probability": 0.5128 + }, + { + "start": 1737.76, + "end": 1738.52, + "probability": 0.6542 + }, + { + "start": 1738.52, + "end": 1740.94, + "probability": 0.7601 + }, + { + "start": 1741.3, + "end": 1743.44, + "probability": 0.9653 + }, + { + "start": 1743.58, + "end": 1744.8, + "probability": 0.3725 + }, + { + "start": 1745.68, + "end": 1748.42, + "probability": 0.1907 + }, + { + "start": 1749.76, + "end": 1751.98, + "probability": 0.6311 + }, + { + "start": 1752.08, + "end": 1752.2, + "probability": 0.3816 + }, + { + "start": 1752.28, + "end": 1752.92, + "probability": 0.356 + }, + { + "start": 1753.18, + "end": 1755.8, + "probability": 0.9293 + }, + { + "start": 1755.98, + "end": 1756.8, + "probability": 0.917 + }, + { + "start": 1757.48, + "end": 1760.88, + "probability": 0.7883 + }, + { + "start": 1761.12, + "end": 1762.14, + "probability": 0.8511 + }, + { + "start": 1762.84, + "end": 1765.64, + "probability": 0.9756 + }, + { + "start": 1767.28, + "end": 1771.66, + "probability": 0.9863 + }, + { + "start": 1772.52, + "end": 1776.41, + "probability": 0.9893 + }, + { + "start": 1776.68, + "end": 1781.74, + "probability": 0.8708 + }, + { + "start": 1782.38, + "end": 1784.42, + "probability": 0.996 + }, + { + "start": 1785.42, + "end": 1788.22, + "probability": 0.9814 + }, + { + "start": 1789.52, + "end": 1792.26, + "probability": 0.848 + }, + { + "start": 1793.24, + "end": 1795.62, + "probability": 0.6412 + }, + { + "start": 1795.9, + "end": 1798.66, + "probability": 0.9955 + }, + { + "start": 1798.72, + "end": 1799.0, + "probability": 0.4694 + }, + { + "start": 1799.6, + "end": 1800.92, + "probability": 0.7057 + }, + { + "start": 1801.0, + "end": 1802.44, + "probability": 0.996 + }, + { + "start": 1802.52, + "end": 1802.58, + "probability": 0.3716 + }, + { + "start": 1802.74, + "end": 1804.32, + "probability": 0.466 + }, + { + "start": 1804.4, + "end": 1804.88, + "probability": 0.8697 + }, + { + "start": 1805.02, + "end": 1813.2, + "probability": 0.6092 + }, + { + "start": 1813.28, + "end": 1814.26, + "probability": 0.7544 + }, + { + "start": 1815.92, + "end": 1819.26, + "probability": 0.747 + }, + { + "start": 1819.26, + "end": 1820.64, + "probability": 0.1409 + }, + { + "start": 1821.04, + "end": 1822.4, + "probability": 0.8166 + }, + { + "start": 1822.66, + "end": 1824.14, + "probability": 0.9248 + }, + { + "start": 1824.28, + "end": 1825.26, + "probability": 0.8534 + }, + { + "start": 1826.08, + "end": 1831.1, + "probability": 0.9782 + }, + { + "start": 1831.58, + "end": 1831.84, + "probability": 0.6473 + }, + { + "start": 1831.84, + "end": 1837.76, + "probability": 0.9115 + }, + { + "start": 1837.96, + "end": 1840.56, + "probability": 0.9567 + }, + { + "start": 1840.98, + "end": 1843.84, + "probability": 0.7141 + }, + { + "start": 1843.9, + "end": 1845.22, + "probability": 0.8909 + }, + { + "start": 1845.58, + "end": 1846.43, + "probability": 0.9863 + }, + { + "start": 1847.16, + "end": 1849.58, + "probability": 0.9927 + }, + { + "start": 1849.88, + "end": 1850.4, + "probability": 0.3881 + }, + { + "start": 1851.24, + "end": 1851.36, + "probability": 0.0411 + }, + { + "start": 1851.36, + "end": 1851.36, + "probability": 0.0028 + }, + { + "start": 1851.36, + "end": 1852.34, + "probability": 0.1838 + }, + { + "start": 1852.48, + "end": 1853.96, + "probability": 0.8013 + }, + { + "start": 1854.54, + "end": 1854.98, + "probability": 0.6495 + }, + { + "start": 1855.2, + "end": 1856.34, + "probability": 0.4895 + }, + { + "start": 1856.46, + "end": 1858.28, + "probability": 0.1951 + }, + { + "start": 1858.4, + "end": 1859.2, + "probability": 0.089 + }, + { + "start": 1860.36, + "end": 1862.4, + "probability": 0.7836 + }, + { + "start": 1862.6, + "end": 1865.98, + "probability": 0.2626 + }, + { + "start": 1866.0, + "end": 1868.04, + "probability": 0.8241 + }, + { + "start": 1868.34, + "end": 1868.84, + "probability": 0.6561 + }, + { + "start": 1870.02, + "end": 1874.22, + "probability": 0.9216 + }, + { + "start": 1875.86, + "end": 1881.96, + "probability": 0.9686 + }, + { + "start": 1882.4, + "end": 1885.18, + "probability": 0.93 + }, + { + "start": 1885.52, + "end": 1894.66, + "probability": 0.9977 + }, + { + "start": 1895.74, + "end": 1896.6, + "probability": 0.8248 + }, + { + "start": 1896.76, + "end": 1898.26, + "probability": 0.8631 + }, + { + "start": 1899.92, + "end": 1901.8, + "probability": 0.8616 + }, + { + "start": 1902.0, + "end": 1904.08, + "probability": 0.8841 + }, + { + "start": 1904.76, + "end": 1908.5, + "probability": 0.966 + }, + { + "start": 1908.9, + "end": 1910.4, + "probability": 0.9037 + }, + { + "start": 1910.92, + "end": 1912.44, + "probability": 0.8022 + }, + { + "start": 1913.56, + "end": 1919.82, + "probability": 0.9578 + }, + { + "start": 1920.58, + "end": 1925.82, + "probability": 0.9802 + }, + { + "start": 1926.18, + "end": 1927.72, + "probability": 0.9853 + }, + { + "start": 1928.62, + "end": 1931.0, + "probability": 0.9973 + }, + { + "start": 1931.22, + "end": 1932.14, + "probability": 0.8987 + }, + { + "start": 1932.3, + "end": 1938.64, + "probability": 0.9116 + }, + { + "start": 1939.26, + "end": 1940.72, + "probability": 0.9025 + }, + { + "start": 1940.82, + "end": 1941.12, + "probability": 0.3738 + }, + { + "start": 1941.26, + "end": 1942.76, + "probability": 0.8365 + }, + { + "start": 1943.18, + "end": 1944.34, + "probability": 0.9978 + }, + { + "start": 1944.8, + "end": 1946.36, + "probability": 0.9741 + }, + { + "start": 1948.04, + "end": 1949.72, + "probability": 0.9803 + }, + { + "start": 1949.72, + "end": 1952.2, + "probability": 0.9557 + }, + { + "start": 1952.38, + "end": 1954.16, + "probability": 0.7646 + }, + { + "start": 1955.4, + "end": 1959.82, + "probability": 0.6131 + }, + { + "start": 1959.82, + "end": 1961.6, + "probability": 0.8475 + }, + { + "start": 1962.3, + "end": 1965.86, + "probability": 0.8525 + }, + { + "start": 1966.54, + "end": 1968.1, + "probability": 0.7074 + }, + { + "start": 1968.24, + "end": 1969.7, + "probability": 0.587 + }, + { + "start": 1970.24, + "end": 1975.2, + "probability": 0.9767 + }, + { + "start": 1975.62, + "end": 1977.42, + "probability": 0.9956 + }, + { + "start": 1977.72, + "end": 1981.04, + "probability": 0.9896 + }, + { + "start": 1981.48, + "end": 1982.9, + "probability": 0.9725 + }, + { + "start": 1983.7, + "end": 1985.22, + "probability": 0.8784 + }, + { + "start": 1985.6, + "end": 1987.26, + "probability": 0.9909 + }, + { + "start": 1988.22, + "end": 1990.26, + "probability": 0.924 + }, + { + "start": 1990.36, + "end": 1991.54, + "probability": 0.7909 + }, + { + "start": 1991.66, + "end": 1992.18, + "probability": 0.7074 + }, + { + "start": 1992.54, + "end": 1993.86, + "probability": 0.7549 + }, + { + "start": 1996.31, + "end": 1999.52, + "probability": 0.7917 + }, + { + "start": 1999.52, + "end": 2000.94, + "probability": 0.8809 + }, + { + "start": 2001.18, + "end": 2003.92, + "probability": 0.9004 + }, + { + "start": 2004.76, + "end": 2006.96, + "probability": 0.7881 + }, + { + "start": 2007.02, + "end": 2010.82, + "probability": 0.9765 + }, + { + "start": 2011.04, + "end": 2012.2, + "probability": 0.9716 + }, + { + "start": 2012.34, + "end": 2013.7, + "probability": 0.8543 + }, + { + "start": 2013.74, + "end": 2016.24, + "probability": 0.8838 + }, + { + "start": 2016.3, + "end": 2020.94, + "probability": 0.9753 + }, + { + "start": 2020.94, + "end": 2024.52, + "probability": 0.6139 + }, + { + "start": 2024.56, + "end": 2025.34, + "probability": 0.6655 + }, + { + "start": 2025.42, + "end": 2026.22, + "probability": 0.5726 + }, + { + "start": 2026.66, + "end": 2027.04, + "probability": 0.726 + }, + { + "start": 2027.98, + "end": 2030.5, + "probability": 0.9897 + }, + { + "start": 2031.32, + "end": 2034.44, + "probability": 0.9626 + }, + { + "start": 2034.74, + "end": 2037.42, + "probability": 0.9744 + }, + { + "start": 2038.76, + "end": 2043.2, + "probability": 0.9716 + }, + { + "start": 2043.9, + "end": 2050.74, + "probability": 0.957 + }, + { + "start": 2052.28, + "end": 2057.0, + "probability": 0.9868 + }, + { + "start": 2057.46, + "end": 2058.76, + "probability": 0.8349 + }, + { + "start": 2059.22, + "end": 2060.34, + "probability": 0.8508 + }, + { + "start": 2061.2, + "end": 2063.86, + "probability": 0.0477 + }, + { + "start": 2064.74, + "end": 2066.34, + "probability": 0.7694 + }, + { + "start": 2067.06, + "end": 2068.8, + "probability": 0.5258 + }, + { + "start": 2069.42, + "end": 2072.96, + "probability": 0.9937 + }, + { + "start": 2074.9, + "end": 2080.84, + "probability": 0.9972 + }, + { + "start": 2081.4, + "end": 2082.54, + "probability": 0.9673 + }, + { + "start": 2084.08, + "end": 2089.54, + "probability": 0.9891 + }, + { + "start": 2090.1, + "end": 2092.12, + "probability": 0.9986 + }, + { + "start": 2093.06, + "end": 2100.6, + "probability": 0.9929 + }, + { + "start": 2100.68, + "end": 2101.58, + "probability": 0.6735 + }, + { + "start": 2101.76, + "end": 2103.05, + "probability": 0.3438 + }, + { + "start": 2104.24, + "end": 2109.74, + "probability": 0.8672 + }, + { + "start": 2110.18, + "end": 2114.12, + "probability": 0.9929 + }, + { + "start": 2114.76, + "end": 2116.44, + "probability": 0.9864 + }, + { + "start": 2116.58, + "end": 2117.08, + "probability": 0.5145 + }, + { + "start": 2117.26, + "end": 2118.04, + "probability": 0.9059 + }, + { + "start": 2118.3, + "end": 2119.63, + "probability": 0.7052 + }, + { + "start": 2120.42, + "end": 2121.92, + "probability": 0.7617 + }, + { + "start": 2122.7, + "end": 2123.84, + "probability": 0.3617 + }, + { + "start": 2123.9, + "end": 2127.14, + "probability": 0.2358 + }, + { + "start": 2127.4, + "end": 2129.8, + "probability": 0.9428 + }, + { + "start": 2129.8, + "end": 2130.34, + "probability": 0.8406 + }, + { + "start": 2130.86, + "end": 2131.16, + "probability": 0.0006 + }, + { + "start": 2131.2, + "end": 2132.58, + "probability": 0.4069 + }, + { + "start": 2132.58, + "end": 2136.54, + "probability": 0.8739 + }, + { + "start": 2137.28, + "end": 2137.66, + "probability": 0.5858 + }, + { + "start": 2137.76, + "end": 2139.62, + "probability": 0.9727 + }, + { + "start": 2139.66, + "end": 2141.4, + "probability": 0.9766 + }, + { + "start": 2141.5, + "end": 2143.04, + "probability": 0.6664 + }, + { + "start": 2143.74, + "end": 2144.26, + "probability": 0.6344 + }, + { + "start": 2144.32, + "end": 2145.66, + "probability": 0.8889 + }, + { + "start": 2145.98, + "end": 2147.62, + "probability": 0.8441 + }, + { + "start": 2148.52, + "end": 2150.82, + "probability": 0.4916 + }, + { + "start": 2150.88, + "end": 2155.04, + "probability": 0.7958 + }, + { + "start": 2155.14, + "end": 2156.03, + "probability": 0.7482 + }, + { + "start": 2157.2, + "end": 2159.92, + "probability": 0.949 + }, + { + "start": 2160.64, + "end": 2164.92, + "probability": 0.9666 + }, + { + "start": 2165.82, + "end": 2167.7, + "probability": 0.8987 + }, + { + "start": 2167.74, + "end": 2170.72, + "probability": 0.8933 + }, + { + "start": 2171.3, + "end": 2174.12, + "probability": 0.9865 + }, + { + "start": 2174.5, + "end": 2175.32, + "probability": 0.6542 + }, + { + "start": 2175.46, + "end": 2176.1, + "probability": 0.8551 + }, + { + "start": 2176.72, + "end": 2177.55, + "probability": 0.5125 + }, + { + "start": 2178.6, + "end": 2184.64, + "probability": 0.8741 + }, + { + "start": 2185.6, + "end": 2190.4, + "probability": 0.9818 + }, + { + "start": 2190.76, + "end": 2192.56, + "probability": 0.7167 + }, + { + "start": 2193.52, + "end": 2194.24, + "probability": 0.3423 + }, + { + "start": 2194.84, + "end": 2197.66, + "probability": 0.8694 + }, + { + "start": 2197.66, + "end": 2200.28, + "probability": 0.648 + }, + { + "start": 2200.46, + "end": 2204.72, + "probability": 0.8155 + }, + { + "start": 2204.78, + "end": 2205.5, + "probability": 0.8002 + }, + { + "start": 2205.88, + "end": 2209.0, + "probability": 0.7262 + }, + { + "start": 2209.98, + "end": 2211.28, + "probability": 0.9663 + }, + { + "start": 2214.24, + "end": 2216.78, + "probability": 0.9932 + }, + { + "start": 2216.92, + "end": 2217.26, + "probability": 0.0906 + }, + { + "start": 2217.42, + "end": 2218.94, + "probability": 0.0827 + }, + { + "start": 2219.0, + "end": 2219.96, + "probability": 0.4337 + }, + { + "start": 2220.16, + "end": 2222.14, + "probability": 0.6941 + }, + { + "start": 2222.14, + "end": 2222.14, + "probability": 0.0049 + }, + { + "start": 2222.3, + "end": 2227.12, + "probability": 0.9493 + }, + { + "start": 2229.82, + "end": 2230.58, + "probability": 0.0798 + }, + { + "start": 2231.38, + "end": 2232.46, + "probability": 0.0787 + }, + { + "start": 2232.46, + "end": 2232.46, + "probability": 0.1251 + }, + { + "start": 2232.46, + "end": 2233.02, + "probability": 0.7871 + }, + { + "start": 2233.58, + "end": 2234.39, + "probability": 0.6885 + }, + { + "start": 2234.82, + "end": 2236.04, + "probability": 0.564 + }, + { + "start": 2236.08, + "end": 2237.1, + "probability": 0.8797 + }, + { + "start": 2237.38, + "end": 2240.66, + "probability": 0.8983 + }, + { + "start": 2242.58, + "end": 2242.7, + "probability": 0.0638 + }, + { + "start": 2242.7, + "end": 2243.0, + "probability": 0.0333 + }, + { + "start": 2243.0, + "end": 2243.58, + "probability": 0.2638 + }, + { + "start": 2243.66, + "end": 2244.22, + "probability": 0.0865 + }, + { + "start": 2244.22, + "end": 2245.44, + "probability": 0.1756 + }, + { + "start": 2245.44, + "end": 2247.08, + "probability": 0.9144 + }, + { + "start": 2247.16, + "end": 2248.98, + "probability": 0.9675 + }, + { + "start": 2249.3, + "end": 2251.16, + "probability": 0.9108 + }, + { + "start": 2251.24, + "end": 2252.48, + "probability": 0.5941 + }, + { + "start": 2252.48, + "end": 2254.62, + "probability": 0.1436 + }, + { + "start": 2254.62, + "end": 2256.14, + "probability": 0.6932 + }, + { + "start": 2257.02, + "end": 2259.14, + "probability": 0.2538 + }, + { + "start": 2259.42, + "end": 2261.12, + "probability": 0.8246 + }, + { + "start": 2261.2, + "end": 2264.76, + "probability": 0.594 + }, + { + "start": 2264.98, + "end": 2266.92, + "probability": 0.6023 + }, + { + "start": 2267.08, + "end": 2268.32, + "probability": 0.4164 + }, + { + "start": 2268.78, + "end": 2271.16, + "probability": 0.2661 + }, + { + "start": 2271.26, + "end": 2273.65, + "probability": 0.333 + }, + { + "start": 2274.71, + "end": 2277.14, + "probability": 0.4976 + }, + { + "start": 2277.36, + "end": 2278.52, + "probability": 0.8606 + }, + { + "start": 2278.6, + "end": 2280.06, + "probability": 0.3412 + }, + { + "start": 2280.06, + "end": 2282.06, + "probability": 0.512 + }, + { + "start": 2283.24, + "end": 2284.8, + "probability": 0.1591 + }, + { + "start": 2284.8, + "end": 2287.52, + "probability": 0.7863 + }, + { + "start": 2287.84, + "end": 2289.53, + "probability": 0.7131 + }, + { + "start": 2290.98, + "end": 2291.4, + "probability": 0.0526 + }, + { + "start": 2291.4, + "end": 2292.06, + "probability": 0.6342 + }, + { + "start": 2292.22, + "end": 2294.0, + "probability": 0.9672 + }, + { + "start": 2294.4, + "end": 2296.9, + "probability": 0.7932 + }, + { + "start": 2297.58, + "end": 2299.0, + "probability": 0.8016 + }, + { + "start": 2299.18, + "end": 2303.62, + "probability": 0.9072 + }, + { + "start": 2303.78, + "end": 2304.62, + "probability": 0.7415 + }, + { + "start": 2304.82, + "end": 2307.28, + "probability": 0.9951 + }, + { + "start": 2307.38, + "end": 2308.3, + "probability": 0.9829 + }, + { + "start": 2308.9, + "end": 2310.22, + "probability": 0.9951 + }, + { + "start": 2311.9, + "end": 2313.36, + "probability": 0.5372 + }, + { + "start": 2313.36, + "end": 2313.7, + "probability": 0.0789 + }, + { + "start": 2313.84, + "end": 2314.26, + "probability": 0.7001 + }, + { + "start": 2314.42, + "end": 2317.54, + "probability": 0.6029 + }, + { + "start": 2317.54, + "end": 2317.54, + "probability": 0.0055 + }, + { + "start": 2319.46, + "end": 2320.14, + "probability": 0.032 + }, + { + "start": 2320.14, + "end": 2320.14, + "probability": 0.0556 + }, + { + "start": 2320.14, + "end": 2320.63, + "probability": 0.2283 + }, + { + "start": 2322.8, + "end": 2323.02, + "probability": 0.3481 + }, + { + "start": 2323.24, + "end": 2323.74, + "probability": 0.6181 + }, + { + "start": 2323.76, + "end": 2324.52, + "probability": 0.6794 + }, + { + "start": 2324.52, + "end": 2326.24, + "probability": 0.8239 + }, + { + "start": 2326.8, + "end": 2327.92, + "probability": 0.9736 + }, + { + "start": 2328.82, + "end": 2328.82, + "probability": 0.1411 + }, + { + "start": 2331.48, + "end": 2332.36, + "probability": 0.1623 + }, + { + "start": 2332.72, + "end": 2332.84, + "probability": 0.209 + }, + { + "start": 2332.84, + "end": 2334.2, + "probability": 0.9232 + }, + { + "start": 2335.68, + "end": 2340.54, + "probability": 0.9442 + }, + { + "start": 2340.54, + "end": 2344.66, + "probability": 0.9841 + }, + { + "start": 2344.8, + "end": 2347.34, + "probability": 0.9396 + }, + { + "start": 2347.94, + "end": 2351.22, + "probability": 0.8247 + }, + { + "start": 2352.52, + "end": 2354.34, + "probability": 0.7535 + }, + { + "start": 2355.02, + "end": 2359.72, + "probability": 0.5585 + }, + { + "start": 2360.74, + "end": 2364.58, + "probability": 0.5194 + }, + { + "start": 2365.2, + "end": 2368.34, + "probability": 0.8359 + }, + { + "start": 2368.84, + "end": 2371.4, + "probability": 0.8583 + }, + { + "start": 2371.78, + "end": 2373.88, + "probability": 0.9902 + }, + { + "start": 2374.84, + "end": 2376.08, + "probability": 0.8457 + }, + { + "start": 2376.7, + "end": 2377.64, + "probability": 0.9884 + }, + { + "start": 2378.28, + "end": 2378.82, + "probability": 0.3768 + }, + { + "start": 2378.9, + "end": 2381.74, + "probability": 0.4815 + }, + { + "start": 2382.28, + "end": 2384.84, + "probability": 0.616 + }, + { + "start": 2384.86, + "end": 2386.2, + "probability": 0.7308 + }, + { + "start": 2386.56, + "end": 2387.63, + "probability": 0.0273 + }, + { + "start": 2391.5, + "end": 2392.22, + "probability": 0.4865 + }, + { + "start": 2392.68, + "end": 2393.66, + "probability": 0.3399 + }, + { + "start": 2394.04, + "end": 2394.62, + "probability": 0.0198 + }, + { + "start": 2396.0, + "end": 2398.5, + "probability": 0.7225 + }, + { + "start": 2398.62, + "end": 2400.1, + "probability": 0.7018 + }, + { + "start": 2400.2, + "end": 2401.42, + "probability": 0.9333 + }, + { + "start": 2401.89, + "end": 2404.76, + "probability": 0.9832 + }, + { + "start": 2404.9, + "end": 2405.9, + "probability": 0.6847 + }, + { + "start": 2406.12, + "end": 2408.58, + "probability": 0.7444 + }, + { + "start": 2408.76, + "end": 2410.98, + "probability": 0.9826 + }, + { + "start": 2411.16, + "end": 2414.32, + "probability": 0.9751 + }, + { + "start": 2414.46, + "end": 2416.18, + "probability": 0.752 + }, + { + "start": 2416.18, + "end": 2416.26, + "probability": 0.2313 + }, + { + "start": 2416.34, + "end": 2416.96, + "probability": 0.5976 + }, + { + "start": 2417.08, + "end": 2417.65, + "probability": 0.9229 + }, + { + "start": 2418.02, + "end": 2418.5, + "probability": 0.7299 + }, + { + "start": 2418.54, + "end": 2419.98, + "probability": 0.9643 + }, + { + "start": 2420.04, + "end": 2420.8, + "probability": 0.5834 + }, + { + "start": 2421.34, + "end": 2423.66, + "probability": 0.8694 + }, + { + "start": 2423.84, + "end": 2424.56, + "probability": 0.8954 + }, + { + "start": 2425.3, + "end": 2426.06, + "probability": 0.7615 + }, + { + "start": 2426.18, + "end": 2428.0, + "probability": 0.7534 + }, + { + "start": 2428.0, + "end": 2428.4, + "probability": 0.4491 + }, + { + "start": 2433.54, + "end": 2434.88, + "probability": 0.6097 + }, + { + "start": 2435.82, + "end": 2437.4, + "probability": 0.779 + }, + { + "start": 2437.62, + "end": 2442.28, + "probability": 0.6331 + }, + { + "start": 2442.86, + "end": 2443.28, + "probability": 0.2535 + }, + { + "start": 2443.3, + "end": 2444.5, + "probability": 0.9477 + }, + { + "start": 2444.6, + "end": 2444.98, + "probability": 0.2244 + }, + { + "start": 2445.08, + "end": 2450.86, + "probability": 0.9316 + }, + { + "start": 2451.3, + "end": 2451.86, + "probability": 0.4124 + }, + { + "start": 2452.06, + "end": 2453.28, + "probability": 0.8955 + }, + { + "start": 2453.7, + "end": 2454.08, + "probability": 0.2421 + }, + { + "start": 2454.16, + "end": 2455.14, + "probability": 0.397 + }, + { + "start": 2455.48, + "end": 2455.84, + "probability": 0.2248 + }, + { + "start": 2455.92, + "end": 2460.22, + "probability": 0.9003 + }, + { + "start": 2460.22, + "end": 2464.48, + "probability": 0.6985 + }, + { + "start": 2465.04, + "end": 2467.7, + "probability": 0.9893 + }, + { + "start": 2468.44, + "end": 2474.5, + "probability": 0.9683 + }, + { + "start": 2475.2, + "end": 2478.98, + "probability": 0.9934 + }, + { + "start": 2479.76, + "end": 2481.8, + "probability": 0.8706 + }, + { + "start": 2481.98, + "end": 2483.34, + "probability": 0.4889 + }, + { + "start": 2483.68, + "end": 2484.02, + "probability": 0.8032 + }, + { + "start": 2484.44, + "end": 2486.08, + "probability": 0.8667 + }, + { + "start": 2486.22, + "end": 2486.68, + "probability": 0.3565 + }, + { + "start": 2487.18, + "end": 2488.12, + "probability": 0.9623 + }, + { + "start": 2488.2, + "end": 2490.52, + "probability": 0.8308 + }, + { + "start": 2491.16, + "end": 2493.4, + "probability": 0.0368 + }, + { + "start": 2493.4, + "end": 2494.17, + "probability": 0.6911 + }, + { + "start": 2494.9, + "end": 2496.3, + "probability": 0.3862 + }, + { + "start": 2497.38, + "end": 2498.62, + "probability": 0.9396 + }, + { + "start": 2498.96, + "end": 2502.74, + "probability": 0.9342 + }, + { + "start": 2502.88, + "end": 2503.34, + "probability": 0.5682 + }, + { + "start": 2503.76, + "end": 2505.08, + "probability": 0.6658 + }, + { + "start": 2505.18, + "end": 2506.32, + "probability": 0.9152 + }, + { + "start": 2506.9, + "end": 2509.16, + "probability": 0.6247 + }, + { + "start": 2510.22, + "end": 2511.48, + "probability": 0.9167 + }, + { + "start": 2511.62, + "end": 2514.02, + "probability": 0.8794 + }, + { + "start": 2514.06, + "end": 2515.52, + "probability": 0.9718 + }, + { + "start": 2515.72, + "end": 2519.06, + "probability": 0.9717 + }, + { + "start": 2519.76, + "end": 2521.08, + "probability": 0.5916 + }, + { + "start": 2521.28, + "end": 2523.18, + "probability": 0.9109 + }, + { + "start": 2523.86, + "end": 2525.58, + "probability": 0.8945 + }, + { + "start": 2525.74, + "end": 2527.86, + "probability": 0.9809 + }, + { + "start": 2528.56, + "end": 2531.6, + "probability": 0.988 + }, + { + "start": 2531.68, + "end": 2535.84, + "probability": 0.9253 + }, + { + "start": 2536.38, + "end": 2539.42, + "probability": 0.8386 + }, + { + "start": 2539.58, + "end": 2540.48, + "probability": 0.6264 + }, + { + "start": 2540.58, + "end": 2541.34, + "probability": 0.7 + }, + { + "start": 2541.52, + "end": 2543.58, + "probability": 0.67 + }, + { + "start": 2544.12, + "end": 2544.56, + "probability": 0.4547 + }, + { + "start": 2545.16, + "end": 2545.94, + "probability": 0.5059 + }, + { + "start": 2546.08, + "end": 2546.76, + "probability": 0.7561 + }, + { + "start": 2546.88, + "end": 2547.3, + "probability": 0.6268 + }, + { + "start": 2547.36, + "end": 2547.76, + "probability": 0.2597 + }, + { + "start": 2547.88, + "end": 2548.3, + "probability": 0.7772 + }, + { + "start": 2548.34, + "end": 2550.54, + "probability": 0.5375 + }, + { + "start": 2550.74, + "end": 2551.32, + "probability": 0.365 + }, + { + "start": 2551.44, + "end": 2551.86, + "probability": 0.6304 + }, + { + "start": 2551.9, + "end": 2552.74, + "probability": 0.9259 + }, + { + "start": 2552.86, + "end": 2553.34, + "probability": 0.6857 + }, + { + "start": 2553.4, + "end": 2555.56, + "probability": 0.7832 + }, + { + "start": 2556.24, + "end": 2558.0, + "probability": 0.8383 + }, + { + "start": 2558.0, + "end": 2559.72, + "probability": 0.8757 + }, + { + "start": 2560.74, + "end": 2562.6, + "probability": 0.7783 + }, + { + "start": 2563.45, + "end": 2567.92, + "probability": 0.8609 + }, + { + "start": 2568.88, + "end": 2571.7, + "probability": 0.9893 + }, + { + "start": 2571.78, + "end": 2574.2, + "probability": 0.9504 + }, + { + "start": 2574.84, + "end": 2578.64, + "probability": 0.9795 + }, + { + "start": 2578.74, + "end": 2580.86, + "probability": 0.7741 + }, + { + "start": 2581.38, + "end": 2583.02, + "probability": 0.9622 + }, + { + "start": 2583.72, + "end": 2585.84, + "probability": 0.9932 + }, + { + "start": 2586.74, + "end": 2590.08, + "probability": 0.7324 + }, + { + "start": 2590.6, + "end": 2592.62, + "probability": 0.3319 + }, + { + "start": 2592.68, + "end": 2595.04, + "probability": 0.5509 + }, + { + "start": 2595.7, + "end": 2596.52, + "probability": 0.7533 + }, + { + "start": 2596.68, + "end": 2599.06, + "probability": 0.6793 + }, + { + "start": 2600.26, + "end": 2602.54, + "probability": 0.9797 + }, + { + "start": 2602.54, + "end": 2604.5, + "probability": 0.8411 + }, + { + "start": 2605.36, + "end": 2608.84, + "probability": 0.8221 + }, + { + "start": 2609.6, + "end": 2613.32, + "probability": 0.7546 + }, + { + "start": 2614.02, + "end": 2615.92, + "probability": 0.738 + }, + { + "start": 2616.4, + "end": 2619.28, + "probability": 0.888 + }, + { + "start": 2620.12, + "end": 2620.6, + "probability": 0.9089 + }, + { + "start": 2620.7, + "end": 2622.28, + "probability": 0.6331 + }, + { + "start": 2622.74, + "end": 2624.28, + "probability": 0.9073 + }, + { + "start": 2624.76, + "end": 2627.62, + "probability": 0.9894 + }, + { + "start": 2627.7, + "end": 2632.22, + "probability": 0.9313 + }, + { + "start": 2633.38, + "end": 2636.84, + "probability": 0.4483 + }, + { + "start": 2636.96, + "end": 2642.34, + "probability": 0.9541 + }, + { + "start": 2642.66, + "end": 2643.22, + "probability": 0.7127 + }, + { + "start": 2643.32, + "end": 2646.6, + "probability": 0.9866 + }, + { + "start": 2647.14, + "end": 2648.48, + "probability": 0.7109 + }, + { + "start": 2648.62, + "end": 2649.92, + "probability": 0.955 + }, + { + "start": 2650.46, + "end": 2653.84, + "probability": 0.8628 + }, + { + "start": 2654.2, + "end": 2658.18, + "probability": 0.9957 + }, + { + "start": 2658.96, + "end": 2664.18, + "probability": 0.9175 + }, + { + "start": 2664.78, + "end": 2668.16, + "probability": 0.9842 + }, + { + "start": 2668.9, + "end": 2673.22, + "probability": 0.9181 + }, + { + "start": 2673.38, + "end": 2674.78, + "probability": 0.7332 + }, + { + "start": 2675.22, + "end": 2679.16, + "probability": 0.9523 + }, + { + "start": 2680.26, + "end": 2685.98, + "probability": 0.96 + }, + { + "start": 2686.04, + "end": 2686.82, + "probability": 0.6398 + }, + { + "start": 2687.24, + "end": 2688.84, + "probability": 0.966 + }, + { + "start": 2689.84, + "end": 2691.06, + "probability": 0.9126 + }, + { + "start": 2691.58, + "end": 2692.92, + "probability": 0.7065 + }, + { + "start": 2694.0, + "end": 2696.68, + "probability": 0.8833 + }, + { + "start": 2697.36, + "end": 2698.08, + "probability": 0.981 + }, + { + "start": 2698.32, + "end": 2699.22, + "probability": 0.9648 + }, + { + "start": 2699.88, + "end": 2701.9, + "probability": 0.6198 + }, + { + "start": 2702.68, + "end": 2706.08, + "probability": 0.7111 + }, + { + "start": 2706.48, + "end": 2709.2, + "probability": 0.9494 + }, + { + "start": 2709.98, + "end": 2715.02, + "probability": 0.9746 + }, + { + "start": 2715.2, + "end": 2716.38, + "probability": 0.9954 + }, + { + "start": 2716.96, + "end": 2718.78, + "probability": 0.9985 + }, + { + "start": 2719.16, + "end": 2721.9, + "probability": 0.9913 + }, + { + "start": 2722.0, + "end": 2724.68, + "probability": 0.8454 + }, + { + "start": 2724.74, + "end": 2725.98, + "probability": 0.8789 + }, + { + "start": 2726.42, + "end": 2726.64, + "probability": 0.7806 + }, + { + "start": 2726.78, + "end": 2727.62, + "probability": 0.73 + }, + { + "start": 2727.66, + "end": 2729.72, + "probability": 0.9868 + }, + { + "start": 2729.84, + "end": 2731.09, + "probability": 0.7176 + }, + { + "start": 2731.18, + "end": 2731.6, + "probability": 0.4929 + }, + { + "start": 2731.74, + "end": 2735.14, + "probability": 0.9827 + }, + { + "start": 2735.94, + "end": 2737.24, + "probability": 0.8607 + }, + { + "start": 2737.28, + "end": 2737.88, + "probability": 0.9586 + }, + { + "start": 2737.96, + "end": 2742.56, + "probability": 0.9797 + }, + { + "start": 2742.72, + "end": 2745.86, + "probability": 0.8122 + }, + { + "start": 2746.02, + "end": 2747.42, + "probability": 0.8643 + }, + { + "start": 2747.88, + "end": 2749.48, + "probability": 0.9733 + }, + { + "start": 2753.54, + "end": 2758.04, + "probability": 0.8089 + }, + { + "start": 2758.24, + "end": 2761.92, + "probability": 0.7202 + }, + { + "start": 2762.44, + "end": 2766.4, + "probability": 0.9128 + }, + { + "start": 2766.62, + "end": 2768.72, + "probability": 0.8657 + }, + { + "start": 2769.04, + "end": 2771.88, + "probability": 0.9865 + }, + { + "start": 2772.26, + "end": 2775.22, + "probability": 0.9432 + }, + { + "start": 2775.68, + "end": 2781.64, + "probability": 0.9352 + }, + { + "start": 2782.26, + "end": 2783.86, + "probability": 0.949 + }, + { + "start": 2784.0, + "end": 2787.98, + "probability": 0.9976 + }, + { + "start": 2788.26, + "end": 2790.82, + "probability": 0.9177 + }, + { + "start": 2791.28, + "end": 2793.14, + "probability": 0.8585 + }, + { + "start": 2794.2, + "end": 2798.08, + "probability": 0.8741 + }, + { + "start": 2798.86, + "end": 2804.88, + "probability": 0.992 + }, + { + "start": 2805.52, + "end": 2808.12, + "probability": 0.9488 + }, + { + "start": 2808.54, + "end": 2813.57, + "probability": 0.8144 + }, + { + "start": 2814.62, + "end": 2819.18, + "probability": 0.9757 + }, + { + "start": 2819.3, + "end": 2821.36, + "probability": 0.9199 + }, + { + "start": 2822.22, + "end": 2824.68, + "probability": 0.7773 + }, + { + "start": 2825.26, + "end": 2826.99, + "probability": 0.9364 + }, + { + "start": 2827.46, + "end": 2828.8, + "probability": 0.6065 + }, + { + "start": 2829.1, + "end": 2835.16, + "probability": 0.8289 + }, + { + "start": 2835.84, + "end": 2841.24, + "probability": 0.9657 + }, + { + "start": 2841.72, + "end": 2847.3, + "probability": 0.6507 + }, + { + "start": 2847.64, + "end": 2853.34, + "probability": 0.9154 + }, + { + "start": 2853.38, + "end": 2853.84, + "probability": 0.5988 + }, + { + "start": 2854.8, + "end": 2857.78, + "probability": 0.6954 + }, + { + "start": 2865.56, + "end": 2868.86, + "probability": 0.7112 + }, + { + "start": 2871.6, + "end": 2872.02, + "probability": 0.8408 + }, + { + "start": 2873.01, + "end": 2876.16, + "probability": 0.8003 + }, + { + "start": 2877.86, + "end": 2879.66, + "probability": 0.979 + }, + { + "start": 2880.96, + "end": 2886.34, + "probability": 0.9768 + }, + { + "start": 2888.28, + "end": 2891.36, + "probability": 0.9478 + }, + { + "start": 2891.92, + "end": 2893.32, + "probability": 0.8445 + }, + { + "start": 2895.28, + "end": 2899.62, + "probability": 0.9398 + }, + { + "start": 2903.7, + "end": 2910.7, + "probability": 0.9915 + }, + { + "start": 2913.16, + "end": 2916.2, + "probability": 0.4145 + }, + { + "start": 2916.22, + "end": 2919.94, + "probability": 0.9247 + }, + { + "start": 2921.94, + "end": 2924.22, + "probability": 0.9945 + }, + { + "start": 2925.76, + "end": 2926.6, + "probability": 0.874 + }, + { + "start": 2927.87, + "end": 2929.54, + "probability": 0.9956 + }, + { + "start": 2934.14, + "end": 2938.08, + "probability": 0.991 + }, + { + "start": 2941.56, + "end": 2941.7, + "probability": 0.811 + }, + { + "start": 2944.44, + "end": 2948.02, + "probability": 0.9556 + }, + { + "start": 2950.58, + "end": 2957.06, + "probability": 0.9702 + }, + { + "start": 2958.92, + "end": 2960.14, + "probability": 0.6865 + }, + { + "start": 2960.86, + "end": 2965.06, + "probability": 0.5662 + }, + { + "start": 2966.32, + "end": 2970.8, + "probability": 0.8458 + }, + { + "start": 2971.42, + "end": 2971.56, + "probability": 0.0504 + }, + { + "start": 2981.9, + "end": 2982.76, + "probability": 0.2861 + }, + { + "start": 2984.3, + "end": 2985.68, + "probability": 0.6451 + }, + { + "start": 2987.24, + "end": 2990.56, + "probability": 0.8334 + }, + { + "start": 2991.08, + "end": 2992.64, + "probability": 0.9633 + }, + { + "start": 2993.82, + "end": 2994.6, + "probability": 0.7755 + }, + { + "start": 2995.28, + "end": 3000.9, + "probability": 0.7651 + }, + { + "start": 3002.34, + "end": 3005.1, + "probability": 0.9692 + }, + { + "start": 3006.04, + "end": 3013.78, + "probability": 0.9714 + }, + { + "start": 3014.72, + "end": 3014.72, + "probability": 0.5996 + }, + { + "start": 3016.47, + "end": 3018.58, + "probability": 0.9938 + }, + { + "start": 