diff --git "a/11373/metadata.json" "b/11373/metadata.json" new file mode 100644--- /dev/null +++ "b/11373/metadata.json" @@ -0,0 +1,20397 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11373", + "quality_score": 0.8999, + "per_segment_quality_scores": [ + { + "start": 62.0, + "end": 64.19, + "probability": 0.6672 + }, + { + "start": 65.3, + "end": 68.9, + "probability": 0.99 + }, + { + "start": 69.6, + "end": 73.6, + "probability": 0.9604 + }, + { + "start": 74.38, + "end": 76.9, + "probability": 0.9096 + }, + { + "start": 76.94, + "end": 78.3, + "probability": 0.6642 + }, + { + "start": 81.54, + "end": 82.9, + "probability": 0.7398 + }, + { + "start": 82.98, + "end": 84.48, + "probability": 0.914 + }, + { + "start": 84.62, + "end": 86.38, + "probability": 0.8693 + }, + { + "start": 86.58, + "end": 87.26, + "probability": 0.7265 + }, + { + "start": 87.4, + "end": 88.32, + "probability": 0.6297 + }, + { + "start": 89.04, + "end": 94.8, + "probability": 0.9492 + }, + { + "start": 95.34, + "end": 97.22, + "probability": 0.1456 + }, + { + "start": 97.96, + "end": 100.6, + "probability": 0.9712 + }, + { + "start": 101.16, + "end": 104.46, + "probability": 0.99 + }, + { + "start": 104.46, + "end": 107.54, + "probability": 0.9925 + }, + { + "start": 108.04, + "end": 110.34, + "probability": 0.7436 + }, + { + "start": 110.72, + "end": 111.92, + "probability": 0.995 + }, + { + "start": 112.56, + "end": 114.16, + "probability": 0.9309 + }, + { + "start": 115.04, + "end": 115.94, + "probability": 0.758 + }, + { + "start": 116.84, + "end": 117.72, + "probability": 0.8308 + }, + { + "start": 119.02, + "end": 123.02, + "probability": 0.4767 + }, + { + "start": 123.02, + "end": 125.9, + "probability": 0.8018 + }, + { + "start": 126.24, + "end": 128.16, + "probability": 0.7674 + }, + { + "start": 128.6, + "end": 130.02, + "probability": 0.8978 + }, + { + "start": 130.2, + "end": 132.26, + "probability": 0.2141 + }, + { + "start": 132.88, + "end": 135.28, + "probability": 0.5714 + }, + { + "start": 135.34, + "end": 135.46, + "probability": 0.0593 + }, + { + "start": 135.46, + "end": 135.86, + "probability": 0.0652 + }, + { + "start": 138.82, + "end": 139.64, + "probability": 0.0805 + }, + { + "start": 140.48, + "end": 143.12, + "probability": 0.0341 + }, + { + "start": 143.82, + "end": 146.36, + "probability": 0.3854 + }, + { + "start": 149.1, + "end": 155.08, + "probability": 0.0198 + }, + { + "start": 155.7, + "end": 156.98, + "probability": 0.031 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 164.76, + "end": 166.66, + "probability": 0.9976 + }, + { + "start": 166.92, + "end": 168.56, + "probability": 0.8637 + }, + { + "start": 169.88, + "end": 170.1, + "probability": 0.798 + }, + { + "start": 171.4, + "end": 173.52, + "probability": 0.8295 + }, + { + "start": 174.06, + "end": 176.42, + "probability": 0.9014 + }, + { + "start": 177.08, + "end": 182.34, + "probability": 0.9159 + }, + { + "start": 182.56, + "end": 183.32, + "probability": 0.7135 + }, + { + "start": 183.84, + "end": 185.5, + "probability": 0.7225 + }, + { + "start": 186.2, + "end": 190.04, + "probability": 0.9525 + }, + { + "start": 190.66, + "end": 191.98, + "probability": 0.8572 + }, + { + "start": 192.22, + "end": 196.64, + "probability": 0.9039 + }, + { + "start": 196.92, + "end": 197.64, + "probability": 0.542 + }, + { + "start": 198.18, + "end": 202.28, + "probability": 0.9761 + }, + { + "start": 202.56, + "end": 206.02, + "probability": 0.9927 + }, + { + "start": 206.48, + "end": 209.5, + "probability": 0.7738 + }, + { + "start": 210.32, + "end": 213.08, + "probability": 0.9153 + }, + { + "start": 214.02, + "end": 215.13, + "probability": 0.9912 + }, + { + "start": 216.68, + "end": 218.0, + "probability": 0.5854 + }, + { + "start": 218.36, + "end": 219.84, + "probability": 0.5802 + }, + { + "start": 220.36, + "end": 220.9, + "probability": 0.6344 + }, + { + "start": 221.98, + "end": 223.72, + "probability": 0.7596 + }, + { + "start": 224.88, + "end": 227.32, + "probability": 0.5648 + }, + { + "start": 227.36, + "end": 228.32, + "probability": 0.7387 + }, + { + "start": 228.38, + "end": 230.12, + "probability": 0.4448 + }, + { + "start": 230.28, + "end": 232.9, + "probability": 0.8327 + }, + { + "start": 233.74, + "end": 234.42, + "probability": 0.8951 + }, + { + "start": 235.52, + "end": 237.22, + "probability": 0.9521 + }, + { + "start": 238.56, + "end": 240.35, + "probability": 0.9425 + }, + { + "start": 241.76, + "end": 242.98, + "probability": 0.9678 + }, + { + "start": 244.34, + "end": 246.9, + "probability": 0.9333 + }, + { + "start": 248.54, + "end": 249.52, + "probability": 0.8706 + }, + { + "start": 250.72, + "end": 251.66, + "probability": 0.9699 + }, + { + "start": 252.62, + "end": 253.6, + "probability": 0.7973 + }, + { + "start": 255.0, + "end": 258.82, + "probability": 0.9246 + }, + { + "start": 258.92, + "end": 259.26, + "probability": 0.9552 + }, + { + "start": 259.3, + "end": 259.78, + "probability": 0.9072 + }, + { + "start": 260.02, + "end": 263.92, + "probability": 0.884 + }, + { + "start": 265.34, + "end": 268.92, + "probability": 0.9648 + }, + { + "start": 270.3, + "end": 275.42, + "probability": 0.9545 + }, + { + "start": 275.42, + "end": 282.24, + "probability": 0.9685 + }, + { + "start": 283.4, + "end": 284.48, + "probability": 0.8542 + }, + { + "start": 285.24, + "end": 285.66, + "probability": 0.8363 + }, + { + "start": 286.78, + "end": 294.06, + "probability": 0.9854 + }, + { + "start": 294.5, + "end": 297.88, + "probability": 0.8799 + }, + { + "start": 298.92, + "end": 302.4, + "probability": 0.9905 + }, + { + "start": 303.04, + "end": 306.52, + "probability": 0.9636 + }, + { + "start": 308.02, + "end": 310.58, + "probability": 0.938 + }, + { + "start": 311.58, + "end": 313.7, + "probability": 0.9033 + }, + { + "start": 314.48, + "end": 317.96, + "probability": 0.9918 + }, + { + "start": 318.6, + "end": 320.0, + "probability": 0.9814 + }, + { + "start": 321.2, + "end": 323.52, + "probability": 0.9788 + }, + { + "start": 324.94, + "end": 326.0, + "probability": 0.97 + }, + { + "start": 326.94, + "end": 327.98, + "probability": 0.9939 + }, + { + "start": 328.7, + "end": 332.64, + "probability": 0.9098 + }, + { + "start": 333.82, + "end": 334.74, + "probability": 0.6977 + }, + { + "start": 334.94, + "end": 341.22, + "probability": 0.9899 + }, + { + "start": 341.22, + "end": 346.82, + "probability": 0.9973 + }, + { + "start": 347.46, + "end": 350.12, + "probability": 0.966 + }, + { + "start": 350.76, + "end": 353.1, + "probability": 0.6673 + }, + { + "start": 354.3, + "end": 356.42, + "probability": 0.8799 + }, + { + "start": 357.18, + "end": 358.38, + "probability": 0.9972 + }, + { + "start": 359.44, + "end": 362.82, + "probability": 0.9435 + }, + { + "start": 362.98, + "end": 363.64, + "probability": 0.6635 + }, + { + "start": 364.26, + "end": 369.64, + "probability": 0.8342 + }, + { + "start": 370.22, + "end": 370.96, + "probability": 0.6545 + }, + { + "start": 372.44, + "end": 376.02, + "probability": 0.8442 + }, + { + "start": 377.28, + "end": 378.68, + "probability": 0.8747 + }, + { + "start": 379.9, + "end": 383.2, + "probability": 0.9912 + }, + { + "start": 384.2, + "end": 387.34, + "probability": 0.99 + }, + { + "start": 388.52, + "end": 389.65, + "probability": 0.9862 + }, + { + "start": 390.52, + "end": 396.3, + "probability": 0.9854 + }, + { + "start": 397.7, + "end": 402.48, + "probability": 0.9969 + }, + { + "start": 403.32, + "end": 405.76, + "probability": 0.9117 + }, + { + "start": 406.9, + "end": 409.16, + "probability": 0.6986 + }, + { + "start": 409.64, + "end": 412.63, + "probability": 0.9897 + }, + { + "start": 413.78, + "end": 417.42, + "probability": 0.9904 + }, + { + "start": 417.96, + "end": 419.12, + "probability": 0.9571 + }, + { + "start": 419.6, + "end": 425.6, + "probability": 0.9925 + }, + { + "start": 427.1, + "end": 430.5, + "probability": 0.7959 + }, + { + "start": 431.3, + "end": 433.5, + "probability": 0.75 + }, + { + "start": 434.64, + "end": 441.58, + "probability": 0.9506 + }, + { + "start": 442.84, + "end": 444.04, + "probability": 0.9025 + }, + { + "start": 444.96, + "end": 449.44, + "probability": 0.9225 + }, + { + "start": 450.36, + "end": 453.38, + "probability": 0.9776 + }, + { + "start": 454.5, + "end": 455.22, + "probability": 0.9783 + }, + { + "start": 456.16, + "end": 457.6, + "probability": 0.8467 + }, + { + "start": 457.98, + "end": 459.12, + "probability": 0.7974 + }, + { + "start": 459.18, + "end": 462.06, + "probability": 0.9917 + }, + { + "start": 463.34, + "end": 466.46, + "probability": 0.9106 + }, + { + "start": 467.86, + "end": 469.98, + "probability": 0.9968 + }, + { + "start": 471.02, + "end": 475.88, + "probability": 0.9671 + }, + { + "start": 477.4, + "end": 479.78, + "probability": 0.9933 + }, + { + "start": 481.06, + "end": 485.38, + "probability": 0.9868 + }, + { + "start": 486.56, + "end": 488.04, + "probability": 0.9954 + }, + { + "start": 488.72, + "end": 492.38, + "probability": 0.9912 + }, + { + "start": 493.58, + "end": 496.22, + "probability": 0.7668 + }, + { + "start": 497.38, + "end": 501.0, + "probability": 0.9902 + }, + { + "start": 502.0, + "end": 506.62, + "probability": 0.9377 + }, + { + "start": 507.42, + "end": 512.4, + "probability": 0.9963 + }, + { + "start": 512.92, + "end": 514.46, + "probability": 0.9766 + }, + { + "start": 514.7, + "end": 515.68, + "probability": 0.92 + }, + { + "start": 517.6, + "end": 519.04, + "probability": 0.9399 + }, + { + "start": 520.76, + "end": 522.2, + "probability": 0.9915 + }, + { + "start": 523.06, + "end": 525.76, + "probability": 0.9344 + }, + { + "start": 526.86, + "end": 528.7, + "probability": 0.9753 + }, + { + "start": 529.44, + "end": 532.46, + "probability": 0.9949 + }, + { + "start": 533.16, + "end": 536.3, + "probability": 0.9844 + }, + { + "start": 537.4, + "end": 542.58, + "probability": 0.9903 + }, + { + "start": 543.78, + "end": 548.02, + "probability": 0.9979 + }, + { + "start": 548.54, + "end": 553.21, + "probability": 0.9625 + }, + { + "start": 555.08, + "end": 559.74, + "probability": 0.8557 + }, + { + "start": 560.38, + "end": 564.54, + "probability": 0.9354 + }, + { + "start": 564.62, + "end": 568.36, + "probability": 0.9592 + }, + { + "start": 569.28, + "end": 571.32, + "probability": 0.9033 + }, + { + "start": 572.02, + "end": 577.94, + "probability": 0.9338 + }, + { + "start": 579.28, + "end": 582.16, + "probability": 0.9929 + }, + { + "start": 582.96, + "end": 585.32, + "probability": 0.8835 + }, + { + "start": 586.02, + "end": 588.8, + "probability": 0.9976 + }, + { + "start": 589.6, + "end": 592.8, + "probability": 0.999 + }, + { + "start": 592.8, + "end": 596.54, + "probability": 0.9989 + }, + { + "start": 597.76, + "end": 599.44, + "probability": 0.9849 + }, + { + "start": 600.1, + "end": 602.6, + "probability": 0.9924 + }, + { + "start": 602.6, + "end": 605.34, + "probability": 0.9984 + }, + { + "start": 606.6, + "end": 610.88, + "probability": 0.9964 + }, + { + "start": 612.02, + "end": 614.16, + "probability": 0.7218 + }, + { + "start": 615.46, + "end": 615.98, + "probability": 0.928 + }, + { + "start": 617.08, + "end": 619.94, + "probability": 0.9799 + }, + { + "start": 620.5, + "end": 623.34, + "probability": 0.9958 + }, + { + "start": 624.4, + "end": 626.88, + "probability": 0.7808 + }, + { + "start": 627.98, + "end": 630.42, + "probability": 0.9933 + }, + { + "start": 631.24, + "end": 638.24, + "probability": 0.9166 + }, + { + "start": 640.12, + "end": 643.3, + "probability": 0.8562 + }, + { + "start": 644.24, + "end": 646.76, + "probability": 0.9568 + }, + { + "start": 648.04, + "end": 648.1, + "probability": 0.006 + }, + { + "start": 648.1, + "end": 650.12, + "probability": 0.8832 + }, + { + "start": 650.8, + "end": 651.44, + "probability": 0.7296 + }, + { + "start": 652.44, + "end": 657.42, + "probability": 0.9801 + }, + { + "start": 657.94, + "end": 660.9, + "probability": 0.8853 + }, + { + "start": 661.04, + "end": 663.88, + "probability": 0.9175 + }, + { + "start": 665.12, + "end": 669.0, + "probability": 0.9962 + }, + { + "start": 669.52, + "end": 673.54, + "probability": 0.905 + }, + { + "start": 674.1, + "end": 675.82, + "probability": 0.7837 + }, + { + "start": 675.94, + "end": 679.54, + "probability": 0.5436 + }, + { + "start": 681.02, + "end": 684.03, + "probability": 0.8876 + }, + { + "start": 685.34, + "end": 688.92, + "probability": 0.9827 + }, + { + "start": 688.92, + "end": 695.72, + "probability": 0.9996 + }, + { + "start": 697.08, + "end": 702.3, + "probability": 0.9859 + }, + { + "start": 703.54, + "end": 704.78, + "probability": 0.8744 + }, + { + "start": 705.82, + "end": 707.5, + "probability": 0.9976 + }, + { + "start": 708.64, + "end": 711.66, + "probability": 0.9807 + }, + { + "start": 712.32, + "end": 715.32, + "probability": 0.9677 + }, + { + "start": 715.36, + "end": 716.54, + "probability": 0.8828 + }, + { + "start": 717.76, + "end": 721.6, + "probability": 0.9475 + }, + { + "start": 722.0, + "end": 725.48, + "probability": 0.9893 + }, + { + "start": 726.52, + "end": 730.76, + "probability": 0.988 + }, + { + "start": 731.38, + "end": 737.24, + "probability": 0.9929 + }, + { + "start": 738.98, + "end": 741.64, + "probability": 0.8245 + }, + { + "start": 743.18, + "end": 744.56, + "probability": 0.881 + }, + { + "start": 746.06, + "end": 747.64, + "probability": 0.9982 + }, + { + "start": 749.24, + "end": 749.9, + "probability": 0.9757 + }, + { + "start": 752.08, + "end": 755.24, + "probability": 0.8669 + }, + { + "start": 755.8, + "end": 760.24, + "probability": 0.9651 + }, + { + "start": 760.82, + "end": 761.88, + "probability": 0.7611 + }, + { + "start": 762.92, + "end": 765.36, + "probability": 0.9348 + }, + { + "start": 765.44, + "end": 766.39, + "probability": 0.8631 + }, + { + "start": 766.5, + "end": 767.42, + "probability": 0.9238 + }, + { + "start": 767.98, + "end": 771.72, + "probability": 0.9919 + }, + { + "start": 772.62, + "end": 775.94, + "probability": 0.9768 + }, + { + "start": 776.32, + "end": 778.24, + "probability": 0.6099 + }, + { + "start": 778.54, + "end": 779.9, + "probability": 0.593 + }, + { + "start": 781.56, + "end": 783.6, + "probability": 0.8521 + }, + { + "start": 784.36, + "end": 786.32, + "probability": 0.8211 + }, + { + "start": 786.52, + "end": 789.56, + "probability": 0.9189 + }, + { + "start": 789.62, + "end": 794.82, + "probability": 0.9845 + }, + { + "start": 796.2, + "end": 801.78, + "probability": 0.9938 + }, + { + "start": 802.42, + "end": 803.44, + "probability": 0.9489 + }, + { + "start": 803.54, + "end": 804.49, + "probability": 0.9793 + }, + { + "start": 805.1, + "end": 807.14, + "probability": 0.8245 + }, + { + "start": 807.62, + "end": 808.56, + "probability": 0.9407 + }, + { + "start": 808.94, + "end": 809.28, + "probability": 0.8031 + }, + { + "start": 811.7, + "end": 812.68, + "probability": 0.9521 + }, + { + "start": 813.34, + "end": 816.24, + "probability": 0.7852 + }, + { + "start": 816.82, + "end": 819.42, + "probability": 0.9755 + }, + { + "start": 821.04, + "end": 822.28, + "probability": 0.8696 + }, + { + "start": 822.7, + "end": 824.9, + "probability": 0.9279 + }, + { + "start": 825.46, + "end": 830.1, + "probability": 0.9184 + }, + { + "start": 830.58, + "end": 833.64, + "probability": 0.7761 + }, + { + "start": 834.04, + "end": 836.88, + "probability": 0.6837 + }, + { + "start": 837.7, + "end": 839.18, + "probability": 0.7761 + }, + { + "start": 839.76, + "end": 842.62, + "probability": 0.9142 + }, + { + "start": 843.3, + "end": 844.84, + "probability": 0.8829 + }, + { + "start": 850.74, + "end": 853.32, + "probability": 0.5773 + }, + { + "start": 853.74, + "end": 853.74, + "probability": 0.3898 + }, + { + "start": 853.82, + "end": 854.36, + "probability": 0.7988 + }, + { + "start": 854.46, + "end": 855.54, + "probability": 0.6754 + }, + { + "start": 859.2, + "end": 861.56, + "probability": 0.9902 + }, + { + "start": 861.74, + "end": 862.58, + "probability": 0.7567 + }, + { + "start": 862.62, + "end": 863.58, + "probability": 0.9116 + }, + { + "start": 864.44, + "end": 867.02, + "probability": 0.7129 + }, + { + "start": 867.94, + "end": 872.82, + "probability": 0.9584 + }, + { + "start": 873.7, + "end": 877.04, + "probability": 0.9986 + }, + { + "start": 878.0, + "end": 881.54, + "probability": 0.901 + }, + { + "start": 883.36, + "end": 886.74, + "probability": 0.9483 + }, + { + "start": 888.42, + "end": 891.38, + "probability": 0.9909 + }, + { + "start": 891.58, + "end": 893.27, + "probability": 0.9457 + }, + { + "start": 893.8, + "end": 895.78, + "probability": 0.966 + }, + { + "start": 896.66, + "end": 899.6, + "probability": 0.9229 + }, + { + "start": 900.66, + "end": 901.66, + "probability": 0.8174 + }, + { + "start": 902.3, + "end": 903.6, + "probability": 0.7136 + }, + { + "start": 904.82, + "end": 905.36, + "probability": 0.8654 + }, + { + "start": 905.44, + "end": 906.3, + "probability": 0.9411 + }, + { + "start": 906.46, + "end": 907.04, + "probability": 0.6689 + }, + { + "start": 907.26, + "end": 908.34, + "probability": 0.8887 + }, + { + "start": 908.48, + "end": 908.68, + "probability": 0.8788 + }, + { + "start": 908.78, + "end": 909.81, + "probability": 0.7648 + }, + { + "start": 910.72, + "end": 911.9, + "probability": 0.8434 + }, + { + "start": 911.98, + "end": 918.28, + "probability": 0.9719 + }, + { + "start": 918.82, + "end": 921.04, + "probability": 0.8002 + }, + { + "start": 921.76, + "end": 922.58, + "probability": 0.8218 + }, + { + "start": 923.72, + "end": 925.64, + "probability": 0.9008 + }, + { + "start": 926.28, + "end": 930.1, + "probability": 0.9971 + }, + { + "start": 930.96, + "end": 931.87, + "probability": 0.9818 + }, + { + "start": 932.0, + "end": 932.76, + "probability": 0.5709 + }, + { + "start": 932.82, + "end": 934.1, + "probability": 0.9857 + }, + { + "start": 934.7, + "end": 936.16, + "probability": 0.9552 + }, + { + "start": 936.94, + "end": 938.2, + "probability": 0.7628 + }, + { + "start": 938.84, + "end": 941.16, + "probability": 0.9392 + }, + { + "start": 941.56, + "end": 943.98, + "probability": 0.8953 + }, + { + "start": 943.98, + "end": 946.82, + "probability": 0.9946 + }, + { + "start": 947.86, + "end": 949.48, + "probability": 0.9961 + }, + { + "start": 950.04, + "end": 951.16, + "probability": 0.8328 + }, + { + "start": 951.72, + "end": 952.9, + "probability": 0.6054 + }, + { + "start": 953.5, + "end": 957.16, + "probability": 0.7908 + }, + { + "start": 958.0, + "end": 958.88, + "probability": 0.9694 + }, + { + "start": 959.24, + "end": 960.34, + "probability": 0.981 + }, + { + "start": 960.64, + "end": 962.84, + "probability": 0.9777 + }, + { + "start": 963.66, + "end": 968.24, + "probability": 0.8443 + }, + { + "start": 968.82, + "end": 972.72, + "probability": 0.8169 + }, + { + "start": 973.68, + "end": 974.18, + "probability": 0.5092 + }, + { + "start": 976.44, + "end": 979.12, + "probability": 0.8962 + }, + { + "start": 980.14, + "end": 982.4, + "probability": 0.8689 + }, + { + "start": 984.26, + "end": 985.52, + "probability": 0.775 + }, + { + "start": 985.72, + "end": 986.68, + "probability": 0.648 + }, + { + "start": 986.98, + "end": 987.1, + "probability": 0.2198 + }, + { + "start": 987.52, + "end": 988.84, + "probability": 0.9044 + }, + { + "start": 988.98, + "end": 989.62, + "probability": 0.8409 + }, + { + "start": 990.04, + "end": 991.68, + "probability": 0.9741 + }, + { + "start": 991.78, + "end": 992.82, + "probability": 0.9736 + }, + { + "start": 992.84, + "end": 994.52, + "probability": 0.8763 + }, + { + "start": 995.1, + "end": 996.03, + "probability": 0.925 + }, + { + "start": 997.12, + "end": 998.86, + "probability": 0.9048 + }, + { + "start": 999.5, + "end": 1001.06, + "probability": 0.677 + }, + { + "start": 1002.04, + "end": 1003.54, + "probability": 0.9854 + }, + { + "start": 1003.62, + "end": 1004.66, + "probability": 0.9825 + }, + { + "start": 1004.94, + "end": 1005.96, + "probability": 0.8428 + }, + { + "start": 1007.04, + "end": 1007.7, + "probability": 0.948 + }, + { + "start": 1007.96, + "end": 1008.68, + "probability": 0.7348 + }, + { + "start": 1008.68, + "end": 1011.46, + "probability": 0.9597 + }, + { + "start": 1011.54, + "end": 1012.4, + "probability": 0.6817 + }, + { + "start": 1012.92, + "end": 1013.44, + "probability": 0.1115 + }, + { + "start": 1013.62, + "end": 1013.76, + "probability": 0.5189 + }, + { + "start": 1014.34, + "end": 1015.06, + "probability": 0.749 + }, + { + "start": 1015.18, + "end": 1016.32, + "probability": 0.4955 + }, + { + "start": 1016.4, + "end": 1017.12, + "probability": 0.9079 + }, + { + "start": 1017.3, + "end": 1018.8, + "probability": 0.9621 + }, + { + "start": 1019.5, + "end": 1021.86, + "probability": 0.9655 + }, + { + "start": 1022.64, + "end": 1026.36, + "probability": 0.9073 + }, + { + "start": 1027.26, + "end": 1030.24, + "probability": 0.9965 + }, + { + "start": 1030.24, + "end": 1038.16, + "probability": 0.9993 + }, + { + "start": 1039.22, + "end": 1042.7, + "probability": 0.9959 + }, + { + "start": 1042.7, + "end": 1046.4, + "probability": 0.9479 + }, + { + "start": 1046.44, + "end": 1048.22, + "probability": 0.9919 + }, + { + "start": 1048.9, + "end": 1049.18, + "probability": 0.5173 + }, + { + "start": 1049.86, + "end": 1051.34, + "probability": 0.7972 + }, + { + "start": 1051.54, + "end": 1054.62, + "probability": 0.9623 + }, + { + "start": 1055.12, + "end": 1055.94, + "probability": 0.8822 + }, + { + "start": 1056.56, + "end": 1057.5, + "probability": 0.98 + }, + { + "start": 1058.45, + "end": 1061.86, + "probability": 0.7929 + }, + { + "start": 1062.7, + "end": 1063.8, + "probability": 0.5416 + }, + { + "start": 1063.86, + "end": 1065.4, + "probability": 0.645 + }, + { + "start": 1065.58, + "end": 1068.2, + "probability": 0.8978 + }, + { + "start": 1068.68, + "end": 1070.1, + "probability": 0.498 + }, + { + "start": 1070.12, + "end": 1071.3, + "probability": 0.9135 + }, + { + "start": 1071.76, + "end": 1072.26, + "probability": 0.6957 + }, + { + "start": 1073.04, + "end": 1075.84, + "probability": 0.9092 + }, + { + "start": 1076.12, + "end": 1078.19, + "probability": 0.917 + }, + { + "start": 1079.04, + "end": 1083.14, + "probability": 0.9627 + }, + { + "start": 1083.26, + "end": 1084.28, + "probability": 0.8378 + }, + { + "start": 