3021.64, + "end": 3027.54, + "probability": 0.9983 + }, + { + "start": 3029.68, + "end": 3030.06, + "probability": 0.4559 + }, + { + "start": 3030.6, + "end": 3033.06, + "probability": 0.9954 + }, + { + "start": 3036.1, + "end": 3037.76, + "probability": 0.7115 + }, + { + "start": 3038.5, + "end": 3039.94, + "probability": 0.6641 + }, + { + "start": 3040.54, + "end": 3041.58, + "probability": 0.8894 + }, + { + "start": 3042.82, + "end": 3047.54, + "probability": 0.663 + }, + { + "start": 3049.24, + "end": 3053.3, + "probability": 0.8739 + }, + { + "start": 3054.78, + "end": 3058.4, + "probability": 0.9188 + }, + { + "start": 3059.6, + "end": 3064.8, + "probability": 0.8068 + }, + { + "start": 3068.64, + "end": 3073.08, + "probability": 0.6264 + }, + { + "start": 3073.66, + "end": 3074.2, + "probability": 0.6058 + }, + { + "start": 3074.8, + "end": 3078.46, + "probability": 0.9679 + }, + { + "start": 3079.48, + "end": 3080.72, + "probability": 0.7974 + }, + { + "start": 3082.4, + "end": 3087.46, + "probability": 0.9288 + }, + { + "start": 3087.46, + "end": 3090.22, + "probability": 0.7421 + }, + { + "start": 3090.32, + "end": 3091.18, + "probability": 0.8406 + }, + { + "start": 3092.76, + "end": 3097.02, + "probability": 0.9925 + }, + { + "start": 3099.56, + "end": 3102.48, + "probability": 0.8512 + }, + { + "start": 3103.56, + "end": 3106.06, + "probability": 0.6655 + }, + { + "start": 3107.74, + "end": 3107.94, + "probability": 0.8921 + }, + { + "start": 3109.54, + "end": 3110.56, + "probability": 0.6087 + }, + { + "start": 3115.2, + "end": 3116.62, + "probability": 0.7954 + }, + { + "start": 3118.22, + "end": 3119.8, + "probability": 0.5853 + }, + { + "start": 3119.86, + "end": 3122.28, + "probability": 0.7896 + }, + { + "start": 3122.44, + "end": 3124.64, + "probability": 0.7487 + }, + { + "start": 3124.82, + "end": 3125.64, + "probability": 0.849 + }, + { + "start": 3128.2, + "end": 3135.0, + "probability": 0.749 + }, + { + "start": 3135.16, + "end": 3136.44, + "probability": 0.9448 + }, + { + "start": 3138.66, + "end": 3144.88, + "probability": 0.9856 + }, + { + "start": 3145.08, + "end": 3147.16, + "probability": 0.7542 + }, + { + "start": 3149.9, + "end": 3151.6, + "probability": 0.9923 + }, + { + "start": 3152.68, + "end": 3155.44, + "probability": 0.9874 + }, + { + "start": 3155.5, + "end": 3157.16, + "probability": 0.9216 + }, + { + "start": 3159.96, + "end": 3161.12, + "probability": 0.5697 + }, + { + "start": 3163.36, + "end": 3166.24, + "probability": 0.8455 + }, + { + "start": 3166.38, + "end": 3168.23, + "probability": 0.9904 + }, + { + "start": 3169.02, + "end": 3173.34, + "probability": 0.9805 + }, + { + "start": 3174.12, + "end": 3176.5, + "probability": 0.9871 + }, + { + "start": 3177.06, + "end": 3177.16, + "probability": 0.6011 + }, + { + "start": 3177.74, + "end": 3179.68, + "probability": 0.9598 + }, + { + "start": 3182.56, + "end": 3188.02, + "probability": 0.9858 + }, + { + "start": 3188.86, + "end": 3191.24, + "probability": 0.9185 + }, + { + "start": 3191.32, + "end": 3196.1, + "probability": 0.9808 + }, + { + "start": 3196.74, + "end": 3199.14, + "probability": 0.9587 + }, + { + "start": 3202.12, + "end": 3202.42, + "probability": 0.6745 + }, + { + "start": 3205.86, + "end": 3210.36, + "probability": 0.9881 + }, + { + "start": 3212.06, + "end": 3214.18, + "probability": 0.9962 + }, + { + "start": 3216.6, + "end": 3218.46, + "probability": 0.9603 + }, + { + "start": 3220.52, + "end": 3221.7, + "probability": 0.9185 + }, + { + "start": 3223.56, + "end": 3228.16, + "probability": 0.9801 + }, + { + "start": 3229.48, + "end": 3230.47, + "probability": 0.7706 + }, + { + "start": 3231.72, + "end": 3232.92, + "probability": 0.8511 + }, + { + "start": 3234.41, + "end": 3237.0, + "probability": 0.5246 + }, + { + "start": 3237.9, + "end": 3244.5, + "probability": 0.8504 + }, + { + "start": 3245.1, + "end": 3247.78, + "probability": 0.9453 + }, + { + "start": 3249.26, + "end": 3250.24, + "probability": 0.9535 + }, + { + "start": 3250.86, + "end": 3255.9, + "probability": 0.9187 + }, + { + "start": 3256.72, + "end": 3257.2, + "probability": 0.6014 + }, + { + "start": 3257.26, + "end": 3257.87, + "probability": 0.9736 + }, + { + "start": 3258.34, + "end": 3258.75, + "probability": 0.9828 + }, + { + "start": 3259.44, + "end": 3260.22, + "probability": 0.8932 + }, + { + "start": 3260.42, + "end": 3264.69, + "probability": 0.967 + }, + { + "start": 3265.12, + "end": 3271.82, + "probability": 0.9411 + }, + { + "start": 3272.66, + "end": 3273.12, + "probability": 0.4526 + }, + { + "start": 3273.28, + "end": 3277.46, + "probability": 0.822 + }, + { + "start": 3277.52, + "end": 3278.48, + "probability": 0.7358 + }, + { + "start": 3278.66, + "end": 3279.28, + "probability": 0.8688 + }, + { + "start": 3279.3, + "end": 3280.44, + "probability": 0.9763 + }, + { + "start": 3280.76, + "end": 3282.38, + "probability": 0.8617 + }, + { + "start": 3282.44, + "end": 3283.4, + "probability": 0.7299 + }, + { + "start": 3284.64, + "end": 3285.7, + "probability": 0.6999 + }, + { + "start": 3286.54, + "end": 3289.72, + "probability": 0.7898 + }, + { + "start": 3291.56, + "end": 3295.83, + "probability": 0.9355 + }, + { + "start": 3297.04, + "end": 3301.1, + "probability": 0.739 + }, + { + "start": 3301.36, + "end": 3304.58, + "probability": 0.8672 + }, + { + "start": 3306.4, + "end": 3308.28, + "probability": 0.9486 + }, + { + "start": 3310.38, + "end": 3310.74, + "probability": 0.4715 + }, + { + "start": 3310.96, + "end": 3312.81, + "probability": 0.9038 + }, + { + "start": 3312.94, + "end": 3314.84, + "probability": 0.8747 + }, + { + "start": 3315.9, + "end": 3319.9, + "probability": 0.7783 + }, + { + "start": 3320.42, + "end": 3323.52, + "probability": 0.9729 + }, + { + "start": 3326.56, + "end": 3328.16, + "probability": 0.8094 + }, + { + "start": 3330.06, + "end": 3332.38, + "probability": 0.8035 + }, + { + "start": 3333.54, + "end": 3338.32, + "probability": 0.9863 + }, + { + "start": 3339.02, + "end": 3341.32, + "probability": 0.9329 + }, + { + "start": 3342.04, + "end": 3344.2, + "probability": 0.8899 + }, + { + "start": 3345.22, + "end": 3346.4, + "probability": 0.9697 + }, + { + "start": 3349.72, + "end": 3352.53, + "probability": 0.9978 + }, + { + "start": 3356.04, + "end": 3361.04, + "probability": 0.9858 + }, + { + "start": 3363.02, + "end": 3364.5, + "probability": 0.7765 + }, + { + "start": 3366.2, + "end": 3368.2, + "probability": 0.7964 + }, + { + "start": 3370.3, + "end": 3373.3, + "probability": 0.9992 + }, + { + "start": 3373.3, + "end": 3379.74, + "probability": 0.9572 + }, + { + "start": 3380.22, + "end": 3381.34, + "probability": 0.9561 + }, + { + "start": 3381.92, + "end": 3386.85, + "probability": 0.7438 + }, + { + "start": 3387.94, + "end": 3390.3, + "probability": 0.7044 + }, + { + "start": 3390.6, + "end": 3391.74, + "probability": 0.9956 + }, + { + "start": 3391.96, + "end": 3392.52, + "probability": 0.9653 + }, + { + "start": 3392.96, + "end": 3393.94, + "probability": 0.8649 + }, + { + "start": 3394.08, + "end": 3394.46, + "probability": 0.9805 + }, + { + "start": 3394.56, + "end": 3395.14, + "probability": 0.7761 + }, + { + "start": 3395.4, + "end": 3396.18, + "probability": 0.7819 + }, + { + "start": 3397.54, + "end": 3398.14, + "probability": 0.9858 + }, + { + "start": 3398.62, + "end": 3400.88, + "probability": 0.9772 + }, + { + "start": 3400.94, + "end": 3402.86, + "probability": 0.7704 + }, + { + "start": 3403.72, + "end": 3404.96, + "probability": 0.8958 + }, + { + "start": 3406.48, + "end": 3407.2, + "probability": 0.9411 + }, + { + "start": 3408.54, + "end": 3414.64, + "probability": 0.9584 + }, + { + "start": 3415.08, + "end": 3416.22, + "probability": 0.9558 + }, + { + "start": 3416.86, + "end": 3421.38, + "probability": 0.929 + }, + { + "start": 3422.34, + "end": 3424.26, + "probability": 0.9476 + }, + { + "start": 3425.08, + "end": 3427.94, + "probability": 0.8761 + }, + { + "start": 3428.54, + "end": 3429.42, + "probability": 0.9408 + }, + { + "start": 3429.5, + "end": 3429.8, + "probability": 0.1548 + }, + { + "start": 3429.94, + "end": 3430.86, + "probability": 0.8292 + }, + { + "start": 3430.98, + "end": 3435.39, + "probability": 0.8627 + }, + { + "start": 3437.03, + "end": 3441.95, + "probability": 0.9443 + }, + { + "start": 3441.95, + "end": 3447.87, + "probability": 0.9963 + }, + { + "start": 3449.05, + "end": 3452.05, + "probability": 0.8321 + }, + { + "start": 3453.49, + "end": 3459.1, + "probability": 0.9819 + }, + { + "start": 3459.43, + "end": 3462.27, + "probability": 0.918 + }, + { + "start": 3462.69, + "end": 3463.47, + "probability": 0.68 + }, + { + "start": 3463.65, + "end": 3465.23, + "probability": 0.1993 + }, + { + "start": 3465.23, + "end": 3466.37, + "probability": 0.4955 + }, + { + "start": 3466.51, + "end": 3469.59, + "probability": 0.9408 + }, + { + "start": 3469.87, + "end": 3470.87, + "probability": 0.5369 + }, + { + "start": 3471.07, + "end": 3474.21, + "probability": 0.3981 + }, + { + "start": 3474.29, + "end": 3474.53, + "probability": 0.4349 + }, + { + "start": 3474.53, + "end": 3475.79, + "probability": 0.9331 + }, + { + "start": 3475.83, + "end": 3478.39, + "probability": 0.9945 + }, + { + "start": 3479.07, + "end": 3483.41, + "probability": 0.953 + }, + { + "start": 3485.69, + "end": 3489.21, + "probability": 0.6191 + }, + { + "start": 3489.77, + "end": 3492.49, + "probability": 0.9967 + }, + { + "start": 3493.44, + "end": 3496.93, + "probability": 0.9963 + }, + { + "start": 3497.05, + "end": 3497.55, + "probability": 0.5098 + }, + { + "start": 3497.87, + "end": 3500.23, + "probability": 0.9111 + }, + { + "start": 3500.73, + "end": 3507.11, + "probability": 0.9556 + }, + { + "start": 3507.23, + "end": 3507.45, + "probability": 0.5954 + }, + { + "start": 3507.55, + "end": 3508.95, + "probability": 0.6091 + }, + { + "start": 3509.01, + "end": 3509.93, + "probability": 0.9292 + }, + { + "start": 3510.53, + "end": 3510.97, + "probability": 0.136 + }, + { + "start": 3510.97, + "end": 3513.47, + "probability": 0.7891 + }, + { + "start": 3528.87, + "end": 3531.47, + "probability": 0.0412 + }, + { + "start": 3531.47, + "end": 3532.07, + "probability": 0.1533 + }, + { + "start": 3532.07, + "end": 3537.23, + "probability": 0.0169 + }, + { + "start": 3538.08, + "end": 3540.43, + "probability": 0.0294 + }, + { + "start": 3540.95, + "end": 3545.27, + "probability": 0.0936 + }, + { + "start": 3545.27, + "end": 3545.85, + "probability": 0.2236 + }, + { + "start": 3546.37, + "end": 3550.51, + "probability": 0.4227 + }, + { + "start": 3556.93, + "end": 3557.07, + "probability": 0.0087 + }, + { + "start": 3557.49, + "end": 3559.73, + "probability": 0.0415 + }, + { + "start": 3559.81, + "end": 3564.26, + "probability": 0.0115 + }, + { + "start": 3564.47, + "end": 3565.45, + "probability": 0.1466 + }, + { + "start": 3567.39, + "end": 3568.05, + "probability": 0.0156 + }, + { + "start": 3569.01, + "end": 3571.55, + "probability": 0.0837 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.0, + "end": 3605.0, + "probability": 0.0 + }, + { + "start": 3605.2, + "end": 3605.52, + "probability": 0.1373 + }, + { + "start": 3605.52, + "end": 3605.98, + "probability": 0.1766 + }, + { + "start": 3606.24, + "end": 3610.88, + "probability": 0.8326 + }, + { + "start": 3610.9, + "end": 3611.32, + "probability": 0.7226 + }, + { + "start": 3611.4, + "end": 3612.93, + "probability": 0.9242 + }, + { + "start": 3613.68, + "end": 3615.24, + "probability": 0.6924 + }, + { + "start": 3615.44, + "end": 3615.76, + "probability": 0.7178 + }, + { + "start": 3616.3, + "end": 3618.89, + "probability": 0.8799 + }, + { + "start": 3619.82, + "end": 3620.84, + "probability": 0.8082 + }, + { + "start": 3621.62, + "end": 3622.98, + "probability": 0.4101 + }, + { + "start": 3623.13, + "end": 3624.8, + "probability": 0.9734 + }, + { + "start": 3624.92, + "end": 3626.26, + "probability": 0.8716 + }, + { + "start": 3626.36, + "end": 3627.04, + "probability": 0.5862 + }, + { + "start": 3627.04, + "end": 3629.16, + "probability": 0.9469 + }, + { + "start": 3629.44, + "end": 3631.06, + "probability": 0.9746 + }, + { + "start": 3631.1, + "end": 3631.68, + "probability": 0.7319 + }, + { + "start": 3631.84, + "end": 3632.2, + "probability": 0.4575 + }, + { + "start": 3632.6, + "end": 3635.78, + "probability": 0.5901 + }, + { + "start": 3636.8, + "end": 3639.68, + "probability": 0.898 + }, + { + "start": 3641.04, + "end": 3642.5, + "probability": 0.8975 + }, + { + "start": 3642.52, + "end": 3642.92, + "probability": 0.3612 + }, + { + "start": 3643.4, + "end": 3645.82, + "probability": 0.6503 + }, + { + "start": 3647.0, + "end": 3648.8, + "probability": 0.4733 + }, + { + "start": 3649.34, + "end": 3651.76, + "probability": 0.5918 + }, + { + "start": 3652.02, + "end": 3652.82, + "probability": 0.6891 + }, + { + "start": 3652.96, + "end": 3659.78, + "probability": 0.8589 + }, + { + "start": 3659.8, + "end": 3660.82, + "probability": 0.7646 + }, + { + "start": 3661.94, + "end": 3663.69, + "probability": 0.3052 + }, + { + "start": 3664.52, + "end": 3666.46, + "probability": 0.0215 + }, + { + "start": 3681.52, + "end": 3682.88, + "probability": 0.3889 + }, + { + "start": 3683.3, + "end": 3686.24, + "probability": 0.8054 + }, + { + "start": 3686.76, + "end": 3689.1, + "probability": 0.9868 + }, + { + "start": 3691.76, + "end": 3693.85, + "probability": 0.0498 + }, + { + "start": 3702.24, + "end": 3703.02, + "probability": 0.11 + }, + { + "start": 3703.16, + "end": 3706.5, + "probability": 0.7619 + }, + { + "start": 3708.13, + "end": 3715.44, + "probability": 0.9866 + }, + { + "start": 3716.42, + "end": 3719.64, + "probability": 0.9376 + }, + { + "start": 3721.82, + "end": 3725.9, + "probability": 0.8094 + }, + { + "start": 3726.06, + "end": 3728.38, + "probability": 0.7059 + }, + { + "start": 3728.54, + "end": 3730.36, + "probability": 0.411 + }, + { + "start": 3731.44, + "end": 3733.26, + "probability": 0.9832 + }, + { + "start": 3733.42, + "end": 3737.16, + "probability": 0.9302 + }, + { + "start": 3737.63, + "end": 3742.04, + "probability": 0.9424 + }, + { + "start": 3742.22, + "end": 3742.96, + "probability": 0.8344 + }, + { + "start": 3743.14, + "end": 3743.42, + "probability": 0.4589 + }, + { + "start": 3745.24, + "end": 3758.12, + "probability": 0.8123 + }, + { + "start": 3758.54, + "end": 3760.1, + "probability": 0.9896 + }, + { + "start": 3762.04, + "end": 3764.14, + "probability": 0.8441 + }, + { + "start": 3765.54, + "end": 3769.33, + "probability": 0.9902 + }, + { + "start": 3770.08, + "end": 3773.0, + "probability": 0.9893 + }, + { + "start": 3773.0, + "end": 3777.42, + "probability": 0.925 + }, + { + "start": 3778.04, + "end": 3779.52, + "probability": 0.3149 + }, + { + "start": 3780.54, + "end": 3784.0, + "probability": 0.8831 + }, + { + "start": 3784.76, + "end": 3786.58, + "probability": 0.905 + }, + { + "start": 3786.58, + "end": 3789.54, + "probability": 0.985 + }, + { + "start": 3790.22, + "end": 3791.52, + "probability": 0.7561 + }, + { + "start": 3792.38, + "end": 3793.04, + "probability": 0.4311 + }, + { + "start": 3793.58, + "end": 3796.5, + "probability": 0.9618 + }, + { + "start": 3796.5, + "end": 3800.34, + "probability": 0.9766 + }, + { + "start": 3802.22, + "end": 3805.06, + "probability": 0.8464 + }, + { + "start": 3806.06, + "end": 3810.04, + "probability": 0.7315 + }, + { + "start": 3810.72, + "end": 3813.3, + "probability": 0.985 + }, + { + "start": 3815.14, + "end": 3817.28, + "probability": 0.6933 + }, + { + "start": 3817.28, + "end": 3820.7, + "probability": 0.8325 + }, + { + "start": 3821.96, + "end": 3823.66, + "probability": 0.7086 + }, + { + "start": 3823.66, + "end": 3826.92, + "probability": 0.9519 + }, + { + "start": 3827.32, + "end": 3831.94, + "probability": 0.9107 + }, + { + "start": 3835.1, + "end": 3838.66, + "probability": 0.7656 + }, + { + "start": 3838.72, + "end": 3842.64, + "probability": 0.9777 + }, + { + "start": 3844.62, + "end": 3847.48, + "probability": 0.6977 + }, + { + "start": 3849.76, + "end": 3850.72, + "probability": 0.5754 + }, + { + "start": 3850.84, + "end": 3851.72, + "probability": 0.6439 + }, + { + "start": 3851.74, + "end": 3854.76, + "probability": 0.8724 + }, + { + "start": 3854.92, + "end": 3856.22, + "probability": 0.7957 + }, + { + "start": 3857.32, + "end": 3859.62, + "probability": 0.9053 + }, + { + "start": 3859.68, + "end": 3864.38, + "probability": 0.7918 + }, + { + "start": 3864.38, + "end": 3869.36, + "probability": 0.7746 + }, + { + "start": 3869.58, + "end": 3873.96, + "probability": 0.7296 + }, + { + "start": 3875.88, + "end": 3876.56, + "probability": 0.0168 + }, + { + "start": 3893.94, + "end": 3897.2, + "probability": 0.949 + }, + { + "start": 3897.2, + "end": 3899.2, + "probability": 0.8618 + }, + { + "start": 3899.94, + "end": 3903.74, + "probability": 0.8395 + }, + { + "start": 3903.74, + "end": 3907.92, + "probability": 0.9054 + }, + { + "start": 3907.92, + "end": 3913.4, + "probability": 0.9229 + }, + { + "start": 3914.38, + "end": 3919.32, + "probability": 0.8914 + }, + { + "start": 3919.96, + "end": 3923.16, + "probability": 0.8475 + }, + { + "start": 3924.32, + "end": 3925.06, + "probability": 0.5522 + }, + { + "start": 3925.46, + "end": 3929.68, + "probability": 0.8845 + }, + { + "start": 3930.94, + "end": 3933.92, + "probability": 0.9719 + }, + { + "start": 3933.92, + "end": 3938.68, + "probability": 0.9873 + }, + { + "start": 3939.38, + "end": 3941.16, + "probability": 0.7222 + }, + { + "start": 3941.16, + "end": 3944.02, + "probability": 0.8929 + }, + { + "start": 3944.94, + "end": 3948.08, + "probability": 0.8368 + }, + { + "start": 3948.08, + "end": 3951.8, + "probability": 0.9966 + }, + { + "start": 3952.44, + "end": 3956.52, + "probability": 0.9054 + }, + { + "start": 3958.0, + "end": 3960.32, + "probability": 0.7447 + }, + { + "start": 3960.54, + "end": 3962.58, + "probability": 0.7327 + }, + { + "start": 3963.24, + "end": 3966.3, + "probability": 0.9037 + }, + { + "start": 3967.94, + "end": 3968.44, + "probability": 0.517 + }, + { + "start": 3969.14, + "end": 3971.54, + "probability": 0.4576 + }, + { + "start": 3972.52, + "end": 3973.96, + "probability": 0.5806 + }, + { + "start": 3974.68, + "end": 3977.94, + "probability": 0.9687 + }, + { + "start": 3978.04, + "end": 3978.96, + "probability": 0.8254 + }, + { + "start": 3978.96, + "end": 3979.76, + "probability": 0.6101 + }, + { + "start": 3979.96, + "end": 3980.78, + "probability": 0.8276 + }, + { + "start": 3980.78, + "end": 3981.5, + "probability": 0.7071 + }, + { + "start": 3982.12, + "end": 3984.39, + "probability": 0.755 + }, + { + "start": 3984.58, + "end": 3985.4, + "probability": 0.5557 + }, + { + "start": 3985.6, + "end": 3986.06, + "probability": 0.0641 + }, + { + "start": 3986.26, + "end": 3987.18, + "probability": 0.7721 + }, + { + "start": 3989.3, + "end": 3995.14, + "probability": 0.8056 + }, + { + "start": 3995.14, + "end": 3999.66, + "probability": 0.9882 + }, + { + "start": 4000.52, + "end": 4007.12, + "probability": 0.5477 + }, + { + "start": 4007.12, + "end": 4011.36, + "probability": 0.804 + }, + { + "start": 4011.36, + "end": 4017.84, + "probability": 0.988 + }, + { + "start": 4018.5, + "end": 4021.18, + "probability": 0.5646 + }, + { + "start": 4021.3, + "end": 4023.98, + "probability": 0.5847 + }, + { + "start": 4024.16, + "end": 4028.62, + "probability": 0.9238 + }, + { + "start": 4029.38, + "end": 4031.32, + "probability": 0.3371 + }, + { + "start": 4032.2, + "end": 4032.84, + "probability": 0.5651 + }, + { + "start": 4032.96, + "end": 4033.82, + "probability": 0.8958 + }, + { + "start": 4033.92, + "end": 4035.54, + "probability": 0.9531 + }, + { + "start": 4036.12, + "end": 4039.78, + "probability": 0.9681 + }, + { + "start": 4040.2, + "end": 4040.7, + "probability": 0.8571 + }, + { + "start": 4041.62, + "end": 4045.26, + "probability": 0.6971 + }, + { + "start": 4045.26, + "end": 4051.16, + "probability": 0.9302 + }, + { + "start": 4052.04, + "end": 4054.8, + "probability": 0.9314 + }, + { + "start": 4054.92, + "end": 4058.2, + "probability": 0.6992 + }, + { + "start": 4058.84, + "end": 4061.02, + "probability": 0.9933 + }, + { + "start": 4061.56, + "end": 4063.04, + "probability": 0.5519 + }, + { + "start": 4063.14, + "end": 4065.78, + "probability": 0.3262 + }, + { + "start": 4066.6, + "end": 4069.26, + "probability": 0.5389 + }, + { + "start": 4069.36, + "end": 4072.16, + "probability": 0.7811 + }, + { + "start": 4073.06, + "end": 4074.06, + "probability": 0.7585 + }, + { + "start": 4074.58, + "end": 4078.32, + "probability": 0.8991 + }, + { + "start": 4079.2, + "end": 4080.34, + "probability": 0.518 + }, + { + "start": 4080.54, + "end": 4084.24, + "probability": 0.8929 + }, + { + "start": 4085.18, + "end": 4086.84, + "probability": 0.9602 + }, + { + "start": 4087.38, + "end": 4089.88, + "probability": 0.8706 + }, + { + "start": 4090.04, + "end": 4091.58, + "probability": 0.763 + }, + { + "start": 4092.22, + "end": 4096.74, + "probability": 0.8887 + }, + { + "start": 4097.76, + "end": 4102.78, + "probability": 0.7116 + }, + { + "start": 4104.0, + "end": 4104.4, + "probability": 0.4978 + }, + { + "start": 4105.96, + "end": 4107.63, + "probability": 0.4785 + }, + { + "start": 4107.7, + "end": 4110.64, + "probability": 0.9126 + }, + { + "start": 4111.62, + "end": 4113.98, + "probability": 0.8631 + }, + { + "start": 4114.1, + "end": 4117.66, + "probability": 0.9846 + }, + { + "start": 4118.22, + "end": 4120.44, + "probability": 0.5076 + }, + { + "start": 4120.56, + "end": 4121.98, + "probability": 0.9892 + }, + { + "start": 4122.8, + "end": 4124.96, + "probability": 0.9654 + }, + { + "start": 4125.0, + "end": 4129.16, + "probability": 0.8298 + }, + { + "start": 4129.22, + "end": 4131.88, + "probability": 0.9705 + }, + { + "start": 4131.88, + "end": 4135.04, + "probability": 0.7541 + }, + { + "start": 4135.44, + "end": 4136.0, + "probability": 0.5828 + }, + { + "start": 4136.88, + "end": 4137.78, + "probability": 0.4098 + }, + { + "start": 4138.44, + "end": 4139.58, + "probability": 0.8804 + }, + { + "start": 4139.8, + "end": 4140.64, + "probability": 0.958 + }, + { + "start": 4141.74, + "end": 4143.58, + "probability": 0.601 + }, + { + "start": 4143.64, + "end": 4146.54, + "probability": 0.519 + }, + { + "start": 4147.12, + "end": 4147.44, + "probability": 0.6243 + }, + { + "start": 4147.46, + "end": 4149.06, + "probability": 0.9897 + }, + { + "start": 4149.14, + "end": 4151.5, + "probability": 0.3573 + }, + { + "start": 4152.04, + "end": 4153.38, + "probability": 0.9729 + }, + { + "start": 4153.9, + "end": 4156.4, + "probability": 0.0472 + }, + { + "start": 4158.94, + "end": 4161.74, + "probability": 0.969 + }, + { + "start": 4162.7, + "end": 4166.08, + "probability": 0.9502 + }, + { + "start": 4166.32, + "end": 4167.0, + "probability": 0.3795 + }, + { + "start": 4167.16, + "end": 4168.86, + "probability": 0.4018 + }, + { + "start": 4169.24, + "end": 4171.48, + "probability": 0.9291 + }, + { + "start": 4171.92, + "end": 4174.82, + "probability": 0.9058 + }, + { + "start": 4175.42, + "end": 4178.72, + "probability": 0.5184 + }, + { + "start": 4179.22, + "end": 4181.14, + "probability": 0.6325 + }, + { + "start": 4183.04, + "end": 4184.18, + "probability": 0.66 + }, + { + "start": 4185.34, + "end": 4187.61, + "probability": 0.8688 + }, + { + "start": 4188.44, + "end": 4189.57, + "probability": 0.9872 + }, + { + "start": 4190.62, + "end": 4191.38, + "probability": 0.2814 + }, + { + "start": 4191.38, + "end": 4192.87, + "probability": 0.7234 + }, + { + "start": 4193.68, + "end": 4194.66, + "probability": 0.7594 + }, + { + "start": 4195.86, + "end": 4196.58, + "probability": 0.7443 + }, + { + "start": 4196.9, + "end": 4198.46, + "probability": 0.9558 + }, + { + "start": 4198.6, + "end": 4199.54, + "probability": 0.9058 + }, + { + "start": 4199.62, + "end": 4200.96, + "probability": 0.9146 + }, + { + "start": 4202.08, + "end": 4203.32, + "probability": 0.9791 + }, + { + "start": 4204.14, + "end": 4207.94, + "probability": 0.8557 + }, + { + "start": 4209.0, + "end": 4211.77, + "probability": 0.6971 + }, + { + "start": 4213.08, + "end": 4217.36, + "probability": 0.9029 + }, + { + "start": 4218.4, + "end": 4220.28, + "probability": 0.8467 + }, + { + "start": 4221.58, + "end": 4222.86, + "probability": 0.4388 + }, + { + "start": 4223.06, + "end": 4224.22, + "probability": 0.8037 + }, + { + "start": 4224.44, + "end": 4225.3, + "probability": 0.9551 + }, + { + "start": 4225.42, + "end": 4226.16, + "probability": 0.4571 + }, + { + "start": 4226.16, + "end": 4226.38, + "probability": 0.2232 + }, + { + "start": 4226.38, + "end": 4231.16, + "probability": 0.601 + }, + { + "start": 4231.16, + "end": 4232.5, + "probability": 0.917 + }, + { + "start": 4233.36, + "end": 4235.88, + "probability": 0.8158 + }, + { + "start": 4236.42, + "end": 4237.32, + "probability": 0.9076 + }, + { + "start": 4238.0, + "end": 4239.24, + "probability": 0.9278 + }, + { + "start": 4240.12, + "end": 4242.82, + "probability": 0.9315 + }, + { + "start": 4244.18, + "end": 4245.94, + "probability": 0.9351 + }, + { + "start": 4246.4, + "end": 4247.22, + "probability": 0.9712 + }, + { + "start": 4248.48, + "end": 4251.42, + "probability": 0.7632 + }, + { + "start": 4252.28, + "end": 4255.62, + "probability": 0.633 + }, + { + "start": 4256.46, + "end": 4260.68, + "probability": 0.7003 + }, + { + "start": 4261.54, + "end": 4268.26, + "probability": 0.936 + }, + { + "start": 4269.6, + "end": 4277.16, + "probability": 0.8547 + }, + { + "start": 4280.86, + "end": 4284.64, + "probability": 0.8415 + }, + { + "start": 4285.64, + "end": 4287.92, + "probability": 0.681 + }, + { + "start": 4288.56, + "end": 4289.95, + "probability": 0.9443 + }, + { + "start": 4290.82, + "end": 4291.86, + "probability": 0.9764 + }, + { + "start": 4292.6, + "end": 4296.46, + "probability": 0.9849 + }, + { + "start": 4297.28, + "end": 4298.9, + "probability": 0.9509 + }, + { + "start": 4299.68, + "end": 4301.52, + "probability": 0.6697 + }, + { + "start": 4302.18, + "end": 4306.7, + "probability": 0.7409 + }, + { + "start": 4306.96, + "end": 4310.06, + "probability": 0.6971 + }, + { + "start": 4310.58, + "end": 4314.71, + "probability": 0.7541 + }, + { + "start": 4316.38, + "end": 4317.4, + "probability": 0.786 + }, + { + "start": 4317.48, + "end": 4321.48, + "probability": 0.8177 + }, + { + "start": 4322.24, + "end": 4322.8, + "probability": 0.9865 + }, + { + "start": 4323.48, + "end": 4325.32, + "probability": 0.199 + }, + { + "start": 4325.68, + "end": 4325.96, + "probability": 0.2315 + }, + { + "start": 4326.32, + "end": 4326.82, + "probability": 0.0025 + }, + { + "start": 4326.82, + "end": 4326.82, + "probability": 0.0647 + }, + { + "start": 4326.82, + "end": 4327.31, + "probability": 0.6041 + }, + { + "start": 4328.12, + "end": 4329.36, + "probability": 0.8608 + }, + { + "start": 4329.44, + "end": 4330.26, + "probability": 0.902 + }, + { + "start": 4330.46, + "end": 4332.18, + "probability": 0.9866 + }, + { + "start": 4332.28, + "end": 4332.94, + "probability": 0.5776 + }, + { + "start": 4332.96, + "end": 4334.16, + "probability": 0.5848 + }, + { + "start": 4334.72, + "end": 4337.58, + "probability": 0.5894 + }, + { + "start": 4338.1, + "end": 4338.74, + "probability": 0.6663 + }, + { + "start": 4339.0, + "end": 4339.68, + "probability": 0.4272 + }, + { + "start": 4339.76, + "end": 4342.56, + "probability": 0.6989 + }, + { + "start": 4342.6, + "end": 4345.26, + "probability": 0.4545 + }, + { + "start": 4345.38, + "end": 4346.86, + "probability": 0.6762 + }, + { + "start": 4347.16, + "end": 4348.38, + "probability": 0.0723 + }, + { + "start": 4348.82, + "end": 4350.34, + "probability": 0.2336 + }, + { + "start": 4350.38, + "end": 4352.4, + "probability": 0.5047 + }, + { + "start": 4352.42, + "end": 4355.2, + "probability": 0.665 + }, + { + "start": 4355.96, + "end": 4357.04, + "probability": 0.2193 + }, + { + "start": 4357.28, + "end": 4358.08, + "probability": 0.5197 + }, + { + "start": 4358.2, + "end": 4358.94, + "probability": 0.6355 + }, + { + "start": 4358.94, + "end": 4360.46, + "probability": 0.5543 + }, + { + "start": 4360.56, + "end": 4361.65, + "probability": 0.9103 + }, + { + "start": 4362.06, + "end": 4362.16, + "probability": 0.0925 + }, + { + "start": 4362.16, + "end": 4366.8, + "probability": 0.5899 + }, + { + "start": 4366.8, + "end": 4367.08, + "probability": 0.3009 + }, + { + "start": 4367.48, + "end": 4368.8, + "probability": 0.3981 + }, + { + "start": 4369.28, + "end": 4370.34, + "probability": 0.5011 + }, + { + "start": 4370.34, + "end": 4370.34, + "probability": 0.501 + }, + { + "start": 4370.34, + "end": 4370.34, + "probability": 0.3023 + }, + { + "start": 4370.34, + "end": 4372.1, + "probability": 0.2503 + }, + { + "start": 4372.24, + "end": 4373.33, + "probability": 0.5426 + }, + { + "start": 4374.82, + "end": 4376.38, + "probability": 0.0852 + }, + { + "start": 4376.38, + "end": 4376.38, + "probability": 0.1301 + }, + { + "start": 4376.38, + "end": 4378.1, + "probability": 0.2185 + }, + { + "start": 4378.1, + "end": 4378.1, + "probability": 0.0401 + }, + { + "start": 4378.1, + "end": 4378.1, + "probability": 0.4932 + }, + { + "start": 4378.1, + "end": 4379.34, + "probability": 0.422 + }, + { + "start": 4379.34, + "end": 4380.94, + "probability": 0.7066 + }, + { + "start": 4381.04, + "end": 4382.47, + "probability": 0.1373 + }, + { + "start": 4382.8, + "end": 4385.16, + "probability": 0.4089 + }, + { + "start": 4385.18, + "end": 4386.72, + "probability": 0.8536 + }, + { + "start": 4386.84, + "end": 4390.58, + "probability": 0.7274 + }, + { + "start": 4391.66, + "end": 4391.66, + "probability": 0.289 + }, + { + "start": 4391.66, + "end": 4393.22, + "probability": 0.981 + }, + { + "start": 4394.42, + "end": 4395.56, + "probability": 0.7693 + }, + { + "start": 4396.68, + "end": 4397.5, + "probability": 0.4819 + }, + { + "start": 4398.76, + "end": 4400.56, + "probability": 0.9971 + }, + { + "start": 4402.6, + "end": 4408.14, + "probability": 0.8291 + }, + { + "start": 4410.12, + "end": 4411.88, + "probability": 0.8396 + }, + { + "start": 4413.04, + "end": 4418.36, + "probability": 0.9906 + }, + { + "start": 4419.9, + "end": 4421.08, + "probability": 0.9758 + }, + { + "start": 4423.22, + "end": 4424.3, + "probability": 0.9438 + }, + { + "start": 4425.52, + "end": 4428.68, + "probability": 0.9274 + }, + { + "start": 4429.44, + "end": 4430.72, + "probability": 0.8274 + }, + { + "start": 4432.08, + "end": 4432.9, + "probability": 0.9761 + }, + { + "start": 4434.26, + "end": 4435.12, + "probability": 0.9673 + }, + { + "start": 4436.06, + "end": 4437.6, + "probability": 0.7659 + }, + { + "start": 4439.46, + "end": 4440.56, + "probability": 0.9857 + }, + { + "start": 4441.78, + "end": 4442.58, + "probability": 0.9761 + }, + { + "start": 4443.14, + "end": 4444.24, + "probability": 0.9775 + }, + { + "start": 4445.9, + "end": 4446.56, + "probability": 0.7407 + }, + { + "start": 4447.12, + "end": 4448.68, + "probability": 0.8153 + }, + { + "start": 4449.7, + "end": 4452.42, + "probability": 0.8618 + }, + { + "start": 4454.22, + "end": 4455.06, + "probability": 0.715 + }, + { + "start": 4455.8, + "end": 4456.72, + "probability": 0.9568 + }, + { + "start": 4456.9, + "end": 4457.66, + "probability": 0.9611 + }, + { + "start": 4457.9, + "end": 4458.64, + "probability": 0.9787 + }, + { + "start": 4458.74, + "end": 4459.4, + "probability": 0.8957 + }, + { + "start": 4461.34, + "end": 4463.55, + "probability": 0.7962 + }, + { + "start": 4465.1, + "end": 4465.92, + "probability": 0.5196 + }, + { + "start": 4466.7, + "end": 4467.54, + "probability": 0.09 + }, + { + "start": 4468.28, + "end": 4469.74, + "probability": 0.7982 + }, + { + "start": 4471.24, + "end": 4474.1, + "probability": 0.8047 + }, + { + "start": 4475.19, + "end": 4478.44, + "probability": 0.9667 + }, + { + "start": 4479.64, + "end": 4482.1, + "probability": 0.99 + }, + { + "start": 4482.44, + "end": 4483.16, + "probability": 0.8252 + }, + { + "start": 4483.28, + "end": 4484.8, + "probability": 0.7345 + }, + { + "start": 4487.4, + "end": 4488.78, + "probability": 0.5023 + }, + { + "start": 4488.78, + "end": 4489.76, + "probability": 0.3399 + }, + { + "start": 4490.08, + "end": 4491.76, + "probability": 0.5553 + }, + { + "start": 4491.86, + "end": 4493.4, + "probability": 0.8108 + }, + { + "start": 4495.84, + "end": 4501.44, + "probability": 0.9808 + }, + { + "start": 4502.08, + "end": 4505.88, + "probability": 0.99 + }, + { + "start": 4506.34, + "end": 4510.22, + "probability": 0.9966 + }, + { + "start": 4510.42, + "end": 4511.3, + "probability": 0.729 + }, + { + "start": 4511.7, + "end": 4511.72, + "probability": 0.2349 + }, + { + "start": 4511.72, + "end": 4512.5, + "probability": 0.5053 + }, + { + "start": 4513.2, + "end": 4513.88, + "probability": 0.9836 + }, + { + "start": 4514.46, + "end": 4515.34, + "probability": 0.4059 + }, + { + "start": 4515.72, + "end": 4516.52, + "probability": 0.8044 + }, + { + "start": 4517.1, + "end": 4517.88, + "probability": 0.9307 + }, + { + "start": 4518.62, + "end": 4523.36, + "probability": 0.9874 + }, + { + "start": 4523.94, + "end": 4525.08, + "probability": 0.9766 + }, + { + "start": 4525.84, + "end": 4529.7, + "probability": 0.9311 + }, + { + "start": 4530.12, + "end": 4533.34, + "probability": 0.88 + }, + { + "start": 4533.88, + "end": 4535.4, + "probability": 0.7611 + }, + { + "start": 4536.02, + "end": 4538.92, + "probability": 0.9132 + }, + { + "start": 4540.4, + "end": 4541.92, + "probability": 0.5121 + }, + { + "start": 4545.32, + "end": 4546.28, + "probability": 0.5507 + }, + { + "start": 4547.3, + "end": 4549.58, + "probability": 0.8081 + }, + { + "start": 4550.26, + "end": 4556.76, + "probability": 0.4436 + }, + { + "start": 4557.52, + "end": 4563.1, + "probability": 0.9438 + }, + { + "start": 4564.28, + "end": 4567.88, + "probability": 0.9671 + }, + { + "start": 4567.88, + "end": 4571.5, + "probability": 0.9938 + }, + { + "start": 4572.88, + "end": 4578.0, + "probability": 0.9861 + }, + { + "start": 4578.46, + "end": 4579.14, + "probability": 0.8841 + }, + { + "start": 4579.6, + "end": 4581.18, + "probability": 0.5958 + }, + { + "start": 4581.62, + "end": 4585.4, + "probability": 0.9429 + }, + { + "start": 4607.14, + "end": 4608.5, + "probability": 0.031 + }, + { + "start": 4608.56, + "end": 4611.4, + "probability": 0.5567 + }, + { + "start": 4612.66, + "end": 4613.64, + "probability": 0.6304 + }, + { + "start": 4615.2, + "end": 4615.62, + "probability": 0.6832 + }, + { + "start": 4615.74, + "end": 4616.5, + "probability": 0.68 + }, + { + "start": 4616.5, + "end": 4622.91, + "probability": 0.8371 + }, + { + "start": 4625.04, + "end": 4631.36, + "probability": 0.7892 + }, + { + "start": 4632.38, + "end": 4635.5, + "probability": 0.8129 + }, + { + "start": 4636.44, + "end": 4639.6, + "probability": 0.9807 + }, + { + "start": 4642.14, + "end": 4644.4, + "probability": 0.9693 + }, + { + "start": 4646.02, + "end": 4646.86, + "probability": 0.9083 + }, + { + "start": 4647.0, + "end": 4647.64, + "probability": 0.5798 + }, + { + "start": 4647.74, + "end": 4651.24, + "probability": 0.6511 + }, + { + "start": 4653.8, + "end": 4657.34, + "probability": 0.96 + }, + { + "start": 4660.04, + "end": 4661.26, + "probability": 0.9004 + }, + { + "start": 4662.66, + "end": 4666.28, + "probability": 0.993 + }, + { + "start": 4667.62, + "end": 4669.3, + "probability": 0.9929 + }, + { + "start": 4672.5, + "end": 4678.36, + "probability": 0.8093 + }, + { + "start": 4678.36, + "end": 4682.62, + "probability": 0.9948 + }, + { + "start": 4684.88, + "end": 4686.24, + "probability": 0.7642 + }, + { + "start": 4687.16, + "end": 4691.22, + "probability": 0.9677 + }, + { + "start": 4693.86, + "end": 4700.3, + "probability": 0.7469 + }, + { + "start": 4701.52, + "end": 4702.94, + "probability": 0.7594 + }, + { + "start": 4703.34, + "end": 4707.7, + "probability": 0.8518 + }, + { + "start": 4709.58, + "end": 4713.34, + "probability": 0.9258 + }, + { + "start": 4714.08, + "end": 4715.34, + "probability": 0.9214 + }, + { + "start": 4716.7, + "end": 4717.88, + "probability": 0.8292 + }, + { + "start": 4720.36, + "end": 4721.32, + "probability": 0.6974 + }, + { + "start": 4722.34, + "end": 4726.24, + "probability": 0.9678 + }, + { + "start": 4727.36, + "end": 4730.86, + "probability": 0.9297 + }, + { + "start": 4732.32, + "end": 4734.5, + "probability": 0.6843 + }, + { + "start": 4736.38, + "end": 4737.8, + "probability": 0.9945 + }, + { + "start": 4739.78, + "end": 4743.54, + "probability": 0.9004 + }, + { + "start": 4744.7, + "end": 4746.82, + "probability": 0.9614 + }, + { + "start": 4747.88, + "end": 4749.36, + "probability": 0.9374 + }, + { + "start": 4749.9, + "end": 4751.58, + "probability": 0.7405 + }, + { + "start": 4752.2, + "end": 4753.56, + "probability": 0.9955 + }, + { + "start": 4754.38, + "end": 4757.86, + "probability": 0.7305 + }, + { + "start": 4759.36, + "end": 4760.88, + "probability": 0.6547 + }, + { + "start": 4761.8, + "end": 4767.96, + "probability": 0.9509 + }, + { + "start": 4768.72, + "end": 4770.3, + "probability": 0.9917 + }, + { + "start": 4770.68, + "end": 4774.94, + "probability": 0.9283 + }, + { + "start": 4775.94, + "end": 4777.84, + "probability": 0.5891 + }, + { + "start": 4779.42, + "end": 4780.14, + "probability": 0.6897 + }, + { + "start": 4781.52, + "end": 4783.6, + "probability": 0.5311 + }, + { + "start": 4784.82, + "end": 4785.38, + "probability": 0.9804 + }, + { + "start": 4787.86, + "end": 4790.28, + "probability": 0.8865 + }, + { + "start": 4790.92, + "end": 4794.14, + "probability": 0.9922 + }, + { + "start": 4796.12, + "end": 4801.02, + "probability": 0.8622 + }, + { + "start": 4801.84, + "end": 4804.25, + "probability": 0.8816 + }, + { + "start": 4804.86, + "end": 4809.3, + "probability": 0.9894 + }, + { + "start": 4810.16, + "end": 4811.13, + "probability": 0.8083 + }, + { + "start": 4811.52, + "end": 4813.99, + "probability": 0.9935 + }, + { + "start": 4814.58, + "end": 4817.28, + "probability": 0.9448 + }, + { + "start": 4817.52, + "end": 4820.16, + "probability": 0.8589 + }, + { + "start": 4822.06, + "end": 4826.14, + "probability": 0.8849 + }, + { + "start": 4827.16, + "end": 4832.62, + "probability": 0.6281 + }, + { + "start": 4833.62, + "end": 4834.72, + "probability": 0.788 + }, + { + "start": 4835.32, + "end": 4837.46, + "probability": 0.5028 + }, + { + "start": 4839.46, + "end": 4841.44, + "probability": 0.9127 + }, + { + "start": 4841.74, + "end": 4843.82, + "probability": 0.7988 + }, + { + "start": 4844.42, + "end": 4844.9, + "probability": 0.8289 + }, + { + "start": 4846.48, + "end": 4849.46, + "probability": 0.8399 + }, + { + "start": 4849.64, + "end": 4851.82, + "probability": 0.8922 + }, + { + "start": 4852.74, + "end": 4857.4, + "probability": 0.9848 + }, + { + "start": 4858.08, + "end": 4861.34, + "probability": 0.9834 + }, + { + "start": 4862.2, + "end": 4862.68, + "probability": 0.5491 + }, + { + "start": 4863.88, + "end": 4867.66, + "probability": 0.9917 + }, + { + "start": 4869.76, + "end": 4872.12, + "probability": 0.9991 + }, + { + "start": 4872.8, + "end": 4876.46, + "probability": 0.9912 + }, + { + "start": 4877.06, + "end": 4878.41, + "probability": 0.9973 + }, + { + "start": 4879.0, + "end": 4880.68, + "probability": 0.7586 + }, + { + "start": 4882.02, + "end": 4888.68, + "probability": 0.9934 + }, + { + "start": 4889.12, + "end": 4892.66, + "probability": 0.8693 + }, + { + "start": 4893.48, + "end": 4896.8, + "probability": 0.9883 + }, + { + "start": 4896.84, + "end": 4898.62, + "probability": 0.9902 + }, + { + "start": 4899.86, + "end": 4903.44, + "probability": 0.8908 + }, + { + "start": 4904.18, + "end": 4907.86, + "probability": 0.9898 + }, + { + "start": 4909.06, + "end": 4915.88, + "probability": 0.9704 + }, + { + "start": 4916.12, + "end": 4921.97, + "probability": 0.6308 + }, + { + "start": 4922.12, + "end": 4922.18, + "probability": 0.1642 + }, + { + "start": 4922.18, + "end": 4925.52, + "probability": 0.2682 + }, + { + "start": 4925.82, + "end": 4927.98, + "probability": 0.874 + }, + { + "start": 4928.26, + "end": 4930.98, + "probability": 0.988 + }, + { + "start": 4931.42, + "end": 4932.0, + "probability": 0.7469 + }, + { + "start": 4933.08, + "end": 4938.64, + "probability": 0.9884 + }, + { + "start": 4939.02, + "end": 4941.58, + "probability": 0.979 + }, + { + "start": 4942.08, + "end": 4943.32, + "probability": 0.9988 + }, + { + "start": 4944.12, + "end": 4945.33, + "probability": 0.9875 + }, + { + "start": 4946.44, + "end": 4947.18, + "probability": 0.661 + }, + { + "start": 4948.2, + "end": 4948.6, + "probability": 0.6604 + }, + { + "start": 4948.74, + "end": 4950.34, + "probability": 0.7368 + }, + { + "start": 4950.66, + "end": 4951.76, + "probability": 0.9802 + }, + { + "start": 4951.8, + "end": 4952.3, + "probability": 0.9702 + }, + { + "start": 4954.1, + "end": 4958.8, + "probability": 0.974 + }, + { + "start": 4959.34, + "end": 4960.32, + "probability": 0.6718 + }, + { + "start": 4960.92, + "end": 4961.02, + "probability": 0.9958 + }, + { + "start": 4962.34, + "end": 4963.1, + "probability": 0.6697 + }, + { + "start": 4965.1, + "end": 4966.19, + "probability": 0.9534 + }, + { + "start": 4966.86, + "end": 4968.0, + "probability": 0.9929 + }, + { + "start": 4968.56, + "end": 4969.9, + "probability": 0.9243 + }, + { + "start": 4970.7, + "end": 4971.44, + "probability": 0.981 + }, + { + "start": 4973.36, + "end": 4975.14, + "probability": 0.9844 + }, + { + "start": 4975.6, + "end": 4976.22, + "probability": 0.699 + }, + { + "start": 4976.34, + "end": 4977.53, + "probability": 0.868 + }, + { + "start": 4981.18, + "end": 4981.96, + "probability": 0.644 + }, + { + "start": 4982.84, + "end": 4987.32, + "probability": 0.9268 + }, + { + "start": 4988.9, + "end": 4990.22, + "probability": 0.8704 + }, + { + "start": 4991.3, + "end": 4994.98, + "probability": 0.8046 + }, + { + "start": 4995.76, + "end": 4999.56, + "probability": 0.9812 + }, + { + "start": 5000.04, + "end": 5001.82, + "probability": 0.9776 + }, + { + "start": 5002.74, + "end": 5003.48, + "probability": 0.7989 + }, + { + "start": 5005.3, + "end": 5006.22, + "probability": 0.6187 + }, + { + "start": 5008.9, + "end": 5012.44, + "probability": 0.9663 + }, + { + "start": 5013.42, + "end": 5018.63, + "probability": 0.8489 + }, + { + "start": 5019.48, + "end": 5021.22, + "probability": 0.9958 + }, + { + "start": 5022.24, + "end": 5027.68, + "probability": 0.8506 + }, + { + "start": 5027.74, + "end": 5029.55, + "probability": 0.8801 + }, + { + "start": 5031.02, + "end": 5034.54, + "probability": 0.5787 + }, + { + "start": 5035.16, + "end": 5036.72, + "probability": 0.5346 + }, + { + "start": 5037.24, + "end": 5040.08, + "probability": 0.9637 + }, + { + "start": 5040.08, + "end": 5043.16, + "probability": 0.998 + }, + { + "start": 5043.76, + "end": 5044.06, + "probability": 0.6719 + }, + { + "start": 5044.16, + "end": 5045.53, + "probability": 0.8595 + }, + { + "start": 5045.58, + "end": 5046.8, + "probability": 0.9803 + }, + { + "start": 5047.66, + "end": 5051.12, + "probability": 0.7369 + }, + { + "start": 5052.4, + "end": 5055.04, + "probability": 0.7664 + }, + { + "start": 5056.74, + "end": 5060.48, + "probability": 0.7528 + }, + { + "start": 5061.38, + "end": 5064.3, + "probability": 0.8634 + }, + { + "start": 5065.24, + "end": 5070.46, + "probability": 0.9736 + }, + { + "start": 5071.32, + "end": 5073.04, + "probability": 0.9961 + }, + { + "start": 5073.5, + "end": 5075.46, + "probability": 0.9922 + }, + { + "start": 5076.08, + "end": 5080.02, + "probability": 0.9783 + }, + { + "start": 5080.74, + "end": 5081.54, + "probability": 0.9412 + }, + { + "start": 5082.14, + "end": 5083.19, + "probability": 0.9966 + }, + { + "start": 5083.84, + "end": 5087.96, + "probability": 0.7954 + }, + { + "start": 5088.04, + "end": 5088.52, + "probability": 0.7386 + }, + { + "start": 5089.34, + "end": 5091.02, + "probability": 0.9638 + }, + { + "start": 5091.08, + "end": 5091.5, + "probability": 0.8355 + }, + { + "start": 5091.84, + "end": 5093.06, + "probability": 0.8232 + }, + { + "start": 5093.22, + "end": 5096.06, + "probability": 0.7415 + }, + { + "start": 5098.14, + "end": 5099.36, + "probability": 0.6228 + }, + { + "start": 5102.76, + "end": 5104.72, + "probability": 0.6207 + }, + { + "start": 5116.38, + "end": 5118.94, + "probability": 0.5861 + }, + { + "start": 5120.6, + "end": 5123.0, + "probability": 0.7483 + }, + { + "start": 5125.12, + "end": 5127.38, + "probability": 0.987 + }, + { + "start": 5128.12, + "end": 5130.38, + "probability": 0.9015 + }, + { + "start": 5131.24, + "end": 5135.88, + "probability": 0.9268 + }, + { + "start": 5141.84, + "end": 5144.76, + "probability": 0.9492 + }, + { + "start": 5147.58, + "end": 5150.88, + "probability": 0.9663 + }, + { + "start": 5151.78, + "end": 5154.55, + "probability": 0.9505 + }, + { + "start": 5154.98, + "end": 5157.02, + "probability": 0.7314 + }, + { + "start": 5157.96, + "end": 5161.84, + "probability": 0.8036 + }, + { + "start": 5161.84, + "end": 5163.94, + "probability": 0.8761 + }, + { + "start": 5164.3, + "end": 5164.82, + "probability": 0.3254 + }, + { + "start": 5165.14, + "end": 5166.4, + "probability": 0.4113 + }, + { + "start": 5167.44, + "end": 5170.64, + "probability": 0.9645 + }, + { + "start": 5170.64, + "end": 5173.24, + "probability": 0.6492 + }, + { + "start": 5173.44, + "end": 5173.92, + "probability": 0.0306 + }, + { + "start": 5173.92, + "end": 5174.32, + "probability": 0.3433 + }, + { + "start": 5174.5, + "end": 5176.84, + "probability": 0.8478 + }, + { + "start": 5176.92, + "end": 5177.94, + "probability": 0.8974 + }, + { + "start": 5178.16, + "end": 5180.0, + "probability": 0.5461 + }, + { + "start": 5180.06, + "end": 5181.34, + "probability": 0.7768 + }, + { + "start": 5181.52, + "end": 5184.04, + "probability": 0.688 + }, + { + "start": 5184.5, + "end": 5190.74, + "probability": 0.9931 + }, + { + "start": 5192.02, + "end": 5196.92, + "probability": 0.7748 + }, + { + "start": 5197.46, + "end": 5201.0, + "probability": 0.9321 + }, + { + "start": 5201.0, + "end": 5202.44, + "probability": 0.8604 + }, + { + "start": 5202.92, + "end": 5203.38, + "probability": 0.3897 + }, + { + "start": 5204.07, + "end": 5206.32, + "probability": 0.9368 + }, + { + "start": 5206.5, + "end": 5207.34, + "probability": 0.9436 + }, + { + "start": 5207.44, + "end": 5209.03, + "probability": 0.4625 + }, + { + "start": 5210.4, + "end": 5211.6, + "probability": 0.6938 + }, + { + "start": 5211.6, + "end": 5215.36, + "probability": 0.9744 + }, + { + "start": 5216.16, + "end": 5217.3, + "probability": 0.8176 + }, + { + "start": 5217.5, + "end": 5222.28, + "probability": 0.8429 + }, + { + "start": 5223.48, + "end": 5227.08, + "probability": 0.6577 + }, + { + "start": 5227.92, + "end": 5229.2, + "probability": 0.3914 + }, + { + "start": 5231.94, + "end": 5235.62, + "probability": 0.7342 + }, + { + "start": 5236.32, + "end": 5238.22, + "probability": 0.9603 + }, + { + "start": 5239.58, + "end": 5241.84, + "probability": 0.9749 + }, + { + "start": 5244.28, + "end": 5246.09, + "probability": 0.9956 + }, + { + "start": 5246.3, + "end": 5249.24, + "probability": 0.998 + }, + { + "start": 5250.92, + "end": 5252.2, + "probability": 0.8516 + }, + { + "start": 5252.2, + "end": 5259.12, + "probability": 0.8613 + }, + { + "start": 5259.12, + "end": 5263.06, + "probability": 0.7841 + }, + { + "start": 5263.06, + "end": 5264.6, + "probability": 0.5177 + }, + { + "start": 5264.7, + "end": 5267.3, + "probability": 0.7258 + }, + { + "start": 5267.82, + "end": 5269.38, + "probability": 0.945 + }, + { + "start": 5269.98, + "end": 5272.28, + "probability": 0.9497 + }, + { + "start": 5272.42, + "end": 5272.9, + "probability": 0.8928 + }, + { + "start": 5272.92, + "end": 5274.16, + "probability": 0.9613 + }, + { + "start": 5274.26, + "end": 5274.96, + "probability": 0.9397 + }, + { + "start": 5275.26, + "end": 5275.75, + "probability": 0.6362 + }, + { + "start": 5275.96, + "end": 5277.42, + "probability": 0.7464 + }, + { + "start": 5277.46, + "end": 5278.84, + "probability": 0.8615 + }, + { + "start": 5279.14, + "end": 5281.82, + "probability": 0.9689 + }, + { + "start": 5282.0, + "end": 5283.78, + "probability": 0.6258 + }, + { + "start": 5283.86, + "end": 5285.3, + "probability": 0.9775 + }, + { + "start": 5286.04, + "end": 5287.6, + "probability": 0.5808 + }, + { + "start": 5287.66, + "end": 5288.6, + "probability": 0.96 + }, + { + "start": 5288.96, + "end": 5292.44, + "probability": 0.9818 + }, + { + "start": 5293.52, + "end": 5294.46, + "probability": 0.6769 + }, + { + "start": 5294.56, + "end": 5297.44, + "probability": 0.935 + }, + { + "start": 5298.32, + "end": 5299.44, + "probability": 0.9639 + }, + { + "start": 5299.6, + "end": 5302.56, + "probability": 0.9616 + }, + { + "start": 5304.72, + "end": 5306.14, + "probability": 0.6579 + }, + { + "start": 5307.4, + "end": 5309.52, + "probability": 0.5987 + }, + { + "start": 5309.6, + "end": 5311.12, + "probability": 0.9813 + }, + { + "start": 5311.72, + "end": 5312.74, + "probability": 0.8723 + }, + { + "start": 5312.84, + "end": 5315.84, + "probability": 0.6807 + }, + { + "start": 5316.45, + "end": 5322.08, + "probability": 0.9755 + }, + { + "start": 5322.08, + "end": 5326.06, + "probability": 0.9912 + }, + { + "start": 5327.78, + "end": 5330.26, + "probability": 0.9164 + }, + { + "start": 5330.82, + "end": 5331.5, + "probability": 0.6265 + }, + { + "start": 5331.54, + "end": 5332.36, + "probability": 0.9247 + }, + { + "start": 5332.64, + "end": 5332.94, + "probability": 0.5 + }, + { + "start": 5333.28, + "end": 5334.56, + "probability": 0.9502 + }, + { + "start": 5334.82, + "end": 5336.4, + "probability": 0.9762 + }, + { + "start": 5337.18, + "end": 5338.56, + "probability": 0.9589 + }, + { + "start": 5338.56, + "end": 5339.16, + "probability": 0.3991 + }, + { + "start": 5339.24, + "end": 5340.04, + "probability": 0.9507 + }, + { + "start": 5340.18, + "end": 5345.72, + "probability": 0.9619 + }, + { + "start": 5345.87, + "end": 5350.48, + "probability": 0.9431 + }, + { + "start": 5350.82, + "end": 5351.34, + "probability": 0.469 + }, + { + "start": 5351.5, + "end": 5352.38, + "probability": 0.5832 + }, + { + "start": 5354.02, + "end": 5354.82, + "probability": 0.6728 + }, + { + "start": 5356.66, + "end": 5359.38, + "probability": 0.9684 + }, + { + "start": 5361.04, + "end": 5362.21, + "probability": 0.9091 + }, + { + "start": 5364.32, + "end": 5369.54, + "probability": 0.7554 + }, + { + "start": 5370.64, + "end": 5371.6, + "probability": 0.8651 + }, + { + "start": 5372.04, + "end": 5375.06, + "probability": 0.8248 + }, + { + "start": 5376.58, + "end": 5378.22, + "probability": 0.9397 + }, + { + "start": 5378.76, + "end": 5379.78, + "probability": 0.9155 + }, + { + "start": 5379.88, + "end": 5383.74, + "probability": 0.8339 + }, + { + "start": 5384.1, + "end": 5385.74, + "probability": 0.6468 + }, + { + "start": 5387.12, + "end": 5388.66, + "probability": 0.9854 + }, + { + "start": 5392.48, + "end": 5393.22, + "probability": 0.9375 + }, + { + "start": 5393.34, + "end": 5399.02, + "probability": 0.7974 + }, + { + "start": 5399.58, + "end": 5401.38, + "probability": 0.7853 + }, + { + "start": 5402.14, + "end": 5402.94, + "probability": 0.5702 + }, + { + "start": 5403.54, + "end": 5406.36, + "probability": 0.9368 + }, + { + "start": 5406.36, + "end": 5408.0, + "probability": 0.9266 + }, + { + "start": 5408.88, + "end": 5409.84, + "probability": 0.8015 + }, + { + "start": 5409.88, + "end": 5413.58, + "probability": 0.9522 + }, + { + "start": 5414.76, + "end": 5415.57, + "probability": 0.9628 + }, + { + "start": 5416.96, + "end": 5417.92, + "probability": 0.6946 + }, + { + "start": 5417.98, + "end": 5418.66, + "probability": 0.3979 + }, + { + "start": 5418.66, + "end": 5418.92, + "probability": 0.3127 + }, + { + "start": 5419.22, + "end": 5419.68, + "probability": 0.6364 + }, + { + "start": 5419.78, + "end": 5422.58, + "probability": 0.7288 + }, + { + "start": 5425.34, + "end": 5426.08, + "probability": 0.9519 + }, + { + "start": 5427.82, + "end": 5428.06, + "probability": 0.489 + }, + { + "start": 5428.24, + "end": 5434.52, + "probability": 0.8348 + }, + { + "start": 5434.86, + "end": 5435.37, + "probability": 0.9723 + }, + { + "start": 5436.5, + "end": 5437.81, + "probability": 0.9443 + }, + { + "start": 5438.44, + "end": 5441.78, + "probability": 0.9155 + }, + { + "start": 5442.02, + "end": 5443.22, + "probability": 0.846 + }, + { + "start": 5443.58, + "end": 5445.8, + "probability": 0.5101 + }, + { + "start": 5446.34, + "end": 5446.72, + "probability": 0.6852 + }, + { + "start": 5449.16, + "end": 5452.84, + "probability": 0.8358 + }, + { + "start": 5452.9, + "end": 5454.0, + "probability": 0.9208 + }, + { + "start": 5455.06, + "end": 5455.54, + "probability": 0.539 + }, + { + "start": 5456.16, + "end": 5459.04, + "probability": 0.6681 + }, + { + "start": 5459.76, + "end": 5461.04, + "probability": 0.9463 + }, + { + "start": 5461.36, + "end": 5465.24, + "probability": 0.9365 + }, + { + "start": 5465.74, + "end": 5466.66, + "probability": 0.588 + }, + { + "start": 5466.82, + "end": 5467.88, + "probability": 0.4713 + }, + { + "start": 5468.1, + "end": 5468.99, + "probability": 0.5914 + }, + { + "start": 5470.1, + "end": 5472.02, + "probability": 0.8066 + }, + { + "start": 5472.3, + "end": 5473.14, + "probability": 0.294 + }, + { + "start": 5473.68, + "end": 5475.92, + "probability": 0.526 + }, + { + "start": 5476.1, + "end": 5477.91, + "probability": 0.6022 + }, + { + "start": 5478.44, + "end": 5480.41, + "probability": 0.8405 + }, + { + "start": 5481.24, + "end": 5481.64, + "probability": 0.4657 + }, + { + "start": 5481.76, + "end": 5482.38, + "probability": 0.8666 + }, + { + "start": 5483.1, + "end": 5484.1, + "probability": 0.959 + }, + { + "start": 5484.2, + "end": 5486.59, + "probability": 0.9429 + }, + { + "start": 5488.04, + "end": 5490.76, + "probability": 0.9961 + }, + { + "start": 5490.76, + "end": 5494.92, + "probability": 0.9701 + }, + { + "start": 5495.96, + "end": 5496.66, + "probability": 0.802 + }, + { + "start": 5500.66, + "end": 5502.12, + "probability": 0.6107 + }, + { + "start": 5503.06, + "end": 5504.26, + "probability": 0.8781 + }, + { + "start": 5504.66, + "end": 5504.72, + "probability": 0.7425 + }, + { + "start": 5504.72, + "end": 5506.16, + "probability": 0.4586 + }, + { + "start": 5506.38, + "end": 5507.14, + "probability": 0.5024 + }, + { + "start": 5507.14, + "end": 5509.26, + "probability": 0.8036 + }, + { + "start": 5509.36, + "end": 5510.24, + "probability": 0.3017 + }, + { + "start": 5510.36, + "end": 5512.56, + "probability": 0.5118 + }, + { + "start": 5512.84, + "end": 5517.1, + "probability": 0.8608 + }, + { + "start": 5517.28, + "end": 5518.04, + "probability": 0.5807 + }, + { + "start": 5518.16, + "end": 5518.98, + "probability": 0.393 + }, + { + "start": 5519.4, + "end": 5520.64, + "probability": 0.8198 + }, + { + "start": 5520.82, + "end": 5520.82, + "probability": 0.1438 + }, + { + "start": 5520.82, + "end": 5523.52, + "probability": 0.9877 + }, + { + "start": 5523.7, + "end": 5526.8, + "probability": 0.7552 + }, + { + "start": 5526.84, + "end": 5529.86, + "probability": 0.7837 + }, + { + "start": 5535.78, + "end": 5537.14, + "probability": 0.2643 + }, + { + "start": 5549.44, + "end": 5549.7, + "probability": 0.0794 + }, + { + "start": 5549.7, + "end": 5550.84, + "probability": 0.9438 + }, + { + "start": 5551.2, + "end": 5553.15, + "probability": 0.5652 + }, + { + "start": 5553.82, + "end": 5555.12, + "probability": 0.7199 + }, + { + "start": 5555.12, + "end": 5556.01, + "probability": 0.3021 + }, + { + "start": 5557.06, + "end": 5557.96, + "probability": 0.8541 + }, + { + "start": 5559.16, + "end": 5560.22, + "probability": 0.6662 + }, + { + "start": 5561.42, + "end": 5564.98, + "probability": 0.7682 + }, + { + "start": 5566.52, + "end": 5569.32, + "probability": 0.4719 + }, + { + "start": 5570.44, + "end": 5570.96, + "probability": 0.6755 + }, + { + "start": 5571.3, + "end": 5572.13, + "probability": 0.6043 + }, + { + "start": 5573.28, + "end": 5576.62, + "probability": 0.7549 + }, + { + "start": 5576.62, + "end": 5578.66, + "probability": 0.9299 + }, + { + "start": 5579.9, + "end": 5581.82, + "probability": 0.5 + }, + { + "start": 5582.94, + "end": 5583.5, + "probability": 0.7889 + }, + { + "start": 5584.88, + "end": 5585.84, + "probability": 0.8402 + }, + { + "start": 5585.98, + "end": 5587.73, + "probability": 0.7823 + }, + { + "start": 5588.82, + "end": 5591.62, + "probability": 0.991 + }, + { + "start": 5591.78, + "end": 5596.24, + "probability": 0.6631 + }, + { + "start": 5596.42, + "end": 5597.12, + "probability": 0.4788 + }, + { + "start": 5598.32, + "end": 5599.82, + "probability": 0.8053 + }, + { + "start": 5599.92, + "end": 5600.2, + "probability": 0.4832 + }, + { + "start": 5600.24, + "end": 5602.7, + "probability": 0.9928 + }, + { + "start": 5603.0, + "end": 5603.98, + "probability": 0.8383 + }, + { + "start": 5604.18, + "end": 5605.34, + "probability": 0.8206 + }, + { + "start": 5606.02, + "end": 5609.41, + "probability": 0.9551 + }, + { + "start": 5610.4, + "end": 5616.8, + "probability": 0.9788 + }, + { + "start": 5616.94, + "end": 5618.0, + "probability": 0.7326 + }, + { + "start": 5618.02, + "end": 5618.84, + "probability": 0.6094 + }, + { + "start": 5620.16, + "end": 5624.0, + "probability": 0.7907 + }, + { + "start": 5625.88, + "end": 5627.49, + "probability": 0.8779 + }, + { + "start": 5628.9, + "end": 5630.84, + "probability": 0.8955 + }, + { + "start": 5631.8, + "end": 5634.96, + "probability": 0.9293 + }, + { + "start": 5636.04, + "end": 5637.2, + "probability": 0.805 + }, + { + "start": 5639.1, + "end": 5649.1, + "probability": 0.9666 + }, + { + "start": 5649.96, + "end": 5652.98, + "probability": 0.9749 + }, + { + "start": 5653.84, + "end": 5655.2, + "probability": 0.95 + }, + { + "start": 5658.12, + "end": 5658.7, + "probability": 0.5677 + }, + { + "start": 5658.92, + "end": 5660.5, + "probability": 0.7092 + }, + { + "start": 5660.7, + "end": 5661.74, + "probability": 0.7152 + }, + { + "start": 5662.72, + "end": 5665.6, + "probability": 0.8689 + }, + { + "start": 5665.72, + "end": 5668.24, + "probability": 0.9458 + }, + { + "start": 5668.24, + "end": 5668.68, + "probability": 0.6388 + }, + { + "start": 5669.8, + "end": 5672.96, + "probability": 0.8898 + }, + { + "start": 5673.66, + "end": 5674.74, + "probability": 0.5517 + }, + { + "start": 5674.88, + "end": 5676.24, + "probability": 0.7061 + }, + { + "start": 5676.34, + "end": 5677.4, + "probability": 0.7713 + }, + { + "start": 5677.6, + "end": 5678.18, + "probability": 0.5251 + }, + { + "start": 5678.46, + "end": 5680.66, + "probability": 0.9138 + }, + { + "start": 5680.84, + "end": 5682.02, + "probability": 0.927 + }, + { + "start": 5682.4, + "end": 5684.77, + "probability": 0.491 + }, + { + "start": 5686.16, + "end": 5686.84, + "probability": 0.3684 + }, + { + "start": 5687.52, + "end": 5688.6, + "probability": 0.1518 + }, + { + "start": 5688.74, + "end": 5689.48, + "probability": 0.6264 + }, + { + "start": 5689.52, + "end": 5690.76, + "probability": 0.62 + }, + { + "start": 5690.76, + "end": 5693.54, + "probability": 0.748 + }, + { + "start": 5693.6, + "end": 5694.38, + "probability": 0.8099 + }, + { + "start": 5694.86, + "end": 5695.38, + "probability": 0.7575 + }, + { + "start": 5695.52, + "end": 5700.88, + "probability": 0.9049 + }, + { + "start": 5701.8, + "end": 5703.36, + "probability": 0.9417 + }, + { + "start": 5703.44, + "end": 5704.5, + "probability": 0.7847 + }, + { + "start": 5704.52, + "end": 5705.0, + "probability": 0.9637 + }, + { + "start": 5705.58, + "end": 5710.44, + "probability": 0.8094 + }, + { + "start": 5710.56, + "end": 5711.24, + "probability": 0.0845 + }, + { + "start": 5711.66, + "end": 5716.76, + "probability": 0.9038 + }, + { + "start": 5716.88, + "end": 5717.88, + "probability": 0.7253 + }, + { + "start": 5719.4, + "end": 5720.36, + "probability": 0.962 + }, + { + "start": 5720.54, + "end": 5725.36, + "probability": 0.9443 + }, + { + "start": 5726.02, + "end": 5728.98, + "probability": 0.9976 + }, + { + "start": 5730.24, + "end": 5733.58, + "probability": 0.9707 + }, + { + "start": 5734.12, + "end": 5735.72, + "probability": 0.9899 + }, + { + "start": 5735.96, + "end": 5736.45, + "probability": 0.8976 + }, + { + "start": 5736.8, + "end": 5737.34, + "probability": 0.8906 + }, + { + "start": 5737.44, + "end": 5738.96, + "probability": 0.9819 + }, + { + "start": 5739.44, + "end": 5739.54, + "probability": 0.3085 + }, + { + "start": 5740.22, + "end": 5742.74, + "probability": 0.2511 + }, + { + "start": 5743.06, + "end": 5744.98, + "probability": 0.7159 + }, + { + "start": 5745.52, + "end": 5749.48, + "probability": 0.9102 + }, + { + "start": 5750.32, + "end": 5751.72, + "probability": 0.527 + }, + { + "start": 5752.14, + "end": 5755.16, + "probability": 0.8465 + }, + { + "start": 5755.54, + "end": 5758.86, + "probability": 0.9856 + }, + { + "start": 5759.06, + "end": 5759.96, + "probability": 0.946 + }, + { + "start": 5760.52, + "end": 5761.98, + "probability": 0.7822 + }, + { + "start": 5762.74, + "end": 5764.28, + "probability": 0.7773 + }, + { + "start": 5765.18, + "end": 5766.05, + "probability": 0.5199 + }, + { + "start": 5766.7, + "end": 5770.14, + "probability": 0.9934 + }, + { + "start": 5770.14, + "end": 5773.8, + "probability": 0.9076 + }, + { + "start": 5774.58, + "end": 5777.74, + "probability": 0.8374 + }, + { + "start": 5778.8, + "end": 5782.2, + "probability": 0.968 + }, + { + "start": 5782.54, + "end": 5783.92, + "probability": 0.9899 + }, + { + "start": 5784.78, + "end": 5786.86, + "probability": 0.8701 + }, + { + "start": 5787.86, + "end": 5789.92, + "probability": 0.5997 + }, + { + "start": 5789.98, + "end": 5796.48, + "probability": 0.9432 + }, + { + "start": 5798.88, + "end": 5801.5, + "probability": 0.7367 + }, + { + "start": 5802.48, + "end": 5804.22, + "probability": 0.9675 + }, + { + "start": 5804.9, + "end": 5806.64, + "probability": 0.9376 + }, + { + "start": 5806.76, + "end": 5807.56, + "probability": 0.9305 + }, + { + "start": 5808.32, + "end": 5809.22, + "probability": 0.9194 + }, + { + "start": 5809.38, + "end": 5809.82, + "probability": 0.6948 + }, + { + "start": 5810.0, + "end": 5810.5, + "probability": 0.5259 + }, + { + "start": 5810.9, + "end": 5812.72, + "probability": 0.9954 + }, + { + "start": 5812.88, + "end": 5812.94, + "probability": 0.1848 + }, + { + "start": 5813.0, + "end": 5816.04, + "probability": 0.9619 + }, + { + "start": 5816.52, + "end": 5817.24, + "probability": 0.7306 + }, + { + "start": 5817.5, + "end": 5818.96, + "probability": 0.9927 + }, + { + "start": 5819.76, + "end": 5821.66, + "probability": 0.8537 + }, + { + "start": 5822.18, + "end": 5825.48, + "probability": 0.7039 + }, + { + "start": 5826.86, + "end": 5829.72, + "probability": 0.6724 + }, + { + "start": 5829.76, + "end": 5830.44, + "probability": 0.8084 + }, + { + "start": 5830.94, + "end": 5831.68, + "probability": 0.9309 + }, + { + "start": 5831.78, + "end": 5833.91, + "probability": 0.9846 + }, + { + "start": 5834.36, + "end": 5836.46, + "probability": 0.8402 + }, + { + "start": 5836.94, + "end": 5841.68, + "probability": 0.9852 + }, + { + "start": 5842.38, + "end": 5842.96, + "probability": 0.7465 + }, + { + "start": 5843.14, + "end": 5843.52, + "probability": 0.4752 + }, + { + "start": 5843.7, + "end": 5844.4, + "probability": 0.8805 + }, + { + "start": 5844.58, + "end": 5845.67, + "probability": 0.9863 + }, + { + "start": 5847.04, + "end": 5847.71, + "probability": 0.834 + }, + { + "start": 5847.94, + "end": 5850.16, + "probability": 0.4005 + }, + { + "start": 5850.48, + "end": 5852.3, + "probability": 0.9749 + }, + { + "start": 5852.68, + "end": 5853.62, + "probability": 0.7966 + }, + { + "start": 5854.16, + "end": 5854.54, + "probability": 0.6971 + }, + { + "start": 5855.56, + "end": 5857.16, + "probability": 0.9909 + }, + { + "start": 5858.6, + "end": 5859.2, + "probability": 0.9546 + }, + { + "start": 5859.28, + "end": 5861.21, + "probability": 0.6993 + }, + { + "start": 5862.38, + "end": 5868.66, + "probability": 0.7563 + }, + { + "start": 5868.76, + "end": 5869.5, + "probability": 0.8798 + }, + { + "start": 5869.56, + "end": 5870.26, + "probability": 0.6523 + }, + { + "start": 5870.36, + "end": 5871.03, + "probability": 0.802 + }, + { + "start": 5871.22, + "end": 5874.44, + "probability": 0.9644 + }, + { + "start": 5875.12, + "end": 5876.76, + "probability": 0.7103 + }, + { + "start": 5876.86, + "end": 5877.81, + "probability": 0.9893 + }, + { + "start": 5878.48, + "end": 5879.78, + "probability": 0.7798 + }, + { + "start": 5882.0, + "end": 5883.4, + "probability": 0.9736 + }, + { + "start": 5884.42, + "end": 5885.88, + "probability": 0.6309 + }, + { + "start": 5885.92, + "end": 5886.96, + "probability": 0.4913 + }, + { + "start": 5886.96, + "end": 5889.02, + "probability": 0.8264 + }, + { + "start": 5889.84, + "end": 5894.24, + "probability": 0.6613 + }, + { + "start": 5894.56, + "end": 5895.68, + "probability": 0.9732 + }, + { + "start": 5896.0, + "end": 5899.1, + "probability": 0.5344 + }, + { + "start": 5899.14, + "end": 5900.12, + "probability": 0.9934 + }, + { + "start": 5900.8, + "end": 5901.58, + "probability": 0.6951 + }, + { + "start": 5901.64, + "end": 5902.9, + "probability": 0.9973 + }, + { + "start": 5904.84, + "end": 5907.78, + "probability": 0.7381 + }, + { + "start": 5907.98, + "end": 5910.88, + "probability": 0.5649 + }, + { + "start": 5911.3, + "end": 5913.3, + "probability": 0.8882 + }, + { + "start": 5914.36, + "end": 5915.34, + "probability": 0.6943 + }, + { + "start": 5915.7, + "end": 5916.34, + "probability": 0.9262 + }, + { + "start": 5916.5, + "end": 5917.84, + "probability": 0.9712 + }, + { + "start": 5919.12, + "end": 5922.34, + "probability": 0.9293 + }, + { + "start": 5922.92, + "end": 5925.76, + "probability": 0.4935 + }, + { + "start": 5925.84, + "end": 5926.76, + "probability": 0.8819 + }, + { + "start": 5927.3, + "end": 5933.06, + "probability": 0.9789 + }, + { + "start": 5933.98, + "end": 5935.56, + "probability": 0.593 + }, + { + "start": 5935.74, + "end": 5937.66, + "probability": 0.7768 + }, + { + "start": 5937.68, + "end": 5938.52, + "probability": 0.6526 + }, + { + "start": 5938.7, + "end": 5939.33, + "probability": 0.8722 + }, + { + "start": 5939.52, + "end": 5940.12, + "probability": 0.7465 + }, + { + "start": 5940.24, + "end": 5942.7, + "probability": 0.8574 + }, + { + "start": 5943.4, + "end": 5945.56, + "probability": 0.988 + }, + { + "start": 5945.56, + "end": 5950.12, + "probability": 0.9956 + }, + { + "start": 5950.96, + "end": 5951.74, + "probability": 0.7479 + }, + { + "start": 5951.9, + "end": 5952.62, + "probability": 0.6752 + }, + { + "start": 5952.98, + "end": 5956.36, + "probability": 0.9747 + }, + { + "start": 5956.44, + "end": 5958.22, + "probability": 0.957 + }, + { + "start": 5958.86, + "end": 5959.58, + "probability": 0.8164 + }, + { + "start": 5959.88, + "end": 5961.06, + "probability": 0.9826 + }, + { + "start": 5961.1, + "end": 5962.04, + "probability": 0.902 + }, + { + "start": 5962.64, + "end": 5964.88, + "probability": 0.9976 + }, + { + "start": 5964.96, + "end": 5966.96, + "probability": 0.9304 + }, + { + "start": 5967.4, + "end": 5969.42, + "probability": 0.6494 + }, + { + "start": 5969.88, + "end": 5972.36, + "probability": 0.762 + }, + { + "start": 5973.08, + "end": 5976.8, + "probability": 0.8825 + }, + { + "start": 5977.56, + "end": 5981.32, + "probability": 0.7952 + }, + { + "start": 5981.82, + "end": 5984.96, + "probability": 0.9806 + }, + { + "start": 5985.26, + "end": 5990.8, + "probability": 0.7883 + }, + { + "start": 5991.32, + "end": 5996.76, + "probability": 0.9873 + }, + { + "start": 5997.12, + "end": 5998.52, + "probability": 0.4854 + }, + { + "start": 5998.54, + "end": 5999.1, + "probability": 0.5924 + }, + { + "start": 5999.32, + "end": 6000.72, + "probability": 0.6213 + }, + { + "start": 6001.36, + "end": 6005.12, + "probability": 0.0438 + }, + { + "start": 6006.22, + "end": 6008.56, + "probability": 0.2026 + }, + { + "start": 6009.04, + "end": 6010.44, + "probability": 0.2992 + }, + { + "start": 6027.44, + "end": 6029.64, + "probability": 0.6875 + }, + { + "start": 6030.36, + "end": 6032.98, + "probability": 0.8596 + }, + { + "start": 6033.72, + "end": 6034.96, + "probability": 0.7978 + }, + { + "start": 6035.7, + "end": 6036.64, + "probability": 0.5472 + }, + { + "start": 6036.78, + "end": 6037.92, + "probability": 0.9016 + }, + { + "start": 6038.04, + "end": 6039.58, + "probability": 0.9328 + }, + { + "start": 6039.72, + "end": 6041.34, + "probability": 0.6455 + }, + { + "start": 6041.94, + "end": 6046.94, + "probability": 0.7686 + }, + { + "start": 6047.52, + "end": 6053.54, + "probability": 0.9673 + }, + { + "start": 6053.66, + "end": 6054.83, + "probability": 0.9844 + }, + { + "start": 6056.0, + "end": 6059.4, + "probability": 0.8185 + }, + { + "start": 6060.22, + "end": 6062.35, + "probability": 0.7435 + }, + { + "start": 6063.56, + "end": 6064.52, + "probability": 0.4976 + }, + { + "start": 6064.66, + "end": 6067.18, + "probability": 0.9461 + }, + { + "start": 6067.42, + "end": 6068.42, + "probability": 0.9743 + }, + { + "start": 6068.58, + "end": 6072.6, + "probability": 0.842 + }, + { + "start": 6072.98, + "end": 6074.56, + "probability": 0.4491 + }, + { + "start": 6074.56, + "end": 6075.46, + "probability": 0.7356 + }, + { + "start": 6076.0, + "end": 6076.42, + "probability": 0.5833 + }, + { + "start": 6076.9, + "end": 6079.38, + "probability": 0.6815 + }, + { + "start": 6079.58, + "end": 6079.94, + "probability": 0.3979 + }, + { + "start": 6080.02, + "end": 6080.7, + "probability": 0.4783 + }, + { + "start": 6081.52, + "end": 6082.58, + "probability": 0.6531 + }, + { + "start": 6083.44, + "end": 6085.64, + "probability": 0.8615 + }, + { + "start": 6087.02, + "end": 6088.12, + "probability": 0.8406 + }, + { + "start": 6088.66, + "end": 6091.44, + "probability": 0.9658 + }, + { + "start": 6092.62, + "end": 6093.48, + "probability": 0.1885 + }, + { + "start": 6094.24, + "end": 6096.68, + "probability": 0.2473 + }, + { + "start": 6097.3, + "end": 6097.36, + "probability": 0.2217 + }, + { + "start": 6097.36, + "end": 6098.24, + "probability": 0.4772 + }, + { + "start": 6098.38, + "end": 6102.2, + "probability": 0.5217 + }, + { + "start": 6102.95, + "end": 6107.18, + "probability": 0.633 + }, + { + "start": 6107.92, + "end": 6110.24, + "probability": 0.723 + }, + { + "start": 6112.52, + "end": 6113.32, + "probability": 0.735 + }, + { + "start": 6113.36, + "end": 6115.36, + "probability": 0.9354 + }, + { + "start": 6115.52, + "end": 6118.06, + "probability": 0.887 + }, + { + "start": 6118.56, + "end": 6121.74, + "probability": 0.7537 + }, + { + "start": 6122.1, + "end": 6123.7, + "probability": 0.7741 + }, + { + "start": 6124.48, + "end": 6126.84, + "probability": 0.9698 + }, + { + "start": 6127.04, + "end": 6127.38, + "probability": 0.8837 + }, + { + "start": 6127.5, + "end": 6127.86, + "probability": 0.8959 + }, + { + "start": 6127.98, + "end": 6128.78, + "probability": 0.7666 + }, + { + "start": 6129.24, + "end": 6130.48, + "probability": 0.8931 + }, + { + "start": 6131.02, + "end": 6133.28, + "probability": 0.9423 + }, + { + "start": 6134.24, + "end": 6135.54, + "probability": 0.9496 + }, + { + "start": 6136.0, + "end": 6138.8, + "probability": 0.7704 + }, + { + "start": 6138.8, + "end": 6143.16, + "probability": 0.9613 + }, + { + "start": 6144.42, + "end": 6148.44, + "probability": 0.9629 + }, + { + "start": 6149.58, + "end": 6150.64, + "probability": 0.9927 + }, + { + "start": 6150.76, + "end": 6152.24, + "probability": 0.9758 + }, + { + "start": 6152.42, + "end": 6157.44, + "probability": 0.9764 + }, + { + "start": 6158.28, + "end": 6158.98, + "probability": 0.0626 + }, + { + "start": 6159.48, + "end": 6160.24, + "probability": 0.6777 + }, + { + "start": 6160.4, + "end": 6161.3, + "probability": 0.5215 + }, + { + "start": 6161.42, + "end": 6161.84, + "probability": 0.5365 + }, + { + "start": 6162.04, + "end": 6164.18, + "probability": 0.8855 + }, + { + "start": 6165.74, + "end": 6166.39, + "probability": 0.9629 + }, + { + "start": 6167.16, + "end": 6170.26, + "probability": 0.9817 + }, + { + "start": 6171.52, + "end": 6176.6, + "probability": 0.9693 + }, + { + "start": 6177.64, + "end": 6180.42, + "probability": 0.9633 + }, + { + "start": 6180.48, + "end": 6185.66, + "probability": 0.5088 + }, + { + "start": 6190.32, + "end": 6195.82, + "probability": 0.7196 + }, + { + "start": 6196.64, + "end": 6199.28, + "probability": 0.9766 + }, + { + "start": 6199.46, + "end": 6200.46, + "probability": 0.7834 + }, + { + "start": 6201.58, + "end": 6203.77, + "probability": 0.8973 + }, + { + "start": 6204.42, + "end": 6207.58, + "probability": 0.9893 + }, + { + "start": 6208.44, + "end": 6208.72, + "probability": 0.9471 + }, + { + "start": 6211.26, + "end": 6214.18, + "probability": 0.4517 + }, + { + "start": 6214.18, + "end": 6217.48, + "probability": 0.8103 + }, + { + "start": 6218.2, + "end": 6221.56, + "probability": 0.9589 + }, + { + "start": 6223.82, + "end": 6225.74, + "probability": 0.7712 + }, + { + "start": 6225.86, + "end": 6228.05, + "probability": 0.9944 + }, + { + "start": 6229.24, + "end": 6233.46, + "probability": 0.8137 + }, + { + "start": 6233.48, + "end": 6234.52, + "probability": 0.8835 + }, + { + "start": 6234.64, + "end": 6239.22, + "probability": 0.8223 + }, + { + "start": 6240.12, + "end": 6241.38, + "probability": 0.9041 + }, + { + "start": 6241.52, + "end": 6244.32, + "probability": 0.9329 + }, + { + "start": 6244.32, + "end": 6248.68, + "probability": 0.9047 + }, + { + "start": 6249.24, + "end": 6252.9, + "probability": 0.9645 + }, + { + "start": 6252.9, + "end": 6256.4, + "probability": 0.8122 + }, + { + "start": 6257.58, + "end": 6258.7, + "probability": 0.9325 + }, + { + "start": 6258.84, + "end": 6260.47, + "probability": 0.9162 + }, + { + "start": 6261.08, + "end": 6263.0, + "probability": 0.947 + }, + { + "start": 6265.36, + "end": 6267.82, + "probability": 0.9952 + }, + { + "start": 6267.82, + "end": 6272.26, + "probability": 0.992 + }, + { + "start": 6273.04, + "end": 6278.16, + "probability": 0.9768 + }, + { + "start": 6278.28, + "end": 6282.34, + "probability": 0.842 + }, + { + "start": 6283.84, + "end": 6288.6, + "probability": 0.919 + }, + { + "start": 6288.74, + "end": 6291.74, + "probability": 0.8014 + }, + { + "start": 6291.74, + "end": 6297.24, + "probability": 0.9552 + }, + { + "start": 6297.36, + "end": 6301.12, + "probability": 0.75 + }, + { + "start": 6301.44, + "end": 6302.28, + "probability": 0.5732 + }, + { + "start": 6302.36, + "end": 6303.2, + "probability": 0.7142 + }, + { + "start": 6303.28, + "end": 6305.68, + "probability": 0.5467 + }, + { + "start": 6305.72, + "end": 6306.48, + "probability": 0.3143 + }, + { + "start": 6307.44, + "end": 6313.86, + "probability": 0.9736 + }, + { + "start": 6314.04, + "end": 6314.52, + "probability": 0.809 + }, + { + "start": 6315.28, + "end": 6316.86, + "probability": 0.3854 + }, + { + "start": 6316.88, + "end": 6318.64, + "probability": 0.3805 + }, + { + "start": 6318.68, + "end": 6319.08, + "probability": 0.8425 + }, + { + "start": 6341.4, + "end": 6345.0, + "probability": 0.635 + }, + { + "start": 6345.02, + "end": 6346.04, + "probability": 0.4864 + }, + { + "start": 6346.88, + "end": 6348.1, + "probability": 0.7301 + }, + { + "start": 6348.16, + "end": 6349.32, + "probability": 0.9946 + }, + { + "start": 6349.48, + "end": 6351.54, + "probability": 0.877 + }, + { + "start": 6353.53, + "end": 6357.32, + "probability": 0.7367 + }, + { + "start": 6358.02, + "end": 6365.46, + "probability": 0.9282 + }, + { + "start": 6365.62, + "end": 6365.98, + "probability": 0.588 + }, + { + "start": 6366.48, + "end": 6368.74, + "probability": 0.9536 + }, + { + "start": 6368.9, + "end": 6371.34, + "probability": 0.8852 + }, + { + "start": 6372.8, + "end": 6375.08, + "probability": 0.9341 + }, + { + "start": 6375.94, + "end": 6377.58, + "probability": 0.8341 + }, + { + "start": 6378.88, + "end": 6383.16, + "probability": 0.6821 + }, + { + "start": 6384.2, + "end": 6386.48, + "probability": 0.9621 + }, + { + "start": 6386.98, + "end": 6388.54, + "probability": 0.8291 + }, + { + "start": 6388.78, + "end": 6390.22, + "probability": 0.3096 + }, + { + "start": 6390.4, + "end": 6391.14, + "probability": 0.8704 + }, + { + "start": 6391.6, + "end": 6392.62, + "probability": 0.8713 + }, + { + "start": 6393.52, + "end": 6397.48, + "probability": 0.8023 + }, + { + "start": 6397.9, + "end": 6398.46, + "probability": 0.8989 + }, + { + "start": 6399.28, + "end": 6403.16, + "probability": 0.9891 + }, + { + "start": 6403.16, + "end": 6410.44, + "probability": 0.9852 + }, + { + "start": 6410.9, + "end": 6411.6, + "probability": 0.812 + }, + { + "start": 6411.76, + "end": 6412.64, + "probability": 0.0745 + }, + { + "start": 6412.64, + "end": 6413.7, + "probability": 0.439 + }, + { + "start": 6414.07, + "end": 6415.26, + "probability": 0.9917 + }, + { + "start": 6415.9, + "end": 6419.06, + "probability": 0.7465 + }, + { + "start": 6422.04, + "end": 6425.78, + "probability": 0.552 + }, + { + "start": 6425.88, + "end": 6426.08, + "probability": 0.2252 + }, + { + "start": 6426.68, + "end": 6429.98, + "probability": 0.9404 + }, + { + "start": 6430.26, + "end": 6433.5, + "probability": 0.4929 + }, + { + "start": 6433.82, + "end": 6436.48, + "probability": 0.6602 + }, + { + "start": 6436.64, + "end": 6440.28, + "probability": 0.9863 + }, + { + "start": 6440.9, + "end": 6443.92, + "probability": 0.9941 + }, + { + "start": 6446.3, + "end": 6450.44, + "probability": 0.9827 + }, + { + "start": 6451.16, + "end": 6451.72, + "probability": 0.9176 + }, + { + "start": 6452.72, + "end": 6453.5, + "probability": 0.5536 + }, + { + "start": 6453.82, + "end": 6458.1, + "probability": 0.9342 + }, + { + "start": 6459.16, + "end": 6461.08, + "probability": 0.9006 + }, + { + "start": 6461.12, + "end": 6463.71, + "probability": 0.835 + }, + { + "start": 6464.52, + "end": 6466.66, + "probability": 0.9709 + }, + { + "start": 6467.28, + "end": 6468.1, + "probability": 0.5823 + }, + { + "start": 6468.9, + "end": 6472.86, + "probability": 0.9529 + }, + { + "start": 6473.58, + "end": 6474.58, + "probability": 0.699 + }, + { + "start": 6474.96, + "end": 6477.76, + "probability": 0.5609 + }, + { + "start": 6477.84, + "end": 6483.58, + "probability": 0.9215 + }, + { + "start": 6484.06, + "end": 6486.02, + "probability": 0.9407 + }, + { + "start": 6486.18, + "end": 6486.48, + "probability": 0.7773 + }, + { + "start": 6487.24, + "end": 6489.74, + "probability": 0.7085 + }, + { + "start": 6490.04, + "end": 6492.0, + "probability": 0.8007 + }, + { + "start": 6492.06, + "end": 6492.74, + "probability": 0.2924 + }, + { + "start": 6493.22, + "end": 6495.12, + "probability": 0.5884 + }, + { + "start": 6495.44, + "end": 6495.94, + "probability": 0.5938 + }, + { + "start": 6496.42, + "end": 6497.88, + "probability": 0.9621 + }, + { + "start": 6498.66, + "end": 6500.81, + "probability": 0.7114 + }, + { + "start": 6501.7, + "end": 6503.2, + "probability": 0.8591 + }, + { + "start": 6503.72, + "end": 6505.14, + "probability": 0.8821 + }, + { + "start": 6505.24, + "end": 6509.38, + "probability": 0.8149 + }, + { + "start": 6509.46, + "end": 6512.9, + "probability": 0.9749 + }, + { + "start": 6513.06, + "end": 6513.4, + "probability": 0.7283 + }, + { + "start": 6513.46, + "end": 6514.09, + "probability": 0.7008 + }, + { + "start": 6515.32, + "end": 6515.95, + "probability": 0.3802 + }, + { + "start": 6516.48, + "end": 6518.4, + "probability": 0.913 + }, + { + "start": 6518.94, + "end": 6520.1, + "probability": 0.8934 + }, + { + "start": 6520.22, + "end": 6525.78, + "probability": 0.9673 + }, + { + "start": 6526.2, + "end": 6531.38, + "probability": 0.9894 + }, + { + "start": 6531.42, + "end": 6532.16, + "probability": 0.8072 + }, + { + "start": 6532.16, + "end": 6533.2, + "probability": 0.7709 + }, + { + "start": 6533.86, + "end": 6539.6, + "probability": 0.9741 + }, + { + "start": 6540.22, + "end": 6543.64, + "probability": 0.8969 + }, + { + "start": 6544.38, + "end": 6545.03, + "probability": 0.8401 + }, + { + "start": 6545.74, + "end": 6546.84, + "probability": 0.7816 + }, + { + "start": 6546.92, + "end": 6550.64, + "probability": 0.9896 + }, + { + "start": 6550.64, + "end": 6553.72, + "probability": 0.5123 + }, + { + "start": 6553.8, + "end": 6554.02, + "probability": 0.6464 + }, + { + "start": 6554.42, + "end": 6555.84, + "probability": 0.7937 + }, + { + "start": 6556.36, + "end": 6557.3, + "probability": 0.7755 + }, + { + "start": 6557.34, + "end": 6557.86, + "probability": 0.9088 + }, + { + "start": 6558.0, + "end": 6559.38, + "probability": 0.7218 + }, + { + "start": 6559.5, + "end": 6563.38, + "probability": 0.8679 + }, + { + "start": 6563.44, + "end": 6565.8, + "probability": 0.8835 + }, + { + "start": 6566.86, + "end": 6568.62, + "probability": 0.7565 + }, + { + "start": 6569.14, + "end": 6569.34, + "probability": 0.4229 + }, + { + "start": 6570.18, + "end": 6575.14, + "probability": 0.9189 + }, + { + "start": 6576.04, + "end": 6577.1, + "probability": 0.7013 + }, + { + "start": 6577.32, + "end": 6582.04, + "probability": 0.9535 + }, + { + "start": 6582.38, + "end": 6583.76, + "probability": 0.6624 + }, + { + "start": 6584.16, + "end": 6584.8, + "probability": 0.8748 + }, + { + "start": 6585.46, + "end": 6587.28, + "probability": 0.8883 + }, + { + "start": 6587.76, + "end": 6591.54, + "probability": 0.9783 + }, + { + "start": 6591.54, + "end": 6595.22, + "probability": 0.9626 + }, + { + "start": 6595.9, + "end": 6596.86, + "probability": 0.6524 + }, + { + "start": 6597.62, + "end": 6599.31, + "probability": 0.7132 + }, + { + "start": 6600.45, + "end": 6603.92, + "probability": 0.9527 + }, + { + "start": 6604.54, + "end": 6606.34, + "probability": 0.8665 + }, + { + "start": 6606.56, + "end": 6608.06, + "probability": 0.9929 + }, + { + "start": 6608.2, + "end": 6609.04, + "probability": 0.7626 + }, + { + "start": 6609.42, + "end": 6612.22, + "probability": 0.8667 + }, + { + "start": 6612.64, + "end": 6613.28, + "probability": 0.5235 + }, + { + "start": 6613.44, + "end": 6616.56, + "probability": 0.7797 + }, + { + "start": 6616.9, + "end": 6617.22, + "probability": 0.6976 + }, + { + "start": 6617.92, + "end": 6624.78, + "probability": 0.9413 + }, + { + "start": 6625.14, + "end": 6631.36, + "probability": 0.8218 + }, + { + "start": 6632.14, + "end": 6633.68, + "probability": 0.7693 + }, + { + "start": 6633.82, + "end": 6635.06, + "probability": 0.6977 + }, + { + "start": 6635.58, + "end": 6636.9, + "probability": 0.8757 + }, + { + "start": 6637.52, + "end": 6642.52, + "probability": 0.7607 + }, + { + "start": 6643.04, + "end": 6647.46, + "probability": 0.988 + }, + { + "start": 6647.84, + "end": 6650.12, + "probability": 0.9746 + }, + { + "start": 6650.18, + "end": 6651.26, + "probability": 0.9031 + }, + { + "start": 6651.8, + "end": 6652.72, + "probability": 0.5199 + }, + { + "start": 6653.52, + "end": 6658.92, + "probability": 0.9965 + }, + { + "start": 6658.92, + "end": 6665.2, + "probability": 0.97 + }, + { + "start": 6665.9, + "end": 6666.62, + "probability": 0.7835 + }, + { + "start": 6666.96, + "end": 6671.9, + "probability": 0.9199 + }, + { + "start": 6671.9, + "end": 6677.58, + "probability": 0.999 + }, + { + "start": 6678.02, + "end": 6681.68, + "probability": 0.9853 + }, + { + "start": 6682.08, + "end": 6682.34, + "probability": 0.6923 + }, + { + "start": 6682.82, + "end": 6684.74, + "probability": 0.4931 + }, + { + "start": 6685.52, + "end": 6687.06, + "probability": 0.9783 + }, + { + "start": 6687.56, + "end": 6688.1, + "probability": 0.5273 + }, + { + "start": 6688.48, + "end": 6689.36, + "probability": 0.3663 + }, + { + "start": 6689.86, + "end": 6691.4, + "probability": 0.9833 + }, + { + "start": 6691.48, + "end": 6694.94, + "probability": 0.9658 + }, + { + "start": 6699.85, + "end": 6701.2, + "probability": 0.0179 + }, + { + "start": 6701.2, + "end": 6702.44, + "probability": 0.1154 + }, + { + "start": 6702.44, + "end": 6702.6, + "probability": 0.0381 + }, + { + "start": 6702.6, + "end": 6702.6, + "probability": 0.4974 + }, + { + "start": 6702.6, + "end": 6702.6, + "probability": 0.1174 + }, + { + "start": 6702.6, + "end": 6702.6, + "probability": 0.4051 + }, + { + "start": 6702.6, + "end": 6705.3, + "probability": 0.8981 + }, + { + "start": 6705.86, + "end": 6707.64, + "probability": 0.1508 + }, + { + "start": 6709.14, + "end": 6709.88, + "probability": 0.2546 + }, + { + "start": 6711.6, + "end": 6712.1, + "probability": 0.0203 + }, + { + "start": 6713.8, + "end": 6715.4, + "probability": 0.1038 + }, + { + "start": 6722.5, + "end": 6723.06, + "probability": 0.1222 + }, + { + "start": 6723.06, + "end": 6724.5, + "probability": 0.4951 + }, + { + "start": 6725.5, + "end": 6727.32, + "probability": 0.7006 + }, + { + "start": 6728.1, + "end": 6735.1, + "probability": 0.9938 + }, + { + "start": 6735.62, + "end": 6738.36, + "probability": 0.9644 + }, + { + "start": 6739.16, + "end": 6745.08, + "probability": 0.9952 + }, + { + "start": 6745.08, + "end": 6751.16, + "probability": 0.9494 + }, + { + "start": 6751.16, + "end": 6755.74, + "probability": 0.9971 + }, + { + "start": 6756.2, + "end": 6761.54, + "probability": 0.9919 + }, + { + "start": 6762.16, + "end": 6769.4, + "probability": 0.9753 + }, + { + "start": 6769.4, + "end": 6775.14, + "probability": 0.998 + }, + { + "start": 6776.06, + "end": 6780.3, + "probability": 0.953 + }, + { + "start": 6780.3, + "end": 6784.26, + "probability": 0.9759 + }, + { + "start": 6785.1, + "end": 6790.22, + "probability": 0.9487 + }, + { + "start": 6790.22, + "end": 6793.82, + "probability": 0.9875 + }, + { + "start": 6794.3, + "end": 6796.96, + "probability": 0.9783 + }, + { + "start": 6797.92, + "end": 6805.54, + "probability": 0.9067 + }, + { + "start": 6806.32, + "end": 6810.96, + "probability": 0.9469 + }, + { + "start": 6811.36, + "end": 6815.46, + "probability": 0.99 + }, + { + "start": 6816.12, + "end": 6821.78, + "probability": 0.9774 + }, + { + "start": 6821.78, + "end": 6827.82, + "probability": 0.9986 + }, + { + "start": 6827.82, + "end": 6835.46, + "probability": 0.9947 + }, + { + "start": 6836.06, + "end": 6843.96, + "probability": 0.9893 + }, + { + "start": 6843.96, + "end": 6851.08, + "probability": 0.9978 + }, + { + "start": 6851.42, + "end": 6852.84, + "probability": 0.8348 + }, + { + "start": 6853.34, + "end": 6854.78, + "probability": 0.6097 + }, + { + "start": 6855.86, + "end": 6857.88, + "probability": 0.7464 + }, + { + "start": 6858.48, + "end": 6860.98, + "probability": 0.9847 + }, + { + "start": 6861.5, + "end": 6862.5, + "probability": 0.9788 + }, + { + "start": 6863.1, + "end": 6864.18, + "probability": 0.9194 + }, + { + "start": 6865.12, + "end": 6868.66, + "probability": 0.9992 + }, + { + "start": 6869.6, + "end": 6870.5, + "probability": 0.9497 + }, + { + "start": 6870.78, + "end": 6873.04, + "probability": 0.9902 + }, + { + "start": 6873.96, + "end": 6877.88, + "probability": 0.9995 + }, + { + "start": 6878.84, + "end": 6880.96, + "probability": 0.9941 + }, + { + "start": 6880.96, + "end": 6883.86, + "probability": 0.979 + }, + { + "start": 6884.96, + "end": 6885.96, + "probability": 0.7868 + }, + { + "start": 6886.5, + "end": 6891.6, + "probability": 0.9967 + }, + { + "start": 6891.6, + "end": 6895.18, + "probability": 0.9358 + }, + { + "start": 6895.9, + "end": 6897.64, + "probability": 0.8959 + }, + { + "start": 6898.26, + "end": 6900.26, + "probability": 0.9106 + }, + { + "start": 6901.02, + "end": 6903.36, + "probability": 0.9966 + }, + { + "start": 6903.68, + "end": 6907.12, + "probability": 0.9906 + }, + { + "start": 6908.46, + "end": 6910.19, + "probability": 0.995 + }, + { + "start": 6911.38, + "end": 6915.4, + "probability": 0.9971 + }, + { + "start": 6915.7, + "end": 6919.36, + "probability": 0.9885 + }, + { + "start": 6919.8, + "end": 6920.22, + "probability": 0.8478 + }, + { + "start": 6921.24, + "end": 6924.26, + "probability": 0.9698 + }, + { + "start": 6925.54, + "end": 6929.34, + "probability": 0.9922 + }, + { + "start": 6929.34, + "end": 6934.7, + "probability": 0.9438 + }, + { + "start": 6935.28, + "end": 6937.54, + "probability": 0.7588 + }, + { + "start": 6937.94, + "end": 6945.8, + "probability": 0.9567 + }, + { + "start": 6946.96, + "end": 6949.22, + "probability": 0.9728 + }, + { + "start": 6949.28, + "end": 6950.64, + "probability": 0.7372 + }, + { + "start": 6950.78, + "end": 6954.44, + "probability": 0.978 + }, + { + "start": 6954.94, + "end": 6959.78, + "probability": 0.9021 + }, + { + "start": 6960.32, + "end": 6964.04, + "probability": 0.8553 + }, + { + "start": 6964.72, + "end": 6969.4, + "probability": 0.9977 + }, + { + "start": 6969.4, + "end": 6972.34, + "probability": 0.9412 + }, + { + "start": 6973.16, + "end": 6973.8, + "probability": 0.5046 + }, + { + "start": 6974.2, + "end": 6977.94, + "probability": 0.9969 + }, + { + "start": 6978.5, + "end": 6979.96, + "probability": 0.948 + }, + { + "start": 6980.18, + "end": 6982.52, + "probability": 0.9927 + }, + { + "start": 6983.48, + "end": 6984.62, + "probability": 0.8932 + }, + { + "start": 6985.0, + "end": 6990.2, + "probability": 0.9948 + }, + { + "start": 6990.6, + "end": 6991.2, + "probability": 0.5745 + }, + { + "start": 6992.1, + "end": 6994.32, + "probability": 0.9523 + }, + { + "start": 6995.28, + "end": 6995.68, + "probability": 0.3505 + }, + { + "start": 6995.92, + "end": 6996.42, + "probability": 0.3429 + }, + { + "start": 6996.68, + "end": 6996.78, + "probability": 0.3666 + }, + { + "start": 6997.06, + "end": 6998.47, + "probability": 0.7797 + }, + { + "start": 7000.0, + "end": 7003.18, + "probability": 0.9947 + }, + { + "start": 7003.32, + "end": 7004.42, + "probability": 0.9216 + }, + { + "start": 7004.76, + "end": 7008.64, + "probability": 0.9199 + }, + { + "start": 7009.86, + "end": 7012.98, + "probability": 0.998 + }, + { + "start": 7012.98, + "end": 7016.52, + "probability": 0.9415 + }, + { + "start": 7016.9, + "end": 7018.46, + "probability": 0.7009 + }, + { + "start": 7018.78, + "end": 7021.98, + "probability": 0.9976 + }, + { + "start": 7022.48, + "end": 7027.0, + "probability": 0.9268 + }, + { + "start": 7027.0, + "end": 7031.24, + "probability": 0.9873 + }, + { + "start": 7032.3, + "end": 7037.36, + "probability": 0.9373 + }, + { + "start": 7037.46, + "end": 7037.86, + "probability": 0.8217 + }, + { + "start": 7038.68, + "end": 7039.54, + "probability": 0.6494 + }, + { + "start": 7040.78, + "end": 7044.52, + "probability": 0.6904 + }, + { + "start": 7051.8, + "end": 7053.82, + "probability": 0.7488 + }, + { + "start": 7055.1, + "end": 7061.42, + "probability": 0.8189 + }, + { + "start": 7062.64, + "end": 7063.46, + "probability": 0.8213 + }, + { + "start": 7066.56, + "end": 7071.6, + "probability": 0.9868 + }, + { + "start": 7073.76, + "end": 7079.8, + "probability": 0.9327 + }, + { + "start": 7080.77, + "end": 7085.5, + "probability": 0.9883 + }, + { + "start": 7087.48, + "end": 7090.68, + "probability": 0.9888 + }, + { + "start": 7092.08, + "end": 7096.86, + "probability": 0.9663 + }, + { + "start": 7097.4, + "end": 7101.1, + "probability": 0.9908 + }, + { + "start": 7103.4, + "end": 7105.16, + "probability": 0.9752 + }, + { + "start": 7106.02, + "end": 7107.94, + "probability": 0.7473 + }, + { + "start": 7108.38, + "end": 7110.38, + "probability": 0.9419 + }, + { + "start": 7111.72, + "end": 7115.28, + "probability": 0.6034 + }, + { + "start": 7117.26, + "end": 7120.52, + "probability": 0.7249 + }, + { + "start": 7123.02, + "end": 7126.52, + "probability": 0.6595 + }, + { + "start": 7127.2, + "end": 7130.9, + "probability": 0.8547 + }, + { + "start": 7131.72, + "end": 7133.98, + "probability": 0.8716 + }, + { + "start": 7134.78, + "end": 7136.08, + "probability": 0.7492 + }, + { + "start": 7136.34, + "end": 7139.06, + "probability": 0.7914 + }, + { + "start": 7140.24, + "end": 7140.68, + "probability": 0.9116 + }, + { + "start": 7141.6, + "end": 7147.92, + "probability": 0.9899 + }, + { + "start": 7149.32, + "end": 7154.2, + "probability": 0.9808 + }, + { + "start": 7155.28, + "end": 7157.02, + "probability": 0.4229 + }, + { + "start": 7157.54, + "end": 7161.8, + "probability": 0.9589 + }, + { + "start": 7163.06, + "end": 7165.66, + "probability": 0.9939 + }, + { + "start": 7166.64, + "end": 7168.12, + "probability": 0.6778 + }, + { + "start": 7168.88, + "end": 7170.08, + "probability": 0.9082 + }, + { + "start": 7170.2, + "end": 7172.09, + "probability": 0.9313 + }, + { + "start": 7172.8, + "end": 7181.28, + "probability": 0.8113 + }, + { + "start": 7182.04, + "end": 7186.08, + "probability": 0.9629 + }, + { + "start": 7186.26, + "end": 7193.74, + "probability": 0.6787 + }, + { + "start": 7195.1, + "end": 7195.82, + "probability": 0.2135 + }, + { + "start": 7196.76, + "end": 7199.98, + "probability": 0.6963 + }, + { + "start": 7200.84, + "end": 7205.34, + "probability": 0.9038 + }, + { + "start": 7205.34, + "end": 7209.76, + "probability": 0.9152 + }, + { + "start": 7209.8, + "end": 7210.66, + "probability": 0.9427 + }, + { + "start": 7211.66, + "end": 7212.58, + "probability": 0.8162 + }, + { + "start": 7212.84, + "end": 7215.04, + "probability": 0.9821 + }, + { + "start": 7215.54, + "end": 7217.06, + "probability": 0.8198 + }, + { + "start": 7217.5, + "end": 7222.2, + "probability": 0.9365 + }, + { + "start": 7222.74, + "end": 7224.72, + "probability": 0.9592 + }, + { + "start": 7225.3, + "end": 7227.78, + "probability": 0.5851 + }, + { + "start": 7230.66, + "end": 7233.69, + "probability": 0.9502 + }, + { + "start": 7234.45, + "end": 7237.14, + "probability": 0.9089 + }, + { + "start": 7237.8, + "end": 7238.74, + "probability": 0.4962 + }, + { + "start": 7239.36, + "end": 7246.86, + "probability": 0.983 + }, + { + "start": 7246.94, + "end": 7247.89, + "probability": 0.7904 + }, + { + "start": 7248.42, + "end": 7249.64, + "probability": 0.9136 + }, + { + "start": 7250.12, + "end": 7255.07, + "probability": 0.9961 + }, + { + "start": 7255.68, + "end": 7263.7, + "probability": 0.998 + }, + { + "start": 7264.26, + "end": 7268.66, + "probability": 0.8369 + }, + { + "start": 7271.46, + "end": 7275.3, + "probability": 0.9937 + }, + { + "start": 7275.3, + "end": 7279.54, + "probability": 0.9967 + }, + { + "start": 7280.02, + "end": 7284.12, + "probability": 0.8992 + }, + { + "start": 7284.5, + "end": 7286.4, + "probability": 0.7301 + }, + { + "start": 7287.0, + "end": 7289.44, + "probability": 0.9551 + }, + { + "start": 7290.08, + "end": 7292.94, + "probability": 0.9917 + }, + { + "start": 7293.7, + "end": 7294.94, + "probability": 0.9497 + }, + { + "start": 7295.84, + "end": 7297.3, + "probability": 0.9875 + }, + { + "start": 7297.84, + "end": 7301.9, + "probability": 0.5135 + }, + { + "start": 7303.68, + "end": 7304.62, + "probability": 0.798 + }, + { + "start": 7304.87, + "end": 7309.56, + "probability": 0.6386 + }, + { + "start": 7310.08, + "end": 7314.56, + "probability": 0.9625 + }, + { + "start": 7314.9, + "end": 7315.08, + "probability": 0.2946 + }, + { + "start": 7315.16, + "end": 7315.72, + "probability": 0.4371 + }, + { + "start": 7316.2, + "end": 7320.14, + "probability": 0.9526 + }, + { + "start": 7320.22, + "end": 7321.78, + "probability": 0.8812 + }, + { + "start": 7322.48, + "end": 7324.12, + "probability": 0.6485 + }, + { + "start": 7324.62, + "end": 7326.9, + "probability": 0.9307 + }, + { + "start": 7328.64, + "end": 7329.27, + "probability": 0.9817 + }, + { + "start": 7330.3, + "end": 7331.2, + "probability": 0.9841 + }, + { + "start": 7331.42, + "end": 7335.38, + "probability": 0.9893 + }, + { + "start": 7335.9, + "end": 7338.36, + "probability": 0.9829 + }, + { + "start": 7339.78, + "end": 7341.74, + "probability": 0.9858 + }, + { + "start": 7341.98, + "end": 7344.64, + "probability": 0.8917 + }, + { + "start": 7346.04, + "end": 7349.48, + "probability": 0.9673 + }, + { + "start": 7349.48, + "end": 7349.82, + "probability": 0.872 + }, + { + "start": 7350.74, + "end": 7353.64, + "probability": 0.9082 + }, + { + "start": 7354.56, + "end": 7356.48, + "probability": 0.9272 + }, + { + "start": 7357.6, + "end": 7358.44, + "probability": 0.8054 + }, + { + "start": 7359.06, + "end": 7360.86, + "probability": 0.832 + }, + { + "start": 7360.96, + "end": 7364.94, + "probability": 0.9718 + }, + { + "start": 7365.04, + "end": 7365.7, + "probability": 0.558 + }, + { + "start": 7366.08, + "end": 7367.34, + "probability": 0.3943 + }, + { + "start": 7367.48, + "end": 7367.8, + "probability": 0.198 + }, + { + "start": 7367.86, + "end": 7368.82, + "probability": 0.7593 + }, + { + "start": 7369.26, + "end": 7373.2, + "probability": 0.77 + }, + { + "start": 7373.52, + "end": 7374.92, + "probability": 0.3723 + }, + { + "start": 7375.0, + "end": 7375.38, + "probability": 0.4346 + }, + { + "start": 7375.74, + "end": 7375.88, + "probability": 0.0014 + }, + { + "start": 7376.02, + "end": 7376.76, + "probability": 0.3286 + }, + { + "start": 7376.82, + "end": 7377.94, + "probability": 0.5729 + }, + { + "start": 7377.96, + "end": 7378.96, + "probability": 0.6283 + }, + { + "start": 7379.36, + "end": 7382.1, + "probability": 0.9651 + }, + { + "start": 7382.36, + "end": 7383.05, + "probability": 0.5063 + }, + { + "start": 7383.34, + "end": 7384.72, + "probability": 0.9121 + }, + { + "start": 7387.12, + "end": 7388.46, + "probability": 0.916 + }, + { + "start": 