1084.94, + "end": 1087.22, + "probability": 0.8922 + }, + { + "start": 1088.58, + "end": 1091.28, + "probability": 0.9791 + }, + { + "start": 1092.18, + "end": 1092.96, + "probability": 0.869 + }, + { + "start": 1093.16, + "end": 1093.3, + "probability": 0.1572 + }, + { + "start": 1093.38, + "end": 1093.48, + "probability": 0.8037 + }, + { + "start": 1093.5, + "end": 1096.48, + "probability": 0.9865 + }, + { + "start": 1097.1, + "end": 1099.42, + "probability": 0.9181 + }, + { + "start": 1099.48, + "end": 1101.66, + "probability": 0.8141 + }, + { + "start": 1102.04, + "end": 1104.38, + "probability": 0.944 + }, + { + "start": 1104.88, + "end": 1107.28, + "probability": 0.9858 + }, + { + "start": 1107.52, + "end": 1109.1, + "probability": 0.9717 + }, + { + "start": 1112.36, + "end": 1112.4, + "probability": 0.0014 + }, + { + "start": 1112.4, + "end": 1114.94, + "probability": 0.7919 + }, + { + "start": 1115.6, + "end": 1117.81, + "probability": 0.99 + }, + { + "start": 1118.0, + "end": 1121.72, + "probability": 0.9642 + }, + { + "start": 1122.3, + "end": 1123.58, + "probability": 0.6622 + }, + { + "start": 1124.74, + "end": 1125.4, + "probability": 0.3727 + }, + { + "start": 1128.18, + "end": 1128.68, + "probability": 0.0029 + }, + { + "start": 1128.68, + "end": 1128.68, + "probability": 0.1716 + }, + { + "start": 1128.68, + "end": 1129.2, + "probability": 0.5931 + }, + { + "start": 1129.26, + "end": 1130.52, + "probability": 0.235 + }, + { + "start": 1130.62, + "end": 1133.92, + "probability": 0.8936 + }, + { + "start": 1134.0, + "end": 1136.68, + "probability": 0.9877 + }, + { + "start": 1137.2, + "end": 1139.9, + "probability": 0.9919 + }, + { + "start": 1140.42, + "end": 1142.48, + "probability": 0.9673 + }, + { + "start": 1142.66, + "end": 1146.9, + "probability": 0.9971 + }, + { + "start": 1147.7, + "end": 1149.78, + "probability": 0.7926 + }, + { + "start": 1150.38, + "end": 1154.0, + "probability": 0.7756 + }, + { + "start": 1155.24, + "end": 1155.86, + "probability": 0.0163 + }, + { + "start": 1155.94, + "end": 1156.5, + "probability": 0.5251 + }, + { + "start": 1156.6, + "end": 1158.08, + "probability": 0.7145 + }, + { + "start": 1158.08, + "end": 1158.38, + "probability": 0.5487 + }, + { + "start": 1158.8, + "end": 1160.2, + "probability": 0.6864 + }, + { + "start": 1160.34, + "end": 1162.11, + "probability": 0.1692 + }, + { + "start": 1162.22, + "end": 1162.84, + "probability": 0.6423 + }, + { + "start": 1162.96, + "end": 1164.16, + "probability": 0.8329 + }, + { + "start": 1164.54, + "end": 1165.14, + "probability": 0.8558 + }, + { + "start": 1165.22, + "end": 1166.7, + "probability": 0.5627 + }, + { + "start": 1167.0, + "end": 1172.2, + "probability": 0.9658 + }, + { + "start": 1172.8, + "end": 1175.9, + "probability": 0.8885 + }, + { + "start": 1176.5, + "end": 1178.16, + "probability": 0.6229 + }, + { + "start": 1179.06, + "end": 1181.92, + "probability": 0.9525 + }, + { + "start": 1182.84, + "end": 1184.0, + "probability": 0.7893 + }, + { + "start": 1184.06, + "end": 1185.86, + "probability": 0.9946 + }, + { + "start": 1186.64, + "end": 1187.02, + "probability": 0.3658 + }, + { + "start": 1190.04, + "end": 1192.74, + "probability": 0.5242 + }, + { + "start": 1192.78, + "end": 1193.88, + "probability": 0.33 + }, + { + "start": 1194.64, + "end": 1196.34, + "probability": 0.8511 + }, + { + "start": 1196.46, + "end": 1202.12, + "probability": 0.9946 + }, + { + "start": 1203.04, + "end": 1204.8, + "probability": 0.5717 + }, + { + "start": 1204.8, + "end": 1208.74, + "probability": 0.9984 + }, + { + "start": 1209.48, + "end": 1210.48, + "probability": 0.7592 + }, + { + "start": 1210.66, + "end": 1213.06, + "probability": 0.9919 + }, + { + "start": 1214.82, + "end": 1215.48, + "probability": 0.8383 + }, + { + "start": 1216.52, + "end": 1220.26, + "probability": 0.9812 + }, + { + "start": 1221.36, + "end": 1227.6, + "probability": 0.9938 + }, + { + "start": 1228.26, + "end": 1229.58, + "probability": 0.7437 + }, + { + "start": 1231.02, + "end": 1237.72, + "probability": 0.9827 + }, + { + "start": 1237.8, + "end": 1238.44, + "probability": 0.5271 + }, + { + "start": 1238.52, + "end": 1240.8, + "probability": 0.929 + }, + { + "start": 1242.22, + "end": 1246.6, + "probability": 0.9766 + }, + { + "start": 1247.62, + "end": 1250.26, + "probability": 0.9893 + }, + { + "start": 1250.46, + "end": 1256.04, + "probability": 0.9873 + }, + { + "start": 1256.56, + "end": 1258.26, + "probability": 0.8496 + }, + { + "start": 1258.52, + "end": 1259.48, + "probability": 0.7266 + }, + { + "start": 1261.24, + "end": 1265.02, + "probability": 0.6647 + }, + { + "start": 1267.32, + "end": 1270.44, + "probability": 0.7164 + }, + { + "start": 1271.02, + "end": 1272.47, + "probability": 0.9741 + }, + { + "start": 1273.18, + "end": 1276.06, + "probability": 0.6536 + }, + { + "start": 1276.22, + "end": 1281.4, + "probability": 0.7031 + }, + { + "start": 1281.4, + "end": 1282.78, + "probability": 0.0138 + }, + { + "start": 1282.78, + "end": 1284.4, + "probability": 0.022 + }, + { + "start": 1284.84, + "end": 1284.84, + "probability": 0.0511 + }, + { + "start": 1284.84, + "end": 1287.72, + "probability": 0.9102 + }, + { + "start": 1288.32, + "end": 1290.8, + "probability": 0.9927 + }, + { + "start": 1292.68, + "end": 1296.06, + "probability": 0.9849 + }, + { + "start": 1296.48, + "end": 1296.74, + "probability": 0.4089 + }, + { + "start": 1297.3, + "end": 1298.2, + "probability": 0.9543 + }, + { + "start": 1299.08, + "end": 1301.96, + "probability": 0.9031 + }, + { + "start": 1302.6, + "end": 1307.37, + "probability": 0.9904 + }, + { + "start": 1307.94, + "end": 1309.74, + "probability": 0.8696 + }, + { + "start": 1309.98, + "end": 1310.72, + "probability": 0.8777 + }, + { + "start": 1311.12, + "end": 1311.9, + "probability": 0.5054 + }, + { + "start": 1312.38, + "end": 1316.06, + "probability": 0.9937 + }, + { + "start": 1316.48, + "end": 1317.28, + "probability": 0.6578 + }, + { + "start": 1317.72, + "end": 1319.44, + "probability": 0.9922 + }, + { + "start": 1319.94, + "end": 1321.84, + "probability": 0.9951 + }, + { + "start": 1322.48, + "end": 1324.18, + "probability": 0.9822 + }, + { + "start": 1324.72, + "end": 1331.6, + "probability": 0.9775 + }, + { + "start": 1331.8, + "end": 1333.74, + "probability": 0.9842 + }, + { + "start": 1334.44, + "end": 1337.52, + "probability": 0.9922 + }, + { + "start": 1338.46, + "end": 1339.18, + "probability": 0.7691 + }, + { + "start": 1339.3, + "end": 1340.66, + "probability": 0.7713 + }, + { + "start": 1340.86, + "end": 1343.86, + "probability": 0.8306 + }, + { + "start": 1344.02, + "end": 1344.42, + "probability": 0.5219 + }, + { + "start": 1344.56, + "end": 1345.44, + "probability": 0.9092 + }, + { + "start": 1345.86, + "end": 1347.98, + "probability": 0.9969 + }, + { + "start": 1348.46, + "end": 1352.08, + "probability": 0.9614 + }, + { + "start": 1352.32, + "end": 1353.54, + "probability": 0.7716 + }, + { + "start": 1354.06, + "end": 1358.08, + "probability": 0.9736 + }, + { + "start": 1358.8, + "end": 1360.5, + "probability": 0.8938 + }, + { + "start": 1360.56, + "end": 1361.76, + "probability": 0.8309 + }, + { + "start": 1362.1, + "end": 1362.82, + "probability": 0.9338 + }, + { + "start": 1363.14, + "end": 1364.66, + "probability": 0.9785 + }, + { + "start": 1364.92, + "end": 1370.28, + "probability": 0.9897 + }, + { + "start": 1370.4, + "end": 1375.78, + "probability": 0.9819 + }, + { + "start": 1375.9, + "end": 1376.46, + "probability": 0.0802 + }, + { + "start": 1377.18, + "end": 1377.18, + "probability": 0.0938 + }, + { + "start": 1377.44, + "end": 1377.96, + "probability": 0.0475 + }, + { + "start": 1377.96, + "end": 1378.0, + "probability": 0.1259 + }, + { + "start": 1378.0, + "end": 1380.24, + "probability": 0.0952 + }, + { + "start": 1380.32, + "end": 1383.38, + "probability": 0.0177 + }, + { + "start": 1383.38, + "end": 1386.05, + "probability": 0.1249 + }, + { + "start": 1388.13, + "end": 1390.62, + "probability": 0.0641 + }, + { + "start": 1390.66, + "end": 1393.02, + "probability": 0.5925 + }, + { + "start": 1393.9, + "end": 1398.06, + "probability": 0.0418 + }, + { + "start": 1398.74, + "end": 1399.22, + "probability": 0.0242 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.12, + "end": 1499.64, + "probability": 0.073 + }, + { + "start": 1499.64, + "end": 1500.22, + "probability": 0.1223 + }, + { + "start": 1500.22, + "end": 1500.22, + "probability": 0.2393 + }, + { + "start": 1500.22, + "end": 1505.06, + "probability": 0.9729 + }, + { + "start": 1505.68, + "end": 1509.46, + "probability": 0.9721 + }, + { + "start": 1509.88, + "end": 1510.48, + "probability": 0.9784 + }, + { + "start": 1511.3, + "end": 1516.96, + "probability": 0.9943 + }, + { + "start": 1517.3, + "end": 1519.64, + "probability": 0.9985 + }, + { + "start": 1519.64, + "end": 1522.66, + "probability": 0.9692 + }, + { + "start": 1523.34, + "end": 1525.26, + "probability": 0.8807 + }, + { + "start": 1525.52, + "end": 1527.82, + "probability": 0.9966 + }, + { + "start": 1528.28, + "end": 1532.08, + "probability": 0.9942 + }, + { + "start": 1532.08, + "end": 1536.74, + "probability": 0.9921 + }, + { + "start": 1537.86, + "end": 1540.58, + "probability": 0.7558 + }, + { + "start": 1541.2, + "end": 1542.84, + "probability": 0.9857 + }, + { + "start": 1543.62, + "end": 1547.34, + "probability": 0.9977 + }, + { + "start": 1548.0, + "end": 1549.28, + "probability": 0.9884 + }, + { + "start": 1549.46, + "end": 1549.82, + "probability": 0.7299 + }, + { + "start": 1554.34, + "end": 1554.76, + "probability": 0.6466 + }, + { + "start": 1554.84, + "end": 1555.46, + "probability": 0.8479 + }, + { + "start": 1556.02, + "end": 1558.46, + "probability": 0.6698 + }, + { + "start": 1572.96, + "end": 1575.2, + "probability": 0.751 + }, + { + "start": 1577.32, + "end": 1577.56, + "probability": 0.6868 + }, + { + "start": 1577.7, + "end": 1581.14, + "probability": 0.9688 + }, + { + "start": 1581.48, + "end": 1582.22, + "probability": 0.8351 + }, + { + "start": 1582.38, + "end": 1588.66, + "probability": 0.9929 + }, + { + "start": 1588.66, + "end": 1596.96, + "probability": 0.9961 + }, + { + "start": 1597.26, + "end": 1600.68, + "probability": 0.9207 + }, + { + "start": 1600.88, + "end": 1603.4, + "probability": 0.8152 + }, + { + "start": 1603.52, + "end": 1605.16, + "probability": 0.7421 + }, + { + "start": 1605.76, + "end": 1608.76, + "probability": 0.9452 + }, + { + "start": 1608.98, + "end": 1613.0, + "probability": 0.9848 + }, + { + "start": 1613.0, + "end": 1618.28, + "probability": 0.993 + }, + { + "start": 1619.56, + "end": 1623.14, + "probability": 0.9964 + }, + { + "start": 1623.14, + "end": 1627.34, + "probability": 0.8319 + }, + { + "start": 1628.1, + "end": 1630.74, + "probability": 0.9722 + }, + { + "start": 1630.74, + "end": 1634.06, + "probability": 0.9897 + }, + { + "start": 1634.7, + "end": 1637.68, + "probability": 0.7328 + }, + { + "start": 1637.78, + "end": 1639.0, + "probability": 0.5701 + }, + { + "start": 1639.1, + "end": 1640.88, + "probability": 0.5972 + }, + { + "start": 1641.0, + "end": 1646.84, + "probability": 0.743 + }, + { + "start": 1647.12, + "end": 1647.62, + "probability": 0.3648 + }, + { + "start": 1647.62, + "end": 1652.4, + "probability": 0.9907 + }, + { + "start": 1652.4, + "end": 1659.54, + "probability": 0.9966 + }, + { + "start": 1659.54, + "end": 1664.1, + "probability": 0.9831 + }, + { + "start": 1664.1, + "end": 1667.34, + "probability": 0.9966 + }, + { + "start": 1667.54, + "end": 1668.42, + "probability": 0.7844 + }, + { + "start": 1668.76, + "end": 1671.16, + "probability": 0.7117 + }, + { + "start": 1671.16, + "end": 1671.28, + "probability": 0.5403 + }, + { + "start": 1671.32, + "end": 1672.26, + "probability": 0.6556 + }, + { + "start": 1672.36, + "end": 1677.4, + "probability": 0.8741 + }, + { + "start": 1677.94, + "end": 1681.32, + "probability": 0.9967 + }, + { + "start": 1682.06, + "end": 1682.56, + "probability": 0.558 + }, + { + "start": 1682.64, + "end": 1686.94, + "probability": 0.9969 + }, + { + "start": 1686.96, + "end": 1687.54, + "probability": 0.9573 + }, + { + "start": 1688.08, + "end": 1691.74, + "probability": 0.9297 + }, + { + "start": 1692.38, + "end": 1693.38, + "probability": 0.427 + }, + { + "start": 1695.38, + "end": 1697.02, + "probability": 0.6947 + }, + { + "start": 1697.7, + "end": 1702.2, + "probability": 0.9611 + }, + { + "start": 1702.24, + "end": 1704.36, + "probability": 0.8714 + }, + { + "start": 1705.0, + "end": 1707.66, + "probability": 0.9958 + }, + { + "start": 1707.66, + "end": 1713.24, + "probability": 0.9668 + }, + { + "start": 1714.34, + "end": 1717.0, + "probability": 0.6836 + }, + { + "start": 1717.08, + "end": 1719.36, + "probability": 0.9443 + }, + { + "start": 1719.5, + "end": 1724.34, + "probability": 0.9238 + }, + { + "start": 1724.48, + "end": 1725.13, + "probability": 0.8068 + }, + { + "start": 1726.58, + "end": 1731.0, + "probability": 0.995 + }, + { + "start": 1731.14, + "end": 1733.56, + "probability": 0.9621 + }, + { + "start": 1734.02, + "end": 1735.34, + "probability": 0.9684 + }, + { + "start": 1735.5, + "end": 1738.2, + "probability": 0.9713 + }, + { + "start": 1738.2, + "end": 1742.04, + "probability": 0.9946 + }, + { + "start": 1742.52, + "end": 1746.24, + "probability": 0.9972 + }, + { + "start": 1746.72, + "end": 1749.78, + "probability": 0.5206 + }, + { + "start": 1750.26, + "end": 1750.82, + "probability": 0.5594 + }, + { + "start": 1751.02, + "end": 1754.02, + "probability": 0.9966 + }, + { + "start": 1754.02, + "end": 1756.02, + "probability": 0.2531 + }, + { + "start": 1757.62, + "end": 1757.68, + "probability": 0.1027 + }, + { + "start": 1757.68, + "end": 1757.68, + "probability": 0.0226 + }, + { + "start": 1757.68, + "end": 1759.1, + "probability": 0.6838 + }, + { + "start": 1759.54, + "end": 1759.92, + "probability": 0.0684 + }, + { + "start": 1760.0, + "end": 1765.72, + "probability": 0.7798 + }, + { + "start": 1766.06, + "end": 1767.82, + "probability": 0.3727 + }, + { + "start": 1769.86, + "end": 1769.96, + "probability": 0.2977 + }, + { + "start": 1776.68, + "end": 1777.48, + "probability": 0.4902 + }, + { + "start": 1777.56, + "end": 1778.7, + "probability": 0.7346 + }, + { + "start": 1778.78, + "end": 1779.58, + "probability": 0.9608 + }, + { + "start": 1779.7, + "end": 1787.04, + "probability": 0.8307 + }, + { + "start": 1790.09, + "end": 1795.72, + "probability": 0.7252 + }, + { + "start": 1796.6, + "end": 1799.24, + "probability": 0.9874 + }, + { + "start": 1799.7, + "end": 1800.92, + "probability": 0.9744 + }, + { + "start": 1801.06, + "end": 1803.1, + "probability": 0.6821 + }, + { + "start": 1803.14, + "end": 1804.74, + "probability": 0.9389 + }, + { + "start": 1805.2, + "end": 1809.87, + "probability": 0.8349 + }, + { + "start": 1810.0, + "end": 1814.08, + "probability": 0.9926 + }, + { + "start": 1814.66, + "end": 1816.88, + "probability": 0.9492 + }, + { + "start": 1817.2, + "end": 1818.45, + "probability": 0.9858 + }, + { + "start": 1819.02, + "end": 1821.78, + "probability": 0.9668 + }, + { + "start": 1822.1, + "end": 1825.86, + "probability": 0.992 + }, + { + "start": 1825.86, + "end": 1829.72, + "probability": 0.9993 + }, + { + "start": 1829.92, + "end": 1836.7, + "probability": 0.9947 + }, + { + "start": 1836.96, + "end": 1841.42, + "probability": 0.9971 + }, + { + "start": 1841.78, + "end": 1843.6, + "probability": 0.8513 + }, + { + "start": 1843.68, + "end": 1846.44, + "probability": 0.999 + }, + { + "start": 1846.5, + "end": 1849.26, + "probability": 0.6906 + }, + { + "start": 1849.66, + "end": 1851.74, + "probability": 0.9302 + }, + { + "start": 1852.52, + "end": 1853.92, + "probability": 0.6639 + }, + { + "start": 1854.04, + "end": 1855.46, + "probability": 0.8867 + }, + { + "start": 1855.9, + "end": 1857.98, + "probability": 0.9383 + }, + { + "start": 1858.32, + "end": 1859.52, + "probability": 0.9828 + }, + { + "start": 1859.94, + "end": 1860.65, + "probability": 0.9834 + }, + { + "start": 1861.6, + "end": 1863.06, + "probability": 0.9871 + }, + { + "start": 1863.26, + "end": 1865.32, + "probability": 0.9434 + }, + { + "start": 1865.7, + "end": 1866.96, + "probability": 0.8292 + }, + { + "start": 1867.3, + "end": 1868.56, + "probability": 0.6864 + }, + { + "start": 1869.08, + "end": 1870.2, + "probability": 0.7519 + }, + { + "start": 1870.22, + "end": 1873.86, + "probability": 0.951 + }, + { + "start": 1874.1, + "end": 1878.61, + "probability": 0.9867 + }, + { + "start": 1879.36, + "end": 1882.26, + "probability": 0.9941 + }, + { + "start": 1882.34, + "end": 1882.74, + "probability": 0.83 + }, + { + "start": 1882.78, + "end": 1884.04, + "probability": 0.5596 + }, + { + "start": 1884.12, + "end": 1888.38, + "probability": 0.9751 + }, + { + "start": 1888.96, + "end": 1893.95, + "probability": 0.8582 + }, + { + "start": 1894.7, + "end": 1896.18, + "probability": 0.9072 + }, + { + "start": 1896.5, + "end": 1899.56, + "probability": 0.9915 + }, + { + "start": 1900.12, + "end": 1904.32, + "probability": 0.8709 + }, + { + "start": 1904.9, + "end": 1909.72, + "probability": 0.9454 + }, + { + "start": 1909.8, + "end": 1912.46, + "probability": 0.9974 + }, + { + "start": 1912.54, + "end": 1915.28, + "probability": 0.6767 + }, + { + "start": 1915.34, + "end": 1915.8, + "probability": 0.8756 + }, + { + "start": 1915.9, + "end": 1917.68, + "probability": 0.9272 + }, + { + "start": 1918.2, + "end": 1921.76, + "probability": 0.9882 + }, + { + "start": 1921.76, + "end": 1924.62, + "probability": 0.8366 + }, + { + "start": 1924.96, + "end": 1926.28, + "probability": 0.9645 + }, + { + "start": 1926.86, + "end": 1928.76, + "probability": 0.9172 + }, + { + "start": 1929.16, + "end": 1930.18, + "probability": 0.8429 + }, + { + "start": 1930.36, + "end": 1930.98, + "probability": 0.895 + }, + { + "start": 1931.06, + "end": 1936.46, + "probability": 0.938 + }, + { + "start": 1936.66, + "end": 1939.32, + "probability": 0.9935 + }, + { + "start": 1939.32, + "end": 1943.32, + "probability": 0.9984 + }, + { + "start": 1943.54, + "end": 1948.48, + "probability": 0.9896 + }, + { + "start": 1949.38, + "end": 1950.02, + "probability": 0.5806 + }, + { + "start": 1950.04, + "end": 1954.98, + "probability": 0.9889 + }, + { + "start": 1955.94, + "end": 1962.64, + "probability": 0.9169 + }, + { + "start": 1963.6, + "end": 1965.48, + "probability": 0.924 + }, + { + "start": 1965.84, + "end": 1968.2, + "probability": 0.9272 + }, + { + "start": 1968.32, + "end": 1971.9, + "probability": 0.9696 + }, + { + "start": 1972.3, + "end": 1976.38, + "probability": 0.9443 + }, + { + "start": 1976.38, + "end": 1979.66, + "probability": 0.8871 + }, + { + "start": 1980.3, + "end": 1983.96, + "probability": 0.9854 + }, + { + "start": 1984.7, + "end": 1987.3, + "probability": 0.9978 + }, + { + "start": 1987.42, + "end": 1987.82, + "probability": 0.336 + }, + { + "start": 1988.24, + "end": 1992.22, + "probability": 0.9977 + }, + { + "start": 1992.4, + "end": 1992.62, + "probability": 0.4886 + }, + { + "start": 1992.64, + "end": 1993.16, + "probability": 0.6143 + }, + { + "start": 1993.28, + "end": 1995.06, + "probability": 0.9966 + }, + { + "start": 1995.16, + "end": 1997.58, + "probability": 0.7159 + }, + { + "start": 1998.08, + "end": 1999.06, + "probability": 0.6071 + }, + { + "start": 1999.66, + "end": 2003.91, + "probability": 0.9893 + }, + { + "start": 2004.52, + "end": 2005.38, + "probability": 0.599 + }, + { + "start": 2005.6, + "end": 2006.14, + "probability": 0.8009 + }, + { + "start": 2006.7, + "end": 2010.04, + "probability": 0.9135 + }, + { + "start": 2010.48, + "end": 2014.32, + "probability": 0.9839 + }, + { + "start": 2014.78, + "end": 2018.48, + "probability": 0.9872 + }, + { + "start": 2018.98, + "end": 2022.04, + "probability": 0.9617 + }, + { + "start": 2022.2, + "end": 2023.48, + "probability": 0.7965 + }, + { + "start": 2023.62, + "end": 2025.38, + "probability": 0.9907 + }, + { + "start": 2025.42, + "end": 2029.54, + "probability": 0.9967 + }, + { + "start": 2030.06, + "end": 2032.38, + "probability": 0.9922 + }, + { + "start": 2032.96, + "end": 2034.62, + "probability": 0.6952 + }, + { + "start": 2034.94, + "end": 2036.26, + "probability": 0.7916 + }, + { + "start": 2036.6, + "end": 2040.44, + "probability": 0.7107 + }, + { + "start": 2040.44, + "end": 2044.72, + "probability": 0.9221 + }, + { + "start": 2045.06, + "end": 2046.7, + "probability": 0.9727 + }, + { + "start": 2047.26, + "end": 2048.64, + "probability": 0.8065 + }, + { + "start": 2049.46, + "end": 2050.08, + "probability": 0.5154 + }, + { + "start": 2050.34, + "end": 2054.7, + "probability": 0.9879 + }, + { + "start": 2055.14, + "end": 2058.36, + "probability": 0.9376 + }, + { + "start": 2058.78, + "end": 2062.4, + "probability": 0.9293 + }, + { + "start": 2062.4, + "end": 2067.1, + "probability": 0.9986 + }, + { + "start": 2067.44, + "end": 2070.52, + "probability": 0.9635 + }, + { + "start": 2071.06, + "end": 2075.62, + "probability": 0.981 + }, + { + "start": 2076.16, + "end": 2081.6, + "probability": 0.9967 + }, + { + "start": 2081.62, + "end": 2087.72, + "probability": 0.9967 + }, + { + "start": 2087.9, + "end": 2091.14, + "probability": 0.9818 + }, + { + "start": 2091.14, + "end": 2095.04, + "probability": 0.9919 + }, + { + "start": 2095.46, + "end": 2101.26, + "probability": 0.979 + }, + { + "start": 2101.26, + "end": 2107.2, + "probability": 0.9968 + }, + { + "start": 2107.56, + "end": 2111.86, + "probability": 0.9033 + }, + { + "start": 2111.94, + "end": 2116.3, + "probability": 0.9551 + }, + { + "start": 2116.74, + "end": 2119.92, + "probability": 0.9924 + }, + { + "start": 2120.44, + "end": 2122.52, + "probability": 0.9967 + }, + { + "start": 2122.82, + "end": 2124.0, + "probability": 0.2174 + }, + { + "start": 2124.0, + "end": 2125.1, + "probability": 0.123 + }, + { + "start": 2125.4, + "end": 2130.14, + "probability": 0.9902 + }, + { + "start": 2130.7, + "end": 2131.54, + "probability": 0.8683 + }, + { + "start": 2132.38, + "end": 2133.88, + "probability": 0.9767 + }, + { + "start": 2134.98, + "end": 2136.62, + "probability": 0.8665 + }, + { + "start": 2136.76, + "end": 2140.3, + "probability": 0.8706 + }, + { + "start": 2140.42, + "end": 2142.46, + "probability": 0.98 + }, + { + "start": 2142.98, + "end": 2144.39, + "probability": 