7391.76, + "end": 7394.06, + "probability": 0.5857 + }, + { + "start": 7394.14, + "end": 7396.42, + "probability": 0.8018 + }, + { + "start": 7396.9, + "end": 7399.08, + "probability": 0.9535 + }, + { + "start": 7399.38, + "end": 7401.88, + "probability": 0.9971 + }, + { + "start": 7401.96, + "end": 7404.46, + "probability": 0.9861 + }, + { + "start": 7404.48, + "end": 7405.1, + "probability": 0.8669 + }, + { + "start": 7405.38, + "end": 7406.6, + "probability": 0.9956 + }, + { + "start": 7406.72, + "end": 7408.98, + "probability": 0.5329 + }, + { + "start": 7409.56, + "end": 7414.18, + "probability": 0.8958 + }, + { + "start": 7415.62, + "end": 7421.44, + "probability": 0.9001 + }, + { + "start": 7422.88, + "end": 7424.7, + "probability": 0.9357 + }, + { + "start": 7425.36, + "end": 7426.64, + "probability": 0.9709 + }, + { + "start": 7426.76, + "end": 7427.64, + "probability": 0.8036 + }, + { + "start": 7427.76, + "end": 7430.88, + "probability": 0.9165 + }, + { + "start": 7430.98, + "end": 7432.4, + "probability": 0.981 + }, + { + "start": 7432.5, + "end": 7433.46, + "probability": 0.8101 + }, + { + "start": 7434.26, + "end": 7436.42, + "probability": 0.88 + }, + { + "start": 7436.6, + "end": 7437.88, + "probability": 0.8801 + }, + { + "start": 7438.24, + "end": 7442.64, + "probability": 0.9571 + }, + { + "start": 7443.0, + "end": 7443.68, + "probability": 0.4316 + }, + { + "start": 7444.18, + "end": 7446.44, + "probability": 0.959 + }, + { + "start": 7446.74, + "end": 7447.34, + "probability": 0.8108 + }, + { + "start": 7447.58, + "end": 7448.74, + "probability": 0.6398 + }, + { + "start": 7449.08, + "end": 7450.08, + "probability": 0.9385 + }, + { + "start": 7450.9, + "end": 7455.74, + "probability": 0.9117 + }, + { + "start": 7455.82, + "end": 7461.82, + "probability": 0.9778 + }, + { + "start": 7462.04, + "end": 7465.18, + "probability": 0.9268 + }, + { + "start": 7465.88, + "end": 7466.74, + "probability": 0.9656 + }, + { + "start": 7466.82, + "end": 7468.38, + "probability": 0.7476 + }, + { + "start": 7468.5, + "end": 7469.46, + "probability": 0.7548 + }, + { + "start": 7469.8, + "end": 7473.42, + "probability": 0.9725 + }, + { + "start": 7473.8, + "end": 7475.76, + "probability": 0.9663 + }, + { + "start": 7476.24, + "end": 7478.0, + "probability": 0.9746 + }, + { + "start": 7478.06, + "end": 7480.68, + "probability": 0.8311 + }, + { + "start": 7480.78, + "end": 7481.78, + "probability": 0.3193 + }, + { + "start": 7481.8, + "end": 7482.9, + "probability": 0.9922 + }, + { + "start": 7483.16, + "end": 7485.06, + "probability": 0.9735 + }, + { + "start": 7485.32, + "end": 7485.66, + "probability": 0.513 + }, + { + "start": 7485.78, + "end": 7489.56, + "probability": 0.8981 + }, + { + "start": 7489.86, + "end": 7490.18, + "probability": 0.9329 + }, + { + "start": 7491.38, + "end": 7492.98, + "probability": 0.9511 + }, + { + "start": 7493.5, + "end": 7493.92, + "probability": 0.8701 + }, + { + "start": 7496.84, + "end": 7498.4, + "probability": 0.9849 + }, + { + "start": 7499.12, + "end": 7500.1, + "probability": 0.8551 + }, + { + "start": 7500.82, + "end": 7503.2, + "probability": 0.7347 + }, + { + "start": 7504.32, + "end": 7505.46, + "probability": 0.2374 + }, + { + "start": 7507.0, + "end": 7509.38, + "probability": 0.8104 + }, + { + "start": 7513.2, + "end": 7514.06, + "probability": 0.6973 + }, + { + "start": 7514.7, + "end": 7517.26, + "probability": 0.8549 + }, + { + "start": 7519.88, + "end": 7521.3, + "probability": 0.8842 + }, + { + "start": 7522.36, + "end": 7524.26, + "probability": 0.7029 + }, + { + "start": 7526.38, + "end": 7529.12, + "probability": 0.9725 + }, + { + "start": 7530.7, + "end": 7532.34, + "probability": 0.9219 + }, + { + "start": 7533.52, + "end": 7534.61, + "probability": 0.9876 + }, + { + "start": 7535.28, + "end": 7536.06, + "probability": 0.9707 + }, + { + "start": 7538.86, + "end": 7541.35, + "probability": 0.785 + }, + { + "start": 7542.5, + "end": 7543.82, + "probability": 0.9736 + }, + { + "start": 7543.94, + "end": 7545.13, + "probability": 0.8811 + }, + { + "start": 7546.84, + "end": 7548.08, + "probability": 0.8783 + }, + { + "start": 7548.82, + "end": 7549.66, + "probability": 0.8267 + }, + { + "start": 7551.58, + "end": 7553.85, + "probability": 0.7141 + }, + { + "start": 7556.08, + "end": 7557.8, + "probability": 0.7523 + }, + { + "start": 7559.26, + "end": 7560.58, + "probability": 0.6013 + }, + { + "start": 7562.58, + "end": 7563.62, + "probability": 0.7427 + }, + { + "start": 7564.54, + "end": 7566.14, + "probability": 0.9816 + }, + { + "start": 7567.26, + "end": 7572.6, + "probability": 0.9995 + }, + { + "start": 7572.6, + "end": 7578.78, + "probability": 0.9983 + }, + { + "start": 7580.82, + "end": 7583.55, + "probability": 0.895 + }, + { + "start": 7585.02, + "end": 7587.3, + "probability": 0.9505 + }, + { + "start": 7588.76, + "end": 7592.3, + "probability": 0.9937 + }, + { + "start": 7593.14, + "end": 7594.02, + "probability": 0.7298 + }, + { + "start": 7596.02, + "end": 7597.96, + "probability": 0.8649 + }, + { + "start": 7598.9, + "end": 7600.7, + "probability": 0.9087 + }, + { + "start": 7601.9, + "end": 7605.44, + "probability": 0.7689 + }, + { + "start": 7607.24, + "end": 7610.38, + "probability": 0.9761 + }, + { + "start": 7610.66, + "end": 7611.14, + "probability": 0.741 + }, + { + "start": 7611.2, + "end": 7612.06, + "probability": 0.9425 + }, + { + "start": 7616.56, + "end": 7616.92, + "probability": 0.9175 + }, + { + "start": 7617.46, + "end": 7619.96, + "probability": 0.9453 + }, + { + "start": 7620.48, + "end": 7621.86, + "probability": 0.9962 + }, + { + "start": 7622.98, + "end": 7625.42, + "probability": 0.8276 + }, + { + "start": 7625.94, + "end": 7628.12, + "probability": 0.9423 + }, + { + "start": 7628.94, + "end": 7633.14, + "probability": 0.751 + }, + { + "start": 7633.5, + "end": 7634.34, + "probability": 0.5843 + }, + { + "start": 7634.68, + "end": 7637.3, + "probability": 0.9758 + }, + { + "start": 7638.06, + "end": 7641.2, + "probability": 0.9598 + }, + { + "start": 7641.78, + "end": 7646.48, + "probability": 0.9635 + }, + { + "start": 7647.82, + "end": 7648.28, + "probability": 0.8407 + }, + { + "start": 7650.18, + "end": 7651.46, + "probability": 0.9896 + }, + { + "start": 7654.74, + "end": 7655.64, + "probability": 0.7206 + }, + { + "start": 7661.28, + "end": 7663.88, + "probability": 0.8998 + }, + { + "start": 7663.98, + "end": 7664.86, + "probability": 0.69 + }, + { + "start": 7664.86, + "end": 7665.46, + "probability": 0.8545 + }, + { + "start": 7667.28, + "end": 7668.98, + "probability": 0.7627 + }, + { + "start": 7669.7, + "end": 7670.44, + "probability": 0.9683 + }, + { + "start": 7672.34, + "end": 7676.7, + "probability": 0.9897 + }, + { + "start": 7677.24, + "end": 7680.04, + "probability": 0.5411 + }, + { + "start": 7681.98, + "end": 7682.78, + "probability": 0.6971 + }, + { + "start": 7683.38, + "end": 7683.94, + "probability": 0.6091 + }, + { + "start": 7685.22, + "end": 7685.94, + "probability": 0.7973 + }, + { + "start": 7688.82, + "end": 7692.3, + "probability": 0.8887 + }, + { + "start": 7694.44, + "end": 7697.74, + "probability": 0.8547 + }, + { + "start": 7699.22, + "end": 7703.4, + "probability": 0.965 + }, + { + "start": 7703.92, + "end": 7707.24, + "probability": 0.8314 + }, + { + "start": 7707.9, + "end": 7709.1, + "probability": 0.9442 + }, + { + "start": 7709.48, + "end": 7711.04, + "probability": 0.9667 + }, + { + "start": 7711.34, + "end": 7712.46, + "probability": 0.9949 + }, + { + "start": 7713.04, + "end": 7715.28, + "probability": 0.8534 + }, + { + "start": 7717.16, + "end": 7717.82, + "probability": 0.9966 + }, + { + "start": 7719.48, + "end": 7721.13, + "probability": 0.981 + }, + { + "start": 7722.92, + "end": 7727.38, + "probability": 0.9353 + }, + { + "start": 7727.7, + "end": 7728.78, + "probability": 0.9717 + }, + { + "start": 7731.06, + "end": 7733.1, + "probability": 0.7392 + }, + { + "start": 7734.18, + "end": 7735.58, + "probability": 0.8259 + }, + { + "start": 7736.16, + "end": 7738.42, + "probability": 0.9198 + }, + { + "start": 7739.14, + "end": 7741.24, + "probability": 0.6513 + }, + { + "start": 7742.16, + "end": 7743.36, + "probability": 0.5939 + }, + { + "start": 7745.64, + "end": 7746.42, + "probability": 0.8748 + }, + { + "start": 7747.46, + "end": 7749.68, + "probability": 0.7926 + }, + { + "start": 7749.68, + "end": 7755.0, + "probability": 0.8557 + }, + { + "start": 7756.28, + "end": 7758.54, + "probability": 0.7642 + }, + { + "start": 7759.48, + "end": 7760.88, + "probability": 0.9508 + }, + { + "start": 7760.98, + "end": 7764.04, + "probability": 0.5468 + }, + { + "start": 7764.46, + "end": 7768.52, + "probability": 0.9786 + }, + { + "start": 7770.42, + "end": 7770.42, + "probability": 0.092 + }, + { + "start": 7770.42, + "end": 7773.5, + "probability": 0.7227 + }, + { + "start": 7775.44, + "end": 7776.5, + "probability": 0.6755 + }, + { + "start": 7777.92, + "end": 7779.02, + "probability": 0.5154 + }, + { + "start": 7780.42, + "end": 7783.3, + "probability": 0.3875 + }, + { + "start": 7784.14, + "end": 7785.12, + "probability": 0.7458 + }, + { + "start": 7785.26, + "end": 7787.96, + "probability": 0.3042 + }, + { + "start": 7788.22, + "end": 7789.02, + "probability": 0.6445 + }, + { + "start": 7790.1, + "end": 7792.96, + "probability": 0.7684 + }, + { + "start": 7793.74, + "end": 7797.26, + "probability": 0.4949 + }, + { + "start": 7797.36, + "end": 7798.52, + "probability": 0.5787 + }, + { + "start": 7799.48, + "end": 7800.28, + "probability": 0.8153 + }, + { + "start": 7801.86, + "end": 7803.8, + "probability": 0.7695 + }, + { + "start": 7805.26, + "end": 7808.5, + "probability": 0.9928 + }, + { + "start": 7810.66, + "end": 7820.14, + "probability": 0.9014 + }, + { + "start": 7820.3, + "end": 7822.38, + "probability": 0.8565 + }, + { + "start": 7824.8, + "end": 7825.6, + "probability": 0.5685 + }, + { + "start": 7826.78, + "end": 7830.78, + "probability": 0.9956 + }, + { + "start": 7831.62, + "end": 7832.64, + "probability": 0.8717 + }, + { + "start": 7834.06, + "end": 7836.24, + "probability": 0.9789 + }, + { + "start": 7836.94, + "end": 7842.68, + "probability": 0.6041 + }, + { + "start": 7843.68, + "end": 7845.82, + "probability": 0.7007 + }, + { + "start": 7846.68, + "end": 7847.48, + "probability": 0.9234 + }, + { + "start": 7849.62, + "end": 7852.42, + "probability": 0.7914 + }, + { + "start": 7852.94, + "end": 7855.54, + "probability": 0.8771 + }, + { + "start": 7855.76, + "end": 7857.11, + "probability": 0.641 + }, + { + "start": 7857.7, + "end": 7860.74, + "probability": 0.8696 + }, + { + "start": 7860.94, + "end": 7862.28, + "probability": 0.5995 + }, + { + "start": 7862.54, + "end": 7863.46, + "probability": 0.999 + }, + { + "start": 7864.94, + "end": 7865.62, + "probability": 0.7893 + }, + { + "start": 7865.82, + "end": 7867.8, + "probability": 0.759 + }, + { + "start": 7869.6, + "end": 7871.58, + "probability": 0.9619 + }, + { + "start": 7872.98, + "end": 7874.3, + "probability": 0.8428 + }, + { + "start": 7875.12, + "end": 7876.14, + "probability": 0.826 + }, + { + "start": 7876.22, + "end": 7877.98, + "probability": 0.8779 + }, + { + "start": 7879.2, + "end": 7881.2, + "probability": 0.7027 + }, + { + "start": 7881.74, + "end": 7882.54, + "probability": 0.4762 + }, + { + "start": 7882.56, + "end": 7883.3, + "probability": 0.5737 + }, + { + "start": 7883.42, + "end": 7884.54, + "probability": 0.6393 + }, + { + "start": 7885.1, + "end": 7887.52, + "probability": 0.9734 + }, + { + "start": 7888.42, + "end": 7890.4, + "probability": 0.783 + }, + { + "start": 7891.34, + "end": 7893.43, + "probability": 0.9846 + }, + { + "start": 7894.46, + "end": 7901.72, + "probability": 0.9655 + }, + { + "start": 7903.14, + "end": 7904.78, + "probability": 0.896 + }, + { + "start": 7906.28, + "end": 7909.17, + "probability": 0.96 + }, + { + "start": 7910.62, + "end": 7911.08, + "probability": 0.5784 + }, + { + "start": 7911.16, + "end": 7911.6, + "probability": 0.947 + }, + { + "start": 7912.3, + "end": 7915.41, + "probability": 0.8975 + }, + { + "start": 7916.76, + "end": 7917.62, + "probability": 0.9551 + }, + { + "start": 7918.82, + "end": 7919.68, + "probability": 0.9487 + }, + { + "start": 7920.0, + "end": 7920.83, + "probability": 0.542 + }, + { + "start": 7921.3, + "end": 7923.96, + "probability": 0.9533 + }, + { + "start": 7924.42, + "end": 7926.46, + "probability": 0.9829 + }, + { + "start": 7927.02, + "end": 7928.58, + "probability": 0.7671 + }, + { + "start": 7929.36, + "end": 7931.8, + "probability": 0.9927 + }, + { + "start": 7932.18, + "end": 7934.02, + "probability": 0.9373 + }, + { + "start": 7935.1, + "end": 7936.74, + "probability": 0.9812 + }, + { + "start": 7937.42, + "end": 7938.24, + "probability": 0.9209 + }, + { + "start": 7938.94, + "end": 7943.84, + "probability": 0.9168 + }, + { + "start": 7944.46, + "end": 7948.76, + "probability": 0.9858 + }, + { + "start": 7949.3, + "end": 7950.04, + "probability": 0.9059 + }, + { + "start": 7950.8, + "end": 7951.54, + "probability": 0.8171 + }, + { + "start": 7952.32, + "end": 7954.68, + "probability": 0.7811 + }, + { + "start": 7954.98, + "end": 7956.76, + "probability": 0.8923 + }, + { + "start": 7956.82, + "end": 7957.66, + "probability": 0.8758 + }, + { + "start": 7958.96, + "end": 7963.22, + "probability": 0.6004 + }, + { + "start": 7963.72, + "end": 7966.16, + "probability": 0.8917 + }, + { + "start": 7966.66, + "end": 7970.72, + "probability": 0.6781 + }, + { + "start": 7971.12, + "end": 7973.44, + "probability": 0.8472 + }, + { + "start": 7978.72, + "end": 7978.72, + "probability": 0.6527 + }, + { + "start": 7978.72, + "end": 7980.62, + "probability": 0.6223 + }, + { + "start": 7980.62, + "end": 7981.26, + "probability": 0.8298 + }, + { + "start": 7981.4, + "end": 7982.72, + "probability": 0.3687 + }, + { + "start": 7982.74, + "end": 7985.0, + "probability": 0.9011 + }, + { + "start": 7985.64, + "end": 7990.36, + "probability": 0.7966 + }, + { + "start": 7990.36, + "end": 7992.5, + "probability": 0.8215 + }, + { + "start": 7994.71, + "end": 7997.42, + "probability": 0.8494 + }, + { + "start": 7998.08, + "end": 7999.31, + "probability": 0.2731 + }, + { + "start": 7999.34, + "end": 8001.18, + "probability": 0.735 + }, + { + "start": 8001.7, + "end": 8008.14, + "probability": 0.6008 + }, + { + "start": 8008.26, + "end": 8011.86, + "probability": 0.6566 + }, + { + "start": 8012.32, + "end": 8015.04, + "probability": 0.9813 + }, + { + "start": 8015.86, + "end": 8016.8, + "probability": 0.8837 + }, + { + "start": 8017.84, + "end": 8023.24, + "probability": 0.9971 + }, + { + "start": 8023.24, + "end": 8027.1, + "probability": 0.8402 + }, + { + "start": 8027.28, + "end": 8029.02, + "probability": 0.9209 + }, + { + "start": 8029.3, + "end": 8033.9, + "probability": 0.9893 + }, + { + "start": 8033.9, + "end": 8038.44, + "probability": 0.9956 + }, + { + "start": 8039.24, + "end": 8044.96, + "probability": 0.9908 + }, + { + "start": 8045.62, + "end": 8049.76, + "probability": 0.9675 + }, + { + "start": 8049.76, + "end": 8053.14, + "probability": 0.998 + }, + { + "start": 8053.28, + "end": 8053.74, + "probability": 0.591 + }, + { + "start": 8054.5, + "end": 8056.16, + "probability": 0.9951 + }, + { + "start": 8056.56, + "end": 8060.9, + "probability": 0.974 + }, + { + "start": 8061.32, + "end": 8064.04, + "probability": 0.9059 + }, + { + "start": 8064.76, + "end": 8065.68, + "probability": 0.9547 + }, + { + "start": 8066.02, + "end": 8067.32, + "probability": 0.9505 + }, + { + "start": 8067.8, + "end": 8072.54, + "probability": 0.9826 + }, + { + "start": 8072.66, + "end": 8074.16, + "probability": 0.6114 + }, + { + "start": 8074.7, + "end": 8077.08, + "probability": 0.6777 + }, + { + "start": 8077.64, + "end": 8079.16, + "probability": 0.9285 + }, + { + "start": 8079.3, + "end": 8085.18, + "probability": 0.8297 + }, + { + "start": 8086.06, + "end": 8091.06, + "probability": 0.8347 + }, + { + "start": 8092.0, + "end": 8095.78, + "probability": 0.993 + }, + { + "start": 8096.32, + "end": 8101.18, + "probability": 0.9475 + }, + { + "start": 8102.1, + "end": 8108.28, + "probability": 0.9269 + }, + { + "start": 8108.44, + "end": 8109.66, + "probability": 0.4514 + }, + { + "start": 8110.24, + "end": 8115.46, + "probability": 0.9063 + }, + { + "start": 8115.6, + "end": 8117.32, + "probability": 0.9011 + }, + { + "start": 8118.05, + "end": 8121.4, + "probability": 0.743 + }, + { + "start": 8121.84, + "end": 8122.08, + "probability": 0.4251 + }, + { + "start": 8122.16, + "end": 8124.02, + "probability": 0.724 + }, + { + "start": 8124.34, + "end": 8127.08, + "probability": 0.6971 + }, + { + "start": 8127.26, + "end": 8134.18, + "probability": 0.7898 + }, + { + "start": 8134.84, + "end": 8135.84, + "probability": 0.9363 + }, + { + "start": 8136.48, + "end": 8141.2, + "probability": 0.7797 + }, + { + "start": 8141.76, + "end": 8145.12, + "probability": 0.9977 + }, + { + "start": 8145.62, + "end": 8150.32, + "probability": 0.9944 + }, + { + "start": 8150.84, + "end": 8153.5, + "probability": 0.8421 + }, + { + "start": 8154.02, + "end": 8155.84, + "probability": 0.9025 + }, + { + "start": 8156.34, + "end": 8163.38, + "probability": 0.9298 + }, + { + "start": 8163.86, + "end": 8167.48, + "probability": 0.8203 + }, + { + "start": 8168.0, + "end": 8171.5, + "probability": 0.9831 + }, + { + "start": 8171.98, + "end": 8177.59, + "probability": 0.9736 + }, + { + "start": 8179.08, + "end": 8183.24, + "probability": 0.95 + }, + { + "start": 8184.14, + "end": 8189.08, + "probability": 0.9551 + }, + { + "start": 8189.28, + "end": 8190.38, + "probability": 0.5589 + }, + { + "start": 8190.78, + "end": 8192.48, + "probability": 0.8385 + }, + { + "start": 8193.2, + "end": 8194.34, + "probability": 0.6934 + }, + { + "start": 8194.96, + "end": 8195.44, + "probability": 0.6615 + }, + { + "start": 8195.44, + "end": 8196.67, + "probability": 0.6695 + }, + { + "start": 8196.92, + "end": 8198.06, + "probability": 0.9393 + }, + { + "start": 8198.18, + "end": 8199.24, + "probability": 0.8222 + }, + { + "start": 8199.26, + "end": 8201.35, + "probability": 0.9546 + }, + { + "start": 8202.32, + "end": 8204.74, + "probability": 0.8984 + }, + { + "start": 8204.85, + "end": 8207.99, + "probability": 0.9214 + }, + { + "start": 8208.62, + "end": 8208.76, + "probability": 0.1581 + }, + { + "start": 8208.76, + "end": 8209.64, + "probability": 0.9465 + }, + { + "start": 8209.84, + "end": 8212.42, + "probability": 0.9797 + }, + { + "start": 8213.18, + "end": 8214.62, + "probability": 0.6608 + }, + { + "start": 8214.74, + "end": 8216.4, + "probability": 0.9345 + }, + { + "start": 8216.46, + "end": 8217.14, + "probability": 0.7422 + }, + { + "start": 8217.3, + "end": 8218.82, + "probability": 0.8279 + }, + { + "start": 8219.32, + "end": 8219.82, + "probability": 0.5591 + }, + { + "start": 8219.82, + "end": 8220.08, + "probability": 0.2482 + }, + { + "start": 8220.08, + "end": 8222.82, + "probability": 0.9782 + }, + { + "start": 8223.36, + "end": 8228.74, + "probability": 0.991 + }, + { + "start": 8229.3, + "end": 8234.5, + "probability": 0.9559 + }, + { + "start": 8234.78, + "end": 8235.96, + "probability": 0.6182 + }, + { + "start": 8236.14, + "end": 8238.76, + "probability": 0.4205 + }, + { + "start": 8238.86, + "end": 8240.0, + "probability": 0.2837 + }, + { + "start": 8241.1, + "end": 8243.34, + "probability": 0.0764 + }, + { + "start": 8243.34, + "end": 8244.62, + "probability": 0.3864 + }, + { + "start": 8244.74, + "end": 8246.6, + "probability": 0.4823 + }, + { + "start": 8246.66, + "end": 8247.7, + "probability": 0.7344 + }, + { + "start": 8248.3, + "end": 8252.08, + "probability": 0.968 + }, + { + "start": 8252.7, + "end": 8253.81, + "probability": 0.9284 + }, + { + "start": 8254.86, + "end": 8255.98, + "probability": 0.6579 + }, + { + "start": 8257.0, + "end": 8262.18, + "probability": 0.9867 + }, + { + "start": 8262.98, + "end": 8266.16, + "probability": 0.9753 + }, + { + "start": 8266.62, + "end": 8270.22, + "probability": 0.9489 + }, + { + "start": 8270.78, + "end": 8272.64, + "probability": 0.8927 + }, + { + "start": 8273.04, + "end": 8273.85, + "probability": 0.7835 + }, + { + "start": 8274.58, + "end": 8277.16, + "probability": 0.8262 + }, + { + "start": 8277.24, + "end": 8283.82, + "probability": 0.9404 + }, + { + "start": 8284.04, + "end": 8285.12, + "probability": 0.6536 + }, + { + "start": 8285.16, + "end": 8286.68, + "probability": 0.7587 + }, + { + "start": 8286.84, + "end": 8287.32, + "probability": 0.6625 + }, + { + "start": 8287.48, + "end": 8289.44, + "probability": 0.9355 + }, + { + "start": 8290.38, + "end": 8295.28, + "probability": 0.9932 + }, + { + "start": 8295.28, + "end": 8300.34, + "probability": 0.9966 + }, + { + "start": 8300.92, + "end": 8307.4, + "probability": 0.9653 + }, + { + "start": 8307.46, + "end": 8310.18, + "probability": 0.723 + }, + { + "start": 8310.64, + "end": 8311.2, + "probability": 0.7457 + }, + { + "start": 8311.76, + "end": 8315.12, + "probability": 0.7124 + }, + { + "start": 8315.2, + "end": 8315.74, + "probability": 0.9115 + }, + { + "start": 8316.14, + "end": 8318.6, + "probability": 0.9812 + }, + { + "start": 8318.92, + "end": 8320.48, + "probability": 0.9459 + }, + { + "start": 8321.16, + "end": 8325.56, + "probability": 0.8955 + }, + { + "start": 8326.04, + "end": 8326.42, + "probability": 0.4697 + }, + { + "start": 8326.48, + "end": 8330.35, + "probability": 0.878 + }, + { + "start": 8330.7, + "end": 8331.82, + "probability": 0.7087 + }, + { + "start": 8332.2, + "end": 8334.58, + "probability": 0.9877 + }, + { + "start": 8334.96, + "end": 8341.68, + "probability": 0.9954 + }, + { + "start": 8342.1, + "end": 8348.6, + "probability": 0.9676 + }, + { + "start": 8349.18, + "end": 8355.2, + "probability": 0.9507 + }, + { + "start": 8355.36, + "end": 8357.88, + "probability": 0.864 + }, + { + "start": 8358.04, + "end": 8359.88, + "probability": 0.8899 + }, + { + "start": 8360.12, + "end": 8361.18, + "probability": 0.5094 + }, + { + "start": 8361.9, + "end": 8364.06, + "probability": 0.8691 + }, + { + "start": 8366.3, + "end": 8369.14, + "probability": 0.6826 + }, + { + "start": 8369.8, + "end": 8372.14, + "probability": 0.3972 + }, + { + "start": 8373.8, + "end": 8376.2, + "probability": 0.502 + }, + { + "start": 8378.12, + "end": 8378.68, + "probability": 0.2325 + }, + { + "start": 8379.56, + "end": 8379.66, + "probability": 0.2574 + }, + { + "start": 8381.75, + "end": 8382.41, + "probability": 0.3691 + }, + { + "start": 8383.44, + "end": 8388.44, + "probability": 0.6041 + }, + { + "start": 8389.26, + "end": 8391.46, + "probability": 0.9532 + }, + { + "start": 8391.9, + "end": 8395.44, + "probability": 0.7673 + }, + { + "start": 8396.22, + "end": 8400.12, + "probability": 0.7664 + }, + { + "start": 8400.82, + "end": 8402.22, + "probability": 0.8683 + }, + { + "start": 8403.76, + "end": 8405.12, + "probability": 0.9199 + }, + { + "start": 8408.3, + "end": 8412.82, + "probability": 0.9248 + }, + { + "start": 8413.66, + "end": 8418.28, + "probability": 0.7499 + }, + { + "start": 8420.36, + "end": 8421.64, + "probability": 0.5226 + }, + { + "start": 8422.04, + "end": 8422.96, + "probability": 0.3848 + }, + { + "start": 8424.5, + "end": 8424.8, + "probability": 0.5535 + }, + { + "start": 8424.84, + "end": 8426.02, + "probability": 0.5511 + }, + { + "start": 8426.28, + "end": 8426.86, + "probability": 0.6366 + }, + { + "start": 8427.93, + "end": 8430.38, + "probability": 0.7948 + }, + { + "start": 8430.44, + "end": 8430.9, + "probability": 0.9634 + }, + { + "start": 8431.62, + "end": 8434.1, + "probability": 0.8162 + }, + { + "start": 8434.8, + "end": 8434.82, + "probability": 0.0001 + }, + { + "start": 8436.84, + "end": 8438.38, + "probability": 0.7936 + }, + { + "start": 8439.96, + "end": 8449.24, + "probability": 0.9906 + }, + { + "start": 8449.24, + "end": 8455.7, + "probability": 0.9963 + }, + { + "start": 8457.76, + "end": 8463.9, + "probability": 0.8376 + }, + { + "start": 8465.12, + "end": 8468.4, + "probability": 0.9753 + }, + { + "start": 8469.98, + "end": 8475.0, + "probability": 0.7677 + }, + { + "start": 8477.94, + "end": 8484.44, + "probability": 0.9746 + }, + { + "start": 8484.76, + "end": 8487.3, + "probability": 0.8079 + }, + { + "start": 8490.14, + "end": 8494.34, + "probability": 0.9922 + }, + { + "start": 8497.28, + "end": 8497.42, + "probability": 0.2343 + }, + { + "start": 8502.74, + "end": 8504.74, + "probability": 0.9471 + }, + { + "start": 8505.36, + "end": 8514.94, + "probability": 0.9832 + }, + { + "start": 8518.74, + "end": 8521.0, + "probability": 0.5702 + }, + { + "start": 8522.06, + "end": 8526.66, + "probability": 0.9194 + }, + { + "start": 8530.22, + "end": 8531.46, + "probability": 0.9435 + }, + { + "start": 8534.06, + "end": 8534.86, + "probability": 0.7703 + }, + { + "start": 8536.42, + "end": 8541.14, + "probability": 0.9466 + }, + { + "start": 8543.02, + "end": 8544.48, + "probability": 0.8575 + }, + { + "start": 8546.26, + "end": 8549.86, + "probability": 0.9739 + }, + { + "start": 8552.56, + "end": 8556.82, + "probability": 0.7942 + }, + { + "start": 8556.82, + "end": 8560.92, + "probability": 0.998 + }, + { + "start": 8563.8, + "end": 8565.78, + "probability": 0.749 + }, + { + "start": 8567.28, + "end": 8572.8, + "probability": 0.9047 + }, + { + "start": 8573.38, + "end": 8579.5, + "probability": 0.8369 + }, + { + "start": 8579.98, + "end": 8582.18, + "probability": 0.9557 + }, + { + "start": 8582.28, + "end": 8582.82, + "probability": 0.6689 + }, + { + "start": 8583.16, + "end": 8584.86, + "probability": 0.8851 + }, + { + "start": 8586.06, + "end": 8590.28, + "probability": 0.9673 + }, + { + "start": 8593.74, + "end": 8594.68, + "probability": 0.3944 + }, + { + "start": 8594.82, + "end": 8599.46, + "probability": 0.8342 + }, + { + "start": 8600.26, + "end": 8601.82, + "probability": 0.625 + }, + { + "start": 8602.16, + "end": 8602.64, + "probability": 0.9581 + }, + { + "start": 8603.96, + "end": 8605.34, + "probability": 0.7798 + }, + { + "start": 8612.38, + "end": 8613.5, + "probability": 0.918 + }, + { + "start": 8614.9, + "end": 8620.28, + "probability": 0.9358 + }, + { + "start": 8621.22, + "end": 8623.48, + "probability": 0.6549 + }, + { + "start": 8623.92, + "end": 8627.0, + "probability": 0.9959 + }, + { + "start": 8627.0, + "end": 8629.84, + "probability": 0.9585 + }, + { + "start": 8630.48, + "end": 8632.28, + "probability": 0.9347 + }, + { + "start": 8634.32, + "end": 8635.36, + "probability": 0.6825 + }, + { + "start": 8635.46, + "end": 8636.26, + "probability": 0.062 + }, + { + "start": 8637.88, + "end": 8639.1, + "probability": 0.9533 + }, + { + "start": 8642.78, + "end": 8643.86, + "probability": 0.6256 + }, + { + "start": 8646.28, + "end": 8647.04, + "probability": 0.6668 + }, + { + "start": 8647.82, + "end": 8648.38, + "probability": 0.7611 + }, + { + "start": 8651.2, + "end": 8658.8, + "probability": 0.9956 + }, + { + "start": 8660.38, + "end": 8665.18, + "probability": 0.9175 + }, + { + "start": 8665.18, + "end": 8669.58, + "probability": 0.9996 + }, + { + "start": 8670.92, + "end": 8671.48, + "probability": 0.5332 + }, + { + "start": 8671.7, + "end": 8673.04, + "probability": 0.8871 + }, + { + "start": 8674.66, + "end": 8679.78, + "probability": 0.985 + }, + { + "start": 8681.04, + "end": 8683.16, + "probability": 0.9972 + }, + { + "start": 8683.36, + "end": 8685.18, + "probability": 0.8514 + }, + { + "start": 8687.4, + "end": 8688.86, + "probability": 0.9409 + }, + { + "start": 8689.0, + "end": 8692.04, + "probability": 0.9733 + }, + { + "start": 8694.26, + "end": 8699.34, + "probability": 0.852 + }, + { + "start": 8699.54, + "end": 8700.42, + "probability": 0.6134 + }, + { + "start": 8701.52, + "end": 8703.89, + "probability": 0.8711 + }, + { + "start": 8704.68, + "end": 8705.8, + "probability": 0.5936 + }, + { + "start": 8705.86, + "end": 8708.96, + "probability": 0.9163 + }, + { + "start": 8709.34, + "end": 8712.32, + "probability": 0.9457 + }, + { + "start": 8712.32, + "end": 8718.92, + "probability": 0.8545 + }, + { + "start": 8719.46, + "end": 8724.26, + "probability": 0.9949 + }, + { + "start": 8724.26, + "end": 8728.3, + "probability": 0.9211 + }, + { + "start": 8729.3, + "end": 8731.12, + "probability": 0.0807 + }, + { + "start": 8731.32, + "end": 8738.86, + "probability": 0.7748 + }, + { + "start": 8739.28, + "end": 8740.13, + "probability": 0.9922 + }, + { + "start": 8740.42, + "end": 8741.06, + "probability": 0.6115 + }, + { + "start": 8741.1, + "end": 8743.44, + "probability": 0.7839 + }, + { + "start": 8743.64, + "end": 8745.56, + "probability": 0.8279 + }, + { + "start": 8746.76, + "end": 8748.8, + "probability": 0.9783 + }, + { + "start": 8749.16, + "end": 8750.22, + "probability": 0.751 + }, + { + "start": 8750.72, + "end": 8752.14, + "probability": 0.9242 + }, + { + "start": 8752.26, + "end": 8759.98, + "probability": 0.9529 + }, + { + "start": 8760.06, + "end": 8761.4, + "probability": 0.9499 + }, + { + "start": 8761.8, + "end": 8762.44, + "probability": 0.6705 + }, + { + "start": 8762.5, + "end": 8763.62, + "probability": 0.9011 + }, + { + "start": 8763.86, + "end": 8764.8, + "probability": 0.8814 + }, + { + "start": 8765.0, + "end": 8767.8, + "probability": 0.9935 + }, + { + "start": 8770.78, + "end": 8773.32, + "probability": 0.8976 + }, + { + "start": 8773.64, + "end": 8778.9, + "probability": 0.901 + }, + { + "start": 8778.9, + "end": 8783.74, + "probability": 0.9946 + }, + { + "start": 8784.58, + "end": 8786.56, + "probability": 0.9487 + }, + { + "start": 8787.06, + "end": 8789.48, + "probability": 0.9824 + }, + { + "start": 8790.88, + "end": 8792.88, + "probability": 0.1571 + }, + { + "start": 8792.88, + "end": 8793.73, + "probability": 0.4788 + }, + { + "start": 8793.92, + "end": 8793.92, + "probability": 0.0412 + }, + { + "start": 8793.92, + "end": 8794.0, + "probability": 0.317 + }, + { + "start": 8794.4, + "end": 8794.48, + "probability": 0.2614 + }, + { + "start": 8794.58, + "end": 8796.1, + "probability": 0.3717 + }, + { + "start": 8796.4, + "end": 8798.34, + "probability": 0.8931 + }, + { + "start": 8798.54, + "end": 8799.34, + "probability": 0.7474 + }, + { + "start": 8799.66, + "end": 8800.6, + "probability": 0.875 + }, + { + "start": 8801.02, + "end": 8801.56, + "probability": 0.5592 + }, + { + "start": 8801.62, + "end": 8802.38, + "probability": 0.9175 + }, + { + "start": 8802.44, + "end": 8805.64, + "probability": 0.9463 + }, + { + "start": 8805.76, + "end": 8806.63, + "probability": 0.6449 + }, + { + "start": 8807.46, + "end": 8810.62, + "probability": 0.9137 + }, + { + "start": 8810.76, + "end": 8812.08, + "probability": 0.503 + }, + { + "start": 8812.18, + "end": 8814.18, + "probability": 0.4962 + }, + { + "start": 8814.32, + "end": 8815.7, + "probability": 0.6692 + }, + { + "start": 8815.84, + "end": 8819.38, + "probability": 0.9321 + }, + { + "start": 8819.46, + "end": 8820.14, + "probability": 0.847 + }, + { + "start": 8820.38, + "end": 8824.58, + "probability": 0.7645 + }, + { + "start": 8824.7, + "end": 8825.48, + "probability": 0.6263 + }, + { + "start": 8826.64, + "end": 8831.02, + "probability": 0.1784 + }, + { + "start": 8831.02, + "end": 8832.54, + "probability": 0.8358 + }, + { + "start": 8832.62, + "end": 8836.9, + "probability": 0.1772 + }, + { + "start": 8837.04, + "end": 8838.24, + "probability": 0.3857 + }, + { + "start": 8838.36, + "end": 8839.94, + "probability": 0.0236 + }, + { + "start": 8840.02, + "end": 8847.08, + "probability": 0.9861 + }, + { + "start": 8847.48, + "end": 8848.76, + "probability": 0.8675 + }, + { + "start": 8848.84, + "end": 8849.5, + "probability": 0.6321 + }, + { + "start": 8849.94, + "end": 8850.66, + "probability": 0.5574 + }, + { + "start": 8850.78, + "end": 8854.33, + "probability": 0.9685 + }, + { + "start": 8855.4, + "end": 8860.42, + "probability": 0.9495 + }, + { + "start": 8860.64, + "end": 8861.3, + "probability": 0.756 + }, + { + "start": 8861.68, + "end": 8864.68, + "probability": 0.5607 + }, + { + "start": 8864.86, + "end": 8865.9, + "probability": 0.4483 + }, + { + "start": 8866.7, + "end": 8867.94, + "probability": 0.7338 + }, + { + "start": 8868.8, + "end": 8870.22, + "probability": 0.8073 + }, + { + "start": 8871.96, + "end": 8879.06, + "probability": 0.9794 + }, + { + "start": 8880.2, + "end": 8881.48, + "probability": 0.9555 + }, + { + "start": 8882.62, + "end": 8886.36, + "probability": 0.7682 + }, + { + "start": 8886.62, + "end": 8886.78, + "probability": 0.3877 + }, + { + "start": 8886.78, + "end": 8889.04, + "probability": 0.7205 + }, + { + "start": 8889.12, + "end": 8890.36, + "probability": 0.6035 + }, + { + "start": 8890.44, + "end": 8891.66, + "probability": 0.8571 + }, + { + "start": 8891.98, + "end": 8892.6, + "probability": 0.7212 + }, + { + "start": 8894.68, + "end": 8896.02, + "probability": 0.0666 + }, + { + "start": 8896.16, + "end": 8896.58, + "probability": 0.3381 + }, + { + "start": 8896.58, + "end": 8896.58, + "probability": 0.4339 + }, + { + "start": 8896.58, + "end": 8906.38, + "probability": 0.9736 + }, + { + "start": 8906.38, + "end": 8914.36, + "probability": 0.9927 + }, + { + "start": 8914.72, + "end": 8916.93, + "probability": 0.8051 + }, + { + "start": 8917.9, + "end": 8918.54, + "probability": 0.674 + }, + { + "start": 8919.26, + "end": 8922.2, + "probability": 0.8926 + }, + { + "start": 8922.7, + "end": 8925.78, + "probability": 0.649 + }, + { + "start": 8925.92, + "end": 8928.5, + "probability": 0.1558 + }, + { + "start": 8928.5, + "end": 8928.5, + "probability": 0.0454 + }, + { + "start": 8928.5, + "end": 8928.5, + "probability": 0.0656 + }, + { + "start": 8928.5, + "end": 8929.12, + "probability": 0.1354 + }, + { + "start": 8929.5, + "end": 8931.76, + "probability": 0.8848 + }, + { + "start": 8933.62, + "end": 8937.0, + "probability": 0.8978 + }, + { + "start": 8937.82, + "end": 8941.02, + "probability": 0.9185 + }, + { + "start": 8942.02, + "end": 8943.44, + "probability": 0.6567 + }, + { + "start": 8944.7, + "end": 8947.98, + "probability": 0.4134 + }, + { + "start": 8948.0, + "end": 8950.84, + "probability": 0.7992 + }, + { + "start": 8950.92, + "end": 8954.42, + "probability": 0.7881 + }, + { + "start": 8955.06, + "end": 8956.64, + "probability": 0.9802 + }, + { + "start": 8958.06, + "end": 8959.66, + "probability": 0.7104 + }, + { + "start": 8960.56, + "end": 8966.28, + "probability": 0.8276 + }, + { + "start": 8967.66, + "end": 8974.38, + "probability": 0.9588 + }, + { + "start": 8975.58, + "end": 8978.2, + "probability": 0.8187 + }, + { + "start": 8979.54, + "end": 8982.5, + "probability": 0.9966 + }, + { + "start": 8983.56, + "end": 8986.98, + "probability": 0.9255 + }, + { + "start": 8986.98, + "end": 8990.62, + "probability": 0.9439 + }, + { + "start": 8991.28, + "end": 8992.07, + "probability": 0.9011 + }, + { + "start": 8993.1, + "end": 8995.14, + "probability": 0.5755 + }, + { + "start": 8995.92, + "end": 8997.68, + "probability": 0.6742 + }, + { + "start": 8997.8, + "end": 8999.66, + "probability": 0.9501 + }, + { + "start": 8999.84, + "end": 9005.6, + "probability": 0.9464 + }, + { + "start": 9006.42, + "end": 9009.82, + "probability": 0.9715 + }, + { + "start": 9009.82, + "end": 9014.12, + "probability": 0.8323 + }, + { + "start": 9014.74, + "end": 9017.28, + "probability": 0.7655 + }, + { + "start": 9019.32, + "end": 9023.78, + "probability": 0.8346 + }, + { + "start": 9024.7, + "end": 9030.28, + "probability": 0.8857 + }, + { + "start": 9030.82, + "end": 9033.06, + "probability": 0.9946 + }, + { + "start": 9034.5, + "end": 9039.26, + "probability": 0.9205 + }, + { + "start": 9039.48, + "end": 9042.88, + "probability": 0.8252 + }, + { + "start": 9043.42, + "end": 9044.71, + "probability": 0.8879 + }, + { + "start": 9045.22, + "end": 9050.08, + "probability": 0.9061 + }, + { + "start": 9050.68, + "end": 9051.17, + "probability": 0.4353 + }, + { + "start": 9052.38, + "end": 9054.44, + "probability": 0.9396 + }, + { + "start": 9054.54, + "end": 9057.66, + "probability": 0.987 + }, + { + "start": 9058.06, + "end": 9060.58, + "probability": 0.8582 + }, + { + "start": 9061.6, + "end": 9064.5, + "probability": 0.9683 + }, + { + "start": 9066.42, + "end": 9071.26, + "probability": 0.8765 + }, + { + "start": 9071.97, + "end": 9075.68, + "probability": 0.998 + }, + { + "start": 9078.76, + "end": 9080.48, + "probability": 0.6305 + }, + { + "start": 9081.22, + "end": 9083.18, + "probability": 0.8068 + }, + { + "start": 9083.74, + "end": 9092.52, + "probability": 0.9924 + }, + { + "start": 9092.92, + "end": 9094.92, + "probability": 0.9985 + }, + { + "start": 9094.92, + "end": 9095.72, + "probability": 0.4499 + }, + { + "start": 9095.96, + "end": 9103.28, + "probability": 0.8623 + }, + { + "start": 9104.76, + "end": 9105.5, + "probability": 0.5557 + }, + { + "start": 9106.4, + "end": 9110.4, + "probability": 0.9902 + }, + { + "start": 9111.14, + "end": 9112.7, + "probability": 0.921 + }, + { + "start": 9113.26, + "end": 9114.7, + "probability": 0.8782 + }, + { + "start": 9115.24, + "end": 9117.74, + "probability": 0.952 + }, + { + "start": 9118.26, + "end": 9123.04, + "probability": 0.768 + }, + { + "start": 9123.78, + "end": 9125.78, + "probability": 0.9946 + }, + { + "start": 9126.88, + "end": 9128.36, + "probability": 0.9279 + }, + { + "start": 9129.14, + "end": 9132.9, + "probability": 0.9338 + }, + { + "start": 9133.36, + "end": 9138.04, + "probability": 0.9539 + }, + { + "start": 9138.98, + "end": 9141.14, + "probability": 0.8979 + }, + { + "start": 9141.58, + "end": 9143.36, + "probability": 0.421 + }, + { + "start": 9143.52, + "end": 9145.7, + "probability": 0.6026 + }, + { + "start": 9145.9, + "end": 9147.06, + "probability": 0.5052 + }, + { + "start": 9147.12, + "end": 9148.38, + "probability": 0.8757 + }, + { + "start": 9149.3, + "end": 9155.16, + "probability": 0.9648 + }, + { + "start": 9155.66, + "end": 9163.26, + "probability": 0.9827 + }, + { + "start": 9163.74, + "end": 9165.25, + "probability": 0.8458 + }, + { + "start": 9166.08, + "end": 9167.94, + "probability": 0.9082 + }, + { + "start": 9168.56, + "end": 9174.82, + "probability": 0.9395 + }, + { + "start": 9174.88, + "end": 9178.84, + "probability": 0.9316 + }, + { + "start": 9179.46, + "end": 9185.98, + "probability": 0.9673 + }, + { + "start": 9186.12, + "end": 9187.31, + "probability": 0.7527 + }, + { + "start": 9187.74, + "end": 9189.88, + "probability": 0.9795 + }, + { + "start": 9190.48, + "end": 9191.46, + "probability": 0.9238 + }, + { + "start": 9192.22, + "end": 9192.9, + "probability": 0.6177 + }, + { + "start": 9192.9, + "end": 9200.82, + "probability": 0.9062 + }, + { + "start": 9201.38, + "end": 9204.84, + "probability": 0.961 + }, + { + "start": 9205.02, + "end": 9208.94, + "probability": 0.9651 + }, + { + "start": 9209.82, + "end": 9215.58, + "probability": 0.9954 + }, + { + "start": 9215.58, + "end": 9224.84, + "probability": 0.985 + }, + { + "start": 9227.38, + "end": 9228.42, + "probability": 0.2862 + }, + { + "start": 9228.42, + "end": 9229.64, + "probability": 0.0459 + }, + { + "start": 9231.0, + "end": 9233.42, + "probability": 0.3731 + }, + { + "start": 9234.14, + "end": 9239.48, + "probability": 0.924 + }, + { + "start": 9240.1, + "end": 9240.1, + "probability": 0.0604 + }, + { + "start": 9240.1, + "end": 9249.66, + "probability": 0.8581 + }, + { + "start": 9249.82, + "end": 9250.96, + "probability": 0.6939 + }, + { + "start": 9251.06, + "end": 9254.36, + "probability": 0.6327 + }, + { + "start": 9255.22, + "end": 9257.56, + "probability": 0.6348 + }, + { + "start": 9257.56, + "end": 9258.36, + "probability": 0.9016 + }, + { + "start": 9258.36, + "end": 9267.0, + "probability": 0.969 + }, + { + "start": 9267.82, + "end": 9272.22, + "probability": 0.9914 + }, + { + "start": 9273.17, + "end": 9277.08, + "probability": 0.7188 + }, + { + "start": 9277.64, + "end": 9281.62, + "probability": 0.9304 + }, + { + "start": 9281.84, + "end": 9288.46, + "probability": 0.9861 + }, + { + "start": 9288.58, + "end": 9290.5, + "probability": 0.6948 + }, + { + "start": 9290.94, + "end": 9290.98, + "probability": 0.6304 + }, + { + "start": 9291.14, + "end": 9292.24, + "probability": 0.5934 + }, + { + "start": 9292.38, + "end": 9293.64, + "probability": 0.7386 + }, + { + "start": 9293.78, + "end": 9294.86, + "probability": 0.4873 + }, + { + "start": 9294.96, + "end": 9297.14, + "probability": 0.9602 + }, + { + "start": 9297.2, + "end": 9301.32, + "probability": 0.9754 + }, + { + "start": 9301.86, + "end": 9302.26, + "probability": 0.0679 + }, + { + "start": 9303.26, + "end": 9306.14, + "probability": 0.1813 + }, + { + "start": 9306.14, + "end": 9306.14, + "probability": 0.0759 + }, + { + "start": 9306.14, + "end": 9306.14, + "probability": 0.2166 + }, + { + "start": 9306.14, + "end": 9307.18, + "probability": 0.4484 + }, + { + "start": 9307.36, + "end": 9308.98, + "probability": 0.9353 + }, + { + "start": 9309.22, + "end": 9314.04, + "probability": 0.901 + }, + { + "start": 9314.12, + "end": 9315.24, + "probability": 0.9326 + }, + { + "start": 9316.56, + "end": 9316.98, + "probability": 0.0018 + }, + { + "start": 9317.78, + "end": 9318.0, + "probability": 0.02 + }, + { + "start": 9318.0, + "end": 9318.0, + "probability": 0.2063 + }, + { + "start": 9318.0, + "end": 9321.88, + "probability": 0.7029 + }, + { + "start": 9322.2, + "end": 9329.14, + "probability": 0.8185 + }, + { + "start": 9329.9, + "end": 9331.68, + "probability": 0.9733 + }, + { + "start": 9332.02, + "end": 9335.72, + "probability": 0.9944 + }, + { + "start": 9335.86, + "end": 9336.96, + "probability": 0.5749 + }, + { + "start": 9337.06, + "end": 9339.84, + "probability": 0.5686 + }, + { + "start": 9340.42, + "end": 9342.37, + "probability": 0.5659 + }, + { + "start": 9342.86, + "end": 9345.74, + "probability": 0.6028 + }, + { + "start": 9346.02, + "end": 9349.02, + "probability": 0.7162 + }, + { + "start": 9349.42, + "end": 9357.86, + "probability": 0.9173 + }, + { + "start": 9358.32, + "end": 9359.86, + "probability": 0.7154 + }, + { + "start": 9359.94, + "end": 9360.74, + "probability": 0.2012 + }, + { + "start": 9361.12, + "end": 9364.56, + "probability": 0.6617 + }, + { + "start": 9365.12, + "end": 9370.58, + "probability": 0.9129 + }, + { + "start": 9371.06, + "end": 9373.62, + "probability": 0.901 + }, + { + "start": 9374.14, + "end": 9378.58, + "probability": 0.8063 + }, + { + "start": 9379.08, + "end": 9380.84, + "probability": 0.8471 + }, + { + "start": 9381.02, + "end": 9381.7, + "probability": 0.6009 + }, + { + "start": 9381.92, + "end": 9386.56, + "probability": 0.9495 + }, + { + "start": 9386.56, + "end": 9387.7, + "probability": 0.7722 + }, + { + "start": 9388.6, + "end": 9388.82, + "probability": 0.5801 + }, + { + "start": 9388.86, + "end": 9390.42, + "probability": 0.7702 + }, + { + "start": 9390.82, + "end": 9397.5, + "probability": 0.9902 + }, + { + "start": 9397.78, + "end": 9398.8, + "probability": 0.5506 + }, + { + "start": 9399.18, + "end": 9402.66, + "probability": 0.9302 + }, + { + "start": 9402.8, + "end": 9403.56, + "probability": 0.6093 + }, + { + "start": 9403.98, + "end": 9405.12, + "probability": 0.7371 + }, + { + "start": 9405.2, + "end": 9406.1, + "probability": 0.9408 + }, + { + "start": 9406.16, + "end": 9407.72, + "probability": 0.9772 + }, + { + "start": 9407.76, + "end": 9409.16, + "probability": 0.9535 + }, + { + "start": 9409.36, + "end": 9412.26, + "probability": 0.926 + }, + { + "start": 9412.92, + "end": 9417.64, + "probability": 0.9324 + }, + { + "start": 9418.02, + "end": 9422.34, + "probability": 0.8241 + }, + { + "start": 9422.46, + "end": 9422.94, + "probability": 0.6 + }, + { + "start": 9423.26, + "end": 9426.54, + "probability": 0.8582 + }, + { + "start": 9426.68, + "end": 9427.88, + "probability": 0.6945 + }, + { + "start": 9427.88, + "end": 9431.92, + "probability": 0.7442 + }, + { + "start": 9434.19, + "end": 9439.6, + "probability": 0.8441 + }, + { + "start": 9440.04, + "end": 9440.81, + "probability": 0.5351 + }, + { + "start": 9441.46, + "end": 9442.76, + "probability": 0.6849 + }, + { + "start": 9443.02, + "end": 9444.8, + "probability": 0.9966 + }, + { + "start": 9445.1, + "end": 9446.54, + "probability": 0.8125 + }, + { + "start": 9447.0, + "end": 9449.74, + "probability": 0.8514 + }, + { + "start": 9449.84, + "end": 9452.05, + "probability": 0.7539 + }, + { + "start": 9452.46, + "end": 9455.7, + "probability": 0.7441 + }, + { + "start": 9455.78, + "end": 9456.2, + "probability": 0.2649 + }, + { + "start": 9456.48, + "end": 9457.22, + "probability": 0.737 + }, + { + "start": 9457.88, + "end": 9461.54, + "probability": 0.9917 + }, + { + "start": 9461.82, + "end": 9464.64, + "probability": 0.9927 + }, + { + "start": 9464.88, + "end": 9467.8, + "probability": 0.9758 + }, + { + "start": 9469.18, + "end": 9471.16, + "probability": 0.6465 + }, + { + "start": 9471.54, + "end": 9472.76, + "probability": 0.9338 + }, + { + "start": 9473.2, + "end": 9475.16, + "probability": 0.6479 + }, + { + "start": 9475.2, + "end": 9478.95, + "probability": 0.5813 + }, + { + "start": 9479.58, + "end": 9482.92, + "probability": 0.8143 + }, + { + "start": 9484.52, + "end": 9488.7, + "probability": 0.9282 + }, + { + "start": 9490.02, + "end": 9492.16, + "probability": 0.7866 + }, + { + "start": 9497.2, + "end": 9502.83, + "probability": 0.9786 + }, + { + "start": 9503.1, + "end": 9508.42, + "probability": 0.6325 + }, + { + "start": 9509.14, + "end": 9510.68, + "probability": 0.7956 + }, + { + "start": 9511.52, + "end": 9512.4, + "probability": 0.9447 + }, + { + "start": 9512.98, + "end": 9513.2, + "probability": 0.5294 + }, + { + "start": 9513.2, + "end": 9513.83, + "probability": 0.6577 + }, + { + "start": 9514.16, + "end": 9515.16, + "probability": 0.6647 + }, + { + "start": 9515.26, + "end": 9516.72, + "probability": 0.8487 + }, + { + "start": 9516.82, + "end": 9518.14, + "probability": 0.3591 + }, + { + "start": 9518.54, + "end": 9519.28, + "probability": 0.7974 + }, + { + "start": 9519.46, + "end": 9521.06, + "probability": 0.7331 + }, + { + "start": 9523.09, + "end": 9527.12, + "probability": 0.0096 + }, + { + "start": 9537.08, + "end": 9537.94, + "probability": 0.1737 + }, + { + "start": 9538.88, + "end": 9542.98, + "probability": 0.6227 + }, + { + "start": 9543.2, + "end": 9547.3, + "probability": 0.8446 + }, + { + "start": 9547.96, + "end": 9551.62, + "probability": 0.9581 + }, + { + "start": 9551.68, + "end": 9556.96, + "probability": 0.7964 + }, + { + "start": 9557.68, + "end": 9561.96, + "probability": 0.9518 + }, + { + "start": 9562.16, + "end": 9564.8, + "probability": 0.8958 + }, + { + "start": 9565.18, + "end": 9567.22, + "probability": 0.6698 + }, + { + "start": 9567.6, + "end": 9568.36, + "probability": 0.7143 + }, + { + "start": 9568.4, + "end": 9568.92, + "probability": 0.8432 + }, + { + "start": 9569.02, + "end": 9570.4, + "probability": 0.6495 + }, + { + "start": 9570.54, + "end": 9574.45, + "probability": 0.0205 + }, + { + "start": 9583.84, + "end": 9585.2, + "probability": 0.0838 + }, + { + "start": 9585.44, + "end": 9587.63, + "probability": 0.8083 + }, + { + "start": 9588.06, + "end": 9590.06, + "probability": 0.2997 + }, + { + "start": 9591.38, + "end": 9594.04, + "probability": 0.6157 + }, + { + "start": 9594.36, + "end": 9596.64, + "probability": 0.6389 + }, + { + "start": 9597.3, + "end": 9600.5, + "probability": 0.8077 + }, + { + "start": 9600.74, + "end": 9602.9, + "probability": 0.0314 + }, + { + "start": 9603.1, + "end": 9604.52, + "probability": 0.2751 + }, + { + "start": 9604.8, + "end": 9606.1, + "probability": 0.2207 + }, + { + "start": 9607.58, + "end": 9608.68, + "probability": 0.6565 + }, + { + "start": 9608.68, + "end": 9608.68, + "probability": 0.6056 + }, + { + "start": 9608.8, + "end": 9613.05, + "probability": 0.1951 + }, + { + "start": 9613.68, + "end": 9615.56, + "probability": 0.0687 + }, + { + "start": 9615.94, + "end": 9616.06, + "probability": 0.3132 + }, + { + "start": 9617.37, + "end": 9618.54, + "probability": 0.2833 + }, + { + "start": 9619.88, + "end": 9623.1, + "probability": 0.2384 + }, + { + "start": 9623.76, + "end": 9624.04, + "probability": 0.3878 + }, + { + "start": 9624.04, + "end": 9629.32, + "probability": 0.8012 + }, + { + "start": 9629.52, + "end": 9632.12, + "probability": 0.7057 + }, + { + "start": 9632.28, + "end": 9635.9, + "probability": 0.7895 + }, + { + "start": 9637.94, + "end": 9638.6, + "probability": 0.2549 + }, + { + "start": 9639.84, + "end": 9644.68, + "probability": 0.8849 + }, + { + "start": 9644.82, + "end": 9647.48, + "probability": 0.9732 + }, + { + "start": 9647.76, + "end": 9648.88, + "probability": 0.5356 + }, + { + "start": 9648.92, + "end": 9650.1, + "probability": 0.869 + }, + { + "start": 9650.34, + "end": 9652.16, + "probability": 0.767 + }, + { + "start": 9652.22, + "end": 9653.04, + "probability": 0.2809 + }, + { + "start": 9653.66, + "end": 9654.84, + "probability": 0.4235 + }, + { + "start": 9655.16, + "end": 9656.16, + "probability": 0.2335 + }, + { + "start": 9668.62, + "end": 9670.86, + "probability": 0.2976 + }, + { + "start": 9672.94, + "end": 9678.48, + "probability": 0.604 + }, + { + "start": 9680.9, + "end": 9685.5, + "probability": 0.6252 + }, + { + "start": 9685.82, + "end": 9689.66, + "probability": 0.8843 + }, + { + "start": 9689.66, + "end": 9692.26, + "probability": 0.6392 + }, + { + "start": 9692.26, + "end": 9692.66, + "probability": 0.415 + }, + { + "start": 9692.98, + "end": 9693.52, + "probability": 0.9681 + }, + { + "start": 9693.78, + "end": 9694.56, + "probability": 0.581 + }, + { + "start": 9694.6, + "end": 9698.06, + "probability": 0.9354 + }, + { + "start": 9698.26, + "end": 9699.22, + "probability": 0.7564 + }, + { + "start": 9699.84, + "end": 9701.48, + "probability": 0.7333 + }, + { + "start": 9701.76, + "end": 9706.4, + "probability": 0.7449 + }, + { + "start": 9706.62, + "end": 9708.82, + "probability": 0.0369 + }, + { + "start": 9709.1, + "end": 9710.68, + "probability": 0.7988 + }, + { + "start": 9710.68, + "end": 9711.64, + "probability": 0.5601 + }, + { + "start": 9711.84, + "end": 9714.74, + "probability": 0.6539 + }, + { + "start": 9714.96, + "end": 9716.26, + "probability": 0.9663 + }, + { + "start": 9716.4, + "end": 9722.16, + "probability": 0.9391 + }, + { + "start": 9722.76, + "end": 9724.12, + "probability": 0.8392 + }, + { + "start": 9724.12, + "end": 9724.48, + "probability": 0.2215 + }, + { + "start": 9724.72, + "end": 9726.84, + "probability": 0.8164 + }, + { + "start": 9727.06, + "end": 9729.46, + "probability": 0.6388 + }, + { + "start": 9729.46, + "end": 9729.96, + "probability": 0.7431 + }, + { + "start": 9730.04, + "end": 9730.8, + "probability": 0.8665 + }, + { + "start": 9731.14, + "end": 9731.98, + "probability": 0.7173 + }, + { + "start": 9731.98, + "end": 9736.22, + "probability": 0.7044 + }, + { + "start": 9736.58, + "end": 9739.14, + "probability": 0.0835 + }, + { + "start": 9739.28, + "end": 9742.84, + "probability": 0.9271 + }, + { + "start": 9742.84, + "end": 9747.16, + "probability": 0.9717 + }, + { + "start": 9747.74, + "end": 9752.72, + "probability": 0.9753 + }, + { + "start": 9752.72, + "end": 9756.44, + "probability": 0.935 + }, + { + "start": 9756.64, + "end": 9761.62, + "probability": 0.708 + }, + { + "start": 9761.94, + "end": 9764.22, + "probability": 0.967 + }, + { + "start": 9764.7, + "end": 9768.34, + "probability": 0.9163 + }, + { + "start": 9768.34, + "end": 9771.84, + "probability": 0.9949 + }, + { + "start": 9772.5, + "end": 9778.72, + "probability": 0.8972 + }, + { + "start": 9779.32, + "end": 9783.6, + "probability": 0.9968 + }, + { + "start": 9783.6, + "end": 9786.66, + "probability": 0.9893 + }, + { + "start": 9787.12, + "end": 9794.44, + "probability": 0.9692 + }, + { + "start": 9794.44, + "end": 9800.82, + "probability": 0.9941 + }, + { + "start": 9801.42, + "end": 9803.76, + "probability": 0.988 + }, + { + "start": 9804.78, + "end": 9809.34, + "probability": 0.964 + }, + { + "start": 9809.82, + "end": 9813.7, + "probability": 0.9888 + }, + { + "start": 9813.7, + "end": 9818.88, + "probability": 0.9831 + }, + { + "start": 9819.44, + "end": 9823.95, + "probability": 0.9475 + }, + { + "start": 9824.2, + "end": 9830.72, + "probability": 0.993 + }, + { + "start": 9831.1, + "end": 9834.48, + "probability": 0.9722 + }, + { + "start": 9835.04, + "end": 9840.2, + "probability": 0.8989 + }, + { + "start": 9841.0, + "end": 9844.56, + "probability": 0.9626 + }, + { + "start": 9844.56, + "end": 9847.3, + "probability": 0.6965 + }, + { + "start": 9849.0, + "end": 9850.68, + "probability": 0.9353 + }, + { + "start": 9851.22, + "end": 9854.02, + "probability": 0.8041 + }, + { + "start": 9854.48, + "end": 9860.0, + "probability": 0.9917 + }, + { + "start": 9860.5, + "end": 9867.14, + "probability": 0.8977 + }, + { + "start": 9868.06, + "end": 9872.38, + "probability": 0.9731 + }, + { + "start": 9873.0, + "end": 9876.38, + "probability": 0.9496 + }, + { + "start": 9876.76, + "end": 9880.44, + "probability": 0.9979 + }, + { + "start": 9880.44, + "end": 9886.5, + "probability": 0.8418 + }, + { + "start": 9886.64, + "end": 9889.04, + "probability": 0.9849 + }, + { + "start": 9889.94, + "end": 9894.42, + "probability": 0.8741 + }, + { + "start": 9894.42, + "end": 9895.6, + "probability": 0.5927 + }, + { + "start": 9895.64, + "end": 9897.53, + "probability": 0.8314 + }, + { + "start": 9897.76, + "end": 9899.32, + "probability": 0.9561 + }, + { + "start": 9899.4, + "end": 9900.02, + "probability": 0.5757 + }, + { + "start": 9901.72, + "end": 9903.68, + "probability": 0.5731 + }, + { + "start": 9903.76, + "end": 9905.44, + "probability": 0.9429 + }, + { + "start": 9905.52, + "end": 9908.86, + "probability": 0.7879 + }, + { + "start": 9908.98, + "end": 9914.95, + "probability": 0.6679 + }, + { + "start": 9915.98, + "end": 9919.72, + "probability": 0.006 + }, + { + "start": 9919.72, + "end": 9920.64, + "probability": 0.2169 + }, + { + "start": 9921.04, + "end": 9922.34, + "probability": 0.0002 + }, + { + "start": 9928.42, + "end": 9929.2, + "probability": 0.0744 + }, + { + "start": 9933.02, + "end": 9934.88, + "probability": 0.4545 + }, + { + "start": 9934.94, + "end": 9935.64, + "probability": 0.8252 + }, + { + "start": 9935.7, + "end": 9936.5, + "probability": 0.7223 + }, + { + "start": 9936.6, + "end": 9939.3, + "probability": 0.9932 + }, + { + "start": 9939.6, + "end": 9942.94, + "probability": 0.8681 + }, + { + "start": 9943.68, + "end": 9944.16, + "probability": 0.7827 + }, + { + "start": 9950.46, + "end": 9951.52, + "probability": 0.0373 + }, + { + "start": 9952.16, + "end": 9960.32, + "probability": 0.618 + }, + { + "start": 9961.14, + "end": 9964.16, + "probability": 0.0103 + }, + { + "start": 9965.2, + "end": 9965.36, + "probability": 0.4352 + }, + { + "start": 9965.52, + "end": 9968.84, + "probability": 0.7345 + }, + { + "start": 9968.86, + "end": 9970.2, + "probability": 0.9561 + }, + { + "start": 9970.54, + "end": 9971.1, + "probability": 0.5807 + }, + { + "start": 9971.58, + "end": 9974.08, + "probability": 0.4885 + }, + { + "start": 9974.08, + "end": 9974.08, + "probability": 0.0113 + }, + { + "start": 9974.08, + "end": 9977.26, + "probability": 0.7162 + }, + { + "start": 9977.42, + "end": 9980.8, + "probability": 0.9388 + }, + { + "start": 9981.44, + "end": 9983.02, + "probability": 0.9961 + }, + { + "start": 9983.84, + "end": 9984.78, + "probability": 0.7865 + }, + { + "start": 9984.94, + "end": 9985.92, + "probability": 0.782 + }, + { + "start": 9985.92, + "end": 9987.1, + "probability": 0.8763 + }, + { + "start": 9987.26, + "end": 9987.74, + "probability": 0.7916 + }, + { + "start": 9987.84, + "end": 9989.82, + "probability": 0.7208 + }, + { + "start": 9989.82, + "end": 9993.34, + "probability": 0.9467 + }, + { + "start": 9993.56, + "end": 9994.95, + "probability": 0.9971 + }, + { + "start": 9995.68, + "end": 9997.76, + "probability": 0.8492 + }, + { + "start": 9998.78, + "end": 10003.98, + "probability": 0.9421 + }, + { + "start": 10003.98, + "end": 10012.46, + "probability": 0.9898 + }, + { + "start": 10012.46, + "end": 10017.1, + "probability": 0.9959 + }, + { + "start": 10017.78, + "end": 10018.7, + "probability": 0.8405 + }, + { + "start": 10019.14, + "end": 10021.02, + "probability": 0.7358 + }, + { + "start": 10021.12, + "end": 10022.26, + "probability": 0.8873 + }, + { + "start": 10022.66, + "end": 10025.02, + "probability": 0.9448 + }, + { + "start": 10025.52, + "end": 10027.02, + "probability": 0.837 + }, + { + "start": 10027.2, + "end": 10027.6, + "probability": 0.8135 + }, + { + "start": 10027.74, + "end": 10028.52, + "probability": 0.8697 + }, + { + "start": 10028.7, + "end": 10033.52, + "probability": 0.8953 + }, + { + "start": 10033.52, + "end": 10038.76, + "probability": 0.9993 + }, + { + "start": 10039.32, + "end": 10040.42, + "probability": 0.9252 + }, + { + "start": 10041.14, + "end": 10042.9, + "probability": 0.7062 + }, + { + "start": 10043.1, + "end": 10045.86, + "probability": 0.9374 + }, + { + "start": 10046.38, + "end": 10048.12, + "probability": 0.9124 + }, + { + "start": 10048.18, + "end": 10051.82, + "probability": 0.9346 + }, + { + "start": 10051.9, + "end": 10052.8, + "probability": 0.6186 + }, + { + "start": 10052.9, + "end": 10055.76, + "probability": 0.8521 + }, + { + "start": 10056.48, + "end": 10063.16, + "probability": 0.9332 + }, + { + "start": 10063.46, + "end": 10067.1, + "probability": 0.965 + }, + { + "start": 10067.56, + "end": 10068.08, + "probability": 0.6355 + }, + { + "start": 10068.16, + "end": 10069.68, + "probability": 0.7256 + }, + { + "start": 10070.14, + "end": 10071.4, + "probability": 0.8975 + }, + { + "start": 10071.42, + "end": 10073.88, + "probability": 0.8779 + }, + { + "start": 10074.04, + "end": 10076.72, + "probability": 0.9218 + }, + { + "start": 10077.12, + "end": 10078.14, + "probability": 0.9223 + }, + { + "start": 10078.26, + "end": 10080.0, + "probability": 0.5164 + }, + { + "start": 10080.42, + "end": 10083.09, + "probability": 0.9954 + }, + { + "start": 10083.66, + "end": 10084.73, + "probability": 0.9915 + }, + { + "start": 10085.2, + "end": 10086.34, + "probability": 0.9814 + }, + { + "start": 10087.0, + "end": 10091.8, + "probability": 0.9764 + }, + { + "start": 10091.82, + "end": 10092.48, + "probability": 0.8004 + }, + { + "start": 10092.88, + "end": 10093.1, + "probability": 0.2498 + }, + { + "start": 10093.14, + "end": 10094.79, + "probability": 0.7448 + }, + { + "start": 10095.18, + "end": 10096.08, + "probability": 0.9668 + }, + { + "start": 10096.18, + "end": 10100.12, + "probability": 0.5444 + }, + { + "start": 10100.36, + "end": 10100.78, + "probability": 0.2622 + }, + { + "start": 10100.78, + "end": 10106.7, + "probability": 0.9155 + }, + { + "start": 10106.98, + "end": 10108.62, + "probability": 0.3934 + }, + { + "start": 10108.98, + "end": 10111.7, + "probability": 0.9883 + }, + { + "start": 10112.24, + "end": 10115.88, + "probability": 0.9946 + }, + { + "start": 10116.02, + "end": 10119.56, + "probability": 0.8745 + }, + { + "start": 10119.76, + "end": 10120.2, + "probability": 0.8056 + }, + { + "start": 10120.54, + "end": 10124.69, + "probability": 0.8511 + }, + { + "start": 10125.26, + "end": 10128.9, + "probability": 0.807 + }, + { + "start": 10129.06, + "end": 10132.3, + "probability": 0.988 + }, + { + "start": 10132.5, + "end": 10134.38, + "probability": 0.9971 + }, + { + "start": 10134.56, + "end": 10135.34, + "probability": 0.8571 + }, + { + "start": 10135.88, + "end": 10140.74, + "probability": 0.9739 + }, + { + "start": 10141.12, + "end": 10144.18, + "probability": 0.769 + }, + { + "start": 10144.38, + "end": 10147.22, + "probability": 0.4739 + }, + { + "start": 10147.62, + "end": 10153.2, + "probability": 0.9754 + }, + { + "start": 10153.47, + "end": 10155.78, + "probability": 0.883 + }, + { + "start": 10156.28, + "end": 10159.78, + "probability": 0.9497 + }, + { + "start": 10160.16, + "end": 10163.9, + "probability": 0.9194 + }, + { + "start": 10164.22, + "end": 10165.74, + "probability": 0.9059 + }, + { + "start": 10166.0, + "end": 10167.06, + "probability": 0.9868 + }, + { + "start": 10167.16, + "end": 10172.88, + "probability": 0.9556 + }, + { + "start": 10173.34, + "end": 10173.38, + "probability": 0.5992 + }, + { + "start": 10173.38, + "end": 10177.36, + "probability": 0.9683 + }, + { + "start": 10180.88, + "end": 10183.52, + "probability": 0.7337 + }, + { + "start": 10183.76, + "end": 10186.08, + "probability": 0.9734 + }, + { + "start": 10186.28, + "end": 10188.44, + "probability": 0.8217 + }, + { + "start": 10188.6, + "end": 10189.18, + "probability": 0.9509 + }, + { + "start": 10189.26, + "end": 10189.76, + "probability": 0.8247 + }, + { + "start": 10189.82, + "end": 10190.5, + "probability": 0.7705 + }, + { + "start": 10190.74, + "end": 10191.82, + "probability": 0.9867 + }, + { + "start": 10191.9, + "end": 10192.62, + "probability": 0.6593 + }, + { + "start": 10192.88, + "end": 10196.86, + "probability": 0.8882 + }, + { + "start": 10197.14, + "end": 10203.22, + "probability": 0.9338 + }, + { + "start": 10203.22, + "end": 10209.2, + "probability": 0.9193 + }, + { + "start": 10209.32, + "end": 10209.36, + "probability": 0.3765 + }, + { + "start": 10209.36, + "end": 10211.95, + "probability": 0.9592 + }, + { + "start": 10212.66, + "end": 10215.62, + "probability": 0.982 + }, + { + "start": 10215.74, + "end": 10218.32, + "probability": 0.9015 + }, + { + "start": 10218.48, + "end": 10225.64, + "probability": 0.9652 + }, + { + "start": 10225.64, + "end": 10226.48, + "probability": 0.6324 + }, + { + "start": 10226.62, + "end": 10227.22, + "probability": 0.7922 + }, + { + "start": 10227.5, + "end": 10227.7, + "probability": 0.3637 + }, + { + "start": 10227.76, + "end": 10229.36, + "probability": 0.7059 + }, + { + "start": 10229.72, + "end": 10232.5, + "probability": 0.9905 + }, + { + "start": 10232.58, + "end": 10234.02, + "probability": 0.4318 + }, + { + "start": 10234.26, + "end": 10234.98, + "probability": 0.753 + }, + { + "start": 10235.08, + "end": 10238.46, + "probability": 0.9893 + }, + { + "start": 10238.64, + "end": 10239.1, + "probability": 0.3318 + }, + { + "start": 10239.12, + "end": 10240.04, + "probability": 0.5183 + }, + { + "start": 10240.16, + "end": 10243.58, + "probability": 0.7366 + }, + { + "start": 10244.06, + "end": 10245.48, + "probability": 0.5585 + }, + { + "start": 10245.68, + "end": 10247.16, + "probability": 0.908 + }, + { + "start": 10247.64, + "end": 10248.82, + "probability": 0.9967 + }, + { + "start": 10249.24, + "end": 10249.98, + "probability": 0.7453 + }, + { + "start": 10250.0, + "end": 10251.0, + "probability": 0.9135 + }, + { + "start": 10251.08, + "end": 10252.23, + "probability": 0.8689 + }, + { + "start": 10252.96, + "end": 10256.36, + "probability": 0.8983 + }, + { + "start": 10256.62, + "end": 10257.56, + "probability": 0.7896 + }, + { + "start": 10257.74, + "end": 10259.18, + "probability": 0.4602 + }, + { + "start": 10260.44, + "end": 10261.4, + "probability": 0.092 + }, + { + "start": 10262.68, + "end": 10264.28, + "probability": 0.7874 + }, + { + "start": 10264.92, + "end": 10268.1, + "probability": 0.7051 + }, + { + "start": 10268.78, + "end": 10271.08, + "probability": 0.1044 + }, + { + "start": 10271.22, + "end": 10274.74, + "probability": 0.6991 + }, + { + "start": 10274.74, + "end": 10278.12, + "probability": 0.6695 + }, + { + "start": 10279.64, + "end": 10281.74, + "probability": 0.9827 + }, + { + "start": 10281.78, + "end": 10283.76, + "probability": 0.8606 + }, + { + "start": 10284.34, + "end": 10285.6, + "probability": 0.7923 + }, + { + "start": 10285.74, + "end": 10287.8, + "probability": 0.9722 + }, + { + "start": 10288.04, + "end": 10290.9, + "probability": 0.7284 + }, + { + "start": 10291.88, + "end": 10295.62, + "probability": 0.8176 + }, + { + "start": 10295.72, + "end": 10295.72, + "probability": 0.4583 + }, + { + "start": 10295.72, + "end": 10296.32, + "probability": 0.5076 + }, + { + "start": 10296.9, + "end": 10297.82, + "probability": 0.4129 + }, + { + "start": 10297.9, + "end": 10299.5, + "probability": 0.766 + }, + { + "start": 10299.7, + "end": 10300.78, + "probability": 0.6166 + }, + { + "start": 10300.88, + "end": 10301.64, + "probability": 0.5685 + }, + { + "start": 10302.76, + "end": 10307.06, + "probability": 0.9863 + }, + { + "start": 10307.06, + "end": 10309.32, + "probability": 0.9845 + }, + { + "start": 10309.34, + "end": 10312.02, + "probability": 0.9919 + }, + { + "start": 10312.02, + "end": 10314.84, + "probability": 0.8803 + }, + { + "start": 10315.84, + "end": 10318.74, + "probability": 0.964 + }, + { + "start": 10318.96, + "end": 10321.3, + "probability": 0.8483 + }, + { + "start": 10321.52, + "end": 10323.0, + "probability": 0.9267 + }, + { + "start": 10323.04, + "end": 10325.52, + "probability": 0.8531 + }, + { + "start": 10326.14, + "end": 10330.14, + "probability": 0.5859 + }, + { + "start": 10331.1, + "end": 10336.08, + "probability": 0.9477 + }, + { + "start": 10336.08, + "end": 