0.9856 + }, + { + "start": 2144.64, + "end": 2145.92, + "probability": 0.9131 + }, + { + "start": 2145.96, + "end": 2148.08, + "probability": 0.9665 + }, + { + "start": 2148.9, + "end": 2149.58, + "probability": 0.979 + }, + { + "start": 2150.14, + "end": 2151.14, + "probability": 0.5907 + }, + { + "start": 2151.94, + "end": 2155.2, + "probability": 0.9472 + }, + { + "start": 2155.2, + "end": 2160.1, + "probability": 0.9862 + }, + { + "start": 2160.62, + "end": 2164.15, + "probability": 0.9736 + }, + { + "start": 2164.9, + "end": 2166.54, + "probability": 0.9409 + }, + { + "start": 2166.98, + "end": 2167.8, + "probability": 0.8094 + }, + { + "start": 2167.88, + "end": 2173.1, + "probability": 0.8352 + }, + { + "start": 2173.62, + "end": 2175.16, + "probability": 0.8093 + }, + { + "start": 2175.54, + "end": 2177.16, + "probability": 0.8512 + }, + { + "start": 2177.58, + "end": 2180.08, + "probability": 0.887 + }, + { + "start": 2180.66, + "end": 2182.86, + "probability": 0.8606 + }, + { + "start": 2182.96, + "end": 2187.02, + "probability": 0.971 + }, + { + "start": 2187.18, + "end": 2191.04, + "probability": 0.9524 + }, + { + "start": 2191.26, + "end": 2192.19, + "probability": 0.5239 + }, + { + "start": 2192.8, + "end": 2195.32, + "probability": 0.4566 + }, + { + "start": 2196.02, + "end": 2197.35, + "probability": 0.377 + }, + { + "start": 2197.58, + "end": 2198.68, + "probability": 0.5717 + }, + { + "start": 2198.68, + "end": 2199.0, + "probability": 0.8366 + }, + { + "start": 2199.1, + "end": 2199.98, + "probability": 0.2773 + }, + { + "start": 2200.0, + "end": 2200.92, + "probability": 0.8734 + }, + { + "start": 2201.0, + "end": 2202.1, + "probability": 0.8499 + }, + { + "start": 2202.52, + "end": 2205.12, + "probability": 0.8667 + }, + { + "start": 2206.18, + "end": 2208.32, + "probability": 0.5868 + }, + { + "start": 2209.04, + "end": 2210.54, + "probability": 0.9936 + }, + { + "start": 2211.02, + "end": 2212.14, + "probability": 0.8693 + }, + { + "start": 2212.4, + "end": 2215.02, + "probability": 0.9919 + }, + { + "start": 2215.02, + "end": 2218.16, + "probability": 0.8463 + }, + { + "start": 2218.78, + "end": 2221.12, + "probability": 0.9447 + }, + { + "start": 2221.76, + "end": 2223.48, + "probability": 0.9178 + }, + { + "start": 2223.58, + "end": 2227.92, + "probability": 0.9545 + }, + { + "start": 2228.32, + "end": 2229.9, + "probability": 0.9857 + }, + { + "start": 2229.98, + "end": 2230.5, + "probability": 0.9927 + }, + { + "start": 2231.36, + "end": 2232.56, + "probability": 0.9595 + }, + { + "start": 2232.62, + "end": 2238.12, + "probability": 0.9199 + }, + { + "start": 2238.12, + "end": 2242.88, + "probability": 0.9738 + }, + { + "start": 2243.02, + "end": 2245.76, + "probability": 0.882 + }, + { + "start": 2245.76, + "end": 2250.52, + "probability": 0.9837 + }, + { + "start": 2250.92, + "end": 2256.98, + "probability": 0.8281 + }, + { + "start": 2257.16, + "end": 2258.36, + "probability": 0.8526 + }, + { + "start": 2258.38, + "end": 2263.2, + "probability": 0.9961 + }, + { + "start": 2263.2, + "end": 2269.06, + "probability": 0.99 + }, + { + "start": 2269.74, + "end": 2272.84, + "probability": 0.937 + }, + { + "start": 2272.86, + "end": 2279.52, + "probability": 0.999 + }, + { + "start": 2280.02, + "end": 2281.28, + "probability": 0.8903 + }, + { + "start": 2281.38, + "end": 2281.92, + "probability": 0.7353 + }, + { + "start": 2282.04, + "end": 2283.98, + "probability": 0.7492 + }, + { + "start": 2284.22, + "end": 2285.95, + "probability": 0.265 + }, + { + "start": 2287.56, + "end": 2288.38, + "probability": 0.7341 + }, + { + "start": 2289.7, + "end": 2292.16, + "probability": 0.8589 + }, + { + "start": 2292.9, + "end": 2295.4, + "probability": 0.9961 + }, + { + "start": 2295.62, + "end": 2299.86, + "probability": 0.9978 + }, + { + "start": 2300.12, + "end": 2303.3, + "probability": 0.9585 + }, + { + "start": 2303.42, + "end": 2304.14, + "probability": 0.9117 + }, + { + "start": 2306.2, + "end": 2310.02, + "probability": 0.9219 + }, + { + "start": 2310.88, + "end": 2311.26, + "probability": 0.477 + }, + { + "start": 2311.94, + "end": 2313.03, + "probability": 0.5018 + }, + { + "start": 2313.44, + "end": 2315.06, + "probability": 0.8883 + }, + { + "start": 2316.39, + "end": 2319.74, + "probability": 0.9761 + }, + { + "start": 2320.2, + "end": 2321.58, + "probability": 0.98 + }, + { + "start": 2321.98, + "end": 2323.62, + "probability": 0.9575 + }, + { + "start": 2323.68, + "end": 2323.9, + "probability": 0.1102 + }, + { + "start": 2324.12, + "end": 2326.46, + "probability": 0.9731 + }, + { + "start": 2326.52, + "end": 2327.78, + "probability": 0.9041 + }, + { + "start": 2328.96, + "end": 2330.66, + "probability": 0.7679 + }, + { + "start": 2331.44, + "end": 2335.42, + "probability": 0.947 + }, + { + "start": 2336.24, + "end": 2339.98, + "probability": 0.9795 + }, + { + "start": 2340.1, + "end": 2342.72, + "probability": 0.9966 + }, + { + "start": 2343.62, + "end": 2348.54, + "probability": 0.9983 + }, + { + "start": 2349.06, + "end": 2354.82, + "probability": 0.9986 + }, + { + "start": 2355.5, + "end": 2359.58, + "probability": 0.9767 + }, + { + "start": 2360.1, + "end": 2364.96, + "probability": 0.9781 + }, + { + "start": 2365.58, + "end": 2366.96, + "probability": 0.9395 + }, + { + "start": 2367.72, + "end": 2373.26, + "probability": 0.8917 + }, + { + "start": 2374.08, + "end": 2376.26, + "probability": 0.7805 + }, + { + "start": 2376.68, + "end": 2378.2, + "probability": 0.9446 + }, + { + "start": 2378.26, + "end": 2379.84, + "probability": 0.5861 + }, + { + "start": 2380.2, + "end": 2382.94, + "probability": 0.9212 + }, + { + "start": 2383.28, + "end": 2385.26, + "probability": 0.7618 + }, + { + "start": 2385.42, + "end": 2388.24, + "probability": 0.9893 + }, + { + "start": 2388.86, + "end": 2390.66, + "probability": 0.936 + }, + { + "start": 2390.84, + "end": 2392.16, + "probability": 0.9847 + }, + { + "start": 2392.64, + "end": 2396.04, + "probability": 0.994 + }, + { + "start": 2396.04, + "end": 2400.42, + "probability": 0.9946 + }, + { + "start": 2400.48, + "end": 2401.9, + "probability": 0.7805 + }, + { + "start": 2402.08, + "end": 2404.8, + "probability": 0.9637 + }, + { + "start": 2405.48, + "end": 2408.74, + "probability": 0.9899 + }, + { + "start": 2409.2, + "end": 2411.76, + "probability": 0.9976 + }, + { + "start": 2411.76, + "end": 2415.9, + "probability": 0.9837 + }, + { + "start": 2416.4, + "end": 2417.34, + "probability": 0.764 + }, + { + "start": 2417.7, + "end": 2423.46, + "probability": 0.9805 + }, + { + "start": 2423.94, + "end": 2426.24, + "probability": 0.9985 + }, + { + "start": 2427.0, + "end": 2428.34, + "probability": 0.9697 + }, + { + "start": 2428.48, + "end": 2434.38, + "probability": 0.9898 + }, + { + "start": 2434.56, + "end": 2436.5, + "probability": 0.847 + }, + { + "start": 2437.1, + "end": 2442.46, + "probability": 0.9912 + }, + { + "start": 2442.46, + "end": 2445.66, + "probability": 0.9982 + }, + { + "start": 2446.24, + "end": 2449.24, + "probability": 0.8869 + }, + { + "start": 2449.96, + "end": 2452.98, + "probability": 0.8538 + }, + { + "start": 2453.52, + "end": 2456.76, + "probability": 0.9894 + }, + { + "start": 2457.04, + "end": 2463.18, + "probability": 0.8604 + }, + { + "start": 2463.38, + "end": 2467.56, + "probability": 0.9922 + }, + { + "start": 2467.56, + "end": 2471.92, + "probability": 0.9928 + }, + { + "start": 2471.98, + "end": 2476.34, + "probability": 0.991 + }, + { + "start": 2476.5, + "end": 2476.94, + "probability": 0.7383 + }, + { + "start": 2477.46, + "end": 2479.51, + "probability": 0.9414 + }, + { + "start": 2479.68, + "end": 2480.7, + "probability": 0.9874 + }, + { + "start": 2480.94, + "end": 2484.86, + "probability": 0.9707 + }, + { + "start": 2486.2, + "end": 2486.78, + "probability": 0.742 + }, + { + "start": 2487.32, + "end": 2489.28, + "probability": 0.9481 + }, + { + "start": 2489.34, + "end": 2491.2, + "probability": 0.7751 + }, + { + "start": 2491.92, + "end": 2497.0, + "probability": 0.9618 + }, + { + "start": 2497.58, + "end": 2501.36, + "probability": 0.9658 + }, + { + "start": 2501.42, + "end": 2501.92, + "probability": 0.5072 + }, + { + "start": 2502.38, + "end": 2507.4, + "probability": 0.9819 + }, + { + "start": 2507.94, + "end": 2508.62, + "probability": 0.8642 + }, + { + "start": 2509.04, + "end": 2513.76, + "probability": 0.996 + }, + { + "start": 2514.18, + "end": 2514.32, + "probability": 0.8467 + }, + { + "start": 2514.58, + "end": 2516.04, + "probability": 0.9457 + }, + { + "start": 2516.42, + "end": 2518.46, + "probability": 0.9899 + }, + { + "start": 2518.46, + "end": 2521.98, + "probability": 0.9901 + }, + { + "start": 2522.42, + "end": 2527.3, + "probability": 0.9971 + }, + { + "start": 2527.82, + "end": 2531.4, + "probability": 0.9825 + }, + { + "start": 2531.88, + "end": 2535.22, + "probability": 0.9886 + }, + { + "start": 2535.26, + "end": 2535.96, + "probability": 0.3083 + }, + { + "start": 2536.1, + "end": 2538.36, + "probability": 0.9379 + }, + { + "start": 2538.96, + "end": 2542.46, + "probability": 0.9615 + }, + { + "start": 2542.46, + "end": 2545.62, + "probability": 0.9927 + }, + { + "start": 2545.82, + "end": 2550.42, + "probability": 0.993 + }, + { + "start": 2550.7, + "end": 2554.76, + "probability": 0.9967 + }, + { + "start": 2555.0, + "end": 2556.28, + "probability": 0.9707 + }, + { + "start": 2556.38, + "end": 2558.94, + "probability": 0.7547 + }, + { + "start": 2559.48, + "end": 2563.0, + "probability": 0.9765 + }, + { + "start": 2563.58, + "end": 2567.88, + "probability": 0.9851 + }, + { + "start": 2568.74, + "end": 2576.36, + "probability": 0.8378 + }, + { + "start": 2576.38, + "end": 2578.0, + "probability": 0.7909 + }, + { + "start": 2578.22, + "end": 2578.85, + "probability": 0.9014 + }, + { + "start": 2580.94, + "end": 2581.64, + "probability": 0.0113 + }, + { + "start": 2581.64, + "end": 2581.92, + "probability": 0.1615 + }, + { + "start": 2581.92, + "end": 2582.68, + "probability": 0.8809 + }, + { + "start": 2583.0, + "end": 2586.38, + "probability": 0.945 + }, + { + "start": 2586.86, + "end": 2591.06, + "probability": 0.9937 + }, + { + "start": 2591.06, + "end": 2595.0, + "probability": 0.9392 + }, + { + "start": 2595.62, + "end": 2596.14, + "probability": 0.6635 + }, + { + "start": 2596.16, + "end": 2596.46, + "probability": 0.6833 + }, + { + "start": 2596.58, + "end": 2597.6, + "probability": 0.7693 + }, + { + "start": 2597.74, + "end": 2597.9, + "probability": 0.4203 + }, + { + "start": 2598.1, + "end": 2598.92, + "probability": 0.8105 + }, + { + "start": 2599.16, + "end": 2600.4, + "probability": 0.4445 + }, + { + "start": 2600.42, + "end": 2600.5, + "probability": 0.1581 + }, + { + "start": 2600.76, + "end": 2601.29, + "probability": 0.543 + }, + { + "start": 2602.98, + "end": 2605.05, + "probability": 0.9714 + }, + { + "start": 2605.26, + "end": 2606.32, + "probability": 0.5427 + }, + { + "start": 2606.32, + "end": 2608.89, + "probability": 0.9253 + }, + { + "start": 2609.34, + "end": 2610.2, + "probability": 0.4789 + }, + { + "start": 2610.2, + "end": 2611.6, + "probability": 0.1777 + }, + { + "start": 2611.6, + "end": 2613.22, + "probability": 0.1035 + }, + { + "start": 2613.32, + "end": 2613.7, + "probability": 0.0336 + }, + { + "start": 2613.7, + "end": 2615.38, + "probability": 0.1924 + }, + { + "start": 2615.38, + "end": 2616.72, + "probability": 0.0987 + }, + { + "start": 2617.76, + "end": 2618.52, + "probability": 0.0096 + }, + { + "start": 2620.68, + "end": 2621.6, + "probability": 0.1692 + }, + { + "start": 2621.6, + "end": 2621.6, + "probability": 0.5309 + }, + { + "start": 2621.6, + "end": 2623.4, + "probability": 0.6717 + }, + { + "start": 2623.52, + "end": 2624.3, + "probability": 0.4432 + }, + { + "start": 2624.42, + "end": 2627.08, + "probability": 0.7614 + }, + { + "start": 2627.42, + "end": 2629.8, + "probability": 0.9919 + }, + { + "start": 2629.92, + "end": 2630.14, + "probability": 0.7143 + }, + { + "start": 2630.14, + "end": 2630.62, + "probability": 0.6671 + }, + { + "start": 2630.62, + "end": 2632.3, + "probability": 0.8362 + }, + { + "start": 2632.6, + "end": 2633.94, + "probability": 0.9076 + }, + { + "start": 2634.2, + "end": 2636.0, + "probability": 0.9833 + }, + { + "start": 2636.02, + "end": 2637.32, + "probability": 0.6291 + }, + { + "start": 2637.48, + "end": 2638.86, + "probability": 0.9111 + }, + { + "start": 2640.84, + "end": 2645.8, + "probability": 0.402 + }, + { + "start": 2646.26, + "end": 2646.26, + "probability": 0.2831 + }, + { + "start": 2646.26, + "end": 2647.56, + "probability": 0.2161 + }, + { + "start": 2647.56, + "end": 2648.24, + "probability": 0.5313 + }, + { + "start": 2648.28, + "end": 2652.42, + "probability": 0.5906 + }, + { + "start": 2652.56, + "end": 2653.74, + "probability": 0.8896 + }, + { + "start": 2653.82, + "end": 2654.9, + "probability": 0.7282 + }, + { + "start": 2655.12, + "end": 2657.24, + "probability": 0.9883 + }, + { + "start": 2658.16, + "end": 2660.18, + "probability": 0.1869 + }, + { + "start": 2660.18, + "end": 2660.18, + "probability": 0.0583 + }, + { + "start": 2660.18, + "end": 2664.48, + "probability": 0.8981 + }, + { + "start": 2664.48, + "end": 2668.3, + "probability": 0.776 + }, + { + "start": 2668.58, + "end": 2670.24, + "probability": 0.9564 + }, + { + "start": 2670.4, + "end": 2673.96, + "probability": 0.6572 + }, + { + "start": 2674.54, + "end": 2677.22, + "probability": 0.9911 + }, + { + "start": 2677.74, + "end": 2682.06, + "probability": 0.8732 + }, + { + "start": 2682.28, + "end": 2685.1, + "probability": 0.9864 + }, + { + "start": 2685.24, + "end": 2687.1, + "probability": 0.994 + }, + { + "start": 2687.66, + "end": 2691.14, + "probability": 0.9786 + }, + { + "start": 2691.92, + "end": 2694.44, + "probability": 0.9989 + }, + { + "start": 2694.52, + "end": 2699.31, + "probability": 0.9971 + }, + { + "start": 2700.44, + "end": 2706.14, + "probability": 0.9833 + }, + { + "start": 2706.56, + "end": 2711.48, + "probability": 0.9781 + }, + { + "start": 2712.04, + "end": 2715.64, + "probability": 0.9985 + }, + { + "start": 2715.64, + "end": 2720.4, + "probability": 0.9989 + }, + { + "start": 2721.04, + "end": 2724.88, + "probability": 0.957 + }, + { + "start": 2724.98, + "end": 2730.12, + "probability": 0.9466 + }, + { + "start": 2730.36, + "end": 2730.7, + "probability": 0.7464 + }, + { + "start": 2731.48, + "end": 2733.24, + "probability": 0.6505 + }, + { + "start": 2733.3, + "end": 2736.8, + "probability": 0.9409 + }, + { + "start": 2736.86, + "end": 2739.08, + "probability": 0.9922 + }, + { + "start": 2739.8, + "end": 2745.62, + "probability": 0.9784 + }, + { + "start": 2745.74, + "end": 2749.48, + "probability": 0.9948 + }, + { + "start": 2749.86, + "end": 2749.98, + "probability": 0.668 + }, + { + "start": 2750.0, + "end": 2751.85, + "probability": 0.9604 + }, + { + "start": 2752.26, + "end": 2754.28, + "probability": 0.9378 + }, + { + "start": 2754.46, + "end": 2755.38, + "probability": 0.7454 + }, + { + "start": 2755.98, + "end": 2761.56, + "probability": 0.7871 + }, + { + "start": 2762.04, + "end": 2764.86, + "probability": 0.8434 + }, + { + "start": 2765.6, + "end": 2767.54, + "probability": 0.9562 + }, + { + "start": 2767.8, + "end": 2768.94, + "probability": 0.9627 + }, + { + "start": 2769.68, + "end": 2770.52, + "probability": 0.5674 + }, + { + "start": 2779.92, + "end": 2780.84, + "probability": 0.6704 + }, + { + "start": 2781.96, + "end": 2783.38, + "probability": 0.9001 + }, + { + "start": 2784.08, + "end": 2785.36, + "probability": 0.827 + }, + { + "start": 2786.34, + "end": 2787.38, + "probability": 0.687 + }, + { + "start": 2789.22, + "end": 2790.1, + "probability": 0.7915 + }, + { + "start": 2791.44, + "end": 2794.68, + "probability": 0.9882 + }, + { + "start": 2795.98, + "end": 2800.92, + "probability": 0.9953 + }, + { + "start": 2801.48, + "end": 2807.74, + "probability": 0.9976 + }, + { + "start": 2808.4, + "end": 2813.26, + "probability": 0.7439 + }, + { + "start": 2815.04, + "end": 2816.76, + "probability": 0.8564 + }, + { + "start": 2817.36, + "end": 2824.4, + "probability": 0.9668 + }, + { + "start": 2825.42, + "end": 2832.04, + "probability": 0.9814 + }, + { + "start": 2832.96, + "end": 2835.72, + "probability": 0.8957 + }, + { + "start": 2836.56, + "end": 2837.53, + "probability": 0.998 + }, + { + "start": 2838.52, + "end": 2840.5, + "probability": 0.9911 + }, + { + "start": 2841.62, + "end": 2843.56, + "probability": 0.9505 + }, + { + "start": 2844.6, + "end": 2846.22, + "probability": 0.9963 + }, + { + "start": 2847.58, + "end": 2853.11, + "probability": 0.9755 + }, + { + "start": 2853.6, + "end": 2856.62, + "probability": 0.8009 + }, + { + "start": 2856.76, + "end": 2861.62, + "probability": 0.8502 + }, + { + "start": 2862.24, + "end": 2865.72, + "probability": 0.8177 + }, + { + "start": 2866.36, + "end": 2867.56, + "probability": 0.9375 + }, + { + "start": 2868.1, + "end": 2871.06, + "probability": 0.6622 + }, + { + "start": 2871.64, + "end": 2873.16, + "probability": 0.8981 + }, + { + "start": 2873.96, + "end": 2874.7, + "probability": 0.8817 + }, + { + "start": 2875.4, + "end": 2878.86, + "probability": 0.8972 + }, + { + "start": 2879.44, + "end": 2882.72, + "probability": 0.8727 + }, + { + "start": 2883.42, + "end": 2886.74, + "probability": 0.9849 + }, + { + "start": 2886.74, + "end": 2890.72, + "probability": 0.894 + }, + { + "start": 2891.3, + "end": 2893.28, + "probability": 0.7054 + }, + { + "start": 2894.06, + "end": 2895.22, + "probability": 0.7807 + }, + { + "start": 2897.76, + "end": 2902.98, + "probability": 0.7916 + }, + { + "start": 2903.64, + "end": 2908.32, + "probability": 0.9879 + }, + { + "start": 2909.2, + "end": 2913.32, + "probability": 0.9481 + }, + { + "start": 2913.86, + "end": 2918.0, + "probability": 0.9095 + }, + { + "start": 2918.82, + "end": 2921.32, + "probability": 0.9701 + }, + { + "start": 2922.18, + "end": 2923.78, + "probability": 0.7042 + }, + { + "start": 2924.26, + "end": 2929.42, + "probability": 0.8488 + }, + { + "start": 2929.98, + "end": 2932.52, + "probability": 0.7175 + }, + { + "start": 2932.52, + "end": 2936.58, + "probability": 0.7582 + }, + { + "start": 2937.44, + "end": 2941.66, + "probability": 0.9814 + }, + { + "start": 2942.84, + "end": 2947.56, + "probability": 0.9842 + }, + { + "start": 2948.34, + "end": 2951.16, + "probability": 0.8252 + }, + { + "start": 2951.36, + "end": 2957.46, + "probability": 0.9328 + }, + { + "start": 2958.58, + "end": 2963.22, + "probability": 0.8286 + }, + { + "start": 2963.8, + "end": 2969.04, + "probability": 0.8794 + }, + { + "start": 2969.72, + "end": 2973.24, + "probability": 0.8218 + }, + { + "start": 2973.84, + "end": 2979.52, + "probability": 0.7959 + }, + { + "start": 2980.58, + "end": 2983.44, + "probability": 0.9413 + }, + { + "start": 2984.0, + "end": 2988.88, + "probability": 0.9575 + }, + { + "start": 2990.12, + "end": 2994.06, + "probability": 0.8848 + }, + { + "start": 2994.42, + "end": 2998.62, + "probability": 0.7027 + }, + { + "start": 2999.14, + "end": 3002.8, + "probability": 0.7969 + }, + { + "start": 3003.62, + "end": 3004.2, + "probability": 0.9163 + }, + { + "start": 3004.74, + "end": 3006.06, + "probability": 0.6081 + }, + { + "start": 3007.3, + "end": 3011.78, + "probability": 0.7388 + }, + { + "start": 3012.72, + "end": 3013.7, + "probability": 0.9176 + }, + { + "start": 3014.66, + "end": 3017.96, + "probability": 0.9478 + }, + { + "start": 3018.62, + "end": 3019.8, + "probability": 0.6695 + }, + { + "start": 3020.58, + "end": 3022.8, + "probability": 0.8259 + }, + { + "start": 3023.3, + "end": 3024.42, + "probability": 0.3094 + }, + { + "start": 3024.54, + "end": 3028.54, + "probability": 0.7215 + }, + { + "start": 3029.28, + "end": 3030.92, + "probability": 0.5061 + }, + { + "start": 3031.42, + "end": 3033.08, + "probability": 0.8712 + }, + { + "start": 3033.62, + "end": 3038.52, + "probability": 0.6115 + }, + { + "start": 3038.9, + "end": 3044.84, + "probability": 0.6211 + }, + { + "start": 3045.02, + "end": 3045.2, + "probability": 0.4442 + }, + { + "start": 3045.58, + "end": 3048.78, + "probability": 0.9316 + }, + { + "start": 3049.48, + "end": 3051.94, + "probability": 0.8772 + }, + { + "start": 3052.72, + "end": 3054.8, + "probability": 0.8991 + }, + { + "start": 3055.46, + "end": 3057.48, + "probability": 0.9622 + }, + { + "start": 3057.6, + "end": 3058.58, + "probability": 0.7342 + }, + { + "start": 3058.76, + "end": 3060.54, + "probability": 0.6733 + }, + { + "start": 3061.3, + "end": 3063.84, + "probability": 0.3985 + }, + { + "start": 3064.18, + "end": 3064.6, + "probability": 0.7779 + }, + { + "start": 3065.1, + "end": 3066.26, + "probability": 0.7802 + }, + { + "start": 3066.4, + "end": 3067.3, + "probability": 0.7156 + }, + { + "start": 3067.4, + "end": 3067.92, + "probability": 0.6276 + }, + { + "start": 3068.06, + "end": 3070.16, + "probability": 0.6726 + }, + { + "start": 3070.44, + "end": 3071.12, + "probability": 0.8068 + }, + { + "start": 3072.4, + "end": 3075.8, + "probability": 0.8429 + }, + { + "start": 3076.82, + "end": 3079.84, + "probability": 0.9854 + }, + { + "start": 3080.62, + "end": 3081.36, + "probability": 0.5618 + }, + { + "start": 3081.54, + "end": 3082.68, + "probability": 0.7434 + }, + { + "start": 3082.76, + "end": 3083.46, + "probability": 0.9495 + }, + { + "start": 3083.62, + "end": 3084.38, + "probability": 0.8844 + }, + { + "start": 3084.86, + "end": 3085.38, + "probability": 0.4871 + }, + { + "start": 3085.46, + "end": 3085.74, + "probability": 0.5915 + }, + { + "start": 3086.34, + "end": 3088.58, + "probability": 0.9663 + }, + { + "start": 3089.1, + "end": 3089.24, + "probability": 0.0378 + }, + { + "start": 3089.24, + "end": 3091.32, + "probability": 0.9741 + }, + { + "start": 3093.3, + "end": 3094.06, + "probability": 0.8166 + }, + { + "start": 3094.58, + "end": 3096.98, + "probability": 0.8812 + }, + { + "start": 3098.82, + "end": 3100.58, + "probability": 0.9396 + }, + { + "start": 3102.88, + "end": 3105.06, + "probability": 0.9941 + }, + { + "start": 3106.36, + "end": 3109.32, + "probability": 0.9995 + }, + { + "start": 3110.03, + "end": 3111.86, + "probability": 0.9583 + }, + { + "start": 3112.6, + "end": 3115.3, + "probability": 0.8198 + }, + { + "start": 3116.66, + "end": 