10340.32, + "probability": 0.9888 + }, + { + "start": 10341.48, + "end": 10343.82, + "probability": 0.9923 + }, + { + "start": 10343.82, + "end": 10345.98, + "probability": 0.9069 + }, + { + "start": 10346.94, + "end": 10352.04, + "probability": 0.9341 + }, + { + "start": 10353.7, + "end": 10357.36, + "probability": 0.7726 + }, + { + "start": 10357.36, + "end": 10360.26, + "probability": 0.795 + }, + { + "start": 10360.26, + "end": 10365.08, + "probability": 0.9944 + }, + { + "start": 10366.16, + "end": 10368.3, + "probability": 0.9823 + }, + { + "start": 10369.02, + "end": 10372.0, + "probability": 0.7531 + }, + { + "start": 10373.77, + "end": 10376.98, + "probability": 0.9918 + }, + { + "start": 10376.98, + "end": 10380.9, + "probability": 0.8275 + }, + { + "start": 10381.32, + "end": 10385.28, + "probability": 0.8708 + }, + { + "start": 10386.08, + "end": 10387.02, + "probability": 0.4426 + }, + { + "start": 10387.12, + "end": 10390.0, + "probability": 0.7683 + }, + { + "start": 10390.0, + "end": 10392.08, + "probability": 0.8697 + }, + { + "start": 10392.62, + "end": 10393.18, + "probability": 0.6519 + }, + { + "start": 10393.22, + "end": 10394.42, + "probability": 0.7325 + }, + { + "start": 10394.42, + "end": 10397.3, + "probability": 0.9182 + }, + { + "start": 10397.52, + "end": 10400.06, + "probability": 0.8589 + }, + { + "start": 10402.16, + "end": 10403.1, + "probability": 0.0239 + }, + { + "start": 10403.1, + "end": 10403.52, + "probability": 0.5193 + }, + { + "start": 10403.78, + "end": 10403.8, + "probability": 0.0835 + }, + { + "start": 10403.8, + "end": 10404.54, + "probability": 0.4437 + }, + { + "start": 10405.84, + "end": 10405.84, + "probability": 0.0295 + }, + { + "start": 10405.84, + "end": 10406.26, + "probability": 0.5142 + }, + { + "start": 10408.36, + "end": 10408.36, + "probability": 0.0588 + }, + { + "start": 10408.36, + "end": 10410.84, + "probability": 0.571 + }, + { + "start": 10410.84, + "end": 10414.14, + "probability": 0.7333 + }, + { + "start": 10414.14, + "end": 10417.32, + "probability": 0.672 + }, + { + "start": 10417.46, + "end": 10421.36, + "probability": 0.9629 + }, + { + "start": 10421.48, + "end": 10422.78, + "probability": 0.0907 + }, + { + "start": 10422.8, + "end": 10424.03, + "probability": 0.7075 + }, + { + "start": 10424.3, + "end": 10426.38, + "probability": 0.7612 + }, + { + "start": 10426.38, + "end": 10430.08, + "probability": 0.666 + }, + { + "start": 10430.24, + "end": 10432.88, + "probability": 0.8017 + }, + { + "start": 10432.88, + "end": 10434.12, + "probability": 0.3251 + }, + { + "start": 10434.14, + "end": 10437.14, + "probability": 0.4969 + }, + { + "start": 10437.2, + "end": 10440.46, + "probability": 0.757 + }, + { + "start": 10440.48, + "end": 10442.36, + "probability": 0.6708 + }, + { + "start": 10442.64, + "end": 10443.44, + "probability": 0.4828 + }, + { + "start": 10443.44, + "end": 10443.62, + "probability": 0.1254 + }, + { + "start": 10443.72, + "end": 10444.16, + "probability": 0.7152 + }, + { + "start": 10444.36, + "end": 10449.04, + "probability": 0.7522 + }, + { + "start": 10449.18, + "end": 10452.66, + "probability": 0.6941 + }, + { + "start": 10452.74, + "end": 10453.94, + "probability": 0.4486 + }, + { + "start": 10453.94, + "end": 10454.15, + "probability": 0.0149 + }, + { + "start": 10455.02, + "end": 10457.28, + "probability": 0.9153 + }, + { + "start": 10458.88, + "end": 10459.42, + "probability": 0.1186 + }, + { + "start": 10459.76, + "end": 10460.92, + "probability": 0.361 + }, + { + "start": 10460.94, + "end": 10461.04, + "probability": 0.5189 + }, + { + "start": 10461.04, + "end": 10461.44, + "probability": 0.7196 + }, + { + "start": 10461.78, + "end": 10464.24, + "probability": 0.6449 + }, + { + "start": 10464.54, + "end": 10466.18, + "probability": 0.8634 + }, + { + "start": 10466.7, + "end": 10467.76, + "probability": 0.9236 + }, + { + "start": 10468.66, + "end": 10469.86, + "probability": 0.989 + }, + { + "start": 10470.4, + "end": 10471.04, + "probability": 0.9218 + }, + { + "start": 10471.22, + "end": 10472.22, + "probability": 0.9807 + }, + { + "start": 10473.38, + "end": 10478.88, + "probability": 0.6283 + }, + { + "start": 10480.66, + "end": 10482.5, + "probability": 0.223 + }, + { + "start": 10482.82, + "end": 10484.54, + "probability": 0.3605 + }, + { + "start": 10485.42, + "end": 10486.08, + "probability": 0.958 + }, + { + "start": 10486.16, + "end": 10486.56, + "probability": 0.7411 + }, + { + "start": 10486.62, + "end": 10489.12, + "probability": 0.9806 + }, + { + "start": 10489.26, + "end": 10490.88, + "probability": 0.7475 + }, + { + "start": 10492.46, + "end": 10493.48, + "probability": 0.2647 + }, + { + "start": 10493.98, + "end": 10495.08, + "probability": 0.7352 + }, + { + "start": 10495.4, + "end": 10496.04, + "probability": 0.9092 + }, + { + "start": 10496.44, + "end": 10497.9, + "probability": 0.8409 + }, + { + "start": 10498.3, + "end": 10498.98, + "probability": 0.7155 + }, + { + "start": 10499.04, + "end": 10499.96, + "probability": 0.3918 + }, + { + "start": 10500.66, + "end": 10504.18, + "probability": 0.557 + }, + { + "start": 10509.14, + "end": 10510.22, + "probability": 0.5593 + }, + { + "start": 10518.64, + "end": 10520.46, + "probability": 0.6243 + }, + { + "start": 10522.12, + "end": 10525.02, + "probability": 0.9149 + }, + { + "start": 10526.26, + "end": 10532.98, + "probability": 0.9377 + }, + { + "start": 10534.46, + "end": 10534.46, + "probability": 0.1117 + }, + { + "start": 10535.04, + "end": 10536.53, + "probability": 0.9755 + }, + { + "start": 10538.14, + "end": 10543.66, + "probability": 0.9956 + }, + { + "start": 10545.02, + "end": 10547.26, + "probability": 0.8438 + }, + { + "start": 10548.24, + "end": 10551.62, + "probability": 0.6742 + }, + { + "start": 10552.76, + "end": 10555.98, + "probability": 0.7214 + }, + { + "start": 10556.1, + "end": 10558.7, + "probability": 0.9954 + }, + { + "start": 10560.46, + "end": 10562.66, + "probability": 0.9848 + }, + { + "start": 10563.66, + "end": 10565.86, + "probability": 0.8333 + }, + { + "start": 10566.68, + "end": 10569.13, + "probability": 0.9854 + }, + { + "start": 10570.08, + "end": 10574.26, + "probability": 0.984 + }, + { + "start": 10574.54, + "end": 10575.98, + "probability": 0.9799 + }, + { + "start": 10578.46, + "end": 10581.78, + "probability": 0.7537 + }, + { + "start": 10582.76, + "end": 10584.14, + "probability": 0.7677 + }, + { + "start": 10585.72, + "end": 10587.18, + "probability": 0.9294 + }, + { + "start": 10588.04, + "end": 10588.32, + "probability": 0.6008 + }, + { + "start": 10589.02, + "end": 10590.5, + "probability": 0.9961 + }, + { + "start": 10590.88, + "end": 10593.84, + "probability": 0.9892 + }, + { + "start": 10595.3, + "end": 10600.6, + "probability": 0.8524 + }, + { + "start": 10600.6, + "end": 10603.98, + "probability": 0.9709 + }, + { + "start": 10606.64, + "end": 10608.66, + "probability": 0.5506 + }, + { + "start": 10608.96, + "end": 10610.62, + "probability": 0.6468 + }, + { + "start": 10611.2, + "end": 10614.9, + "probability": 0.9658 + }, + { + "start": 10615.32, + "end": 10616.4, + "probability": 0.4255 + }, + { + "start": 10616.84, + "end": 10618.84, + "probability": 0.7112 + }, + { + "start": 10618.92, + "end": 10619.86, + "probability": 0.8999 + }, + { + "start": 10620.02, + "end": 10620.82, + "probability": 0.6984 + }, + { + "start": 10622.72, + "end": 10625.28, + "probability": 0.6394 + }, + { + "start": 10625.28, + "end": 10626.63, + "probability": 0.8916 + }, + { + "start": 10627.34, + "end": 10628.26, + "probability": 0.9159 + }, + { + "start": 10629.02, + "end": 10630.1, + "probability": 0.2509 + }, + { + "start": 10631.04, + "end": 10632.54, + "probability": 0.9718 + }, + { + "start": 10633.46, + "end": 10635.86, + "probability": 0.9207 + }, + { + "start": 10637.28, + "end": 10642.3, + "probability": 0.9374 + }, + { + "start": 10643.48, + "end": 10648.58, + "probability": 0.9967 + }, + { + "start": 10649.1, + "end": 10650.83, + "probability": 0.9119 + }, + { + "start": 10652.16, + "end": 10652.54, + "probability": 0.6632 + }, + { + "start": 10652.68, + "end": 10653.41, + "probability": 0.9531 + }, + { + "start": 10653.54, + "end": 10654.84, + "probability": 0.9543 + }, + { + "start": 10655.22, + "end": 10658.54, + "probability": 0.9631 + }, + { + "start": 10659.28, + "end": 10662.96, + "probability": 0.9634 + }, + { + "start": 10663.2, + "end": 10664.58, + "probability": 0.6829 + }, + { + "start": 10665.1, + "end": 10666.56, + "probability": 0.9022 + }, + { + "start": 10668.2, + "end": 10669.18, + "probability": 0.7919 + }, + { + "start": 10671.56, + "end": 10676.96, + "probability": 0.9675 + }, + { + "start": 10679.28, + "end": 10687.64, + "probability": 0.9839 + }, + { + "start": 10688.04, + "end": 10694.48, + "probability": 0.9415 + }, + { + "start": 10695.7, + "end": 10696.26, + "probability": 0.759 + }, + { + "start": 10696.92, + "end": 10699.38, + "probability": 0.7115 + }, + { + "start": 10699.52, + "end": 10699.58, + "probability": 0.5158 + }, + { + "start": 10699.58, + "end": 10701.02, + "probability": 0.4805 + }, + { + "start": 10701.18, + "end": 10702.24, + "probability": 0.6265 + }, + { + "start": 10702.32, + "end": 10702.56, + "probability": 0.7109 + }, + { + "start": 10704.7, + "end": 10708.6, + "probability": 0.8701 + }, + { + "start": 10709.6, + "end": 10710.96, + "probability": 0.5066 + }, + { + "start": 10711.82, + "end": 10716.08, + "probability": 0.9609 + }, + { + "start": 10717.16, + "end": 10721.79, + "probability": 0.9239 + }, + { + "start": 10722.68, + "end": 10723.56, + "probability": 0.5977 + }, + { + "start": 10724.9, + "end": 10729.38, + "probability": 0.8263 + }, + { + "start": 10730.32, + "end": 10733.72, + "probability": 0.8986 + }, + { + "start": 10734.68, + "end": 10735.48, + "probability": 0.551 + }, + { + "start": 10736.82, + "end": 10737.6, + "probability": 0.7205 + }, + { + "start": 10738.3, + "end": 10739.6, + "probability": 0.9966 + }, + { + "start": 10739.84, + "end": 10740.52, + "probability": 0.6894 + }, + { + "start": 10741.12, + "end": 10746.68, + "probability": 0.9814 + }, + { + "start": 10747.62, + "end": 10751.7, + "probability": 0.8516 + }, + { + "start": 10751.74, + "end": 10754.0, + "probability": 0.9644 + }, + { + "start": 10754.08, + "end": 10754.74, + "probability": 0.5194 + }, + { + "start": 10755.7, + "end": 10756.3, + "probability": 0.8536 + }, + { + "start": 10757.02, + "end": 10759.72, + "probability": 0.683 + }, + { + "start": 10760.88, + "end": 10764.42, + "probability": 0.9087 + }, + { + "start": 10764.5, + "end": 10764.7, + "probability": 0.2769 + }, + { + "start": 10764.76, + "end": 10766.02, + "probability": 0.7905 + }, + { + "start": 10766.02, + "end": 10769.24, + "probability": 0.8937 + }, + { + "start": 10772.48, + "end": 10775.32, + "probability": 0.7016 + }, + { + "start": 10775.32, + "end": 10777.7, + "probability": 0.1539 + }, + { + "start": 10777.82, + "end": 10778.1, + "probability": 0.6199 + }, + { + "start": 10779.36, + "end": 10779.82, + "probability": 0.4495 + }, + { + "start": 10779.92, + "end": 10780.6, + "probability": 0.8846 + }, + { + "start": 10780.78, + "end": 10784.92, + "probability": 0.9663 + }, + { + "start": 10785.68, + "end": 10792.72, + "probability": 0.8778 + }, + { + "start": 10793.26, + "end": 10795.22, + "probability": 0.7816 + }, + { + "start": 10795.32, + "end": 10796.8, + "probability": 0.9839 + }, + { + "start": 10797.14, + "end": 10801.08, + "probability": 0.8992 + }, + { + "start": 10801.22, + "end": 10804.16, + "probability": 0.7697 + }, + { + "start": 10804.62, + "end": 10809.42, + "probability": 0.9884 + }, + { + "start": 10809.58, + "end": 10812.76, + "probability": 0.7642 + }, + { + "start": 10813.08, + "end": 10813.76, + "probability": 0.2832 + }, + { + "start": 10813.86, + "end": 10818.02, + "probability": 0.8306 + }, + { + "start": 10818.48, + "end": 10820.52, + "probability": 0.8307 + }, + { + "start": 10820.64, + "end": 10823.86, + "probability": 0.8325 + }, + { + "start": 10824.3, + "end": 10826.84, + "probability": 0.8463 + }, + { + "start": 10827.12, + "end": 10827.72, + "probability": 0.8498 + }, + { + "start": 10827.76, + "end": 10828.86, + "probability": 0.9475 + }, + { + "start": 10829.22, + "end": 10830.82, + "probability": 0.9484 + }, + { + "start": 10830.84, + "end": 10831.94, + "probability": 0.5281 + }, + { + "start": 10832.12, + "end": 10835.12, + "probability": 0.9662 + }, + { + "start": 10835.16, + "end": 10835.78, + "probability": 0.5418 + }, + { + "start": 10836.38, + "end": 10837.37, + "probability": 0.972 + }, + { + "start": 10838.16, + "end": 10844.26, + "probability": 0.8341 + }, + { + "start": 10844.34, + "end": 10845.54, + "probability": 0.8357 + }, + { + "start": 10846.0, + "end": 10850.14, + "probability": 0.9977 + }, + { + "start": 10850.26, + "end": 10851.36, + "probability": 0.4976 + }, + { + "start": 10852.1, + "end": 10855.04, + "probability": 0.7704 + }, + { + "start": 10855.34, + "end": 10856.11, + "probability": 0.8151 + }, + { + "start": 10856.94, + "end": 10858.72, + "probability": 0.9692 + }, + { + "start": 10858.96, + "end": 10861.36, + "probability": 0.8995 + }, + { + "start": 10861.36, + "end": 10864.12, + "probability": 0.9723 + }, + { + "start": 10864.54, + "end": 10867.96, + "probability": 0.9635 + }, + { + "start": 10868.06, + "end": 10871.3, + "probability": 0.8339 + }, + { + "start": 10871.9, + "end": 10876.16, + "probability": 0.9115 + }, + { + "start": 10876.28, + "end": 10876.56, + "probability": 0.3813 + }, + { + "start": 10876.84, + "end": 10877.0, + "probability": 0.9745 + }, + { + "start": 10877.08, + "end": 10879.62, + "probability": 0.662 + }, + { + "start": 10879.62, + "end": 10882.12, + "probability": 0.885 + }, + { + "start": 10882.64, + "end": 10883.72, + "probability": 0.6634 + }, + { + "start": 10883.98, + "end": 10885.22, + "probability": 0.9608 + }, + { + "start": 10885.34, + "end": 10888.94, + "probability": 0.8014 + }, + { + "start": 10889.0, + "end": 10891.52, + "probability": 0.5908 + }, + { + "start": 10892.18, + "end": 10893.14, + "probability": 0.9464 + }, + { + "start": 10893.36, + "end": 10894.28, + "probability": 0.8051 + }, + { + "start": 10894.94, + "end": 10898.52, + "probability": 0.9924 + }, + { + "start": 10898.6, + "end": 10902.24, + "probability": 0.8958 + }, + { + "start": 10903.96, + "end": 10906.0, + "probability": 0.6764 + }, + { + "start": 10906.1, + "end": 10908.66, + "probability": 0.7936 + }, + { + "start": 10909.02, + "end": 10911.42, + "probability": 0.9749 + }, + { + "start": 10911.58, + "end": 10912.68, + "probability": 0.9907 + }, + { + "start": 10913.36, + "end": 10916.06, + "probability": 0.9936 + }, + { + "start": 10916.62, + "end": 10917.88, + "probability": 0.8704 + }, + { + "start": 10918.16, + "end": 10920.16, + "probability": 0.9708 + }, + { + "start": 10920.28, + "end": 10922.07, + "probability": 0.8066 + }, + { + "start": 10922.34, + "end": 10924.86, + "probability": 0.7849 + }, + { + "start": 10925.34, + "end": 10926.94, + "probability": 0.9385 + }, + { + "start": 10927.08, + "end": 10928.66, + "probability": 0.7928 + }, + { + "start": 10929.1, + "end": 10930.74, + "probability": 0.9373 + }, + { + "start": 10931.04, + "end": 10931.92, + "probability": 0.8557 + }, + { + "start": 10932.06, + "end": 10934.78, + "probability": 0.8116 + }, + { + "start": 10935.64, + "end": 10939.7, + "probability": 0.9453 + }, + { + "start": 10940.24, + "end": 10941.46, + "probability": 0.7815 + }, + { + "start": 10941.72, + "end": 10944.74, + "probability": 0.9795 + }, + { + "start": 10944.74, + "end": 10947.44, + "probability": 0.9634 + }, + { + "start": 10947.66, + "end": 10949.2, + "probability": 0.935 + }, + { + "start": 10949.62, + "end": 10950.44, + "probability": 0.9661 + }, + { + "start": 10950.76, + "end": 10951.36, + "probability": 0.6934 + }, + { + "start": 10951.5, + "end": 10952.16, + "probability": 0.6062 + }, + { + "start": 10952.32, + "end": 10955.36, + "probability": 0.9598 + }, + { + "start": 10955.36, + "end": 10958.04, + "probability": 0.874 + }, + { + "start": 10958.38, + "end": 10962.48, + "probability": 0.9299 + }, + { + "start": 10962.7, + "end": 10965.82, + "probability": 0.7972 + }, + { + "start": 10965.98, + "end": 10968.14, + "probability": 0.8724 + }, + { + "start": 10968.4, + "end": 10969.84, + "probability": 0.9219 + }, + { + "start": 10970.0, + "end": 10970.28, + "probability": 0.6748 + }, + { + "start": 10970.32, + "end": 10971.85, + "probability": 0.8047 + }, + { + "start": 10971.98, + "end": 10975.24, + "probability": 0.9709 + }, + { + "start": 10975.4, + "end": 10976.19, + "probability": 0.7876 + }, + { + "start": 10976.62, + "end": 10976.9, + "probability": 0.4467 + }, + { + "start": 10977.02, + "end": 10977.72, + "probability": 0.7302 + }, + { + "start": 10977.82, + "end": 10978.46, + "probability": 0.7692 + }, + { + "start": 10978.52, + "end": 10979.58, + "probability": 0.7728 + }, + { + "start": 10980.04, + "end": 10983.26, + "probability": 0.9338 + }, + { + "start": 10983.6, + "end": 10984.5, + "probability": 0.1186 + }, + { + "start": 10984.78, + "end": 10985.64, + "probability": 0.8983 + }, + { + "start": 10985.96, + "end": 10986.84, + "probability": 0.8409 + }, + { + "start": 10988.3, + "end": 10992.0, + "probability": 0.0696 + }, + { + "start": 10992.14, + "end": 10992.98, + "probability": 0.4124 + }, + { + "start": 11000.88, + "end": 11001.7, + "probability": 0.0039 + }, + { + "start": 11006.0, + "end": 11006.0, + "probability": 0.3659 + }, + { + "start": 11011.12, + "end": 11012.34, + "probability": 0.0333 + }, + { + "start": 11012.34, + "end": 11014.19, + "probability": 0.683 + }, + { + "start": 11014.72, + "end": 11016.26, + "probability": 0.7705 + }, + { + "start": 11016.26, + "end": 11017.38, + "probability": 0.2491 + }, + { + "start": 11017.76, + "end": 11018.82, + "probability": 0.9727 + }, + { + "start": 11018.94, + "end": 11021.48, + "probability": 0.9186 + }, + { + "start": 11021.62, + "end": 11022.72, + "probability": 0.931 + }, + { + "start": 11022.98, + "end": 11024.12, + "probability": 0.5229 + }, + { + "start": 11024.5, + "end": 11028.5, + "probability": 0.7647 + }, + { + "start": 11029.12, + "end": 11031.88, + "probability": 0.9919 + }, + { + "start": 11031.98, + "end": 11034.2, + "probability": 0.5773 + }, + { + "start": 11034.32, + "end": 11035.6, + "probability": 0.58 + }, + { + "start": 11036.0, + "end": 11036.62, + "probability": 0.5745 + }, + { + "start": 11036.78, + "end": 11040.48, + "probability": 0.9646 + }, + { + "start": 11040.56, + "end": 11041.74, + "probability": 0.9288 + }, + { + "start": 11041.92, + "end": 11043.44, + "probability": 0.7659 + }, + { + "start": 11056.24, + "end": 11056.66, + "probability": 0.3061 + }, + { + "start": 11060.08, + "end": 11063.76, + "probability": 0.7381 + }, + { + "start": 11064.54, + "end": 11067.88, + "probability": 0.9857 + }, + { + "start": 11067.88, + "end": 11071.58, + "probability": 0.9859 + }, + { + "start": 11072.26, + "end": 11077.14, + "probability": 0.9935 + }, + { + "start": 11077.14, + "end": 11082.4, + "probability": 0.9976 + }, + { + "start": 11083.18, + "end": 11089.64, + "probability": 0.8008 + }, + { + "start": 11090.08, + "end": 11094.74, + "probability": 0.9796 + }, + { + "start": 11094.74, + "end": 11099.34, + "probability": 0.9974 + }, + { + "start": 11100.56, + "end": 11103.88, + "probability": 0.9967 + }, + { + "start": 11104.44, + "end": 11107.36, + "probability": 0.9738 + }, + { + "start": 11107.54, + "end": 11111.56, + "probability": 0.9571 + }, + { + "start": 11111.96, + "end": 11113.52, + "probability": 0.8273 + }, + { + "start": 11114.2, + "end": 11118.98, + "probability": 0.9757 + }, + { + "start": 11119.42, + "end": 11121.9, + "probability": 0.953 + }, + { + "start": 11122.52, + "end": 11124.66, + "probability": 0.8357 + }, + { + "start": 11124.78, + "end": 11125.52, + "probability": 0.4271 + }, + { + "start": 11125.86, + "end": 11128.84, + "probability": 0.6333 + }, + { + "start": 11129.38, + "end": 11135.38, + "probability": 0.9877 + }, + { + "start": 11135.78, + "end": 11138.38, + "probability": 0.9421 + }, + { + "start": 11138.98, + "end": 11142.76, + "probability": 0.8926 + }, + { + "start": 11143.44, + "end": 11145.08, + "probability": 0.927 + }, + { + "start": 11145.46, + "end": 11147.2, + "probability": 0.7705 + }, + { + "start": 11147.54, + "end": 11148.48, + "probability": 0.8359 + }, + { + "start": 11148.66, + "end": 11150.02, + "probability": 0.9836 + }, + { + "start": 11150.74, + "end": 11155.06, + "probability": 0.8846 + }, + { + "start": 11155.5, + "end": 11161.08, + "probability": 0.9861 + }, + { + "start": 11161.08, + "end": 11166.6, + "probability": 0.9971 + }, + { + "start": 11166.6, + "end": 11172.4, + "probability": 0.9075 + }, + { + "start": 11172.86, + "end": 11176.94, + "probability": 0.9722 + }, + { + "start": 11177.34, + "end": 11179.66, + "probability": 0.802 + }, + { + "start": 11180.34, + "end": 11186.6, + "probability": 0.9458 + }, + { + "start": 11186.94, + "end": 11188.98, + "probability": 0.9549 + }, + { + "start": 11189.44, + "end": 11195.94, + "probability": 0.9389 + }, + { + "start": 11195.94, + "end": 11201.9, + "probability": 0.997 + }, + { + "start": 11202.52, + "end": 11205.98, + "probability": 0.976 + }, + { + "start": 11205.98, + "end": 11209.76, + "probability": 0.8513 + }, + { + "start": 11210.12, + "end": 11215.14, + "probability": 0.832 + }, + { + "start": 11215.36, + "end": 11216.16, + "probability": 0.7824 + }, + { + "start": 11216.24, + "end": 11216.94, + "probability": 0.3385 + }, + { + "start": 11216.94, + "end": 11217.74, + "probability": 0.6772 + }, + { + "start": 11217.78, + "end": 11220.28, + "probability": 0.6636 + }, + { + "start": 11220.78, + "end": 11221.68, + "probability": 0.8227 + }, + { + "start": 11221.78, + "end": 11222.42, + "probability": 0.6607 + }, + { + "start": 11222.54, + "end": 11223.6, + "probability": 0.9396 + }, + { + "start": 11224.28, + "end": 11224.86, + "probability": 0.6851 + }, + { + "start": 11225.04, + "end": 11226.04, + "probability": 0.9724 + }, + { + "start": 11227.3, + "end": 11228.32, + "probability": 0.5392 + }, + { + "start": 11228.62, + "end": 11229.9, + "probability": 0.7538 + }, + { + "start": 11229.96, + "end": 11230.66, + "probability": 0.477 + }, + { + "start": 11230.78, + "end": 11232.26, + "probability": 0.6063 + }, + { + "start": 11233.94, + "end": 11234.44, + "probability": 0.1173 + }, + { + "start": 11234.74, + "end": 11235.44, + "probability": 0.181 + }, + { + "start": 11235.62, + "end": 11235.88, + "probability": 0.1777 + }, + { + "start": 11236.0, + "end": 11237.2, + "probability": 0.6105 + }, + { + "start": 11237.43, + "end": 11239.27, + "probability": 0.647 + }, + { + "start": 11240.16, + "end": 11243.06, + "probability": 0.4408 + }, + { + "start": 11243.26, + "end": 11245.82, + "probability": 0.6126 + }, + { + "start": 11246.06, + "end": 11248.28, + "probability": 0.7831 + }, + { + "start": 11248.96, + "end": 11249.02, + "probability": 0.2929 + }, + { + "start": 11249.02, + "end": 11249.88, + "probability": 0.7857 + }, + { + "start": 11250.04, + "end": 11250.98, + "probability": 0.6586 + }, + { + "start": 11251.06, + "end": 11254.16, + "probability": 0.9727 + }, + { + "start": 11254.32, + "end": 11255.08, + "probability": 0.6542 + }, + { + "start": 11255.22, + "end": 11255.26, + "probability": 0.2429 + }, + { + "start": 11255.3, + "end": 11257.26, + "probability": 0.7644 + }, + { + "start": 11257.68, + "end": 11258.04, + "probability": 0.6266 + }, + { + "start": 11258.08, + "end": 11259.48, + "probability": 0.6983 + }, + { + "start": 11259.92, + "end": 11261.56, + "probability": 0.8816 + }, + { + "start": 11261.6, + "end": 11262.48, + "probability": 0.8685 + }, + { + "start": 11262.64, + "end": 11264.16, + "probability": 0.9609 + }, + { + "start": 11264.24, + "end": 11265.08, + "probability": 0.8123 + }, + { + "start": 11265.44, + "end": 11267.58, + "probability": 0.8444 + }, + { + "start": 11267.62, + "end": 11268.26, + "probability": 0.6964 + }, + { + "start": 11268.28, + "end": 11272.22, + "probability": 0.8215 + }, + { + "start": 11272.92, + "end": 11275.04, + "probability": 0.7903 + }, + { + "start": 11275.46, + "end": 11277.06, + "probability": 0.9048 + }, + { + "start": 11277.06, + "end": 11278.44, + "probability": 0.8457 + }, + { + "start": 11279.06, + "end": 11281.8, + "probability": 0.9803 + }, + { + "start": 11283.0, + "end": 11283.93, + "probability": 0.4805 + }, + { + "start": 11284.38, + "end": 11289.18, + "probability": 0.9819 + }, + { + "start": 11289.42, + "end": 11290.54, + "probability": 0.9346 + }, + { + "start": 11291.4, + "end": 11292.98, + "probability": 0.8075 + }, + { + "start": 11293.6, + "end": 11294.08, + "probability": 0.6968 + }, + { + "start": 11294.56, + "end": 11295.76, + "probability": 0.8396 + }, + { + "start": 11296.3, + "end": 11302.1, + "probability": 0.9512 + }, + { + "start": 11302.52, + "end": 11304.16, + "probability": 0.9836 + }, + { + "start": 11304.46, + "end": 11305.1, + "probability": 0.6431 + }, + { + "start": 11305.26, + "end": 11306.92, + "probability": 0.7513 + }, + { + "start": 11307.06, + "end": 11308.8, + "probability": 0.9231 + }, + { + "start": 11309.78, + "end": 11310.32, + "probability": 0.5958 + }, + { + "start": 11310.4, + "end": 11310.88, + "probability": 0.4047 + }, + { + "start": 11311.04, + "end": 11311.82, + "probability": 0.6887 + }, + { + "start": 11311.94, + "end": 11314.46, + "probability": 0.9129 + }, + { + "start": 11315.12, + "end": 11318.12, + "probability": 0.9717 + }, + { + "start": 11318.78, + "end": 11319.27, + "probability": 0.8461 + }, + { + "start": 11319.46, + "end": 11320.19, + "probability": 0.633 + }, + { + "start": 11321.16, + "end": 11322.04, + "probability": 0.8017 + }, + { + "start": 11322.06, + "end": 11322.82, + "probability": 0.8102 + }, + { + "start": 11322.92, + "end": 11325.06, + "probability": 0.7574 + }, + { + "start": 11325.44, + "end": 11326.52, + "probability": 0.9006 + }, + { + "start": 11326.64, + "end": 11328.1, + "probability": 0.782 + }, + { + "start": 11328.46, + "end": 11330.92, + "probability": 0.9507 + }, + { + "start": 11330.98, + "end": 11331.35, + "probability": 0.7198 + }, + { + "start": 11331.96, + "end": 11334.22, + "probability": 0.7351 + }, + { + "start": 11334.24, + "end": 11335.12, + "probability": 0.7231 + }, + { + "start": 11335.48, + "end": 11336.04, + "probability": 0.7466 + }, + { + "start": 11336.16, + "end": 11337.0, + "probability": 0.9099 + }, + { + "start": 11337.6, + "end": 11339.88, + "probability": 0.6673 + }, + { + "start": 11340.5, + "end": 11341.06, + "probability": 0.7079 + }, + { + "start": 11341.16, + "end": 11341.52, + "probability": 0.7004 + }, + { + "start": 11341.56, + "end": 11341.86, + "probability": 0.7643 + }, + { + "start": 11342.4, + "end": 11342.98, + "probability": 0.6927 + }, + { + "start": 11343.08, + "end": 11343.5, + "probability": 0.5602 + }, + { + "start": 11343.56, + "end": 11344.18, + "probability": 0.7161 + }, + { + "start": 11345.1, + "end": 11345.94, + "probability": 0.8965 + }, + { + "start": 11346.72, + "end": 11347.98, + "probability": 0.531 + }, + { + "start": 11348.1, + "end": 11349.1, + "probability": 0.8749 + }, + { + "start": 11349.58, + "end": 11349.88, + "probability": 0.2324 + }, + { + "start": 11349.92, + "end": 11350.1, + "probability": 0.4243 + }, + { + "start": 11350.14, + "end": 11350.54, + "probability": 0.4565 + }, + { + "start": 11350.58, + "end": 11351.16, + "probability": 0.6009 + }, + { + "start": 11351.3, + "end": 11352.27, + "probability": 0.8374 + }, + { + "start": 11353.06, + "end": 11354.22, + "probability": 0.6912 + }, + { + "start": 11354.46, + "end": 11356.38, + "probability": 0.9702 + }, + { + "start": 11357.08, + "end": 11357.87, + "probability": 0.6584 + }, + { + "start": 11357.9, + "end": 11358.5, + "probability": 0.7752 + }, + { + "start": 11359.2, + "end": 11360.36, + "probability": 0.8059 + }, + { + "start": 11360.52, + "end": 11361.44, + "probability": 0.7129 + }, + { + "start": 11361.9, + "end": 11362.96, + "probability": 0.7745 + }, + { + "start": 11363.18, + "end": 11363.38, + "probability": 0.7305 + }, + { + "start": 11363.46, + "end": 11363.68, + "probability": 0.5456 + }, + { + "start": 11363.8, + "end": 11364.3, + "probability": 0.8481 + }, + { + "start": 11364.44, + "end": 11365.18, + "probability": 0.636 + }, + { + "start": 11365.4, + "end": 11366.04, + "probability": 0.6839 + }, + { + "start": 11366.14, + "end": 11367.41, + "probability": 0.8739 + }, + { + "start": 11367.62, + "end": 11368.34, + "probability": 0.5138 + }, + { + "start": 11368.34, + "end": 11368.83, + "probability": 0.648 + }, + { + "start": 11369.0, + "end": 11369.48, + "probability": 0.9844 + }, + { + "start": 11369.92, + "end": 11370.24, + "probability": 0.9565 + }, + { + "start": 11371.02, + "end": 11372.2, + "probability": 0.9012 + }, + { + "start": 11372.26, + "end": 11373.8, + "probability": 0.8612 + }, + { + "start": 11374.04, + "end": 11375.2, + "probability": 0.886 + }, + { + "start": 11375.36, + "end": 11377.4, + "probability": 0.8552 + }, + { + "start": 11377.68, + "end": 11379.98, + "probability": 0.9906 + }, + { + "start": 11380.38, + "end": 11381.92, + "probability": 0.6134 + }, + { + "start": 11381.98, + "end": 11383.7, + "probability": 0.7402 + }, + { + "start": 11383.78, + "end": 11384.24, + "probability": 0.726 + }, + { + "start": 11384.69, + "end": 11386.7, + "probability": 0.9893 + }, + { + "start": 11386.82, + "end": 11387.32, + "probability": 0.9338 + }, + { + "start": 11388.26, + "end": 11388.8, + "probability": 0.8003 + }, + { + "start": 11388.86, + "end": 11389.34, + "probability": 0.9107 + }, + { + "start": 11389.42, + "end": 11390.08, + "probability": 0.9445 + }, + { + "start": 11390.16, + "end": 11390.68, + "probability": 0.7537 + }, + { + "start": 11390.8, + "end": 11391.3, + "probability": 0.5296 + }, + { + "start": 11391.36, + "end": 11392.78, + "probability": 0.6546 + }, + { + "start": 11392.92, + "end": 11395.18, + "probability": 0.9032 + }, + { + "start": 11397.1, + "end": 11397.34, + "probability": 0.1024 + }, + { + "start": 11397.34, + "end": 11400.92, + "probability": 0.6381 + }, + { + "start": 11401.74, + "end": 11403.46, + "probability": 0.8885 + }, + { + "start": 11403.96, + "end": 11406.06, + "probability": 0.8644 + }, + { + "start": 11406.62, + "end": 11407.86, + "probability": 0.6876 + }, + { + "start": 11407.98, + "end": 11411.18, + "probability": 0.9192 + }, + { + "start": 11411.28, + "end": 11415.38, + "probability": 0.9565 + }, + { + "start": 11415.46, + "end": 11417.17, + "probability": 0.7807 + }, + { + "start": 11417.72, + "end": 11419.48, + "probability": 0.9226 + }, + { + "start": 11419.54, + "end": 11421.2, + "probability": 0.9645 + }, + { + "start": 11421.26, + "end": 11423.14, + "probability": 0.7734 + }, + { + "start": 11423.38, + "end": 11423.92, + "probability": 0.9415 + }, + { + "start": 11424.02, + "end": 11424.76, + "probability": 0.8086 + }, + { + "start": 11424.78, + "end": 11425.3, + "probability": 0.6205 + }, + { + "start": 11425.4, + "end": 11426.48, + "probability": 0.4283 + }, + { + "start": 11426.5, + "end": 11430.92, + "probability": 0.9561 + }, + { + "start": 11431.02, + "end": 11432.82, + "probability": 0.7891 + }, + { + "start": 11432.9, + "end": 11434.94, + "probability": 0.9069 + }, + { + "start": 11435.18, + "end": 11438.15, + "probability": 0.9858 + }, + { + "start": 11438.56, + "end": 11443.08, + "probability": 0.9883 + }, + { + "start": 11443.18, + "end": 11443.6, + "probability": 0.6958 + }, + { + "start": 11444.0, + "end": 11444.96, + "probability": 0.8181 + }, + { + "start": 11445.08, + "end": 11445.5, + "probability": 0.7198 + }, + { + "start": 11445.56, + "end": 11446.98, + "probability": 0.9543 + }, + { + "start": 11447.38, + "end": 11448.82, + "probability": 0.8613 + }, + { + "start": 11448.9, + "end": 11450.88, + "probability": 0.9165 + }, + { + "start": 11450.94, + "end": 11451.64, + "probability": 0.8066 + }, + { + "start": 11452.18, + "end": 11455.7, + "probability": 0.7513 + }, + { + "start": 11456.06, + "end": 11456.82, + "probability": 0.8355 + }, + { + "start": 11456.96, + "end": 11457.46, + "probability": 0.7559 + }, + { + "start": 11457.52, + "end": 11458.02, + "probability": 0.8145 + }, + { + "start": 11458.32, + "end": 11459.18, + "probability": 0.9125 + }, + { + "start": 11459.2, + "end": 11463.24, + "probability": 0.8613 + }, + { + "start": 11464.24, + "end": 11465.32, + "probability": 