3119.48, + "probability": 0.9881 + }, + { + "start": 3119.68, + "end": 3120.58, + "probability": 0.987 + }, + { + "start": 3121.72, + "end": 3124.33, + "probability": 0.7656 + }, + { + "start": 3125.68, + "end": 3128.28, + "probability": 0.9608 + }, + { + "start": 3128.38, + "end": 3129.2, + "probability": 0.5657 + }, + { + "start": 3129.22, + "end": 3130.52, + "probability": 0.5465 + }, + { + "start": 3131.02, + "end": 3134.94, + "probability": 0.7837 + }, + { + "start": 3135.06, + "end": 3139.56, + "probability": 0.8849 + }, + { + "start": 3139.76, + "end": 3145.84, + "probability": 0.8039 + }, + { + "start": 3145.92, + "end": 3148.92, + "probability": 0.8994 + }, + { + "start": 3149.5, + "end": 3152.82, + "probability": 0.8625 + }, + { + "start": 3152.94, + "end": 3153.76, + "probability": 0.9886 + }, + { + "start": 3154.62, + "end": 3156.1, + "probability": 0.759 + }, + { + "start": 3157.7, + "end": 3160.9, + "probability": 0.6865 + }, + { + "start": 3161.06, + "end": 3162.74, + "probability": 0.8437 + }, + { + "start": 3162.88, + "end": 3163.72, + "probability": 0.7499 + }, + { + "start": 3164.52, + "end": 3167.9, + "probability": 0.9976 + }, + { + "start": 3167.92, + "end": 3170.58, + "probability": 0.9982 + }, + { + "start": 3171.46, + "end": 3172.68, + "probability": 0.9646 + }, + { + "start": 3174.22, + "end": 3175.36, + "probability": 0.9895 + }, + { + "start": 3176.78, + "end": 3177.94, + "probability": 0.9146 + }, + { + "start": 3179.2, + "end": 3181.2, + "probability": 0.6306 + }, + { + "start": 3181.5, + "end": 3184.88, + "probability": 0.9869 + }, + { + "start": 3186.48, + "end": 3186.92, + "probability": 0.9744 + }, + { + "start": 3187.02, + "end": 3191.4, + "probability": 0.9819 + }, + { + "start": 3192.98, + "end": 3194.84, + "probability": 0.9893 + }, + { + "start": 3195.8, + "end": 3196.64, + "probability": 0.9342 + }, + { + "start": 3197.58, + "end": 3198.96, + "probability": 0.9349 + }, + { + "start": 3200.0, + "end": 3202.76, + "probability": 0.9038 + }, + { + "start": 3204.48, + "end": 3205.3, + "probability": 0.9192 + }, + { + "start": 3208.18, + "end": 3211.1, + "probability": 0.4541 + }, + { + "start": 3211.64, + "end": 3211.76, + "probability": 0.1227 + }, + { + "start": 3211.76, + "end": 3213.28, + "probability": 0.2477 + }, + { + "start": 3213.52, + "end": 3215.78, + "probability": 0.7726 + }, + { + "start": 3217.34, + "end": 3218.56, + "probability": 0.6158 + }, + { + "start": 3219.02, + "end": 3220.46, + "probability": 0.9224 + }, + { + "start": 3221.62, + "end": 3222.6, + "probability": 0.724 + }, + { + "start": 3223.9, + "end": 3224.86, + "probability": 0.8381 + }, + { + "start": 3225.08, + "end": 3230.76, + "probability": 0.9905 + }, + { + "start": 3231.04, + "end": 3232.0, + "probability": 0.7887 + }, + { + "start": 3232.66, + "end": 3233.78, + "probability": 0.9815 + }, + { + "start": 3234.5, + "end": 3234.64, + "probability": 0.9294 + }, + { + "start": 3236.2, + "end": 3236.68, + "probability": 0.7282 + }, + { + "start": 3237.3, + "end": 3237.3, + "probability": 0.6833 + }, + { + "start": 3237.62, + "end": 3238.08, + "probability": 0.9049 + }, + { + "start": 3239.07, + "end": 3243.94, + "probability": 0.6377 + }, + { + "start": 3244.0, + "end": 3244.58, + "probability": 0.9255 + }, + { + "start": 3245.14, + "end": 3246.06, + "probability": 0.7316 + }, + { + "start": 3247.24, + "end": 3250.78, + "probability": 0.9808 + }, + { + "start": 3251.16, + "end": 3255.44, + "probability": 0.9954 + }, + { + "start": 3256.1, + "end": 3258.78, + "probability": 0.9971 + }, + { + "start": 3259.92, + "end": 3263.14, + "probability": 0.8928 + }, + { + "start": 3264.0, + "end": 3266.82, + "probability": 0.9937 + }, + { + "start": 3267.0, + "end": 3269.38, + "probability": 0.9976 + }, + { + "start": 3269.94, + "end": 3270.96, + "probability": 0.939 + }, + { + "start": 3271.06, + "end": 3271.78, + "probability": 0.8321 + }, + { + "start": 3271.96, + "end": 3272.44, + "probability": 0.7837 + }, + { + "start": 3273.48, + "end": 3274.08, + "probability": 0.7575 + }, + { + "start": 3274.18, + "end": 3274.6, + "probability": 0.417 + }, + { + "start": 3274.6, + "end": 3274.94, + "probability": 0.2466 + }, + { + "start": 3275.08, + "end": 3275.88, + "probability": 0.8359 + }, + { + "start": 3276.72, + "end": 3280.82, + "probability": 0.7181 + }, + { + "start": 3280.92, + "end": 3282.92, + "probability": 0.9608 + }, + { + "start": 3283.98, + "end": 3284.68, + "probability": 0.9832 + }, + { + "start": 3285.2, + "end": 3285.64, + "probability": 0.9388 + }, + { + "start": 3285.76, + "end": 3288.06, + "probability": 0.9685 + }, + { + "start": 3288.48, + "end": 3288.76, + "probability": 0.0787 + }, + { + "start": 3289.24, + "end": 3290.62, + "probability": 0.5438 + }, + { + "start": 3290.7, + "end": 3293.06, + "probability": 0.665 + }, + { + "start": 3293.24, + "end": 3293.96, + "probability": 0.7626 + }, + { + "start": 3294.14, + "end": 3295.68, + "probability": 0.8902 + }, + { + "start": 3296.26, + "end": 3297.68, + "probability": 0.9561 + }, + { + "start": 3297.94, + "end": 3298.34, + "probability": 0.0124 + }, + { + "start": 3298.62, + "end": 3299.72, + "probability": 0.6885 + }, + { + "start": 3300.12, + "end": 3303.14, + "probability": 0.9865 + }, + { + "start": 3303.6, + "end": 3306.25, + "probability": 0.812 + }, + { + "start": 3306.82, + "end": 3307.82, + "probability": 0.4325 + }, + { + "start": 3307.96, + "end": 3308.72, + "probability": 0.3786 + }, + { + "start": 3309.46, + "end": 3310.04, + "probability": 0.9805 + }, + { + "start": 3310.8, + "end": 3312.28, + "probability": 0.9922 + }, + { + "start": 3312.38, + "end": 3315.96, + "probability": 0.9971 + }, + { + "start": 3316.58, + "end": 3317.44, + "probability": 0.9437 + }, + { + "start": 3319.54, + "end": 3322.36, + "probability": 0.5314 + }, + { + "start": 3323.2, + "end": 3325.4, + "probability": 0.7756 + }, + { + "start": 3325.66, + "end": 3326.98, + "probability": 0.9502 + }, + { + "start": 3326.98, + "end": 3328.04, + "probability": 0.3873 + }, + { + "start": 3329.88, + "end": 3333.04, + "probability": 0.4939 + }, + { + "start": 3333.06, + "end": 3333.48, + "probability": 0.0246 + }, + { + "start": 3333.48, + "end": 3333.48, + "probability": 0.0465 + }, + { + "start": 3333.48, + "end": 3333.48, + "probability": 0.5936 + }, + { + "start": 3333.48, + "end": 3335.52, + "probability": 0.7751 + }, + { + "start": 3335.56, + "end": 3337.14, + "probability": 0.9771 + }, + { + "start": 3338.02, + "end": 3339.75, + "probability": 0.8122 + }, + { + "start": 3340.2, + "end": 3344.56, + "probability": 0.9968 + }, + { + "start": 3345.43, + "end": 3348.46, + "probability": 0.9851 + }, + { + "start": 3349.02, + "end": 3352.36, + "probability": 0.9849 + }, + { + "start": 3352.94, + "end": 3354.66, + "probability": 0.9966 + }, + { + "start": 3354.84, + "end": 3355.26, + "probability": 0.5622 + }, + { + "start": 3355.36, + "end": 3355.98, + "probability": 0.1861 + }, + { + "start": 3356.1, + "end": 3357.32, + "probability": 0.5015 + }, + { + "start": 3357.76, + "end": 3358.04, + "probability": 0.2076 + }, + { + "start": 3358.06, + "end": 3359.76, + "probability": 0.7778 + }, + { + "start": 3359.88, + "end": 3361.3, + "probability": 0.9182 + }, + { + "start": 3361.3, + "end": 3361.69, + "probability": 0.5654 + }, + { + "start": 3362.18, + "end": 3362.46, + "probability": 0.3835 + }, + { + "start": 3362.46, + "end": 3362.88, + "probability": 0.3641 + }, + { + "start": 3363.04, + "end": 3363.38, + "probability": 0.8645 + }, + { + "start": 3363.44, + "end": 3364.48, + "probability": 0.9907 + }, + { + "start": 3365.46, + "end": 3367.08, + "probability": 0.9583 + }, + { + "start": 3367.12, + "end": 3368.3, + "probability": 0.8353 + }, + { + "start": 3368.36, + "end": 3368.68, + "probability": 0.5887 + }, + { + "start": 3368.68, + "end": 3370.16, + "probability": 0.5882 + }, + { + "start": 3371.06, + "end": 3376.44, + "probability": 0.8954 + }, + { + "start": 3377.68, + "end": 3378.82, + "probability": 0.9885 + }, + { + "start": 3381.42, + "end": 3386.28, + "probability": 0.9927 + }, + { + "start": 3386.84, + "end": 3387.48, + "probability": 0.549 + }, + { + "start": 3388.66, + "end": 3390.9, + "probability": 0.9564 + }, + { + "start": 3390.98, + "end": 3392.62, + "probability": 0.9705 + }, + { + "start": 3393.5, + "end": 3395.68, + "probability": 0.9482 + }, + { + "start": 3396.06, + "end": 3398.64, + "probability": 0.9917 + }, + { + "start": 3399.12, + "end": 3400.62, + "probability": 0.9811 + }, + { + "start": 3400.96, + "end": 3402.46, + "probability": 0.9982 + }, + { + "start": 3403.32, + "end": 3405.52, + "probability": 0.9749 + }, + { + "start": 3406.6, + "end": 3408.3, + "probability": 0.9901 + }, + { + "start": 3409.2, + "end": 3409.95, + "probability": 0.9517 + }, + { + "start": 3410.68, + "end": 3413.9, + "probability": 0.9923 + }, + { + "start": 3414.44, + "end": 3414.8, + "probability": 0.7398 + }, + { + "start": 3415.34, + "end": 3415.36, + "probability": 0.1439 + }, + { + "start": 3415.36, + "end": 3416.12, + "probability": 0.5738 + }, + { + "start": 3416.54, + "end": 3418.64, + "probability": 0.9551 + }, + { + "start": 3426.76, + "end": 3430.8, + "probability": 0.4169 + }, + { + "start": 3432.4, + "end": 3433.52, + "probability": 0.7538 + }, + { + "start": 3434.6, + "end": 3436.08, + "probability": 0.7832 + }, + { + "start": 3438.68, + "end": 3438.68, + "probability": 0.493 + }, + { + "start": 3438.68, + "end": 3440.36, + "probability": 0.1477 + }, + { + "start": 3441.73, + "end": 3444.94, + "probability": 0.7435 + }, + { + "start": 3445.59, + "end": 3448.94, + "probability": 0.5412 + }, + { + "start": 3449.26, + "end": 3452.4, + "probability": 0.9575 + }, + { + "start": 3453.96, + "end": 3458.32, + "probability": 0.7922 + }, + { + "start": 3459.64, + "end": 3461.52, + "probability": 0.9619 + }, + { + "start": 3462.44, + "end": 3464.24, + "probability": 0.8279 + }, + { + "start": 3464.58, + "end": 3465.58, + "probability": 0.7005 + }, + { + "start": 3467.82, + "end": 3471.68, + "probability": 0.915 + }, + { + "start": 3472.46, + "end": 3473.04, + "probability": 0.8609 + }, + { + "start": 3473.2, + "end": 3473.96, + "probability": 0.6786 + }, + { + "start": 3474.38, + "end": 3475.8, + "probability": 0.7964 + }, + { + "start": 3475.86, + "end": 3477.2, + "probability": 0.6982 + }, + { + "start": 3477.96, + "end": 3484.84, + "probability": 0.9635 + }, + { + "start": 3484.9, + "end": 3486.14, + "probability": 0.7479 + }, + { + "start": 3486.86, + "end": 3490.12, + "probability": 0.4434 + }, + { + "start": 3491.46, + "end": 3492.72, + "probability": 0.7837 + }, + { + "start": 3493.72, + "end": 3495.32, + "probability": 0.953 + }, + { + "start": 3496.3, + "end": 3499.96, + "probability": 0.7976 + }, + { + "start": 3500.26, + "end": 3500.78, + "probability": 0.9123 + }, + { + "start": 3501.44, + "end": 3504.12, + "probability": 0.9644 + }, + { + "start": 3504.96, + "end": 3508.8, + "probability": 0.9823 + }, + { + "start": 3510.44, + "end": 3512.46, + "probability": 0.8126 + }, + { + "start": 3513.48, + "end": 3515.32, + "probability": 0.951 + }, + { + "start": 3516.2, + "end": 3517.28, + "probability": 0.9634 + }, + { + "start": 3518.54, + "end": 3520.26, + "probability": 0.9897 + }, + { + "start": 3520.88, + "end": 3522.14, + "probability": 0.9915 + }, + { + "start": 3523.64, + "end": 3524.52, + "probability": 0.9883 + }, + { + "start": 3525.74, + "end": 3529.38, + "probability": 0.9884 + }, + { + "start": 3530.78, + "end": 3532.72, + "probability": 0.9944 + }, + { + "start": 3533.56, + "end": 3536.9, + "probability": 0.9681 + }, + { + "start": 3538.08, + "end": 3539.32, + "probability": 0.9203 + }, + { + "start": 3540.48, + "end": 3541.9, + "probability": 0.9629 + }, + { + "start": 3543.44, + "end": 3544.24, + "probability": 0.9487 + }, + { + "start": 3545.24, + "end": 3546.24, + "probability": 0.9795 + }, + { + "start": 3547.46, + "end": 3550.92, + "probability": 0.984 + }, + { + "start": 3552.6, + "end": 3554.34, + "probability": 0.9821 + }, + { + "start": 3555.76, + "end": 3557.04, + "probability": 0.7797 + }, + { + "start": 3557.7, + "end": 3558.02, + "probability": 0.8652 + }, + { + "start": 3558.16, + "end": 3558.54, + "probability": 0.9386 + }, + { + "start": 3558.94, + "end": 3559.42, + "probability": 0.9584 + }, + { + "start": 3560.3, + "end": 3561.2, + "probability": 0.9482 + }, + { + "start": 3562.2, + "end": 3563.2, + "probability": 0.8357 + }, + { + "start": 3565.06, + "end": 3568.94, + "probability": 0.989 + }, + { + "start": 3570.36, + "end": 3573.74, + "probability": 0.994 + }, + { + "start": 3574.68, + "end": 3577.18, + "probability": 0.8721 + }, + { + "start": 3578.64, + "end": 3582.7, + "probability": 0.8042 + }, + { + "start": 3583.5, + "end": 3585.92, + "probability": 0.4748 + }, + { + "start": 3587.1, + "end": 3589.46, + "probability": 0.8407 + }, + { + "start": 3592.42, + "end": 3594.8, + "probability": 0.5178 + }, + { + "start": 3594.94, + "end": 3596.36, + "probability": 0.8795 + }, + { + "start": 3597.04, + "end": 3599.92, + "probability": 0.991 + }, + { + "start": 3601.18, + "end": 3603.42, + "probability": 0.976 + }, + { + "start": 3604.6, + "end": 3606.42, + "probability": 0.8154 + }, + { + "start": 3607.24, + "end": 3611.24, + "probability": 0.9939 + }, + { + "start": 3612.76, + "end": 3613.74, + "probability": 0.6212 + }, + { + "start": 3615.04, + "end": 3617.32, + "probability": 0.8889 + }, + { + "start": 3620.12, + "end": 3625.36, + "probability": 0.9065 + }, + { + "start": 3627.54, + "end": 3628.5, + "probability": 0.7605 + }, + { + "start": 3630.48, + "end": 3636.32, + "probability": 0.9949 + }, + { + "start": 3636.38, + "end": 3637.32, + "probability": 0.7437 + }, + { + "start": 3638.46, + "end": 3639.8, + "probability": 0.9928 + }, + { + "start": 3640.32, + "end": 3641.56, + "probability": 0.996 + }, + { + "start": 3642.32, + "end": 3645.54, + "probability": 0.9932 + }, + { + "start": 3645.54, + "end": 3648.92, + "probability": 0.9419 + }, + { + "start": 3649.52, + "end": 3651.44, + "probability": 0.9799 + }, + { + "start": 3652.98, + "end": 3653.7, + "probability": 0.8855 + }, + { + "start": 3656.16, + "end": 3659.08, + "probability": 0.9769 + }, + { + "start": 3659.66, + "end": 3662.22, + "probability": 0.9831 + }, + { + "start": 3664.12, + "end": 3664.98, + "probability": 0.7498 + }, + { + "start": 3667.82, + "end": 3672.66, + "probability": 0.8382 + }, + { + "start": 3672.66, + "end": 3678.6, + "probability": 0.9743 + }, + { + "start": 3679.58, + "end": 3682.32, + "probability": 0.9719 + }, + { + "start": 3683.0, + "end": 3690.26, + "probability": 0.9842 + }, + { + "start": 3690.42, + "end": 3692.04, + "probability": 0.7797 + }, + { + "start": 3692.2, + "end": 3693.3, + "probability": 0.8659 + }, + { + "start": 3693.86, + "end": 3696.9, + "probability": 0.9483 + }, + { + "start": 3697.42, + "end": 3698.82, + "probability": 0.8095 + }, + { + "start": 3699.66, + "end": 3705.0, + "probability": 0.6836 + }, + { + "start": 3705.96, + "end": 3705.96, + "probability": 0.0059 + }, + { + "start": 3705.96, + "end": 3705.96, + "probability": 0.144 + }, + { + "start": 3705.96, + "end": 3705.96, + "probability": 0.0321 + }, + { + "start": 3705.96, + "end": 3708.26, + "probability": 0.5036 + }, + { + "start": 3708.52, + "end": 3709.14, + "probability": 0.3354 + }, + { + "start": 3710.39, + "end": 3715.7, + "probability": 0.9603 + }, + { + "start": 3716.52, + "end": 3719.12, + "probability": 0.9419 + }, + { + "start": 3719.7, + "end": 3722.28, + "probability": 0.8823 + }, + { + "start": 3723.12, + "end": 3727.66, + "probability": 0.994 + }, + { + "start": 3728.42, + "end": 3729.76, + "probability": 0.8735 + }, + { + "start": 3731.14, + "end": 3734.82, + "probability": 0.9492 + }, + { + "start": 3735.06, + "end": 3735.42, + "probability": 0.6011 + }, + { + "start": 3736.62, + "end": 3738.84, + "probability": 0.9849 + }, + { + "start": 3739.26, + "end": 3740.0, + "probability": 0.9584 + }, + { + "start": 3740.24, + "end": 3741.12, + "probability": 0.9904 + }, + { + "start": 3741.78, + "end": 3744.18, + "probability": 0.8126 + }, + { + "start": 3744.7, + "end": 3746.14, + "probability": 0.5293 + }, + { + "start": 3746.86, + "end": 3749.34, + "probability": 0.9026 + }, + { + "start": 3755.22, + "end": 3756.0, + "probability": 0.1528 + }, + { + "start": 3756.14, + "end": 3756.28, + "probability": 0.1591 + }, + { + "start": 3756.4, + "end": 3758.08, + "probability": 0.0176 + }, + { + "start": 3759.84, + "end": 3760.91, + "probability": 0.3021 + }, + { + "start": 3774.66, + "end": 3775.12, + "probability": 0.4213 + }, + { + "start": 3791.06, + "end": 3793.54, + "probability": 0.9155 + }, + { + "start": 3793.94, + "end": 3798.68, + "probability": 0.9983 + }, + { + "start": 3798.86, + "end": 3799.6, + "probability": 0.7305 + }, + { + "start": 3801.08, + "end": 3807.52, + "probability": 0.9897 + }, + { + "start": 3811.0, + "end": 3816.36, + "probability": 0.9442 + }, + { + "start": 3816.56, + "end": 3817.36, + "probability": 0.4884 + }, + { + "start": 3817.76, + "end": 3818.88, + "probability": 0.6434 + }, + { + "start": 3820.58, + "end": 3823.58, + "probability": 0.9628 + }, + { + "start": 3823.58, + "end": 3828.16, + "probability": 0.9839 + }, + { + "start": 3830.44, + "end": 3836.08, + "probability": 0.9827 + }, + { + "start": 3836.3, + "end": 3837.28, + "probability": 0.9607 + }, + { + "start": 3838.1, + "end": 3841.6, + "probability": 0.9893 + }, + { + "start": 3841.6, + "end": 3844.7, + "probability": 0.9731 + }, + { + "start": 3845.32, + "end": 3846.52, + "probability": 0.9539 + }, + { + "start": 3849.74, + "end": 3853.78, + "probability": 0.6686 + }, + { + "start": 3854.74, + "end": 3858.08, + "probability": 0.9865 + }, + { + "start": 3859.36, + "end": 3859.8, + "probability": 0.8844 + }, + { + "start": 3860.57, + "end": 3867.3, + "probability": 0.9635 + }, + { + "start": 3868.36, + "end": 3869.84, + "probability": 0.6638 + }, + { + "start": 3872.14, + "end": 3876.54, + "probability": 0.9367 + }, + { + "start": 3876.62, + "end": 3877.22, + "probability": 0.8748 + }, + { + "start": 3877.36, + "end": 3878.56, + "probability": 0.7964 + }, + { + "start": 3879.24, + "end": 3883.28, + "probability": 0.9901 + }, + { + "start": 3884.2, + "end": 3886.92, + "probability": 0.9966 + }, + { + "start": 3886.92, + "end": 3890.58, + "probability": 0.9887 + }, + { + "start": 3891.08, + "end": 3891.78, + "probability": 0.2947 + }, + { + "start": 3892.0, + "end": 3892.96, + "probability": 0.1963 + }, + { + "start": 3893.4, + "end": 3895.14, + "probability": 0.2625 + }, + { + "start": 3898.38, + "end": 3898.54, + "probability": 0.0896 + }, + { + "start": 3898.54, + "end": 3902.28, + "probability": 0.9174 + }, + { + "start": 3903.22, + "end": 3904.6, + "probability": 0.4883 + }, + { + "start": 3905.34, + "end": 3906.38, + "probability": 0.8737 + }, + { + "start": 3906.42, + "end": 3906.66, + "probability": 0.9319 + }, + { + "start": 3906.84, + "end": 3908.2, + "probability": 0.9338 + }, + { + "start": 3909.72, + "end": 3910.16, + "probability": 0.9106 + }, + { + "start": 3911.0, + "end": 3912.0, + "probability": 0.3884 + }, + { + "start": 3915.16, + "end": 3916.06, + "probability": 0.4135 + }, + { + "start": 3916.12, + "end": 3917.64, + "probability": 0.6434 + }, + { + "start": 3918.12, + "end": 3918.53, + "probability": 0.7963 + }, + { + "start": 3918.84, + "end": 3919.88, + "probability": 0.5322 + }, + { + "start": 3920.32, + "end": 3920.92, + "probability": 0.6947 + }, + { + "start": 3921.06, + "end": 3922.4, + "probability": 0.9447 + }, + { + "start": 3923.4, + "end": 3930.12, + "probability": 0.969 + }, + { + "start": 3930.18, + "end": 3930.56, + "probability": 0.3776 + }, + { + "start": 3930.66, + "end": 3931.64, + "probability": 0.6527 + }, + { + "start": 3931.9, + "end": 3933.22, + "probability": 0.8149 + }, + { + "start": 3933.28, + "end": 3934.88, + "probability": 0.666 + }, + { + "start": 3935.02, + "end": 3935.42, + "probability": 0.0836 + }, + { + "start": 3935.68, + "end": 3936.1, + "probability": 0.5426 + }, + { + "start": 3936.1, + "end": 3937.96, + "probability": 0.7653 + }, + { + "start": 3938.3, + "end": 3939.62, + "probability": 0.8389 + }, + { + "start": 3940.06, + "end": 3944.02, + "probability": 0.4193 + }, + { + "start": 3945.38, + "end": 3946.26, + "probability": 0.0948 + }, + { + "start": 3946.26, + "end": 3946.26, + "probability": 0.0376 + }, + { + "start": 3946.26, + "end": 3946.26, + "probability": 0.1345 + }, + { + "start": 3946.26, + "end": 3946.26, + "probability": 0.3367 + }, + { + "start": 3946.26, + "end": 3946.26, + "probability": 0.0623 + }, + { + "start": 3946.26, + "end": 3946.26, + "probability": 0.0134 + }, + { + "start": 3946.26, + "end": 3946.26, + "probability": 0.2142 + }, + { + "start": 3946.26, + "end": 3947.1, + "probability": 0.4027 + }, + { + "start": 3947.22, + "end": 3949.0, + "probability": 0.8016 + }, + { + "start": 3949.14, + "end": 3951.46, + "probability": 0.9893 + }, + { + "start": 3951.88, + "end": 3952.2, + "probability": 0.0805 + }, + { + "start": 3952.6, + "end": 3955.6, + "probability": 0.9399 + }, + { + "start": 3957.5, + "end": 3958.6, + "probability": 0.5051 + }, + { + "start": 3958.88, + "end": 3959.38, + "probability": 0.8223 + }, + { + "start": 3959.48, + "end": 3961.92, + "probability": 0.8731 + }, + { + "start": 3961.98, + "end": 3965.92, + "probability": 0.8671 + }, + { + "start": 3966.0, + "end": 3969.86, + "probability": 0.9914 + }, + { + "start": 3970.7, + "end": 3973.82, + "probability": 0.8686 + }, + { + "start": 3974.52, + "end": 3978.72, + "probability": 0.9445 + }, + { + "start": 3979.38, + "end": 3980.6, + "probability": 0.9354 + }, + { + "start": 3981.72, + "end": 3983.64, + "probability": 0.691 + }, + { + "start": 3985.04, + "end": 3987.76, + "probability": 0.6005 + }, + { + "start": 3987.76, + "end": 3992.38, + "probability": 0.9619 + }, + { + "start": 3992.96, + "end": 3994.42, + "probability": 0.7524 + }, + { + "start": 3995.18, + "end": 3995.98, + "probability": 0.9399 + }, + { + "start": 3996.64, + "end": 3998.46, + "probability": 0.9797 + }, + { + "start": 3998.58, + "end": 3999.72, + "probability": 0.9824 + }, + { + "start": 3999.84, + "end": 4000.94, + "probability": 0.8481 + }, + { + "start": 4002.32, + "end": 4003.94, + "probability": 0.8281 + }, + { + "start": 4004.66, + "end": 4006.06, + "probability": 0.7295 + }, + { + "start": 4007.2, + "end": 4015.28, + "probability": 0.9785 + }, + { + "start": 4015.54, + "end": 4017.2, + "probability": 0.9797 + }, + { + "start": 4017.92, + "end": 4018.78, + "probability": 0.3764 + }, + { + "start": 4019.5, + "end": 4024.54, + "probability": 0.5449 + }, + { + "start": 4025.44, + "end": 4031.96, + "probability": 0.8181 + }, + { + "start": 4032.16, + "end": 4035.18, + "probability": 0.9946 + }, + { + "start": 4035.9, + "end": 4037.34, + "probability": 0.997 + }, + { + "start": 4037.88, + "end": 4039.3, + "probability": 0.6898 + }, + { + "start": 4039.46, + "end": 4039.46, + "probability": 0.2071 + }, + { + "start": 4039.46, + "end": 4041.72, + "probability": 0.7916 + }, + { + "start": 4041.8, + "end": 4042.74, + "probability": 0.681 + }, + { + "start": 4042.86, + "end": 4043.46, + "probability": 0.6465 + }, + { + "start": 4044.12, + "end": 4044.84, + "probability": 0.9053 + }, + { + "start": 4045.06, + "end": 4047.92, + "probability": 0.9922 + }, + { + "start": 4049.1, + "end": 4050.66, + "probability": 0.8483 + }, + { + "start": 4051.28, + "end": 4054.6, + "probability": 0.9906 + }, + { + "start": 4055.2, + "end": 4059.26, + "probability": 0.8529 + }, + { + "start": 4059.8, + "end": 4060.18, + "probability": 0.7438 + }, + { + "start": 4060.28, + "end": 4064.56, + "probability": 0.917 + }, + { + "start": 4066.3, + "end": 4067.52, + "probability": 0.9887 + }, + { + "start": 4070.92, + "end": 4072.94, + "probability": 0.9514 + }, + { + "start": 4073.84, + "end": 4075.86, + "probability": 0.9336 + }, + { + "start": 4077.16, + "end": 4077.48, + "probability": 0.579 + }, + { + "start": 4078.14, + "end": 4079.74, + "probability": 0.9982 + }, + { + "start": 4081.08, + "end": 4082.62, + "probability": 0.971 + }, + { + "start": 4083.14, + "end": 4084.94, + "probability": 0.9646 + }, + { + "start": 4085.64, + "end": 4086.54, + "probability": 0.7861 + }, + { + "start": 4087.2, + "end": 4088.82, + "probability": 0.9678 + }, + { + "start": 4089.36, + "end": 4090.34, + "probability": 0.9783 + }, + { + "start": 4090.9, + "end": 4091.12, + "probability": 0.8103 + }, + { + "start": 4091.7, + "end": 4094.64, + "probability": 0.8385 + }, + { + "start": 4095.28, + "end": 4095.48, + "probability": 0.843 + }, + { + "start": 4096.0, + "end": 4097.3, + "probability": 0.9971 + }, + { + "start": 4098.04, + "end": 4102.14, + "probability": 0.8384 + }, + { + "start": 4103.1, + "end": 4103.1, + "probability": 0.0471 + }, + { + "start": 4103.1, + "end": 4103.36, + "probability": 0.2036 + }, + { + "start": 4103.56, + "end": 4104.91, + "probability": 0.4294 + }, + { + "start": 4106.1, + "end": 4106.8, + "probability": 0.4213 + }, + { + "start": 4106.86, + "end": 4107.56, + "probability": 0.7975 + }, + { + "start": 4107.9, + "end": 4109.4, + "probability": 0.7221 + }, + { + "start": 4110.15, + "end": 4112.14, + "probability": 0.3535 + }, + { + "start": 4112.14, + "end": 4112.56, + "probability": 0.2808 + }, + { + "start": 4112.82, + "end": 4112.82, + "probability": 0.4158 + }, + { + "start": 4112.82, + "end": 4113.18, + "probability": 0.2249 + }, + { + "start": 4113.18, + "end": 4113.18, + "probability": 0.1109 + }, + { + "start": 4113.18, + "end": 4113.38, + "probability": 0.7135 + }, + { + "start": 4113.6, + "end": 4115.44, + "probability": 0.4192 + }, + { + "start": 4115.56, + "end": 4116.45, + "probability": 0.6562 + }, + { + "start": 4116.7, + "end": 4117.05, + "probability": 0.3778 + }, + { + "start": 4117.42, + "end": 4118.58, + "probability": 0.5859 + }, + { + "start": 4118.7, + "end": 4119.84, + "probability": 0.6745 + }, + { + "start": 4120.68, + "end": 4122.2, + "probability": 0.7627 + }, + { + "start": 4123.48, + "end": 4126.74, + "probability": 0.9071 + }, + { + "start": 4128.68, + "end": 4133.86, + "probability": 0.9983 + }, + { + "start": 4133.86, + "end": 4136.68, + "probability": 0.998 + }, + { + "start": 4137.9, + "end": 4139.0, + "probability": 0.8279 + }, + { + "start": 4139.62, + "end": 4142.26, + "probability": 0.9837 + }, + { + "start": 4142.5, + "end": 4147.26, + "probability": 0.9658 + }, + { + "start": 4147.86, + "end": 4149.08, + "probability": 0.748 + }, + { + "start": 4149.6, + "end": 4151.44, + "probability": 0.6704 + }, + { + "start": 4152.48, + "end": 4156.64, + "probability": 0.9812 + }, + { + "start": 4157.0, + "end": 4157.28, + "probability": 0.6031 + }, + { + "start": 4157.94, + "end": 4158.88, + "probability": 0.9344 + }, + { + "start": 4158.92, + "end": 4159.72, + "probability": 0.7346 + }, + { + "start": 4160.0, + "end": 4162.06, + "probability": 0.9906 + }, + { + "start": 4162.36, + "end": 4162.78, + "probability": 0.3765 + }, + { + "start": 4162.82, + "end": 4164.35, + "probability": 0.9233 + }, + { + "start": 4165.7, + "end": 4167.52, + "probability": 0.9279 + }, + { + "start": 4168.14, + "end": 4168.64, + "probability": 0.4572 + }, + { + "start": 4169.3, + "end": 4171.68, + "probability": 0.9893 + }, + { + "start": 4172.06, + "end": 4173.92, + "probability": 0.9947 + }, + { + "start": 4174.62, + "end": 4179.22, + "probability": 0.9723 + }, + { + "start": 4179.82, + "end": 4182.2, + "probability": 0.9079 + }, + { + "start": 4182.74, + "end": 4183.08, + "probability": 0.4254 + }, + { + "start": 4183.6, + "end": 4184.5, + "probability": 0.3629 + }, + { + "start": 4184.72, + "end": 4185.8, + "probability": 0.9001 + }, + { + "start": 4185.9, + "end": 4187.58, + "probability": 0.9526 + }, + { + "start": 4188.68, + "end": 4192.66, + "probability": 0.974 + }, + { + "start": 4193.32, + "end": 4196.68, + "probability": 0.942 + }, + { + "start": 4197.04, + "end": 4201.36, + "probability": 0.9185 + }, + { + "start": 4201.64, + "end": 4203.46, + "probability": 0.7495 + }, + { + "start": 4204.06, + "end": 4204.96, + "probability": 0.9671 + }, + { + "start": 4205.0, + "end": 4207.2, + "probability": 0.5229 + }, + { + "start": 4207.24, + "end": 4208.12, + "probability": 0.7982 + }, + { + "start": 4208.38, + "end": 4212.52, + "probability": 0.889 + }, + { + "start": 4213.44, + "end": 4214.02, + "probability": 0.7681 + }, + { + "start": 4214.86, + "end": 4216.82, + "probability": 0.9063 + }, + { + "start": 4217.18, + "end": 4217.79, + "probability": 0.6091 + }, + { + "start": 4218.96, + "end": 4219.72, + "probability": 0.9567 + }, + { + "start": 4220.28, + "end": 4222.4, + "probability": 0.7506 + }, + { + "start": 4223.48, + "end": 4226.04, + "probability": 0.9526 + }, + { + "start": 4227.04, + "end": 4234.14, + "probability": 0.9721 + }, + { + "start": 4234.68, + "end": 4237.94, + "probability": 0.2607 + }, + { + "start": 4237.94, + "end": 4242.66, + "probability": 0.8214 + }, + { + "start": 4242.96, + "end": 4243.54, + "probability": 0.1199 + }, + { + "start": 4243.6, + "end": 4245.42, + "probability": 0.8564 + }, + { + "start": 4246.24, + "end": 4251.36, + "probability": 0.9879 + }, + { + "start": 4251.98, + "end": 4255.0, + "probability": 0.7167 + }, + { + "start": 4255.63, + "end": 4259.99, + "probability": 0.8908 + }, + { + "start": 4260.52, + "end": 4262.92, + "probability": 0.9788 + }, + { + "start": 4263.24, + "end": 4266.52, + "probability": 0.6003 + }, + { + "start": 4266.66, + "end": 4267.86, + "probability": 0.6726 + }, + { + "start": 4268.8, + "end": 4274.2, + "probability": 0.7695 + }, + { + "start": 4274.88, + "end": 4276.16, + "probability": 0.7988 + }, + { + "start": 4277.06, + "end": 4281.6, + "probability": 0.9716 + }, + { + "start": 4283.5, + "end": 4288.32, + "probability": 0.9762 + }, + { + "start": 4288.32, + "end": 4292.51, + "probability": 0.8975 + }, + { + "start": 4293.42, + "end": 4294.98, + "probability": 0.9643 + }, + { + "start": 4295.6, + "end": 4296.0, + "probability": 0.881 + }, + { + "start": 4296.56, + "end": 4297.38, + "probability": 0.745 + }, + { + "start": 4297.92, + "end": 4298.4, + "probability": 0.6182 + }, + { + "start": 4299.14, + "end": 4301.14, + "probability": 0.8675 + }, + { + "start": 4302.18, + "end": 4305.88, + "probability": 0.9865 + }, + { + "start": 4306.62, + "end": 4311.64, + "probability": 0.9191 + }, + { + "start": 4312.24, + "end": 4313.46, + "probability": 0.8545 + }, + { + "start": 4314.36, + "end": 4315.18, + "probability": 0.8625 + }, + { + "start": 4315.76, + "end": 4317.96, + "probability": 0.9377 + }, + { + "start": 4319.4, + "end": 4321.4, + "probability": 0.9295 + }, + { + "start": 4321.86, + "end": 4323.42, + "probability": 0.97 + }, + { + "start": 4324.18, + "end": 4327.42, + "probability": 0.9476 + }, + { + "start": 4329.34, + "end": 4336.98, + "probability": 0.8599 + }, + { + "start": 4337.24, + "end": 4339.92, + "probability": 0.7253 + }, + { + "start": 4340.7, + "end": 4342.96, + "probability": 0.6796 + }, + { + "start": 4344.76, + "end": 4347.72, + "probability": 0.9861 + }, + { + "start": 4348.88, + "end": 4351.08, + "probability": 0.9567 + }, + { + "start": 4351.94, + "end": 4352.92, + "probability": 0.8726 + }, + { + "start": 4353.08, + "end": 4355.76, + "probability": 0.7451 + }, + { + "start": 4355.76, + "end": 4355.76, + "probability": 0.1395 + }, + { + "start": 4355.76, + "end": 4356.14, + "probability": 0.3336 + }, + { + "start": 4357.02, + "end": 4360.72, + "probability": 0.833 + }, + { + "start": 4360.82, + "end": 4361.4, + "probability": 0.9593 + }, + { + "start": 4362.76, + "end": 4363.48, + "probability": 0.8434 + }, + { + "start": 4366.48, + "end": 4368.9, + "probability": 0.6882 + }, + { + "start": 4369.3, + "end": 4373.36, + "probability": 0.9746 + }, + { + "start": 4376.52, + "end": 4377.06, + "probability": 0.2704 + }, + { + "start": 4377.1, + "end": 4380.5, + "probability": 0.6845 + }, + { + "start": 4380.66, + "end": 4381.08, + "probability": 0.8617 + }, + { + "start": 4381.12, + "end": 4381.82, + "probability": 0.8774 + }, + { + "start": 4382.3, + "end": 4382.66, + "probability": 0.9538 + }, + { + "start": 4382.84, + "end": 4383.18, + "probability": 0.9664 + }, + { + "start": 4383.6, + "end": 4384.24, + "probability": 0.907 + }, + { + "start": 4384.38, + "end": 4387.12, + "probability": 0.9384 + }, + { + "start": 4389.44, + "end": 4392.13, + "probability": 0.9858 + }, + { + "start": 4393.4, + "end": 4393.4, + "probability": 0.9863 + }, + { + "start": 4394.62, + "end": 4397.9, + "probability": 0.9987 + }, + { + "start": 4400.92, + "end": 4402.74, + "probability": 0.8247 + }, + { + "start": 4403.86, + "end": 4406.66, + "probability": 0.943 + }, + { + "start": 4407.62, + "end": 4409.42, + "probability": 0.957 + }, + { + "start": 4409.86, + "end": 4414.72, + "probability": 0.9847 + }, + { + "start": 4416.7, + "end": 4417.32, + "probability": 0.9099 + }, + { + "start": 4417.52, + "end": 4418.66, + "probability": 0.6245 + }, + { + "start": 4418.72, + "end": 4425.04, + "probability": 0.8784 + }, + { + "start": 4425.08, + "end": 4429.06, + "probability": 0.9977 + }, + { + "start": 4429.14, + "end": 4429.46, + "probability": 0.7629 + }, + { + "start": 4429.56, + "end": 4431.72, + "probability": 0.9746 + }, + { + "start": 4432.24, + "end": 4434.1, + "probability": 0.9954 + }, + { + "start": 4434.78, + "end": 4436.7, + "probability": 0.7231 + }, + { + "start": 4437.44, + "end": 4438.52, + "probability": 0.7123 + }, + { + "start": 4443.0, + "end": 4444.26, + "probability": 0.7459 + }, + { + "start": 4451.76, + "end": 4455.1, + "probability": 0.6761 + }, + { + "start": 4456.36, + "end": 4459.3, + "probability": 0.8564 + }, + { + "start": 4459.6, + "end": 4462.82, + "probability": 0.8613 + }, + { + "start": 4463.48, + "end": 4466.34, + "probability": 0.9404 + }, + { + "start": 4467.08, + "end": 4468.82, + "probability": 0.5551 + }, + { + "start": 4469.98, + "end": 4475.31, + "probability": 0.9909 + }, + { + "start": 4476.26, + "end": 4477.92, + "probability": 0.9946 + }, + { + "start": 4479.44, + "end": 4482.88, + "probability": 0.9554 + }, + { + "start": 4482.94, + "end": 4484.0, + "probability": 0.7297 + }, + { + "start": 4484.88, + "end": 4486.81, + "probability": 0.9956 + }, + { + "start": 4487.54, + "end": 4491.74, + "probability": 0.8279 + }, + { + "start": 4492.56, + "end": 4495.32, + "probability": 0.9702 + }, + { + "start": 4496.32, + "end": 4497.1, + "probability": 0.7559 + }, + { + "start": 4497.58, + "end": 4498.52, + "probability": 0.7659 + }, + { + "start": 4498.54, + "end": 4499.4, + "probability": 0.7713 + }, + { + "start": 4499.48, + "end": 4501.52, + "probability": 0.9588 + }, + { + "start": 4501.62, + "end": 4503.02, + "probability": 0.939 + }, + { + "start": 4503.52, + "end": 4504.6, + "probability": 0.7117 + }, + { + "start": 4505.52, + "end": 4507.64, + "probability": 0.8208 + }, + { + "start": 4508.7, + "end": 4510.0, + "probability": 0.9009 + }, + { + "start": 4511.58, + "end": 4513.74, + "probability": 0.9449 + }, + { + "start": 4514.54, + "end": 4521.24, + "probability": 0.8743 + }, + { + "start": 4521.48, + "end": 4522.78, + "probability": 0.9915 + }, + { + "start": 4523.76, + "end": 4525.82, + "probability": 0.991 + }, + { + "start": 4526.44, + "end": 4529.66, + "probability": 0.9919 + }, + { + "start": 4529.82, + "end": 4531.36, + "probability": 0.9097 + }, + { + "start": 4531.54, + "end": 4532.16, + "probability": 0.7084 + }, + { + "start": 4533.54, + "end": 4537.22, + "probability": 0.9738 + }, + { + "start": 4537.58, + "end": 4540.34, + "probability": 0.9369 + }, + { + "start": 4541.22, + "end": 4543.04, + "probability": 0.9728 + }, + { + "start": 4543.98, + "end": 4545.26, + "probability": 0.9065 + }, + { + "start": 4546.52, + "end": 4549.12, + "probability": 0.9624 + }, + { + "start": 4549.22, + "end": 4551.06, + "probability": 0.8042 + }, + { + "start": 4551.36, + "end": 4552.2, + "probability": 0.65 + }, + { + "start": 4553.46, + "end": 4557.22, + "probability": 0.6702 + }, + { + "start": 4558.36, + "end": 4562.2, + "probability": 0.9624 + }, + { + "start": 4562.28, + "end": 4565.44, + "probability": 0.9922 + }, + { + "start": 4566.16, + "end": 4570.16, + "probability": 0.9364 + }, + { + "start": 4570.82, + "end": 4573.92, + "probability": 0.9893 + }, + { + "start": 4575.1, + "end": 4577.98, + "probability": 0.8123 + }, + { + "start": 4578.76, + "end": 4581.94, + "probability": 0.9712 + }, + { + "start": 4582.72, + "end": 4584.4, + "probability": 0.9784 + }, + { + "start": 4584.62, + "end": 4588.7, + "probability": 0.9869 + }, + { + "start": 4589.76, + "end": 4591.46, + "probability": 0.9821 + }, + { + "start": 4591.46, + "end": 4592.04, + "probability": 0.7677 + }, + { + "start": 4592.12, + "end": 4593.34, + "probability": 0.6879 + }, + { + "start": 4593.36, + "end": 4594.26, + "probability": 0.6596 + }, + { + "start": 4594.44, + "end": 4595.4, + "probability": 0.7923 + }, + { + "start": 4596.42, + "end": 4602.54, + "probability": 0.9633 + }, + { + "start": 4603.98, + "end": 4605.76, + "probability": 0.9431 + }, + { + "start": 4606.7, + "end": 4608.16, + "probability": 0.7227 + }, + { + "start": 4609.3, + "end": 4610.42, + "probability": 0.9481 + }, + { + "start": 4610.64, + "end": 4614.4, + "probability": 0.9355 + }, + { + "start": 4615.18, + "end": 4617.86, + "probability": 0.9939 + }, + { + "start": 4619.88, + "end": 4622.22, + "probability": 0.9391 + }, + { + "start": 4623.02, + "end": 4625.68, + "probability": 0.9546 + }, + { + "start": 4626.26, + "end": 4627.88, + "probability": 0.7421 + }, + { + "start": 4628.22, + "end": 4628.78, + "probability": 0.8798 + }, + { + "start": 4628.96, + "end": 4630.16, + "probability": 0.9897 + }, + { + "start": 4630.72, + "end": 4631.56, + "probability": 0.9329 + }, + { + "start": 4632.1, + "end": 4632.72, + "probability": 0.5771 + }, + { + "start": 4632.74, + "end": 4633.42, + "probability": 0.1687 + }, + { + "start": 4633.54, + "end": 4634.84, + "probability": 0.1549 + }, + { + "start": 4635.06, + "end": 4641.28, + "probability": 0.797 + }, + { + "start": 4642.64, + "end": 4644.84, + "probability": 0.9847 + }, + { + "start": 4644.94, + "end": 4646.64, + "probability": 0.9841 + }, + { + "start": 4646.82, + "end": 4649.9, + "probability": 0.9915 + }, + { + "start": 4650.28, + "end": 4654.7, + "probability": 0.9082 + }, + { + "start": 4655.42, + "end": 4658.48, + "probability": 0.87 + }, + { + "start": 4659.54, + "end": 4661.66, + "probability": 0.95 + }, + { + "start": 4662.34, + "end": 4665.92, + "probability": 0.7189 + }, + { + "start": 4666.56, + "end": 4668.26, + "probability": 0.944 + }, + { + "start": 4669.44, + "end": 4670.58, + "probability": 0.7678 + }, + { + "start": 4671.94, + "end": 4673.48, + "probability": 0.96 + }, + { + "start": 4675.24, + "end": 4676.8, + "probability": 0.7956 + }, + { + "start": 4678.94, + "end": 4682.38, + "probability": 0.9705 + }, + { + "start": 4684.26, + "end": 4685.78, + "probability": 0.9705 + }, + { + "start": 4688.56, + "end": 4692.7, + "probability": 0.9967 + }, + { + "start": 4692.76, + "end": 4696.28, + "probability": 0.9989 + }, + { + "start": 4698.16, + "end": 4699.4, + "probability": 0.7849 + }, + { + "start": 4700.12, + "end": 4701.3, + "probability": 0.8279 + }, + { + "start": 4701.92, + "end": 4702.86, + "probability": 0.9529 + }, + { + "start": 4703.82, + "end": 4706.7, + "probability": 0.957 + }, + { + "start": 4707.68, + "end": 4709.18, + "probability": 0.947 + }, + { + "start": 4711.7, + "end": 4713.46, + "probability": 0.9985 + }, + { + "start": 4714.92, + "end": 4717.36, + "probability": 0.7319 + }, + { + "start": 4717.6, + "end": 4718.54, + "probability": 0.7099 + }, + { + "start": 4719.06, + "end": 4719.98, + "probability": 0.9209 + }, + { + "start": 4720.6, + "end": 4722.74, + "probability": 0.9313 + }, + { + "start": 4722.86, + "end": 4724.6, + "probability": 0.9688 + }, + { + "start": 4725.3, + "end": 4728.0, + "probability": 0.8655 + }, + { + "start": 4729.76, + "end": 4731.48, + "probability": 0.9178 + }, + { + "start": 4732.5, + "end": 4734.46, + "probability": 0.9865 + }, + { + "start": 4734.62, + "end": 4735.73, + "probability": 0.9888 + }, + { + "start": 4737.86, + "end": 4739.02, + "probability": 0.978 + }, + { + "start": 4740.86, + "end": 4741.54, + "probability": 0.9222 + }, + { + "start": 4741.62, + "end": 4741.84, + "probability": 0.8265 + }, + { + "start": 4742.94, + "end": 4744.68, + "probability": 0.8093 + }, + { + "start": 4745.04, + "end": 4747.26, + "probability": 0.7616 + }, + { + "start": 4750.04, + "end": 4750.86, + "probability": 0.0147 + }, + { + "start": 4750.86, + "end": 4752.42, + "probability": 0.5255 + }, + { + "start": 4752.62, + "end": 4755.12, + "probability": 0.1888 + }, + { + "start": 4755.46, + "end": 4757.05, + "probability": 0.2164 + }, + { + "start": 4758.14, + "end": 4761.0, + "probability": 0.6605 + }, + { + "start": 4761.0, + "end": 4762.84, + "probability": 0.8712 + }, + { + "start": 4762.96, + "end": 4764.2, + "probability": 0.8208 + }, + { + "start": 4764.2, + "end": 4764.48, + "probability": 0.9341 + }, + { + "start": 4765.44, + "end": 4766.16, + "probability": 0.9718 + }, + { + "start": 4766.3, + "end": 4773.62, + "probability": 0.9958 + }, + { + "start": 4774.3, + "end": 4775.55, + "probability": 0.8125 + }, + { + "start": 4776.12, + "end": 4779.0, + "probability": 0.9871 + }, + { + "start": 4779.44, + "end": 4786.84, + "probability": 0.5104 + }, + { + "start": 4786.84, + "end": 4788.02, + "probability": 0.6347 + }, + { + "start": 4788.34, + "end": 4789.54, + "probability": 0.4127 + }, + { + "start": 4789.64, + "end": 4791.12, + "probability": 0.947 + }, + { + "start": 4795.38, + "end": 4797.14, + "probability": 0.84 + }, + { + "start": 4797.2, + "end": 4798.96, + "probability": 0.7737 + }, + { + "start": 4799.08, + "end": 4801.01, + "probability": 0.9074 + }, + { + "start": 4801.34, + "end": 4803.78, + "probability": 0.9781 + }, + { + "start": 4803.84, + "end": 4805.3, + "probability": 0.6984 + }, + { + "start": 4805.34, + "end": 4806.5, + "probability": 0.9077 + }, + { + "start": 4808.88, + "end": 4810.46, + "probability": 0.7908 + }, + { + "start": 4810.46, + "end": 4813.03, + "probability": 0.7538 + }, + { + "start": 4813.52, + "end": 4820.06, + "probability": 0.9436 + }, + { + "start": 4821.7, + "end": 4825.14, + "probability": 0.8955 + }, + { + "start": 4825.76, + "end": 4826.6, + "probability": 0.8629 + }, + { + "start": 4827.52, + "end": 4828.57, + "probability": 0.8853 + }, + { + "start": 4829.86, + "end": 4832.72, + "probability": 0.6484 + }, + { + "start": 4832.98, + "end": 4833.76, + "probability": 0.7304 + }, + { + "start": 4834.04, + "end": 4834.66, + "probability": 0.9447 + }, + { + "start": 4835.08, + "end": 4837.84, + "probability": 0.7246 + }, + { + "start": 4838.48, + "end": 4841.02, + "probability": 0.9579 + }, + { + "start": 4841.12, + "end": 4844.88, + "probability": 0.8966 + }, + { + "start": 4845.14, + "end": 4848.06, + "probability": 0.8314 + }, + { + "start": 4848.12, + "end": 4852.0, + "probability": 0.8653 + }, + { + "start": 4852.4, + "end": 4856.96, + "probability": 0.9653 + }, + { + "start": 4858.08, + "end": 4861.4, + "probability": 0.9895 + }, + { + "start": 4861.44, + "end": 4866.46, + "probability": 0.9724 + }, + { + "start": 4867.2, + "end": 4869.46, + "probability": 0.9745 + }, + { + "start": 4869.58, + "end": 4869.92, + "probability": 0.3617 + }, + { + "start": 4870.06, + "end": 4874.8, + "probability": 0.861 + }, + { + "start": 4875.04, + "end": 4880.62, + "probability": 0.9864 + }, + { + "start": 4881.26, + "end": 4889.72, + "probability": 0.9779 + }, + { + "start": 4890.44, + "end": 4893.86, + "probability": 0.8096 + }, + { + "start": 4899.66, + "end": 4903.62, + "probability": 0.897 + }, + { + "start": 4903.79, + "end": 4908.18, + "probability": 0.8431 + }, + { + "start": 4908.24, + "end": 4908.76, + "probability": 0.4456 + }, + { + "start": 4908.84, + "end": 4910.34, + "probability": 0.9138 + }, + { + "start": 4910.86, + "end": 4912.1, + "probability": 0.8016 + }, + { + "start": 4913.54, + "end": 4914.38, + "probability": 0.5224 + }, + { + "start": 4914.7, + "end": 4917.32, + "probability": 0.9957 + }, + { + "start": 4917.58, + "end": 4920.34, + "probability": 0.9836 + }, + { + "start": 4921.24, + "end": 4926.13, + "probability": 0.8398 + }, + { + "start": 4928.14, + "end": 4928.7, + "probability": 0.8474 + }, + { + "start": 4929.5, + "end": 4932.94, + "probability": 0.9827 + }, + { + "start": 4933.64, + "end": 4934.28, + "probability": 0.6084 + }, + { + "start": 4935.32, + "end": 4936.12, + "probability": 0.4544 + }, + { + "start": 4936.48, + "end": 4939.5, + "probability": 0.9745 + }, + { + "start": 4939.68, + "end": 4940.72, + "probability": 0.9842 + }, + { + "start": 4940.84, + "end": 4942.12, + "probability": 0.8862 + }, + { + "start": 4942.62, + "end": 4945.54, + "probability": 0.9258 + }, + { + "start": 4945.68, + "end": 4948.56, + "probability": 0.9878 + }, + { + "start": 4949.0, + "end": 4950.24, + "probability": 0.9983 + }, + { + "start": 4951.18, + "end": 4953.1, + "probability": 0.8523 + }, + { + "start": 4953.76, + "end": 4955.28, + "probability": 0.9691 + }, + { + "start": 4955.74, + "end": 4957.06, + "probability": 0.5044 + }, + { + "start": 4957.16, + "end": 4958.92, + "probability": 0.9943 + }, + { + "start": 4959.68, + "end": 4961.72, + "probability": 0.9966 + }, + { + "start": 4962.16, + "end": 4963.0, + "probability": 0.5492 + }, + { + "start": 4963.2, + "end": 4967.14, + "probability": 0.8306 + }, + { + "start": 4967.66, + "end": 4970.22, + "probability": 0.9247 + }, + { + "start": 4970.7, + "end": 4975.66, + "probability": 0.962 + }, + { + "start": 4976.06, + "end": 4976.8, + "probability": 0.3162 + }, + { + "start": 4977.4, + "end": 4980.64, + "probability": 0.8391 + }, + { + "start": 4981.46, + "end": 4982.34, + "probability": 0.805 + }, + { + "start": 4982.7, + "end": 4987.6, + "probability": 0.9408 + }, + { + "start": 4987.98, + "end": 4990.0, + "probability": 0.9768 + }, + { + "start": 4990.28, + "end": 4994.22, + "probability": 0.9939 + }, + { + "start": 4994.32, + "end": 4995.3, + "probability": 0.8354 + }, + { + "start": 4996.24, + "end": 4996.84, + "probability": 0.7765 + }, + { + "start": 4999.22, + "end": 5003.66, + "probability": 0.8604 + }, + { + "start": 5004.5, + "end": 5008.32, + "probability": 0.9323 + }, + { + "start": 5008.92, + "end": 5014.02, + "probability": 0.9964 + }, + { + "start": 5014.33, + "end": 5018.7, + "probability": 0.957 + }, + { + "start": 5019.34, + "end": 5021.32, + "probability": 0.9047 + }, + { + "start": 5021.7, + "end": 5026.34, + "probability": 0.9985 + }, + { + "start": 5026.5, + "end": 5027.46, + "probability": 0.8174 + }, + { + "start": 5027.5, + "end": 5028.08, + "probability": 0.8008 + }, + { + "start": 5028.58, + "end": 5029.92, + "probability": 0.9751 + }, + { + "start": 5031.2, + "end": 5033.08, + "probability": 0.9772 + }, + { + "start": 5033.26, + "end": 5035.68, + "probability": 0.8484 + }, + { + "start": 5036.72, + "end": 5038.52, + "probability": 0.9543 + }, + { + "start": 5038.68, + "end": 5039.46, + "probability": 0.5486 + }, + { + "start": 5039.78, + "end": 5041.4, + "probability": 0.7207 + }, + { + "start": 5041.6, + "end": 5044.3, + "probability": 0.7017 + }, + { + "start": 5044.82, + "end": 5051.86, + "probability": 0.9395 + }, + { + "start": 5051.92, + "end": 5052.44, + "probability": 0.915 + }, + { + "start": 5052.78, + "end": 5053.13, + "probability": 0.2934 + }, + { + "start": 5053.36, + "end": 5054.34, + "probability": 0.7421 + }, + { + "start": 5054.74, + "end": 5058.08, + "probability": 0.8005 + }, + { + "start": 5058.48, + "end": 5059.94, + "probability": 0.9607 + }, + { + "start": 5060.34, + "end": 5061.84, + "probability": 0.681 + }, + { + "start": 5061.92, + "end": 5064.28, + "probability": 0.9219 + }, + { + "start": 5064.8, + "end": 5066.66, + "probability": 0.8276 + }, + { + "start": 5066.82, + "end": 5069.15, + "probability": 0.4745 + }, + { + "start": 5070.24, + "end": 5073.66, + "probability": 0.9934 + }, + { + "start": 5073.72, + "end": 5078.1, + "probability": 0.9379 + }, + { + "start": 5078.3, + "end": 5079.51, + "probability": 0.9907 + }, + { + "start": 5079.76, + "end": 5080.9, + "probability": 0.9878 + }, + { + "start": 5081.02, + "end": 5082.04, + "probability": 0.9839 + }, + { + "start": 5082.5, + "end": 5084.42, + "probability": 0.9889 + }, + { + "start": 5084.92, + "end": 5086.28, + "probability": 0.8594 + }, + { + "start": 5086.3, + "end": 5093.12, + "probability": 0.9037 + }, + { + "start": 5093.6, + "end": 5098.46, + "probability": 0.9954 + }, + { + "start": 5098.62, + "end": 5099.36, + "probability": 0.5309 + }, + { + "start": 5099.48, + "end": 5101.42, + "probability": 0.9829 + }, + { + "start": 5117.22, + "end": 5118.36, + "probability": 0.711 + }, + { + "start": 5120.46, + "end": 5121.34, + "probability": 0.9414 + }, + { + "start": 5123.2, + "end": 5125.86, + "probability": 0.8132 + }, + { + "start": 5127.7, + "end": 5130.48, + "probability": 0.9345 + }, + { + "start": 5131.3, + "end": 5132.88, + "probability": 0.9376 + }, + { + "start": 5134.48, + "end": 5139.38, + "probability": 0.3586 + }, + { + "start": 5145.74, + "end": 5146.7, + "probability": 0.3798 + }, + { + "start": 5149.04, + "end": 5150.36, + "probability": 0.6902 + }, + { + "start": 5152.12, + "end": 5154.34, + "probability": 0.7986 + }, + { + "start": 5154.52, + "end": 5155.94, + "probability": 0.7855 + }, + { + "start": 5156.0, + "end": 5156.88, + "probability": 0.6724 + }, + { + "start": 5157.7, + "end": 5159.82, + "probability": 0.8289 + }, + { + "start": 5160.72, + "end": 5162.06, + "probability": 0.9652 + }, + { + "start": 5164.42, + "end": 5167.02, + "probability": 0.9514 + }, + { + "start": 5168.58, + "end": 5171.46, + "probability": 0.9214 + }, + { + "start": 5173.2, + "end": 5175.3, + "probability": 0.9994 + }, + { + "start": 5177.48, + "end": 5177.94, + "probability": 0.6776 + }, + { + "start": 5178.46, + "end": 5183.66, + "probability": 0.9392 + }, + { + "start": 5184.88, + "end": 5186.54, + "probability": 0.884 + }, + { + "start": 5188.18, + "end": 5188.76, + "probability": 0.2488 + }, + { + "start": 5189.92, + "end": 5192.46, + "probability": 0.9915 + }, + { + "start": 5195.6, + "end": 5195.9, + "probability": 0.8384 + }, + { + "start": 5198.26, + "end": 5200.94, + "probability": 0.7337 + }, + { + "start": 5201.68, + "end": 5202.4, + "probability": 0.923 + }, + { + "start": 5203.74, + "end": 5205.02, + "probability": 0.9476 + }, + { + "start": 5206.6, + "end": 5207.58, + "probability": 0.5646 + }, + { + "start": 5208.46, + "end": 5212.7, + "probability": 0.8584 + }, + { + "start": 5213.88, + "end": 5217.16, + "probability": 0.9886 + }, + { + "start": 5218.0, + "end": 5218.8, + "probability": 0.8887 + }, + { + "start": 5220.88, + "end": 5222.02, + "probability": 0.8641 + }, + { + "start": 5223.7, + "end": 5229.62, + "probability": 0.9503 + }, + { + "start": 5233.3, + "end": 5235.36, + "probability": 0.8842 + }, + { + "start": 5236.44, + "end": 5238.82, + "probability": 0.9984 + }, + { + "start": 5241.6, + "end": 5242.12, + "probability": 0.4853 + }, + { + "start": 5242.88, + "end": 5243.84, + "probability": 0.9818 + }, + { + "start": 5245.82, + "end": 5250.88, + "probability": 0.9259 + }, + { + "start": 5252.0, + "end": 5253.58, + "probability": 0.9692 + }, + { + "start": 5256.06, + "end": 5259.36, + "probability": 0.9829 + }, + { + "start": 5260.76, + "end": 5262.94, + "probability": 0.9858 + }, + { + "start": 5264.32, + "end": 5267.4, + "probability": 0.8711 + }, + { + "start": 5268.46, + "end": 5269.44, + "probability": 0.9863 + }, + { + "start": 5270.46, + "end": 5271.48, + "probability": 0.5901 + }, + { + "start": 5272.86, + "end": 5273.62, + "probability": 0.51 + }, + { + "start": 5275.28, + "end": 5278.34, + "probability": 0.9727 + }, + { + "start": 5279.02, + "end": 5281.0, + "probability": 0.9817 + }, + { + "start": 5283.7, + "end": 5287.56, + "probability": 0.8228 + }, + { + "start": 5290.72, + "end": 5294.15, + "probability": 0.9947 + }, + { + "start": 5297.14, + "end": 5298.86, + "probability": 0.9781 + }, + { + "start": 5298.86, + "end": 5302.06, + "probability": 0.7293 + }, + { + "start": 5303.1, + "end": 5304.74, + "probability": 0.7574 + }, + { + "start": 5305.84, + "end": 5311.06, + "probability": 0.9733 + }, + { + "start": 5313.08, + "end": 5314.68, + "probability": 0.9937 + }, + { + "start": 5316.48, + "end": 5319.7, + "probability": 0.9939 + }, + { + "start": 5319.84, + "end": 5320.42, + "probability": 0.4635 + }, + { + "start": 5320.52, + "end": 5320.86, + "probability": 0.4174 + }, + { + "start": 5323.78, + "end": 5325.2, + "probability": 0.9087 + }, + { + "start": 5328.16, + "end": 5332.78, + "probability": 0.96 + }, + { + "start": 5335.16, + "end": 5338.08, + "probability": 0.9424 + }, + { + "start": 5339.78, + "end": 5340.48, + "probability": 0.7173 + }, + { + "start": 5341.5, + "end": 5343.96, + "probability": 0.972 + }, + { + "start": 5345.42, + "end": 5350.6, + "probability": 0.9963 + }, + { + "start": 5350.8, + "end": 5351.6, + "probability": 0.4716 + }, + { + "start": 5352.68, + "end": 5355.28, + "probability": 0.7848 + }, + { + "start": 5355.34, + "end": 5360.76, + "probability": 0.9771 + }, + { + "start": 5361.54, + "end": 5366.14, + "probability": 0.6054 + }, + { + "start": 5366.78, + "end": 5370.04, + "probability": 0.8516 + }, + { + "start": 5370.92, + "end": 5372.38, + "probability": 0.9309 + }, + { + "start": 5372.4, + "end": 5373.04, + "probability": 0.4033 + }, + { + "start": 5374.32, + "end": 5378.12, + "probability": 0.6679 + }, + { + "start": 5378.72, + "end": 5382.8, + "probability": 0.8657 + }, + { + "start": 5383.6, + "end": 5385.32, + "probability": 0.7632 + }, + { + "start": 5385.94, + "end": 5387.5, + "probability": 0.9942 + }, + { + "start": 5389.6, + "end": 5395.28, + "probability": 0.8407 + }, + { + "start": 5395.28, + "end": 5395.66, + "probability": 0.6903 + }, + { + "start": 5396.78, + "end": 5397.38, + "probability": 0.4533 + }, + { + "start": 5399.06, + "end": 5400.74, + "probability": 0.7539 + }, + { + "start": 5401.62, + "end": 5403.96, + "probability": 0.7245 + }, + { + "start": 5405.72, + "end": 5407.38, + "probability": 0.881 + }, + { + "start": 5408.1, + "end": 5409.77, + "probability": 0.8948 + }, + { + "start": 5410.76, + "end": 5413.88, + "probability": 0.9556 + }, + { + "start": 5414.92, + "end": 5415.38, + "probability": 0.8977 + }, + { + "start": 5415.5, + "end": 5415.82, + "probability": 0.4145 + }, + { + "start": 5415.86, + "end": 5417.32, + "probability": 0.631 + }, + { + "start": 5420.1, + "end": 5422.46, + "probability": 0.8339 + }, + { + "start": 5423.24, + "end": 5427.74, + "probability": 0.9347 + }, + { + "start": 5429.78, + "end": 5431.26, + "probability": 0.9435 + }, + { + "start": 5433.32, + "end": 5438.06, + "probability": 0.98 + }, + { + "start": 5439.4, + "end": 5441.16, + "probability": 0.9788 + }, + { + "start": 5442.96, + "end": 5444.24, + "probability": 0.9949 + }, + { + "start": 5447.88, + "end": 5452.06, + "probability": 0.9896 + }, + { + "start": 5456.04, + "end": 5457.74, + "probability": 0.9468 + }, + { + "start": 5460.12, + "end": 5460.84, + "probability": 0.9382 + }, + { + "start": 5460.92, + "end": 5461.72, + "probability": 0.7251 + }, + { + "start": 5461.78, + "end": 5462.7, + "probability": 0.7165 + }, + { + "start": 5466.86, + "end": 5467.0, + "probability": 0.7495 + }, + { + "start": 5468.6, + "end": 5469.78, + "probability": 0.95 + }, + { + "start": 5471.26, + "end": 5472.88, + "probability": 0.8037 + }, + { + "start": 5473.0, + "end": 5475.3, + "probability": 0.9771 + }, + { + "start": 5477.82, + "end": 5478.48, + "probability": 0.5631 + }, + { + "start": 5479.28, + "end": 5480.26, + "probability": 0.9263 + }, + { + "start": 5480.68, + "end": 5481.22, + "probability": 0.5981 + }, + { + "start": 5482.22, + "end": 5483.42, + "probability": 0.9705 + }, + { + "start": 5483.52, + "end": 5484.76, + "probability": 0.8958 + }, + { + "start": 5486.64, + "end": 5487.37, + "probability": 0.9048 + }, + { + "start": 5487.5, + "end": 5490.08, + "probability": 0.8298 + }, + { + "start": 5491.08, + "end": 5494.24, + "probability": 0.9766 + }, + { + "start": 5496.28, + "end": 5496.92, + "probability": 0.8295 + }, + { + "start": 5497.96, + "end": 5499.78, + "probability": 0.9934 + }, + { + "start": 5501.16, + "end": 5502.62, + "probability": 0.9772 + }, + { + "start": 5504.84, + "end": 5507.92, + "probability": 0.9769 + }, + { + "start": 5508.62, + "end": 5509.56, + "probability": 0.8789 + }, + { + "start": 5509.68, + "end": 5510.5, + "probability": 0.9185 + }, + { + "start": 5511.82, + "end": 5514.44, + "probability": 0.976 + }, + { + "start": 5515.16, + "end": 5520.94, + "probability": 0.9922 + }, + { + "start": 5521.02, + "end": 5523.04, + "probability": 0.7428 + }, + { + "start": 5523.4, + "end": 5524.48, + "probability": 0.6329 + }, + { + "start": 5525.62, + "end": 5526.66, + "probability": 0.7105 + }, + { + "start": 5526.78, + "end": 5528.48, + "probability": 0.9696 + }, + { + "start": 5530.54, + "end": 5534.28, + "probability": 0.6743 + }, + { + "start": 5535.4, + "end": 5537.3, + "probability": 0.9937 + }, + { + "start": 5537.34, + "end": 5540.92, + "probability": 0.9488 + }, + { + "start": 5544.9, + "end": 5547.76, + "probability": 0.8706 + }, + { + "start": 5549.72, + "end": 5551.34, + "probability": 0.9941 + }, + { + "start": 5552.56, + "end": 5554.42, + "probability": 0.981 + }, + { + "start": 5554.92, + "end": 5556.24, + "probability": 0.9943 + }, + { + "start": 5556.24, + "end": 5558.98, + "probability": 0.9985 + }, + { + "start": 5559.12, + "end": 5559.66, + "probability": 0.9063 + }, + { + "start": 5559.84, + "end": 5560.44, + "probability": 0.6355 + }, + { + "start": 5560.54, + "end": 5562.24, + "probability": 0.9098 + }, + { + "start": 5562.44, + "end": 5563.88, + "probability": 0.4714 + }, + { + "start": 5563.9, + "end": 5565.66, + "probability": 0.7646 + }, + { + "start": 5566.46, + "end": 5571.3, + "probability": 0.6633 + }, + { + "start": 5571.54, + "end": 5573.5, + "probability": 0.1601 + }, + { + "start": 5574.58, + "end": 5579.6, + "probability": 0.1241 + }, + { + "start": 5594.12, + "end": 5598.04, + "probability": 0.9971 + }, + { + "start": 5599.3, + "end": 5603.19, + "probability": 0.9922 + }, + { + "start": 5603.4, + "end": 5607.72, + "probability": 0.8699 + }, + { + "start": 5608.52, + "end": 5610.58, + "probability": 0.986 + }, + { + "start": 5610.68, + "end": 5611.28, + "probability": 0.5311 + }, + { + "start": 5611.3, + "end": 5614.52, + "probability": 0.9136 + }, + { + "start": 5614.66, + "end": 5619.44, + "probability": 0.8566 + }, + { + "start": 5619.9, + "end": 5622.36, + "probability": 0.841 + }, + { + "start": 5622.92, + "end": 5630.04, + "probability": 0.8374 + }, + { + "start": 5630.58, + "end": 5631.52, + "probability": 0.6667 + }, + { + "start": 5631.58, + "end": 5632.6, + "probability": 0.8182 + }, + { + "start": 5633.1, + "end": 5634.8, + "probability": 0.85 + }, + { + "start": 5634.9, + "end": 5635.96, + "probability": 0.8042 + }, + { + "start": 5636.36, + "end": 5639.9, + "probability": 0.9875 + }, + { + "start": 5640.08, + "end": 5641.46, + "probability": 0.2933 + }, + { + "start": 5641.56, + "end": 5642.5, + "probability": 0.6786 + }, + { + "start": 5642.58, + "end": 5644.46, + "probability": 0.8238 + }, + { + "start": 5644.56, + "end": 5646.13, + "probability": 0.8079 + }, + { + "start": 5646.5, + "end": 5647.34, + "probability": 0.7827 + }, + { + "start": 5648.98, + "end": 5650.53, + "probability": 0.0485 + }, + { + "start": 5651.66, + "end": 5653.78, + "probability": 0.3188 + }, + { + "start": 5654.14, + "end": 5655.42, + "probability": 0.2464 + }, + { + "start": 5655.76, + "end": 5657.38, + "probability": 0.7253 + }, + { + "start": 5657.9, + "end": 5660.28, + "probability": 0.6413 + }, + { + "start": 5662.8, + "end": 5664.02, + "probability": 0.9709 + }, + { + "start": 5664.42, + "end": 5668.74, + "probability": 0.8655 + }, + { + "start": 5669.18, + "end": 5671.64, + "probability": 0.8227 + }, + { + "start": 5672.18, + "end": 5679.12, + "probability": 0.9827 + }, + { + "start": 5679.64, + "end": 5681.38, + "probability": 0.1016 + }, + { + "start": 5681.94, + "end": 5683.13, + "probability": 0.6421 + }, + { + "start": 5684.2, + "end": 5684.44, + "probability": 0.2894 + }, + { + "start": 5684.58, + "end": 5686.1, + "probability": 0.6197 + }, + { + "start": 5686.62, + "end": 5688.28, + "probability": 0.7542 + }, + { + "start": 5689.16, + "end": 5690.98, + "probability": 0.4353 + }, + { + "start": 5692.2, + "end": 5693.56, + "probability": 0.1526 + }, + { + "start": 5693.56, + "end": 5694.58, + "probability": 0.1424 + }, + { + "start": 5694.98, + "end": 5696.36, + "probability": 0.1055 + }, + { + "start": 5696.6, + "end": 5697.63, + "probability": 0.086 + }, + { + "start": 5700.94, + "end": 5701.94, + "probability": 0.2487 + }, + { + "start": 5701.94, + "end": 5703.2, + "probability": 0.1191 + }, + { + "start": 5703.2, + "end": 5703.2, + "probability": 0.3211 + }, + { + "start": 5703.2, + "end": 5703.52, + "probability": 0.1527 + }, + { + "start": 5704.42, + "end": 5706.48, + "probability": 0.2642 + }, + { + "start": 5706.52, + "end": 5707.06, + "probability": 0.6802 + }, + { + "start": 5707.12, + "end": 5708.96, + "probability": 0.6346 + }, + { + "start": 5709.02, + "end": 5710.16, + "probability": 0.6923 + }, + { + "start": 5711.1, + "end": 5711.54, + "probability": 0.0209 + }, + { + "start": 5712.1, + "end": 5715.66, + "probability": 0.8264 + }, + { + "start": 5716.86, + "end": 5720.94, + "probability": 0.9602 + }, + { + "start": 5721.36, + "end": 5722.34, + "probability": 0.5925 + }, + { + "start": 5722.9, + "end": 5725.44, + "probability": 0.8368 + }, + { + "start": 5726.08, + "end": 5729.88, + "probability": 0.9894 + }, + { + "start": 5730.76, + "end": 5732.34, + "probability": 0.9128 + }, + { + "start": 5732.52, + "end": 5736.7, + "probability": 0.9893 + }, + { + "start": 5736.7, + "end": 5740.14, + "probability": 0.9935 + }, + { + "start": 5741.18, + "end": 5744.42, + "probability": 0.9938 + }, + { + "start": 5744.58, + "end": 5745.68, + "probability": 0.9985 + }, + { + "start": 5747.6, + "end": 5749.8, + "probability": 0.9276 + }, + { + "start": 5750.52, + "end": 5751.84, + "probability": 0.8682 + }, + { + "start": 5752.4, + "end": 5755.52, + "probability": 0.9716 + }, + { + "start": 5756.18, + "end": 5760.62, + "probability": 0.8945 + }, + { + "start": 5760.62, + "end": 5764.42, + "probability": 0.9883 + }, + { + "start": 5764.96, + "end": 5768.62, + "probability": 0.9643 + }, + { + "start": 5768.96, + "end": 5769.74, + "probability": 0.8274 + }, + { + "start": 5769.88, + "end": 5771.92, + "probability": 0.955 + }, + { + "start": 5772.58, + "end": 5774.94, + "probability": 0.9945 + }, + { + "start": 5774.94, + "end": 5778.08, + "probability": 0.9259 + }, + { + "start": 5778.52, + "end": 5782.92, + "probability": 0.9756 + }, + { + "start": 5783.72, + "end": 5785.22, + "probability": 0.968 + }, + { + "start": 5786.04, + "end": 5789.14, + "probability": 0.9614 + }, + { + "start": 5790.38, + "end": 5793.48, + "probability": 0.6392 + }, + { + "start": 5794.82, + "end": 5799.52, + "probability": 0.9673 + }, + { + "start": 5800.38, + "end": 5803.0, + "probability": 0.6391 + }, + { + "start": 5803.08, + "end": 5809.2, + "probability": 0.8948 + }, + { + "start": 5809.98, + "end": 5810.64, + "probability": 0.3702 + }, + { + "start": 5810.68, + "end": 5811.5, + "probability": 0.9651 + }, + { + "start": 5811.9, + "end": 5812.62, + "probability": 0.7696 + }, + { + "start": 5812.76, + "end": 5814.16, + "probability": 0.9825 + }, + { + "start": 5814.22, + "end": 5815.42, + "probability": 0.7783 + }, + { + "start": 5815.5, + "end": 5816.48, + "probability": 0.7602 + }, + { + "start": 5818.48, + "end": 5823.3, + "probability": 0.946 + }, + { + "start": 5824.76, + "end": 5827.2, + "probability": 0.9122 + }, + { + "start": 5827.3, + "end": 5829.24, + "probability": 0.7637 + }, + { + "start": 5829.32, + "end": 5829.44, + "probability": 0.3612 + }, + { + "start": 5829.58, + "end": 5829.84, + "probability": 0.8796 + }, + { + "start": 5830.34, + "end": 5831.98, + "probability": 0.916 + }, + { + "start": 5832.16, + "end": 5832.6, + "probability": 0.6461 + }, + { + "start": 5832.7, + "end": 5833.12, + "probability": 0.5397 + }, + { + "start": 5833.18, + "end": 5836.06, + "probability": 0.8715 + }, + { + "start": 5837.38, + "end": 5842.44, + "probability": 0.9515 + }, + { + "start": 5843.26, + "end": 5844.48, + "probability": 0.9516 + }, + { + "start": 5845.06, + "end": 5848.5, + "probability": 0.9749 + }, + { + "start": 5849.76, + "end": 5855.6, + "probability": 0.9955 + }, + { + "start": 5855.94, + "end": 5861.2, + "probability": 0.9927 + }, + { + "start": 5861.46, + "end": 5862.98, + "probability": 0.7887 + }, + { + "start": 5863.02, + "end": 5864.16, + "probability": 0.9503 + }, + { + "start": 5866.13, + "end": 5867.48, + "probability": 0.0576 + }, + { + "start": 5867.48, + "end": 5867.48, + "probability": 0.149 + }, + { + "start": 5867.48, + "end": 5868.18, + "probability": 0.5593 + }, + { + "start": 5868.94, + "end": 5870.42, + "probability": 0.8881 + }, + { + "start": 5872.3, + "end": 5874.1, + "probability": 0.8434 + }, + { + "start": 5874.9, + "end": 5875.76, + "probability": 0.9941 + }, + { + "start": 5876.86, + "end": 5877.9, + "probability": 0.7006 + }, + { + "start": 5878.98, + "end": 5884.44, + "probability": 0.9954 + }, + { + "start": 5885.0, + "end": 5890.36, + "probability": 0.7739 + }, + { + "start": 5890.36, + "end": 5895.3, + "probability": 0.9924 + }, + { + "start": 5895.66, + "end": 5896.38, + "probability": 0.682 + }, + { + "start": 5896.9, + "end": 5900.62, + "probability": 0.9316 + }, + { + "start": 5901.2, + "end": 5902.34, + "probability": 0.9813 + }, + { + "start": 5903.14, + "end": 5907.14, + "probability": 0.9408 + }, + { + "start": 5907.32, + "end": 5907.7, + "probability": 0.7774 + }, + { + "start": 5907.82, + "end": 5908.96, + "probability": 0.6477 + }, + { + "start": 5909.38, + "end": 5914.36, + "probability": 0.9822 + }, + { + "start": 5914.36, + "end": 5919.48, + "probability": 0.9436 + }, + { + "start": 5919.78, + "end": 5920.3, + "probability": 0.5679 + }, + { + "start": 5920.62, + "end": 5921.37, + "probability": 0.358 + }, + { + "start": 5923.08, + "end": 5927.5, + "probability": 0.8071 + }, + { + "start": 5927.96, + "end": 5931.52, + "probability": 0.0702 + }, + { + "start": 5932.6, + "end": 5934.92, + "probability": 0.1734 + }, + { + "start": 5937.94, + "end": 5941.04, + "probability": 0.6631 + }, + { + "start": 5947.66, + "end": 5952.6, + "probability": 0.9653 + }, + { + "start": 5954.64, + "end": 5956.54, + "probability": 0.9937 + }, + { + "start": 5960.66, + "end": 5960.78, + "probability": 0.6943 + }, + { + "start": 5964.74, + "end": 5968.56, + "probability": 