0.9173 + }, + { + "start": 11465.48, + "end": 11468.19, + "probability": 0.8823 + }, + { + "start": 11468.42, + "end": 11469.69, + "probability": 0.7683 + }, + { + "start": 11469.98, + "end": 11472.5, + "probability": 0.8595 + }, + { + "start": 11472.5, + "end": 11475.98, + "probability": 0.9485 + }, + { + "start": 11476.18, + "end": 11478.18, + "probability": 0.7456 + }, + { + "start": 11478.66, + "end": 11481.24, + "probability": 0.7822 + }, + { + "start": 11481.34, + "end": 11481.7, + "probability": 0.7046 + }, + { + "start": 11481.74, + "end": 11484.04, + "probability": 0.9226 + }, + { + "start": 11484.06, + "end": 11486.72, + "probability": 0.9888 + }, + { + "start": 11486.72, + "end": 11488.5, + "probability": 0.8121 + }, + { + "start": 11489.12, + "end": 11490.24, + "probability": 0.9112 + }, + { + "start": 11490.64, + "end": 11490.86, + "probability": 0.1305 + }, + { + "start": 11490.9, + "end": 11494.6, + "probability": 0.8173 + }, + { + "start": 11494.68, + "end": 11496.72, + "probability": 0.8575 + }, + { + "start": 11496.8, + "end": 11496.8, + "probability": 0.642 + }, + { + "start": 11496.84, + "end": 11498.2, + "probability": 0.8811 + }, + { + "start": 11498.5, + "end": 11499.98, + "probability": 0.6603 + }, + { + "start": 11500.32, + "end": 11500.56, + "probability": 0.5065 + }, + { + "start": 11500.66, + "end": 11501.84, + "probability": 0.9053 + }, + { + "start": 11502.06, + "end": 11503.46, + "probability": 0.9316 + }, + { + "start": 11504.02, + "end": 11505.38, + "probability": 0.6459 + }, + { + "start": 11521.46, + "end": 11523.48, + "probability": 0.5969 + }, + { + "start": 11524.82, + "end": 11534.6, + "probability": 0.6815 + }, + { + "start": 11536.24, + "end": 11540.06, + "probability": 0.6042 + }, + { + "start": 11540.58, + "end": 11542.42, + "probability": 0.812 + }, + { + "start": 11543.58, + "end": 11548.2, + "probability": 0.8471 + }, + { + "start": 11548.98, + "end": 11549.74, + "probability": 0.8759 + }, + { + "start": 11549.94, + "end": 11555.72, + "probability": 0.9989 + }, + { + "start": 11556.4, + "end": 11560.68, + "probability": 0.9391 + }, + { + "start": 11561.6, + "end": 11562.51, + "probability": 0.7223 + }, + { + "start": 11563.42, + "end": 11565.96, + "probability": 0.6816 + }, + { + "start": 11566.7, + "end": 11568.38, + "probability": 0.8906 + }, + { + "start": 11569.48, + "end": 11573.08, + "probability": 0.5761 + }, + { + "start": 11573.96, + "end": 11577.86, + "probability": 0.9634 + }, + { + "start": 11578.62, + "end": 11578.9, + "probability": 0.4311 + }, + { + "start": 11579.06, + "end": 11583.16, + "probability": 0.9429 + }, + { + "start": 11583.24, + "end": 11586.5, + "probability": 0.9886 + }, + { + "start": 11587.16, + "end": 11588.28, + "probability": 0.9839 + }, + { + "start": 11589.62, + "end": 11592.2, + "probability": 0.991 + }, + { + "start": 11592.2, + "end": 11596.42, + "probability": 0.9893 + }, + { + "start": 11596.82, + "end": 11598.0, + "probability": 0.6255 + }, + { + "start": 11598.94, + "end": 11600.21, + "probability": 0.8269 + }, + { + "start": 11601.26, + "end": 11604.96, + "probability": 0.7896 + }, + { + "start": 11605.52, + "end": 11608.42, + "probability": 0.8915 + }, + { + "start": 11609.48, + "end": 11612.86, + "probability": 0.9608 + }, + { + "start": 11613.68, + "end": 11617.78, + "probability": 0.9906 + }, + { + "start": 11617.78, + "end": 11621.78, + "probability": 0.994 + }, + { + "start": 11622.56, + "end": 11623.98, + "probability": 0.9297 + }, + { + "start": 11624.42, + "end": 11625.48, + "probability": 0.7015 + }, + { + "start": 11626.12, + "end": 11628.86, + "probability": 0.8404 + }, + { + "start": 11629.46, + "end": 11632.36, + "probability": 0.9251 + }, + { + "start": 11632.84, + "end": 11638.58, + "probability": 0.9058 + }, + { + "start": 11639.74, + "end": 11641.28, + "probability": 0.9911 + }, + { + "start": 11642.48, + "end": 11645.24, + "probability": 0.7462 + }, + { + "start": 11645.44, + "end": 11647.02, + "probability": 0.5889 + }, + { + "start": 11647.74, + "end": 11649.6, + "probability": 0.9562 + }, + { + "start": 11649.68, + "end": 11650.56, + "probability": 0.7907 + }, + { + "start": 11650.96, + "end": 11652.42, + "probability": 0.9503 + }, + { + "start": 11653.06, + "end": 11655.82, + "probability": 0.9746 + }, + { + "start": 11656.72, + "end": 11657.82, + "probability": 0.4725 + }, + { + "start": 11657.92, + "end": 11658.4, + "probability": 0.5943 + }, + { + "start": 11658.64, + "end": 11658.92, + "probability": 0.551 + }, + { + "start": 11659.2, + "end": 11660.48, + "probability": 0.3201 + }, + { + "start": 11660.57, + "end": 11666.23, + "probability": 0.9941 + }, + { + "start": 11666.42, + "end": 11669.25, + "probability": 0.8425 + }, + { + "start": 11670.82, + "end": 11672.6, + "probability": 0.3902 + }, + { + "start": 11672.6, + "end": 11672.72, + "probability": 0.2752 + }, + { + "start": 11672.72, + "end": 11675.12, + "probability": 0.4115 + }, + { + "start": 11675.16, + "end": 11675.86, + "probability": 0.6542 + }, + { + "start": 11675.86, + "end": 11681.02, + "probability": 0.4234 + }, + { + "start": 11681.12, + "end": 11682.58, + "probability": 0.7268 + }, + { + "start": 11682.58, + "end": 11685.52, + "probability": 0.5421 + }, + { + "start": 11686.04, + "end": 11689.54, + "probability": 0.7664 + }, + { + "start": 11689.54, + "end": 11696.72, + "probability": 0.6434 + }, + { + "start": 11696.84, + "end": 11700.34, + "probability": 0.8044 + }, + { + "start": 11700.8, + "end": 11702.32, + "probability": 0.7107 + }, + { + "start": 11702.8, + "end": 11708.52, + "probability": 0.8615 + }, + { + "start": 11710.05, + "end": 11715.96, + "probability": 0.7799 + }, + { + "start": 11716.44, + "end": 11716.86, + "probability": 0.5841 + }, + { + "start": 11717.2, + "end": 11721.5, + "probability": 0.6831 + }, + { + "start": 11721.7, + "end": 11722.64, + "probability": 0.8517 + }, + { + "start": 11723.26, + "end": 11727.66, + "probability": 0.1035 + }, + { + "start": 11728.22, + "end": 11728.54, + "probability": 0.0454 + }, + { + "start": 11728.92, + "end": 11728.98, + "probability": 0.3824 + }, + { + "start": 11728.98, + "end": 11730.14, + "probability": 0.528 + }, + { + "start": 11730.84, + "end": 11730.84, + "probability": 0.322 + }, + { + "start": 11730.84, + "end": 11730.84, + "probability": 0.33 + }, + { + "start": 11730.84, + "end": 11730.84, + "probability": 0.7235 + }, + { + "start": 11730.84, + "end": 11733.8, + "probability": 0.8879 + }, + { + "start": 11733.8, + "end": 11736.14, + "probability": 0.408 + }, + { + "start": 11736.26, + "end": 11741.54, + "probability": 0.9361 + }, + { + "start": 11741.58, + "end": 11741.58, + "probability": 0.3005 + }, + { + "start": 11741.68, + "end": 11742.42, + "probability": 0.8696 + }, + { + "start": 11742.46, + "end": 11742.76, + "probability": 0.7882 + }, + { + "start": 11743.24, + "end": 11744.36, + "probability": 0.5122 + }, + { + "start": 11745.18, + "end": 11747.46, + "probability": 0.9282 + }, + { + "start": 11748.5, + "end": 11749.06, + "probability": 0.7235 + }, + { + "start": 11762.36, + "end": 11762.94, + "probability": 0.476 + }, + { + "start": 11763.08, + "end": 11764.08, + "probability": 0.8664 + }, + { + "start": 11764.16, + "end": 11767.08, + "probability": 0.9898 + }, + { + "start": 11767.78, + "end": 11770.16, + "probability": 0.9924 + }, + { + "start": 11770.2, + "end": 11774.78, + "probability": 0.9641 + }, + { + "start": 11775.48, + "end": 11778.08, + "probability": 0.9917 + }, + { + "start": 11778.98, + "end": 11779.98, + "probability": 0.6554 + }, + { + "start": 11780.12, + "end": 11781.62, + "probability": 0.8262 + }, + { + "start": 11781.72, + "end": 11784.68, + "probability": 0.8162 + }, + { + "start": 11785.38, + "end": 11788.2, + "probability": 0.9717 + }, + { + "start": 11788.86, + "end": 11792.18, + "probability": 0.8094 + }, + { + "start": 11792.22, + "end": 11796.36, + "probability": 0.938 + }, + { + "start": 11796.42, + "end": 11797.86, + "probability": 0.6583 + }, + { + "start": 11797.94, + "end": 11800.22, + "probability": 0.5911 + }, + { + "start": 11800.68, + "end": 11804.14, + "probability": 0.9414 + }, + { + "start": 11804.26, + "end": 11805.44, + "probability": 0.7094 + }, + { + "start": 11805.88, + "end": 11810.7, + "probability": 0.9751 + }, + { + "start": 11810.8, + "end": 11813.5, + "probability": 0.9712 + }, + { + "start": 11814.54, + "end": 11817.8, + "probability": 0.9609 + }, + { + "start": 11817.84, + "end": 11822.88, + "probability": 0.9847 + }, + { + "start": 11823.6, + "end": 11828.98, + "probability": 0.8765 + }, + { + "start": 11829.26, + "end": 11831.18, + "probability": 0.7901 + }, + { + "start": 11832.08, + "end": 11833.94, + "probability": 0.9573 + }, + { + "start": 11835.24, + "end": 11836.5, + "probability": 0.9941 + }, + { + "start": 11836.64, + "end": 11838.56, + "probability": 0.9167 + }, + { + "start": 11838.68, + "end": 11839.88, + "probability": 0.9488 + }, + { + "start": 11840.54, + "end": 11845.18, + "probability": 0.9778 + }, + { + "start": 11845.42, + "end": 11847.38, + "probability": 0.9903 + }, + { + "start": 11847.66, + "end": 11849.68, + "probability": 0.9644 + }, + { + "start": 11849.98, + "end": 11853.34, + "probability": 0.9962 + }, + { + "start": 11854.08, + "end": 11858.8, + "probability": 0.9775 + }, + { + "start": 11859.56, + "end": 11864.08, + "probability": 0.9469 + }, + { + "start": 11864.08, + "end": 11868.76, + "probability": 0.8655 + }, + { + "start": 11869.66, + "end": 11870.6, + "probability": 0.7298 + }, + { + "start": 11871.16, + "end": 11876.32, + "probability": 0.8659 + }, + { + "start": 11876.86, + "end": 11877.94, + "probability": 0.6832 + }, + { + "start": 11878.48, + "end": 11882.18, + "probability": 0.578 + }, + { + "start": 11883.3, + "end": 11886.22, + "probability": 0.9429 + }, + { + "start": 11887.3, + "end": 11889.07, + "probability": 0.665 + }, + { + "start": 11890.32, + "end": 11891.68, + "probability": 0.701 + }, + { + "start": 11893.12, + "end": 11895.34, + "probability": 0.9527 + }, + { + "start": 11895.9, + "end": 11901.42, + "probability": 0.9787 + }, + { + "start": 11901.86, + "end": 11908.86, + "probability": 0.8877 + }, + { + "start": 11908.9, + "end": 11910.58, + "probability": 0.5306 + }, + { + "start": 11910.64, + "end": 11912.68, + "probability": 0.9647 + }, + { + "start": 11912.72, + "end": 11917.48, + "probability": 0.9185 + }, + { + "start": 11917.48, + "end": 11917.48, + "probability": 0.7578 + }, + { + "start": 11917.48, + "end": 11918.38, + "probability": 0.9077 + }, + { + "start": 11918.52, + "end": 11918.52, + "probability": 0.2401 + }, + { + "start": 11918.52, + "end": 11918.72, + "probability": 0.4354 + }, + { + "start": 11918.8, + "end": 11921.24, + "probability": 0.98 + }, + { + "start": 11921.5, + "end": 11922.92, + "probability": 0.9259 + }, + { + "start": 11922.98, + "end": 11924.3, + "probability": 0.8319 + }, + { + "start": 11924.3, + "end": 11926.58, + "probability": 0.8911 + }, + { + "start": 11926.58, + "end": 11929.58, + "probability": 0.9632 + }, + { + "start": 11929.66, + "end": 11930.77, + "probability": 0.8955 + }, + { + "start": 11931.22, + "end": 11931.8, + "probability": 0.8243 + }, + { + "start": 11931.88, + "end": 11932.5, + "probability": 0.5822 + }, + { + "start": 11932.58, + "end": 11935.82, + "probability": 0.9836 + }, + { + "start": 11935.92, + "end": 11936.3, + "probability": 0.8345 + }, + { + "start": 11936.4, + "end": 11938.0, + "probability": 0.8557 + }, + { + "start": 11938.5, + "end": 11939.5, + "probability": 0.9536 + }, + { + "start": 11940.97, + "end": 11944.4, + "probability": 0.3973 + }, + { + "start": 11944.4, + "end": 11947.26, + "probability": 0.8416 + }, + { + "start": 11947.4, + "end": 11949.12, + "probability": 0.2583 + }, + { + "start": 11949.42, + "end": 11950.62, + "probability": 0.3282 + }, + { + "start": 11950.9, + "end": 11951.82, + "probability": 0.852 + }, + { + "start": 11952.18, + "end": 11952.8, + "probability": 0.7956 + }, + { + "start": 11960.26, + "end": 11962.88, + "probability": 0.1405 + }, + { + "start": 11962.88, + "end": 11966.78, + "probability": 0.0127 + }, + { + "start": 11967.74, + "end": 11967.98, + "probability": 0.0001 + }, + { + "start": 11967.98, + "end": 11967.98, + "probability": 0.0164 + }, + { + "start": 11967.98, + "end": 11967.98, + "probability": 0.7534 + }, + { + "start": 11967.98, + "end": 11967.98, + "probability": 0.6938 + }, + { + "start": 11967.98, + "end": 11968.44, + "probability": 0.1267 + }, + { + "start": 11968.96, + "end": 11971.92, + "probability": 0.5133 + }, + { + "start": 11972.12, + "end": 11977.2, + "probability": 0.8719 + }, + { + "start": 11977.44, + "end": 11978.14, + "probability": 0.9471 + }, + { + "start": 11978.7, + "end": 11981.6, + "probability": 0.9072 + }, + { + "start": 11981.6, + "end": 11986.06, + "probability": 0.8557 + }, + { + "start": 11987.52, + "end": 11988.86, + "probability": 0.0787 + }, + { + "start": 11988.94, + "end": 11990.28, + "probability": 0.861 + }, + { + "start": 11991.6, + "end": 11992.04, + "probability": 0.6741 + }, + { + "start": 11998.9, + "end": 12000.86, + "probability": 0.7519 + }, + { + "start": 12001.64, + "end": 12006.12, + "probability": 0.9949 + }, + { + "start": 12006.68, + "end": 12012.38, + "probability": 0.9893 + }, + { + "start": 12013.48, + "end": 12018.78, + "probability": 0.9707 + }, + { + "start": 12019.66, + "end": 12023.14, + "probability": 0.8881 + }, + { + "start": 12023.72, + "end": 12026.7, + "probability": 0.9377 + }, + { + "start": 12027.5, + "end": 12031.6, + "probability": 0.8558 + }, + { + "start": 12031.6, + "end": 12036.6, + "probability": 0.9733 + }, + { + "start": 12037.64, + "end": 12038.7, + "probability": 0.7426 + }, + { + "start": 12039.48, + "end": 12046.64, + "probability": 0.9755 + }, + { + "start": 12046.64, + "end": 12053.1, + "probability": 0.9794 + }, + { + "start": 12053.8, + "end": 12057.58, + "probability": 0.9633 + }, + { + "start": 12057.94, + "end": 12059.8, + "probability": 0.6034 + }, + { + "start": 12060.06, + "end": 12065.94, + "probability": 0.9766 + }, + { + "start": 12066.9, + "end": 12069.58, + "probability": 0.7675 + }, + { + "start": 12070.28, + "end": 12074.38, + "probability": 0.9909 + }, + { + "start": 12075.04, + "end": 12079.26, + "probability": 0.7995 + }, + { + "start": 12079.66, + "end": 12080.72, + "probability": 0.8728 + }, + { + "start": 12081.0, + "end": 12084.24, + "probability": 0.9406 + }, + { + "start": 12084.7, + "end": 12087.24, + "probability": 0.9862 + }, + { + "start": 12088.5, + "end": 12093.48, + "probability": 0.6026 + }, + { + "start": 12095.98, + "end": 12096.4, + "probability": 0.0008 + }, + { + "start": 12096.4, + "end": 12096.4, + "probability": 0.1047 + }, + { + "start": 12096.4, + "end": 12096.4, + "probability": 0.0735 + }, + { + "start": 12096.4, + "end": 12096.52, + "probability": 0.2776 + }, + { + "start": 12096.56, + "end": 12097.32, + "probability": 0.1443 + }, + { + "start": 12097.32, + "end": 12099.02, + "probability": 0.5434 + }, + { + "start": 12099.18, + "end": 12099.74, + "probability": 0.2739 + }, + { + "start": 12099.74, + "end": 12102.6, + "probability": 0.5555 + }, + { + "start": 12102.72, + "end": 12104.32, + "probability": 0.4639 + }, + { + "start": 12104.52, + "end": 12106.84, + "probability": 0.9829 + }, + { + "start": 12107.68, + "end": 12111.76, + "probability": 0.9928 + }, + { + "start": 12111.76, + "end": 12117.64, + "probability": 0.9975 + }, + { + "start": 12118.16, + "end": 12121.7, + "probability": 0.9794 + }, + { + "start": 12122.46, + "end": 12128.06, + "probability": 0.9976 + }, + { + "start": 12128.06, + "end": 12135.24, + "probability": 0.966 + }, + { + "start": 12136.02, + "end": 12138.2, + "probability": 0.7633 + }, + { + "start": 12138.7, + "end": 12140.78, + "probability": 0.7377 + }, + { + "start": 12141.72, + "end": 12146.44, + "probability": 0.9938 + }, + { + "start": 12147.46, + "end": 12149.9, + "probability": 0.8924 + }, + { + "start": 12150.32, + "end": 12151.77, + "probability": 0.9365 + }, + { + "start": 12152.24, + "end": 12157.88, + "probability": 0.9888 + }, + { + "start": 12157.88, + "end": 12165.22, + "probability": 0.9399 + }, + { + "start": 12165.52, + "end": 12167.52, + "probability": 0.9935 + }, + { + "start": 12168.64, + "end": 12171.04, + "probability": 0.8566 + }, + { + "start": 12171.7, + "end": 12173.22, + "probability": 0.7792 + }, + { + "start": 12173.78, + "end": 12177.58, + "probability": 0.8873 + }, + { + "start": 12178.1, + "end": 12181.24, + "probability": 0.9132 + }, + { + "start": 12181.98, + "end": 12187.78, + "probability": 0.9522 + }, + { + "start": 12189.26, + "end": 12190.44, + "probability": 0.7316 + }, + { + "start": 12190.78, + "end": 12194.6, + "probability": 0.9691 + }, + { + "start": 12195.22, + "end": 12199.62, + "probability": 0.981 + }, + { + "start": 12201.02, + "end": 12204.38, + "probability": 0.9891 + }, + { + "start": 12205.22, + "end": 12208.08, + "probability": 0.9907 + }, + { + "start": 12208.6, + "end": 12216.46, + "probability": 0.9935 + }, + { + "start": 12217.08, + "end": 12222.56, + "probability": 0.9945 + }, + { + "start": 12223.38, + "end": 12227.98, + "probability": 0.9325 + }, + { + "start": 12227.98, + "end": 12232.32, + "probability": 0.9921 + }, + { + "start": 12233.0, + "end": 12236.62, + "probability": 0.9965 + }, + { + "start": 12236.62, + "end": 12239.64, + "probability": 0.9983 + }, + { + "start": 12240.62, + "end": 12246.1, + "probability": 0.9437 + }, + { + "start": 12246.1, + "end": 12250.52, + "probability": 0.9729 + }, + { + "start": 12251.36, + "end": 12255.54, + "probability": 0.9873 + }, + { + "start": 12255.54, + "end": 12261.78, + "probability": 0.9894 + }, + { + "start": 12262.22, + "end": 12266.1, + "probability": 0.9924 + }, + { + "start": 12267.22, + "end": 12270.1, + "probability": 0.9652 + }, + { + "start": 12270.54, + "end": 12273.0, + "probability": 0.9174 + }, + { + "start": 12273.24, + "end": 12274.24, + "probability": 0.6238 + }, + { + "start": 12274.42, + "end": 12275.5, + "probability": 0.6756 + }, + { + "start": 12275.86, + "end": 12277.92, + "probability": 0.801 + }, + { + "start": 12278.38, + "end": 12280.16, + "probability": 0.6281 + }, + { + "start": 12280.22, + "end": 12282.7, + "probability": 0.8638 + }, + { + "start": 12283.26, + "end": 12289.32, + "probability": 0.8149 + }, + { + "start": 12289.96, + "end": 12293.26, + "probability": 0.7901 + }, + { + "start": 12293.92, + "end": 12296.78, + "probability": 0.9844 + }, + { + "start": 12296.78, + "end": 12299.92, + "probability": 0.9402 + }, + { + "start": 12300.46, + "end": 12304.76, + "probability": 0.9772 + }, + { + "start": 12306.02, + "end": 12311.62, + "probability": 0.9732 + }, + { + "start": 12312.04, + "end": 12316.04, + "probability": 0.9963 + }, + { + "start": 12316.04, + "end": 12319.76, + "probability": 0.989 + }, + { + "start": 12320.42, + "end": 12325.2, + "probability": 0.9932 + }, + { + "start": 12325.2, + "end": 12330.72, + "probability": 0.9969 + }, + { + "start": 12331.52, + "end": 12332.32, + "probability": 0.7233 + }, + { + "start": 12332.88, + "end": 12336.46, + "probability": 0.9526 + }, + { + "start": 12337.18, + "end": 12339.04, + "probability": 0.9261 + }, + { + "start": 12340.1, + "end": 12341.18, + "probability": 0.4854 + }, + { + "start": 12341.36, + "end": 12347.96, + "probability": 0.9678 + }, + { + "start": 12348.14, + "end": 12356.42, + "probability": 0.9587 + }, + { + "start": 12357.34, + "end": 12358.06, + "probability": 0.8248 + }, + { + "start": 12358.4, + "end": 12361.6, + "probability": 0.9652 + }, + { + "start": 12362.1, + "end": 12364.78, + "probability": 0.8014 + }, + { + "start": 12365.26, + "end": 12368.18, + "probability": 0.9857 + }, + { + "start": 12368.6, + "end": 12372.68, + "probability": 0.9956 + }, + { + "start": 12372.68, + "end": 12375.86, + "probability": 0.9989 + }, + { + "start": 12376.64, + "end": 12382.26, + "probability": 0.9944 + }, + { + "start": 12383.02, + "end": 12388.74, + "probability": 0.976 + }, + { + "start": 12389.14, + "end": 12392.94, + "probability": 0.9976 + }, + { + "start": 12392.94, + "end": 12399.06, + "probability": 0.9988 + }, + { + "start": 12399.8, + "end": 12402.0, + "probability": 0.9976 + }, + { + "start": 12402.06, + "end": 12405.82, + "probability": 0.8402 + }, + { + "start": 12406.53, + "end": 12410.34, + "probability": 0.9819 + }, + { + "start": 12411.08, + "end": 12411.92, + "probability": 0.7758 + }, + { + "start": 12412.44, + "end": 12413.16, + "probability": 0.6061 + }, + { + "start": 12413.62, + "end": 12417.0, + "probability": 0.9758 + }, + { + "start": 12417.0, + "end": 12421.24, + "probability": 0.9941 + }, + { + "start": 12421.3, + "end": 12422.18, + "probability": 0.9637 + }, + { + "start": 12422.4, + "end": 12424.44, + "probability": 0.9818 + }, + { + "start": 12425.6, + "end": 12426.2, + "probability": 0.9337 + }, + { + "start": 12426.36, + "end": 12427.32, + "probability": 0.5262 + }, + { + "start": 12427.7, + "end": 12428.52, + "probability": 0.7456 + }, + { + "start": 12428.54, + "end": 12430.92, + "probability": 0.9602 + }, + { + "start": 12430.96, + "end": 12432.52, + "probability": 0.9731 + }, + { + "start": 12433.1, + "end": 12434.14, + "probability": 0.7507 + }, + { + "start": 12449.62, + "end": 12450.6, + "probability": 0.797 + }, + { + "start": 12450.83, + "end": 12452.86, + "probability": 0.6802 + }, + { + "start": 12453.6, + "end": 12456.82, + "probability": 0.4966 + }, + { + "start": 12457.42, + "end": 12458.08, + "probability": 0.2986 + }, + { + "start": 12458.26, + "end": 12458.75, + "probability": 0.7739 + }, + { + "start": 12459.36, + "end": 12460.08, + "probability": 0.916 + }, + { + "start": 12460.2, + "end": 12460.92, + "probability": 0.9587 + }, + { + "start": 12461.04, + "end": 12461.94, + "probability": 0.5894 + }, + { + "start": 12462.12, + "end": 12463.56, + "probability": 0.8637 + }, + { + "start": 12463.56, + "end": 12464.41, + "probability": 0.6776 + }, + { + "start": 12466.42, + "end": 12467.32, + "probability": 0.9376 + }, + { + "start": 12468.26, + "end": 12470.92, + "probability": 0.999 + }, + { + "start": 12470.98, + "end": 12474.74, + "probability": 0.9384 + }, + { + "start": 12476.67, + "end": 12478.52, + "probability": 0.5396 + }, + { + "start": 12478.78, + "end": 12479.04, + "probability": 0.2145 + }, + { + "start": 12479.04, + "end": 12480.91, + "probability": 0.61 + }, + { + "start": 12482.5, + "end": 12485.36, + "probability": 0.5067 + }, + { + "start": 12485.44, + "end": 12486.44, + "probability": 0.8784 + }, + { + "start": 12486.8, + "end": 12490.7, + "probability": 0.8425 + }, + { + "start": 12491.64, + "end": 12494.22, + "probability": 0.999 + }, + { + "start": 12495.48, + "end": 12498.74, + "probability": 0.9898 + }, + { + "start": 12498.74, + "end": 12503.06, + "probability": 0.9969 + }, + { + "start": 12503.36, + "end": 12504.26, + "probability": 0.7675 + }, + { + "start": 12504.32, + "end": 12505.82, + "probability": 0.8141 + }, + { + "start": 12506.6, + "end": 12513.32, + "probability": 0.9932 + }, + { + "start": 12513.32, + "end": 12520.58, + "probability": 0.9995 + }, + { + "start": 12521.4, + "end": 12523.52, + "probability": 0.9966 + }, + { + "start": 12524.54, + "end": 12530.41, + "probability": 0.9813 + }, + { + "start": 12531.22, + "end": 12532.46, + "probability": 0.991 + }, + { + "start": 12534.1, + "end": 12537.14, + "probability": 0.9725 + }, + { + "start": 12537.98, + "end": 12540.94, + "probability": 0.5019 + }, + { + "start": 12541.42, + "end": 12546.28, + "probability": 0.9834 + }, + { + "start": 12546.28, + "end": 12552.54, + "probability": 0.9945 + }, + { + "start": 12553.7, + "end": 12558.02, + "probability": 0.87 + }, + { + "start": 12558.5, + "end": 12562.56, + "probability": 0.7648 + }, + { + "start": 12563.34, + "end": 12565.54, + "probability": 0.9921 + }, + { + "start": 12565.7, + "end": 12567.28, + "probability": 0.9951 + }, + { + "start": 12567.34, + "end": 12568.5, + "probability": 0.9785 + }, + { + "start": 12569.1, + "end": 12569.84, + "probability": 0.8314 + }, + { + "start": 12570.46, + "end": 12573.86, + "probability": 0.8835 + }, + { + "start": 12574.82, + "end": 12576.96, + "probability": 0.8172 + }, + { + "start": 12577.24, + "end": 12579.0, + "probability": 0.9896 + }, + { + "start": 12579.98, + "end": 12585.36, + "probability": 0.7655 + }, + { + "start": 12586.16, + "end": 12589.8, + "probability": 0.9241 + }, + { + "start": 12589.84, + "end": 12590.52, + "probability": 0.6535 + }, + { + "start": 12590.68, + "end": 12592.64, + "probability": 0.9578 + }, + { + "start": 12592.82, + "end": 12594.02, + "probability": 0.6195 + }, + { + "start": 12594.74, + "end": 12595.46, + "probability": 0.8752 + }, + { + "start": 12595.54, + "end": 12596.15, + "probability": 0.6736 + }, + { + "start": 12596.7, + "end": 12597.45, + "probability": 0.9126 + }, + { + "start": 12597.92, + "end": 12599.21, + "probability": 0.8282 + }, + { + "start": 12600.28, + "end": 12600.96, + "probability": 0.9265 + }, + { + "start": 12601.3, + "end": 12603.52, + "probability": 0.9849 + }, + { + "start": 12603.62, + "end": 12605.34, + "probability": 0.9818 + }, + { + "start": 12606.12, + "end": 12609.34, + "probability": 0.9964 + }, + { + "start": 12609.34, + "end": 12611.9, + "probability": 0.9796 + }, + { + "start": 12611.98, + "end": 12613.26, + "probability": 0.9235 + }, + { + "start": 12613.7, + "end": 12617.1, + "probability": 0.8757 + }, + { + "start": 12617.52, + "end": 12623.4, + "probability": 0.9453 + }, + { + "start": 12623.8, + "end": 12623.8, + "probability": 0.0571 + }, + { + "start": 12623.8, + "end": 12623.8, + "probability": 0.051 + }, + { + "start": 12623.8, + "end": 12626.58, + "probability": 0.9414 + }, + { + "start": 12626.64, + "end": 12627.12, + "probability": 0.8625 + }, + { + "start": 12627.22, + "end": 12627.46, + "probability": 0.2918 + }, + { + "start": 12627.46, + "end": 12628.24, + "probability": 0.8614 + }, + { + "start": 12628.74, + "end": 12629.98, + "probability": 0.7316 + }, + { + "start": 12644.36, + "end": 12648.48, + "probability": 0.8389 + }, + { + "start": 12650.44, + "end": 12655.24, + "probability": 0.9971 + }, + { + "start": 12656.42, + "end": 12657.34, + "probability": 0.6168 + }, + { + "start": 12657.4, + "end": 12659.78, + "probability": 0.8661 + }, + { + "start": 12659.9, + "end": 12662.5, + "probability": 0.9477 + }, + { + "start": 12663.42, + "end": 12663.94, + "probability": 0.7093 + }, + { + "start": 12665.5, + "end": 12667.76, + "probability": 0.6601 + }, + { + "start": 12668.44, + "end": 12669.98, + "probability": 0.1299 + }, + { + "start": 12670.12, + "end": 12673.66, + "probability": 0.5406 + }, + { + "start": 12673.66, + "end": 12673.82, + "probability": 0.7884 + }, + { + "start": 12674.6, + "end": 12674.96, + "probability": 0.9165 + }, + { + "start": 12675.06, + "end": 12682.16, + "probability": 0.9953 + }, + { + "start": 12683.92, + "end": 12687.28, + "probability": 0.9856 + }, + { + "start": 12687.28, + "end": 12691.6, + "probability": 0.9959 + }, + { + "start": 12692.18, + "end": 12694.2, + "probability": 0.6234 + }, + { + "start": 12694.9, + "end": 12696.85, + "probability": 0.913 + }, + { + "start": 12697.92, + "end": 12706.36, + "probability": 0.906 + }, + { + "start": 12707.21, + "end": 12710.0, + "probability": 0.7145 + }, + { + "start": 12710.5, + "end": 12715.62, + "probability": 0.9744 + }, + { + "start": 12716.06, + "end": 12719.42, + "probability": 0.9897 + }, + { + "start": 12720.1, + "end": 12723.14, + "probability": 0.9985 + }, + { + "start": 12723.14, + "end": 12726.1, + "probability": 0.9653 + }, + { + "start": 12726.72, + "end": 12729.2, + "probability": 0.9985 + }, + { + "start": 12730.16, + "end": 12731.2, + "probability": 0.9805 + }, + { + "start": 12731.74, + "end": 12734.31, + "probability": 0.92 + }, + { + "start": 12735.08, + "end": 12735.16, + "probability": 0.012 + }, + { + "start": 12735.16, + "end": 12735.16, + "probability": 0.2039 + }, + { + "start": 12735.16, + "end": 12735.46, + "probability": 0.2313 + }, + { + "start": 12735.5, + "end": 12741.02, + "probability": 0.9956 + }, + { + "start": 12741.48, + "end": 12743.42, + "probability": 0.9932 + }, + { + "start": 12744.3, + "end": 12744.52, + "probability": 0.3412 + }, + { + "start": 12744.52, + "end": 12744.52, + "probability": 0.0157 + }, + { + "start": 12744.52, + "end": 12744.52, + "probability": 0.3946 + }, + { + "start": 12744.52, + "end": 12748.32, + "probability": 0.723 + }, + { + "start": 12748.52, + "end": 12750.32, + "probability": 0.4945 + }, + { + "start": 12751.34, + "end": 12752.56, + "probability": 0.9751 + }, + { + "start": 12755.26, + "end": 12755.26, + "probability": 0.2855 + }, + { + "start": 12755.26, + "end": 12755.36, + "probability": 0.0892 + }, + { + "start": 12755.36, + "end": 12756.92, + "probability": 0.1189 + }, + { + "start": 12757.18, + "end": 12758.68, + "probability": 0.5831 + }, + { + "start": 12758.92, + "end": 12760.7, + "probability": 0.6035 + }, + { + "start": 12761.76, + "end": 12763.08, + "probability": 0.7251 + }, + { + "start": 12764.0, + "end": 12764.96, + "probability": 0.366 + }, + { + "start": 12765.76, + "end": 12768.6, + "probability": 0.9263 + }, + { + "start": 12769.16, + "end": 12770.6, + "probability": 0.7832 + }, + { + "start": 12770.86, + "end": 12775.9, + "probability": 0.7625 + }, + { + "start": 12776.3, + "end": 12779.86, + "probability": 0.9899 + }, + { + "start": 12779.98, + "end": 12786.44, + "probability": 0.9929 + }, + { + "start": 12786.6, + "end": 12792.24, + "probability": 0.9918 + }, + { + "start": 12792.64, + "end": 12794.7, + "probability": 0.7515 + }, + { + "start": 12795.02, + "end": 12796.06, + "probability": 0.9163 + }, + { + "start": 12796.32, + "end": 12799.06, + "probability": 0.9941 + }, + { + "start": 12799.06, + "end": 12803.08, + "probability": 0.9669 + }, + { + "start": 12803.14, + "end": 12804.75, + "probability": 0.9971 + }, + { + "start": 12805.36, + "end": 12806.47, + "probability": 0.8422 + }, + { + "start": 12806.68, + "end": 12811.22, + "probability": 0.9484 + }, + { + "start": 12811.38, + "end": 12811.62, + "probability": 0.4763 + }, + { + "start": 12811.74, + "end": 12812.0, + "probability": 0.6212 + }, + { + "start": 12812.0, + "end": 12812.0, + "probability": 0.3602 + }, + { + "start": 12812.18, + "end": 12814.46, + "probability": 0.7017 + }, + { + "start": 12814.92, + "end": 12815.82, + "probability": 0.6824 + }, + { + "start": 12815.86, + "end": 12817.92, + "probability": 0.7193 + }, + { + "start": 12819.02, + "end": 12823.32, + "probability": 0.9556 + }, + { + "start": 12823.46, + "end": 12824.7, + "probability": 0.3386 + }, + { + "start": 12825.3, + "end": 12826.06, + "probability": 0.7962 + }, + { + "start": 12842.28, + "end": 12842.66, + "probability": 0.1888 + }, + { + "start": 12844.7, + "end": 12848.36, + "probability": 0.0406 + }, + { + "start": 12848.5, + "end": 12848.66, + "probability": 0.0212 + }, + { + "start": 12849.0, + "end": 12849.0, + "probability": 0.0402 + }, + { + "start": 12849.0, + "end": 12849.68, + "probability": 0.5365 + }, + { + "start": 12849.8, + "end": 12851.14, + "probability": 0.3565 + }, + { + "start": 12854.29, + "end": 12855.39, + "probability": 0.0653 + }, + { + "start": 12855.72, + "end": 12860.5, + "probability": 0.1702 + }, + { + "start": 12861.68, + "end": 12861.86, + "probability": 0.0454 + }, + { + "start": 12861.9, + "end": 12866.8, + "probability": 0.1125 + }, + { + "start": 12872.7, + "end": 12873.26, + "probability": 0.2875 + }, + { + "start": 12873.8, + "end": 12875.2, + "probability": 0.1633 + }, + { + "start": 12876.04, + "end": 12878.86, + "probability": 0.0055 + }, + { + "start": 12885.84, + "end": 12888.42, + "probability": 0.1734 + }, + { + "start": 12888.42, + "end": 12889.56, + "probability": 0.0594 + }, + { + "start": 12889.56, + "end": 12889.9, + "probability": 0.1109 + }, + { + "start": 12889.9, + "end": 12890.64, + "probability": 0.1174 + }, + { + "start": 12890.64, + "end": 12893.42, + "probability": 0.0113 + }, + { + "start": 12894.22, + "end": 12898.7, + "probability": 0.0963 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + }, + { + "start": 13305.22, + "end": 13305.22, + "probability": 0.0 + } + ], + "segments_count": 4584, + "words_count": 22902, + "avg_words_per_segment": 4.9961, + "avg_segment_duration": 2.1251, + "avg_words_per_minute": 103.2768, + "plenum_id": "11508", + "duration": 13305.22, + "title": null, + "plenum_date": "2011-01-10" +} \ No newline at end of file