0.9769 + }, + { + "start": 5971.28, + "end": 5972.92, + "probability": 0.877 + }, + { + "start": 5974.84, + "end": 5977.9, + "probability": 0.9477 + }, + { + "start": 5983.56, + "end": 5987.1, + "probability": 0.8794 + }, + { + "start": 5988.2, + "end": 5990.2, + "probability": 0.9946 + }, + { + "start": 5991.66, + "end": 5994.9, + "probability": 0.9229 + }, + { + "start": 5996.94, + "end": 5998.94, + "probability": 0.9033 + }, + { + "start": 6000.42, + "end": 6002.84, + "probability": 0.9849 + }, + { + "start": 6007.58, + "end": 6007.86, + "probability": 0.37 + }, + { + "start": 6008.42, + "end": 6009.54, + "probability": 0.7635 + }, + { + "start": 6010.58, + "end": 6011.34, + "probability": 0.8047 + }, + { + "start": 6013.06, + "end": 6015.14, + "probability": 0.9536 + }, + { + "start": 6015.2, + "end": 6016.76, + "probability": 0.8333 + }, + { + "start": 6018.54, + "end": 6021.24, + "probability": 0.9927 + }, + { + "start": 6023.54, + "end": 6024.34, + "probability": 0.7078 + }, + { + "start": 6025.36, + "end": 6029.88, + "probability": 0.6627 + }, + { + "start": 6030.72, + "end": 6032.18, + "probability": 0.9966 + }, + { + "start": 6036.72, + "end": 6039.96, + "probability": 0.9905 + }, + { + "start": 6042.24, + "end": 6046.66, + "probability": 0.9778 + }, + { + "start": 6047.56, + "end": 6050.84, + "probability": 0.6665 + }, + { + "start": 6052.2, + "end": 6052.86, + "probability": 0.6119 + }, + { + "start": 6054.02, + "end": 6057.7, + "probability": 0.9526 + }, + { + "start": 6058.1, + "end": 6059.58, + "probability": 0.9068 + }, + { + "start": 6060.0, + "end": 6061.02, + "probability": 0.8555 + }, + { + "start": 6061.8, + "end": 6064.28, + "probability": 0.9102 + }, + { + "start": 6064.92, + "end": 6066.6, + "probability": 0.9508 + }, + { + "start": 6067.88, + "end": 6069.1, + "probability": 0.5322 + }, + { + "start": 6071.94, + "end": 6073.04, + "probability": 0.9863 + }, + { + "start": 6074.78, + "end": 6079.88, + "probability": 0.9585 + }, + { + "start": 6080.62, + "end": 6082.16, + "probability": 0.998 + }, + { + "start": 6084.36, + "end": 6088.31, + "probability": 0.985 + }, + { + "start": 6089.2, + "end": 6091.86, + "probability": 0.9982 + }, + { + "start": 6094.98, + "end": 6097.54, + "probability": 0.9354 + }, + { + "start": 6099.74, + "end": 6101.38, + "probability": 0.8624 + }, + { + "start": 6102.84, + "end": 6108.2, + "probability": 0.9951 + }, + { + "start": 6108.26, + "end": 6109.58, + "probability": 0.9291 + }, + { + "start": 6110.46, + "end": 6113.44, + "probability": 0.9438 + }, + { + "start": 6113.44, + "end": 6115.94, + "probability": 0.9948 + }, + { + "start": 6117.32, + "end": 6119.24, + "probability": 0.3463 + }, + { + "start": 6120.56, + "end": 6121.74, + "probability": 0.601 + }, + { + "start": 6122.01, + "end": 6126.48, + "probability": 0.7708 + }, + { + "start": 6128.22, + "end": 6129.48, + "probability": 0.6054 + }, + { + "start": 6131.54, + "end": 6132.6, + "probability": 0.9021 + }, + { + "start": 6132.64, + "end": 6134.78, + "probability": 0.832 + }, + { + "start": 6136.34, + "end": 6139.14, + "probability": 0.9498 + }, + { + "start": 6139.38, + "end": 6141.78, + "probability": 0.7107 + }, + { + "start": 6144.1, + "end": 6145.3, + "probability": 0.9871 + }, + { + "start": 6146.08, + "end": 6149.34, + "probability": 0.9823 + }, + { + "start": 6149.4, + "end": 6150.64, + "probability": 0.9893 + }, + { + "start": 6150.78, + "end": 6151.46, + "probability": 0.7637 + }, + { + "start": 6151.52, + "end": 6153.68, + "probability": 0.9961 + }, + { + "start": 6154.24, + "end": 6154.64, + "probability": 0.5936 + }, + { + "start": 6154.76, + "end": 6157.04, + "probability": 0.2176 + }, + { + "start": 6157.66, + "end": 6158.34, + "probability": 0.6008 + }, + { + "start": 6158.44, + "end": 6160.72, + "probability": 0.2427 + }, + { + "start": 6160.82, + "end": 6162.34, + "probability": 0.7171 + }, + { + "start": 6162.5, + "end": 6166.84, + "probability": 0.6487 + }, + { + "start": 6168.26, + "end": 6172.32, + "probability": 0.9656 + }, + { + "start": 6173.12, + "end": 6173.54, + "probability": 0.9961 + }, + { + "start": 6177.16, + "end": 6179.68, + "probability": 0.847 + }, + { + "start": 6180.74, + "end": 6184.04, + "probability": 0.9951 + }, + { + "start": 6184.08, + "end": 6184.62, + "probability": 0.8212 + }, + { + "start": 6185.54, + "end": 6186.22, + "probability": 0.998 + }, + { + "start": 6188.84, + "end": 6191.42, + "probability": 0.9924 + }, + { + "start": 6191.68, + "end": 6193.76, + "probability": 0.8412 + }, + { + "start": 6194.14, + "end": 6195.46, + "probability": 0.8383 + }, + { + "start": 6198.34, + "end": 6205.4, + "probability": 0.9579 + }, + { + "start": 6206.84, + "end": 6208.88, + "probability": 0.9941 + }, + { + "start": 6210.2, + "end": 6210.86, + "probability": 0.8247 + }, + { + "start": 6211.3, + "end": 6213.16, + "probability": 0.9523 + }, + { + "start": 6213.3, + "end": 6214.78, + "probability": 0.8789 + }, + { + "start": 6215.66, + "end": 6217.64, + "probability": 0.9897 + }, + { + "start": 6217.7, + "end": 6220.12, + "probability": 0.9939 + }, + { + "start": 6220.34, + "end": 6221.98, + "probability": 0.9633 + }, + { + "start": 6222.52, + "end": 6223.96, + "probability": 0.7791 + }, + { + "start": 6224.42, + "end": 6229.7, + "probability": 0.8982 + }, + { + "start": 6230.02, + "end": 6231.2, + "probability": 0.9655 + }, + { + "start": 6231.64, + "end": 6233.6, + "probability": 0.9919 + }, + { + "start": 6234.12, + "end": 6239.92, + "probability": 0.952 + }, + { + "start": 6240.0, + "end": 6240.38, + "probability": 0.8 + }, + { + "start": 6240.6, + "end": 6242.1, + "probability": 0.5797 + }, + { + "start": 6242.58, + "end": 6245.1, + "probability": 0.8809 + }, + { + "start": 6245.26, + "end": 6246.28, + "probability": 0.7678 + }, + { + "start": 6246.64, + "end": 6250.08, + "probability": 0.9268 + }, + { + "start": 6251.75, + "end": 6256.64, + "probability": 0.8755 + }, + { + "start": 6267.36, + "end": 6270.04, + "probability": 0.9019 + }, + { + "start": 6272.04, + "end": 6272.92, + "probability": 0.6877 + }, + { + "start": 6274.48, + "end": 6278.92, + "probability": 0.6829 + }, + { + "start": 6280.52, + "end": 6284.28, + "probability": 0.9796 + }, + { + "start": 6285.64, + "end": 6288.14, + "probability": 0.8816 + }, + { + "start": 6288.88, + "end": 6291.76, + "probability": 0.782 + }, + { + "start": 6292.62, + "end": 6294.98, + "probability": 0.8056 + }, + { + "start": 6296.4, + "end": 6298.26, + "probability": 0.9771 + }, + { + "start": 6298.5, + "end": 6302.32, + "probability": 0.9888 + }, + { + "start": 6302.92, + "end": 6307.26, + "probability": 0.9897 + }, + { + "start": 6308.28, + "end": 6309.62, + "probability": 0.9849 + }, + { + "start": 6310.1, + "end": 6315.82, + "probability": 0.8942 + }, + { + "start": 6316.02, + "end": 6316.74, + "probability": 0.9225 + }, + { + "start": 6318.7, + "end": 6322.88, + "probability": 0.9988 + }, + { + "start": 6324.16, + "end": 6328.18, + "probability": 0.9915 + }, + { + "start": 6329.28, + "end": 6332.12, + "probability": 0.8589 + }, + { + "start": 6333.86, + "end": 6336.78, + "probability": 0.9432 + }, + { + "start": 6338.16, + "end": 6339.42, + "probability": 0.8008 + }, + { + "start": 6341.4, + "end": 6344.72, + "probability": 0.9933 + }, + { + "start": 6346.02, + "end": 6347.48, + "probability": 0.9805 + }, + { + "start": 6349.1, + "end": 6354.08, + "probability": 0.9805 + }, + { + "start": 6355.62, + "end": 6358.96, + "probability": 0.9951 + }, + { + "start": 6360.42, + "end": 6364.04, + "probability": 0.8872 + }, + { + "start": 6365.02, + "end": 6365.96, + "probability": 0.9506 + }, + { + "start": 6366.94, + "end": 6370.74, + "probability": 0.9844 + }, + { + "start": 6370.9, + "end": 6372.1, + "probability": 0.8718 + }, + { + "start": 6372.76, + "end": 6374.04, + "probability": 0.4645 + }, + { + "start": 6374.7, + "end": 6375.76, + "probability": 0.6289 + }, + { + "start": 6377.0, + "end": 6378.72, + "probability": 0.9842 + }, + { + "start": 6379.82, + "end": 6380.88, + "probability": 0.776 + }, + { + "start": 6382.22, + "end": 6386.38, + "probability": 0.9626 + }, + { + "start": 6387.28, + "end": 6390.5, + "probability": 0.9575 + }, + { + "start": 6391.52, + "end": 6393.34, + "probability": 0.8748 + }, + { + "start": 6395.16, + "end": 6399.4, + "probability": 0.6749 + }, + { + "start": 6400.34, + "end": 6401.36, + "probability": 0.5841 + }, + { + "start": 6402.16, + "end": 6404.0, + "probability": 0.9387 + }, + { + "start": 6404.82, + "end": 6406.72, + "probability": 0.9934 + }, + { + "start": 6407.64, + "end": 6408.9, + "probability": 0.6837 + }, + { + "start": 6410.68, + "end": 6415.88, + "probability": 0.9927 + }, + { + "start": 6415.98, + "end": 6417.32, + "probability": 0.9001 + }, + { + "start": 6417.38, + "end": 6418.42, + "probability": 0.6047 + }, + { + "start": 6418.42, + "end": 6420.04, + "probability": 0.8724 + }, + { + "start": 6421.56, + "end": 6423.77, + "probability": 0.9934 + }, + { + "start": 6425.06, + "end": 6428.9, + "probability": 0.7239 + }, + { + "start": 6429.7, + "end": 6430.91, + "probability": 0.4928 + }, + { + "start": 6431.18, + "end": 6431.96, + "probability": 0.8233 + }, + { + "start": 6432.29, + "end": 6435.6, + "probability": 0.9766 + }, + { + "start": 6437.58, + "end": 6441.62, + "probability": 0.8843 + }, + { + "start": 6442.5, + "end": 6446.12, + "probability": 0.8619 + }, + { + "start": 6446.32, + "end": 6446.32, + "probability": 0.2299 + }, + { + "start": 6446.34, + "end": 6447.78, + "probability": 0.6453 + }, + { + "start": 6447.98, + "end": 6448.64, + "probability": 0.821 + }, + { + "start": 6448.74, + "end": 6449.78, + "probability": 0.8568 + }, + { + "start": 6450.66, + "end": 6454.8, + "probability": 0.8901 + }, + { + "start": 6455.66, + "end": 6461.34, + "probability": 0.7629 + }, + { + "start": 6462.86, + "end": 6465.74, + "probability": 0.8002 + }, + { + "start": 6466.68, + "end": 6468.5, + "probability": 0.8729 + }, + { + "start": 6469.38, + "end": 6472.88, + "probability": 0.6965 + }, + { + "start": 6473.5, + "end": 6475.46, + "probability": 0.771 + }, + { + "start": 6475.74, + "end": 6479.72, + "probability": 0.9893 + }, + { + "start": 6480.44, + "end": 6482.24, + "probability": 0.9993 + }, + { + "start": 6482.82, + "end": 6486.18, + "probability": 0.3839 + }, + { + "start": 6487.14, + "end": 6489.24, + "probability": 0.7039 + }, + { + "start": 6491.02, + "end": 6492.28, + "probability": 0.6387 + }, + { + "start": 6493.04, + "end": 6497.16, + "probability": 0.9751 + }, + { + "start": 6497.88, + "end": 6499.8, + "probability": 0.9903 + }, + { + "start": 6500.82, + "end": 6502.12, + "probability": 0.995 + }, + { + "start": 6503.02, + "end": 6507.38, + "probability": 0.9981 + }, + { + "start": 6507.54, + "end": 6508.48, + "probability": 0.6305 + }, + { + "start": 6508.62, + "end": 6509.56, + "probability": 0.8456 + }, + { + "start": 6509.68, + "end": 6513.2, + "probability": 0.994 + }, + { + "start": 6513.52, + "end": 6517.66, + "probability": 0.9856 + }, + { + "start": 6518.5, + "end": 6523.54, + "probability": 0.9966 + }, + { + "start": 6524.28, + "end": 6530.18, + "probability": 0.9917 + }, + { + "start": 6531.3, + "end": 6536.16, + "probability": 0.9883 + }, + { + "start": 6537.06, + "end": 6540.88, + "probability": 0.9896 + }, + { + "start": 6541.3, + "end": 6545.86, + "probability": 0.9939 + }, + { + "start": 6545.86, + "end": 6549.38, + "probability": 0.9947 + }, + { + "start": 6550.48, + "end": 6551.42, + "probability": 0.9391 + }, + { + "start": 6552.1, + "end": 6554.0, + "probability": 0.8665 + }, + { + "start": 6554.56, + "end": 6556.24, + "probability": 0.8235 + }, + { + "start": 6556.94, + "end": 6560.9, + "probability": 0.9948 + }, + { + "start": 6560.9, + "end": 6565.0, + "probability": 0.9956 + }, + { + "start": 6565.12, + "end": 6566.0, + "probability": 0.9398 + }, + { + "start": 6566.68, + "end": 6567.8, + "probability": 0.8934 + }, + { + "start": 6568.48, + "end": 6570.58, + "probability": 0.8367 + }, + { + "start": 6571.16, + "end": 6574.46, + "probability": 0.9041 + }, + { + "start": 6574.96, + "end": 6575.86, + "probability": 0.9915 + }, + { + "start": 6576.42, + "end": 6577.54, + "probability": 0.6788 + }, + { + "start": 6578.06, + "end": 6579.14, + "probability": 0.6739 + }, + { + "start": 6584.04, + "end": 6587.94, + "probability": 0.4099 + }, + { + "start": 6588.04, + "end": 6589.5, + "probability": 0.5418 + }, + { + "start": 6589.68, + "end": 6590.96, + "probability": 0.6088 + }, + { + "start": 6591.5, + "end": 6592.08, + "probability": 0.3722 + }, + { + "start": 6592.78, + "end": 6596.16, + "probability": 0.9675 + }, + { + "start": 6596.22, + "end": 6601.36, + "probability": 0.9948 + }, + { + "start": 6601.46, + "end": 6603.1, + "probability": 0.9861 + }, + { + "start": 6603.58, + "end": 6605.22, + "probability": 0.8897 + }, + { + "start": 6605.36, + "end": 6607.02, + "probability": 0.585 + }, + { + "start": 6607.14, + "end": 6609.22, + "probability": 0.9143 + }, + { + "start": 6609.36, + "end": 6610.8, + "probability": 0.8879 + }, + { + "start": 6611.28, + "end": 6613.5, + "probability": 0.9925 + }, + { + "start": 6615.14, + "end": 6619.12, + "probability": 0.713 + }, + { + "start": 6619.46, + "end": 6619.96, + "probability": 0.6257 + }, + { + "start": 6620.86, + "end": 6628.8, + "probability": 0.9788 + }, + { + "start": 6630.12, + "end": 6630.94, + "probability": 0.4404 + }, + { + "start": 6631.0, + "end": 6631.54, + "probability": 0.8595 + }, + { + "start": 6632.12, + "end": 6632.6, + "probability": 0.415 + }, + { + "start": 6632.7, + "end": 6633.44, + "probability": 0.933 + }, + { + "start": 6634.69, + "end": 6638.78, + "probability": 0.8156 + }, + { + "start": 6639.82, + "end": 6644.28, + "probability": 0.9867 + }, + { + "start": 6644.28, + "end": 6651.3, + "probability": 0.9707 + }, + { + "start": 6651.52, + "end": 6655.76, + "probability": 0.9203 + }, + { + "start": 6655.9, + "end": 6657.14, + "probability": 0.7509 + }, + { + "start": 6657.22, + "end": 6657.84, + "probability": 0.7119 + }, + { + "start": 6658.0, + "end": 6658.36, + "probability": 0.437 + }, + { + "start": 6658.42, + "end": 6658.88, + "probability": 0.044 + }, + { + "start": 6662.22, + "end": 6665.15, + "probability": 0.7375 + }, + { + "start": 6668.34, + "end": 6669.34, + "probability": 0.8628 + }, + { + "start": 6669.8, + "end": 6670.1, + "probability": 0.823 + }, + { + "start": 6670.24, + "end": 6670.78, + "probability": 0.4445 + }, + { + "start": 6671.02, + "end": 6674.36, + "probability": 0.9443 + }, + { + "start": 6675.16, + "end": 6677.22, + "probability": 0.9993 + }, + { + "start": 6680.12, + "end": 6680.56, + "probability": 0.2663 + }, + { + "start": 6680.6, + "end": 6681.65, + "probability": 0.8551 + }, + { + "start": 6683.18, + "end": 6684.64, + "probability": 0.3917 + }, + { + "start": 6685.1, + "end": 6688.04, + "probability": 0.8909 + }, + { + "start": 6688.12, + "end": 6690.24, + "probability": 0.9967 + }, + { + "start": 6690.8, + "end": 6693.06, + "probability": 0.6154 + }, + { + "start": 6693.62, + "end": 6695.82, + "probability": 0.8329 + }, + { + "start": 6700.96, + "end": 6702.07, + "probability": 0.7564 + }, + { + "start": 6702.36, + "end": 6703.62, + "probability": 0.571 + }, + { + "start": 6704.06, + "end": 6707.42, + "probability": 0.9772 + }, + { + "start": 6710.24, + "end": 6714.64, + "probability": 0.981 + }, + { + "start": 6714.86, + "end": 6716.96, + "probability": 0.2801 + }, + { + "start": 6720.36, + "end": 6720.52, + "probability": 0.0627 + }, + { + "start": 6721.62, + "end": 6722.0, + "probability": 0.4316 + }, + { + "start": 6722.0, + "end": 6724.28, + "probability": 0.534 + }, + { + "start": 6724.4, + "end": 6728.64, + "probability": 0.9197 + }, + { + "start": 6729.16, + "end": 6730.5, + "probability": 0.9244 + }, + { + "start": 6731.42, + "end": 6734.24, + "probability": 0.9826 + }, + { + "start": 6734.98, + "end": 6737.14, + "probability": 0.8586 + }, + { + "start": 6739.28, + "end": 6741.22, + "probability": 0.2574 + }, + { + "start": 6741.22, + "end": 6748.16, + "probability": 0.9281 + }, + { + "start": 6748.78, + "end": 6752.1, + "probability": 0.9915 + }, + { + "start": 6752.9, + "end": 6758.0, + "probability": 0.9168 + }, + { + "start": 6758.54, + "end": 6758.9, + "probability": 0.0364 + }, + { + "start": 6758.9, + "end": 6765.22, + "probability": 0.9854 + }, + { + "start": 6765.68, + "end": 6768.56, + "probability": 0.9205 + }, + { + "start": 6769.46, + "end": 6773.74, + "probability": 0.8123 + }, + { + "start": 6773.74, + "end": 6778.0, + "probability": 0.9902 + }, + { + "start": 6778.42, + "end": 6780.26, + "probability": 0.8581 + }, + { + "start": 6780.4, + "end": 6780.76, + "probability": 0.3745 + }, + { + "start": 6780.8, + "end": 6782.18, + "probability": 0.189 + }, + { + "start": 6782.22, + "end": 6784.74, + "probability": 0.641 + }, + { + "start": 6784.74, + "end": 6785.44, + "probability": 0.9155 + }, + { + "start": 6785.46, + "end": 6786.61, + "probability": 0.6752 + }, + { + "start": 6786.78, + "end": 6790.22, + "probability": 0.9951 + }, + { + "start": 6790.22, + "end": 6795.46, + "probability": 0.9902 + }, + { + "start": 6795.76, + "end": 6796.36, + "probability": 0.1223 + }, + { + "start": 6796.64, + "end": 6798.26, + "probability": 0.0128 + }, + { + "start": 6798.42, + "end": 6799.14, + "probability": 0.0853 + }, + { + "start": 6799.14, + "end": 6799.14, + "probability": 0.0353 + }, + { + "start": 6799.14, + "end": 6801.11, + "probability": 0.1626 + }, + { + "start": 6801.24, + "end": 6804.74, + "probability": 0.9541 + }, + { + "start": 6805.36, + "end": 6806.24, + "probability": 0.2575 + }, + { + "start": 6806.72, + "end": 6806.82, + "probability": 0.0779 + }, + { + "start": 6806.84, + "end": 6811.84, + "probability": 0.9437 + }, + { + "start": 6811.88, + "end": 6812.72, + "probability": 0.0165 + }, + { + "start": 6812.82, + "end": 6812.82, + "probability": 0.2247 + }, + { + "start": 6812.82, + "end": 6814.72, + "probability": 0.7757 + }, + { + "start": 6814.84, + "end": 6820.88, + "probability": 0.95 + }, + { + "start": 6821.18, + "end": 6821.18, + "probability": 0.1016 + }, + { + "start": 6821.18, + "end": 6821.6, + "probability": 0.8481 + }, + { + "start": 6823.82, + "end": 6824.56, + "probability": 0.2844 + }, + { + "start": 6824.98, + "end": 6824.98, + "probability": 0.1849 + }, + { + "start": 6825.0, + "end": 6825.9, + "probability": 0.8664 + }, + { + "start": 6826.76, + "end": 6831.02, + "probability": 0.9854 + }, + { + "start": 6831.96, + "end": 6833.04, + "probability": 0.8487 + }, + { + "start": 6833.6, + "end": 6834.6, + "probability": 0.5233 + }, + { + "start": 6835.72, + "end": 6838.54, + "probability": 0.9811 + }, + { + "start": 6839.26, + "end": 6844.58, + "probability": 0.9039 + }, + { + "start": 6845.52, + "end": 6848.46, + "probability": 0.9972 + }, + { + "start": 6849.0, + "end": 6853.2, + "probability": 0.9944 + }, + { + "start": 6854.04, + "end": 6855.98, + "probability": 0.8382 + }, + { + "start": 6856.14, + "end": 6862.88, + "probability": 0.9896 + }, + { + "start": 6863.44, + "end": 6865.52, + "probability": 0.9965 + }, + { + "start": 6866.5, + "end": 6869.36, + "probability": 0.835 + }, + { + "start": 6869.46, + "end": 6870.14, + "probability": 0.1769 + }, + { + "start": 6870.14, + "end": 6870.36, + "probability": 0.1569 + }, + { + "start": 6870.56, + "end": 6875.0, + "probability": 0.0651 + }, + { + "start": 6875.5, + "end": 6875.5, + "probability": 0.096 + }, + { + "start": 6875.5, + "end": 6875.52, + "probability": 0.1917 + }, + { + "start": 6875.52, + "end": 6879.28, + "probability": 0.6315 + }, + { + "start": 6879.36, + "end": 6880.78, + "probability": 0.9236 + }, + { + "start": 6881.84, + "end": 6885.87, + "probability": 0.8817 + }, + { + "start": 6886.48, + "end": 6887.44, + "probability": 0.7966 + }, + { + "start": 6887.78, + "end": 6893.92, + "probability": 0.9491 + }, + { + "start": 6894.84, + "end": 6896.92, + "probability": 0.2217 + }, + { + "start": 6896.92, + "end": 6896.92, + "probability": 0.279 + }, + { + "start": 6897.02, + "end": 6897.58, + "probability": 0.5183 + }, + { + "start": 6897.6, + "end": 6902.54, + "probability": 0.8316 + }, + { + "start": 6903.02, + "end": 6905.12, + "probability": 0.8029 + }, + { + "start": 6905.18, + "end": 6905.94, + "probability": 0.1045 + }, + { + "start": 6906.02, + "end": 6910.36, + "probability": 0.821 + }, + { + "start": 6910.46, + "end": 6912.46, + "probability": 0.9614 + }, + { + "start": 6913.34, + "end": 6915.54, + "probability": 0.8334 + }, + { + "start": 6915.86, + "end": 6918.32, + "probability": 0.9943 + }, + { + "start": 6919.18, + "end": 6922.32, + "probability": 0.9546 + }, + { + "start": 6922.98, + "end": 6924.44, + "probability": 0.9842 + }, + { + "start": 6925.36, + "end": 6928.92, + "probability": 0.9862 + }, + { + "start": 6929.64, + "end": 6930.92, + "probability": 0.9037 + }, + { + "start": 6931.88, + "end": 6933.2, + "probability": 0.9731 + }, + { + "start": 6933.9, + "end": 6941.21, + "probability": 0.911 + }, + { + "start": 6941.72, + "end": 6950.78, + "probability": 0.9765 + }, + { + "start": 6951.38, + "end": 6953.04, + "probability": 0.978 + }, + { + "start": 6954.02, + "end": 6960.32, + "probability": 0.9965 + }, + { + "start": 6960.78, + "end": 6966.82, + "probability": 0.9987 + }, + { + "start": 6967.86, + "end": 6971.6, + "probability": 0.9852 + }, + { + "start": 6972.12, + "end": 6975.18, + "probability": 1.0 + }, + { + "start": 6976.48, + "end": 6982.98, + "probability": 0.9976 + }, + { + "start": 6983.78, + "end": 6984.68, + "probability": 0.6587 + }, + { + "start": 6984.88, + "end": 6987.52, + "probability": 0.9932 + }, + { + "start": 6988.02, + "end": 6992.76, + "probability": 0.9928 + }, + { + "start": 6993.28, + "end": 6998.18, + "probability": 0.986 + }, + { + "start": 6998.64, + "end": 6999.56, + "probability": 0.7646 + }, + { + "start": 7000.12, + "end": 7005.98, + "probability": 0.9914 + }, + { + "start": 7006.48, + "end": 7007.76, + "probability": 0.8255 + }, + { + "start": 7008.18, + "end": 7009.76, + "probability": 0.0838 + }, + { + "start": 7009.76, + "end": 7009.76, + "probability": 0.0653 + }, + { + "start": 7009.76, + "end": 7012.06, + "probability": 0.3752 + }, + { + "start": 7012.06, + "end": 7016.28, + "probability": 0.9771 + }, + { + "start": 7016.76, + "end": 7017.26, + "probability": 0.7934 + }, + { + "start": 7017.34, + "end": 7018.22, + "probability": 0.8577 + }, + { + "start": 7018.26, + "end": 7020.04, + "probability": 0.7383 + }, + { + "start": 7020.06, + "end": 7020.94, + "probability": 0.8678 + }, + { + "start": 7021.52, + "end": 7025.77, + "probability": 0.9938 + }, + { + "start": 7026.34, + "end": 7030.64, + "probability": 0.8332 + }, + { + "start": 7031.1, + "end": 7032.24, + "probability": 0.9676 + }, + { + "start": 7032.44, + "end": 7033.88, + "probability": 0.983 + }, + { + "start": 7034.0, + "end": 7035.21, + "probability": 0.97 + }, + { + "start": 7036.14, + "end": 7043.38, + "probability": 0.9896 + }, + { + "start": 7044.72, + "end": 7044.72, + "probability": 0.1274 + }, + { + "start": 7044.72, + "end": 7044.72, + "probability": 0.035 + }, + { + "start": 7044.72, + "end": 7049.0, + "probability": 0.5402 + }, + { + "start": 7049.06, + "end": 7050.4, + "probability": 0.7759 + }, + { + "start": 7050.58, + "end": 7050.66, + "probability": 0.4606 + }, + { + "start": 7050.66, + "end": 7051.84, + "probability": 0.3928 + }, + { + "start": 7051.92, + "end": 7053.06, + "probability": 0.3106 + }, + { + "start": 7053.06, + "end": 7056.38, + "probability": 0.512 + }, + { + "start": 7056.38, + "end": 7056.52, + "probability": 0.6551 + }, + { + "start": 7057.84, + "end": 7062.3, + "probability": 0.0861 + }, + { + "start": 7062.82, + "end": 7063.38, + "probability": 0.5182 + }, + { + "start": 7063.6, + "end": 7063.6, + "probability": 0.1 + }, + { + "start": 7063.6, + "end": 7063.6, + "probability": 0.0277 + }, + { + "start": 7063.6, + "end": 7064.16, + "probability": 0.0563 + }, + { + "start": 7064.16, + "end": 7065.4, + "probability": 0.5973 + }, + { + "start": 7066.36, + "end": 7070.38, + "probability": 0.8704 + }, + { + "start": 7070.98, + "end": 7072.02, + "probability": 0.8024 + }, + { + "start": 7072.72, + "end": 7072.86, + "probability": 0.1783 + }, + { + "start": 7072.86, + "end": 7073.56, + "probability": 0.363 + }, + { + "start": 7075.12, + "end": 7075.78, + "probability": 0.6426 + }, + { + "start": 7076.22, + "end": 7076.92, + "probability": 0.7301 + }, + { + "start": 7077.08, + "end": 7078.66, + "probability": 0.6237 + }, + { + "start": 7079.16, + "end": 7079.16, + "probability": 0.2998 + }, + { + "start": 7079.16, + "end": 7081.54, + "probability": 0.0449 + }, + { + "start": 7082.18, + "end": 7083.26, + "probability": 0.6857 + }, + { + "start": 7083.6, + "end": 7085.96, + "probability": 0.5419 + }, + { + "start": 7085.96, + "end": 7086.1, + "probability": 0.8634 + }, + { + "start": 7086.16, + "end": 7087.86, + "probability": 0.6751 + }, + { + "start": 7088.34, + "end": 7091.64, + "probability": 0.9968 + }, + { + "start": 7092.0, + "end": 7095.64, + "probability": 0.9684 + }, + { + "start": 7095.64, + "end": 7101.9, + "probability": 0.9838 + }, + { + "start": 7102.1, + "end": 7104.46, + "probability": 0.5838 + }, + { + "start": 7105.84, + "end": 7108.42, + "probability": 0.9164 + }, + { + "start": 7108.52, + "end": 7111.08, + "probability": 0.9408 + }, + { + "start": 7113.3, + "end": 7116.54, + "probability": 0.9946 + }, + { + "start": 7118.0, + "end": 7118.22, + "probability": 0.1428 + }, + { + "start": 7118.22, + "end": 7118.98, + "probability": 0.1439 + }, + { + "start": 7119.7, + "end": 7120.42, + "probability": 0.2001 + }, + { + "start": 7120.42, + "end": 7120.42, + "probability": 0.3109 + }, + { + "start": 7120.42, + "end": 7120.42, + "probability": 0.476 + }, + { + "start": 7120.46, + "end": 7120.46, + "probability": 0.4691 + }, + { + "start": 7120.52, + "end": 7120.52, + "probability": 0.3989 + }, + { + "start": 7120.54, + "end": 7121.7, + "probability": 0.7054 + }, + { + "start": 7122.06, + "end": 7126.52, + "probability": 0.8243 + }, + { + "start": 7126.6, + "end": 7127.12, + "probability": 0.8198 + }, + { + "start": 7127.76, + "end": 7128.08, + "probability": 0.0345 + }, + { + "start": 7128.08, + "end": 7129.25, + "probability": 0.3949 + }, + { + "start": 7134.36, + "end": 7136.04, + "probability": 0.3375 + }, + { + "start": 7136.58, + "end": 7137.36, + "probability": 0.5214 + }, + { + "start": 7138.38, + "end": 7138.44, + "probability": 0.0067 + }, + { + "start": 7139.42, + "end": 7140.44, + "probability": 0.0171 + }, + { + "start": 7141.42, + "end": 7143.48, + "probability": 0.0923 + }, + { + "start": 7145.1, + "end": 7146.44, + "probability": 0.658 + }, + { + "start": 7147.02, + "end": 7151.16, + "probability": 0.9668 + }, + { + "start": 7151.16, + "end": 7153.4, + "probability": 0.9866 + }, + { + "start": 7154.26, + "end": 7155.4, + "probability": 0.8778 + }, + { + "start": 7156.14, + "end": 7156.62, + "probability": 0.4266 + }, + { + "start": 7157.62, + "end": 7158.78, + "probability": 0.9644 + }, + { + "start": 7158.9, + "end": 7163.08, + "probability": 0.9115 + }, + { + "start": 7163.66, + "end": 7166.34, + "probability": 0.5751 + }, + { + "start": 7166.54, + "end": 7169.84, + "probability": 0.9863 + }, + { + "start": 7169.94, + "end": 7171.52, + "probability": 0.9628 + }, + { + "start": 7171.7, + "end": 7173.23, + "probability": 0.9434 + }, + { + "start": 7178.7, + "end": 7178.96, + "probability": 0.1387 + }, + { + "start": 7179.32, + "end": 7181.62, + "probability": 0.7037 + }, + { + "start": 7182.04, + "end": 7185.04, + "probability": 0.9962 + }, + { + "start": 7185.1, + "end": 7186.12, + "probability": 0.9763 + }, + { + "start": 7186.72, + "end": 7187.38, + "probability": 0.1424 + }, + { + "start": 7188.24, + "end": 7194.64, + "probability": 0.9613 + }, + { + "start": 7194.7, + "end": 7195.52, + "probability": 0.9666 + }, + { + "start": 7196.44, + "end": 7198.26, + "probability": 0.5724 + }, + { + "start": 7199.1, + "end": 7200.62, + "probability": 0.7217 + }, + { + "start": 7201.7, + "end": 7202.74, + "probability": 0.9573 + }, + { + "start": 7203.26, + "end": 7203.76, + "probability": 0.6113 + }, + { + "start": 7203.86, + "end": 7210.35, + "probability": 0.9891 + }, + { + "start": 7211.5, + "end": 7216.28, + "probability": 0.8318 + }, + { + "start": 7216.56, + "end": 7218.38, + "probability": 0.8974 + }, + { + "start": 7219.08, + "end": 7223.48, + "probability": 0.9977 + }, + { + "start": 7223.48, + "end": 7227.54, + "probability": 0.999 + }, + { + "start": 7228.24, + "end": 7232.38, + "probability": 0.9934 + }, + { + "start": 7232.38, + "end": 7237.56, + "probability": 0.9974 + }, + { + "start": 7238.54, + "end": 7240.9, + "probability": 0.9207 + }, + { + "start": 7241.6, + "end": 7243.04, + "probability": 0.7803 + }, + { + "start": 7244.94, + "end": 7246.74, + "probability": 0.3774 + }, + { + "start": 7247.2, + "end": 7247.64, + "probability": 0.4386 + }, + { + "start": 7247.86, + "end": 7249.36, + "probability": 0.8312 + }, + { + "start": 7249.64, + "end": 7250.04, + "probability": 0.6879 + }, + { + "start": 7250.38, + "end": 7251.5, + "probability": 0.9547 + }, + { + "start": 7251.56, + "end": 7254.16, + "probability": 0.9617 + }, + { + "start": 7254.24, + "end": 7254.64, + "probability": 0.8408 + }, + { + "start": 7255.32, + "end": 7256.1, + "probability": 0.8477 + }, + { + "start": 7256.72, + "end": 7258.78, + "probability": 0.5492 + }, + { + "start": 7260.44, + "end": 7264.6, + "probability": 0.781 + }, + { + "start": 7265.14, + "end": 7266.3, + "probability": 0.9768 + }, + { + "start": 7266.98, + "end": 7271.18, + "probability": 0.9486 + }, + { + "start": 7271.42, + "end": 7272.3, + "probability": 0.1274 + }, + { + "start": 7272.7, + "end": 7273.78, + "probability": 0.1101 + }, + { + "start": 7273.78, + "end": 7274.36, + "probability": 0.0228 + }, + { + "start": 7274.36, + "end": 7274.36, + "probability": 0.0102 + }, + { + "start": 7274.36, + "end": 7275.61, + "probability": 0.1043 + }, + { + "start": 7277.14, + "end": 7279.02, + "probability": 0.3842 + }, + { + "start": 7279.1, + "end": 7279.72, + "probability": 0.2746 + }, + { + "start": 7280.36, + "end": 7281.08, + "probability": 0.4292 + }, + { + "start": 7281.48, + "end": 7282.18, + "probability": 0.8383 + }, + { + "start": 7283.0, + "end": 7284.82, + "probability": 0.8687 + }, + { + "start": 7284.94, + "end": 7286.74, + "probability": 0.7769 + }, + { + "start": 7287.04, + "end": 7289.32, + "probability": 0.9979 + }, + { + "start": 7289.66, + "end": 7291.72, + "probability": 0.4874 + }, + { + "start": 7292.48, + "end": 7295.06, + "probability": 0.6816 + }, + { + "start": 7295.46, + "end": 7298.68, + "probability": 0.6949 + }, + { + "start": 7299.06, + "end": 7300.02, + "probability": 0.6288 + }, + { + "start": 7300.08, + "end": 7301.18, + "probability": 0.3891 + }, + { + "start": 7301.24, + "end": 7302.24, + "probability": 0.4255 + }, + { + "start": 7302.26, + "end": 7304.38, + "probability": 0.4845 + }, + { + "start": 7304.52, + "end": 7307.92, + "probability": 0.3528 + }, + { + "start": 7310.7, + "end": 7313.6, + "probability": 0.7859 + }, + { + "start": 7314.02, + "end": 7315.06, + "probability": 0.7844 + }, + { + "start": 7315.2, + "end": 7317.38, + "probability": 0.7655 + }, + { + "start": 7317.66, + "end": 7317.82, + "probability": 0.7258 + }, + { + "start": 7318.0, + "end": 7319.22, + "probability": 0.8174 + }, + { + "start": 7319.32, + "end": 7325.98, + "probability": 0.9385 + }, + { + "start": 7326.96, + "end": 7332.22, + "probability": 0.999 + }, + { + "start": 7332.22, + "end": 7337.52, + "probability": 0.9987 + }, + { + "start": 7338.02, + "end": 7338.42, + "probability": 0.7635 + }, + { + "start": 7338.48, + "end": 7339.88, + "probability": 0.849 + }, + { + "start": 7340.48, + "end": 7345.28, + "probability": 0.9976 + }, + { + "start": 7345.46, + "end": 7348.64, + "probability": 0.9972 + }, + { + "start": 7349.16, + "end": 7351.2, + "probability": 0.9905 + }, + { + "start": 7352.6, + "end": 7354.86, + "probability": 0.7655 + }, + { + "start": 7354.98, + "end": 7355.22, + "probability": 0.7498 + }, + { + "start": 7355.3, + "end": 7357.16, + "probability": 0.9172 + }, + { + "start": 7357.68, + "end": 7359.26, + "probability": 0.7773 + }, + { + "start": 7359.5, + "end": 7362.7, + "probability": 0.8308 + }, + { + "start": 7362.74, + "end": 7364.4, + "probability": 0.7041 + }, + { + "start": 7364.58, + "end": 7365.26, + "probability": 0.9773 + }, + { + "start": 7365.4, + "end": 7367.66, + "probability": 0.9453 + }, + { + "start": 7367.78, + "end": 7369.36, + "probability": 0.7593 + }, + { + "start": 7369.98, + "end": 7376.16, + "probability": 0.99 + }, + { + "start": 7376.36, + "end": 7378.24, + "probability": 0.9392 + }, + { + "start": 7378.72, + "end": 7381.08, + "probability": 0.9129 + }, + { + "start": 7381.44, + "end": 7386.7, + "probability": 0.968 + }, + { + "start": 7387.04, + "end": 7388.74, + "probability": 0.8686 + }, + { + "start": 7388.94, + "end": 7391.78, + "probability": 0.8064 + }, + { + "start": 7391.86, + "end": 7395.82, + "probability": 0.9797 + }, + { + "start": 7396.02, + "end": 7397.88, + "probability": 0.7668 + }, + { + "start": 7398.98, + "end": 7401.29, + "probability": 0.6036 + }, + { + "start": 7402.4, + "end": 7406.76, + "probability": 0.7676 + }, + { + "start": 7407.38, + "end": 7411.34, + "probability": 0.8264 + }, + { + "start": 7411.34, + "end": 7416.28, + "probability": 0.9864 + }, + { + "start": 7416.94, + "end": 7422.12, + "probability": 0.7573 + }, + { + "start": 7422.12, + "end": 7425.72, + "probability": 0.9644 + }, + { + "start": 7426.3, + "end": 7428.94, + "probability": 0.6438 + }, + { + "start": 7429.02, + "end": 7429.92, + "probability": 0.5811 + }, + { + "start": 7431.84, + "end": 7432.4, + "probability": 0.3705 + }, + { + "start": 7432.4, + "end": 7433.18, + "probability": 0.5527 + }, + { + "start": 7437.5, + "end": 7438.84, + "probability": 0.3029 + }, + { + "start": 7448.25, + "end": 7449.06, + "probability": 0.3814 + }, + { + "start": 7449.06, + "end": 7449.92, + "probability": 0.3553 + }, + { + "start": 7450.92, + "end": 7452.24, + "probability": 0.87 + }, + { + "start": 7452.88, + "end": 7453.38, + "probability": 0.4983 + }, + { + "start": 7453.48, + "end": 7457.6, + "probability": 0.9209 + }, + { + "start": 7458.26, + "end": 7459.04, + "probability": 0.7784 + }, + { + "start": 7459.32, + "end": 7462.96, + "probability": 0.9731 + }, + { + "start": 7463.72, + "end": 7465.28, + "probability": 0.5741 + }, + { + "start": 7465.8, + "end": 7470.72, + "probability": 0.6897 + }, + { + "start": 7471.04, + "end": 7474.14, + "probability": 0.8292 + }, + { + "start": 7474.78, + "end": 7475.9, + "probability": 0.6631 + }, + { + "start": 7476.18, + "end": 7477.7, + "probability": 0.8639 + }, + { + "start": 7478.12, + "end": 7481.48, + "probability": 0.8217 + }, + { + "start": 7482.0, + "end": 7482.74, + "probability": 0.5068 + }, + { + "start": 7482.78, + "end": 7484.68, + "probability": 0.7175 + }, + { + "start": 7484.94, + "end": 7485.92, + "probability": 0.6523 + }, + { + "start": 7493.4, + "end": 7497.36, + "probability": 0.0182 + }, + { + "start": 7498.74, + "end": 7501.64, + "probability": 0.1797 + }, + { + "start": 7501.64, + "end": 7505.58, + "probability": 0.674 + }, + { + "start": 7506.06, + "end": 7508.38, + "probability": 0.872 + }, + { + "start": 7508.78, + "end": 7509.26, + "probability": 0.5432 + }, + { + "start": 7509.34, + "end": 7515.88, + "probability": 0.7617 + }, + { + "start": 7516.64, + "end": 7517.46, + "probability": 0.8351 + }, + { + "start": 7517.6, + "end": 7519.24, + "probability": 0.9305 + }, + { + "start": 7519.6, + "end": 7521.08, + "probability": 0.694 + }, + { + "start": 7521.12, + "end": 7522.08, + "probability": 0.9586 + }, + { + "start": 7522.66, + "end": 7524.82, + "probability": 0.8619 + }, + { + "start": 7532.81, + "end": 7534.36, + "probability": 0.9048 + }, + { + "start": 7547.39, + "end": 7549.74, + "probability": 0.5082 + }, + { + "start": 7559.56, + "end": 7564.3, + "probability": 0.6045 + }, + { + "start": 7568.02, + "end": 7569.7, + "probability": 0.7874 + }, + { + "start": 7570.98, + "end": 7573.17, + "probability": 0.98 + }, + { + "start": 7574.38, + "end": 7576.18, + "probability": 0.751 + }, + { + "start": 7576.72, + "end": 7579.84, + "probability": 0.8641 + }, + { + "start": 7581.36, + "end": 7582.98, + "probability": 0.8545 + }, + { + "start": 7583.14, + "end": 7583.92, + "probability": 0.6263 + }, + { + "start": 7585.7, + "end": 7589.7, + "probability": 0.9188 + }, + { + "start": 7591.32, + "end": 7595.36, + "probability": 0.8683 + }, + { + "start": 7595.54, + "end": 7596.5, + "probability": 0.7026 + }, + { + "start": 7597.82, + "end": 7599.24, + "probability": 0.9398 + }, + { + "start": 7599.58, + "end": 7603.24, + "probability": 0.9796 + }, + { + "start": 7603.78, + "end": 7603.88, + "probability": 0.1837 + }, + { + "start": 7619.0, + "end": 7623.38, + "probability": 0.4047 + }, + { + "start": 7624.2, + "end": 7624.8, + "probability": 0.8464 + }, + { + "start": 7625.1, + "end": 7625.32, + "probability": 0.6578 + }, + { + "start": 7625.32, + "end": 7625.48, + "probability": 0.6814 + }, + { + "start": 7625.56, + "end": 7626.24, + "probability": 0.9829 + }, + { + "start": 7628.6, + "end": 7629.82, + "probability": 0.9712 + }, + { + "start": 7629.82, + "end": 7630.82, + "probability": 0.6967 + }, + { + "start": 7630.82, + "end": 7632.86, + "probability": 0.9601 + }, + { + "start": 7632.9, + "end": 7634.38, + "probability": 0.5573 + }, + { + "start": 7634.58, + "end": 7635.47, + "probability": 0.2237 + }, + { + "start": 7636.1, + "end": 7639.74, + "probability": 0.9988 + }, + { + "start": 7640.02, + "end": 7641.41, + "probability": 0.8765 + }, + { + "start": 7641.88, + "end": 7643.76, + "probability": 0.6157 + }, + { + "start": 7645.14, + "end": 7647.36, + "probability": 0.6481 + }, + { + "start": 7647.5, + "end": 7648.12, + "probability": 0.9095 + }, + { + "start": 7648.28, + "end": 7651.69, + "probability": 0.996 + }, + { + "start": 7653.9, + "end": 7655.54, + "probability": 0.9229 + }, + { + "start": 7657.12, + "end": 7661.68, + "probability": 0.7268 + }, + { + "start": 7665.16, + "end": 7668.48, + "probability": 0.8064 + }, + { + "start": 7670.78, + "end": 7673.62, + "probability": 0.9481 + }, + { + "start": 7674.84, + "end": 7676.9, + "probability": 0.9453 + }, + { + "start": 7676.98, + "end": 7679.78, + "probability": 0.9882 + }, + { + "start": 7681.34, + "end": 7686.26, + "probability": 0.9233 + }, + { + "start": 7686.83, + "end": 7690.02, + "probability": 0.6148 + }, + { + "start": 7690.06, + "end": 7691.52, + "probability": 0.9912 + }, + { + "start": 7692.82, + "end": 7697.3, + "probability": 0.9574 + }, + { + "start": 7697.96, + "end": 7701.54, + "probability": 0.832 + }, + { + "start": 7702.26, + "end": 7704.8, + "probability": 0.8856 + }, + { + "start": 7706.64, + "end": 7712.3, + "probability": 0.9962 + }, + { + "start": 7712.3, + "end": 7717.18, + "probability": 0.9998 + }, + { + "start": 7719.64, + "end": 7723.72, + "probability": 0.9945 + }, + { + "start": 7724.88, + "end": 7728.54, + "probability": 0.9856 + }, + { + "start": 7730.84, + "end": 7732.68, + "probability": 0.857 + }, + { + "start": 7733.0, + "end": 7738.02, + "probability": 0.9813 + }, + { + "start": 7738.02, + "end": 7741.78, + "probability": 0.9979 + }, + { + "start": 7742.46, + "end": 7744.1, + "probability": 0.9899 + }, + { + "start": 7744.92, + "end": 7747.78, + "probability": 0.975 + }, + { + "start": 7747.88, + "end": 7752.4, + "probability": 0.8418 + }, + { + "start": 7753.44, + "end": 7755.76, + "probability": 0.9966 + }, + { + "start": 7755.76, + "end": 7760.02, + "probability": 0.8786 + }, + { + "start": 7760.16, + "end": 7762.2, + "probability": 0.7985 + }, + { + "start": 7762.86, + "end": 7764.64, + "probability": 0.882 + }, + { + "start": 7764.68, + "end": 7767.22, + "probability": 0.9928 + }, + { + "start": 7767.92, + "end": 7768.38, + "probability": 0.792 + }, + { + "start": 7768.92, + "end": 7769.38, + "probability": 0.7102 + }, + { + "start": 7769.44, + "end": 7771.82, + "probability": 0.855 + }, + { + "start": 7771.92, + "end": 7772.76, + "probability": 0.86 + }, + { + "start": 7772.98, + "end": 7774.32, + "probability": 0.9901 + }, + { + "start": 7774.48, + "end": 7775.28, + "probability": 0.5717 + }, + { + "start": 7775.88, + "end": 7778.28, + "probability": 0.6799 + }, + { + "start": 7778.42, + "end": 7782.24, + "probability": 0.9711 + }, + { + "start": 7782.88, + "end": 7787.06, + "probability": 0.9342 + }, + { + "start": 7791.86, + "end": 7796.08, + "probability": 0.6309 + }, + { + "start": 7796.2, + "end": 7797.4, + "probability": 0.7667 + }, + { + "start": 7797.56, + "end": 7800.02, + "probability": 0.71 + }, + { + "start": 7800.22, + "end": 7803.54, + "probability": 0.3942 + }, + { + "start": 7805.18, + "end": 7806.96, + "probability": 0.0034 + }, + { + "start": 7806.96, + "end": 7810.22, + "probability": 0.0634 + }, + { + "start": 7812.16, + "end": 7812.24, + "probability": 0.0067 + }, + { + "start": 7823.64, + "end": 7826.86, + "probability": 0.6937 + }, + { + "start": 7827.82, + "end": 7832.82, + "probability": 0.9957 + }, + { + "start": 7836.68, + "end": 7839.6, + "probability": 0.0135 + }, + { + "start": 7852.76, + "end": 7854.9, + "probability": 0.7496 + }, + { + "start": 7855.06, + "end": 7859.38, + "probability": 0.6642 + }, + { + "start": 7859.62, + "end": 7862.14, + "probability": 0.4707 + }, + { + "start": 7862.3, + "end": 7863.28, + "probability": 0.1725 + }, + { + "start": 7863.66, + "end": 7867.12, + "probability": 0.9865 + }, + { + "start": 7879.56, + "end": 7884.82, + "probability": 0.8787 + }, + { + "start": 7885.12, + "end": 7885.66, + "probability": 0.6798 + }, + { + "start": 7886.62, + "end": 7887.22, + "probability": 0.5049 + }, + { + "start": 7895.16, + "end": 7896.1, + "probability": 0.6809 + }, + { + "start": 7896.54, + "end": 7897.48, + "probability": 0.5498 + }, + { + "start": 7897.56, + "end": 7898.36, + "probability": 0.9095 + }, + { + "start": 7898.5, + "end": 7903.44, + "probability": 0.9941 + }, + { + "start": 7903.9, + "end": 7905.42, + "probability": 0.9899 + }, + { + "start": 7905.66, + "end": 7906.84, + "probability": 0.8442 + }, + { + "start": 7907.02, + "end": 7908.12, + "probability": 0.812 + }, + { + "start": 7908.66, + "end": 7911.34, + "probability": 0.6812 + }, + { + "start": 7911.9, + "end": 7913.1, + "probability": 0.8654 + }, + { + "start": 7913.18, + "end": 7914.24, + "probability": 0.7632 + }, + { + "start": 7914.34, + "end": 7917.8, + "probability": 0.9937 + }, + { + "start": 7918.8, + "end": 7921.22, + "probability": 0.9374 + }, + { + "start": 7921.3, + "end": 7921.68, + "probability": 0.9169 + }, + { + "start": 7923.36, + "end": 7923.94, + "probability": 0.5054 + }, + { + "start": 7924.04, + "end": 7927.14, + "probability": 0.9376 + }, + { + "start": 7927.74, + "end": 7930.3, + "probability": 0.8416 + }, + { + "start": 7930.3, + "end": 7933.42, + "probability": 0.9282 + }, + { + "start": 7933.46, + "end": 7934.78, + "probability": 0.1187 + }, + { + "start": 7935.12, + "end": 7936.16, + "probability": 0.8026 + }, + { + "start": 7936.42, + "end": 7938.58, + "probability": 0.8905 + }, + { + "start": 7938.74, + "end": 7939.98, + "probability": 0.7446 + }, + { + "start": 7940.4, + "end": 7941.08, + "probability": 0.8948 + }, + { + "start": 7950.3, + "end": 7953.78, + "probability": 0.7533 + }, + { + "start": 7954.1, + "end": 7956.44, + "probability": 0.854 + }, + { + "start": 7956.96, + "end": 7958.2, + "probability": 0.6727 + }, + { + "start": 7959.3, + "end": 7962.3, + "probability": 0.9737 + }, + { + "start": 7962.82, + "end": 7964.84, + "probability": 0.9427 + }, + { + "start": 7965.42, + "end": 7967.7, + "probability": 0.9813 + }, + { + "start": 7967.7, + "end": 7974.56, + "probability": 0.9624 + }, + { + "start": 7974.66, + "end": 7979.24, + "probability": 0.7021 + }, + { + "start": 7979.24, + "end": 7982.57, + "probability": 0.9824 + }, + { + "start": 7983.92, + "end": 7985.68, + "probability": 0.8475 + }, + { + "start": 7985.94, + "end": 7988.34, + "probability": 0.9958 + }, + { + "start": 7988.86, + "end": 7992.26, + "probability": 0.9882 + }, + { + "start": 7992.56, + "end": 7997.36, + "probability": 0.9909 + }, + { + "start": 7998.26, + "end": 8001.14, + "probability": 0.9531 + }, + { + "start": 8001.14, + "end": 8003.98, + "probability": 0.9962 + }, + { + "start": 8004.82, + "end": 8006.14, + "probability": 0.8964 + }, + { + "start": 8006.22, + "end": 8009.08, + "probability": 0.9795 + }, + { + "start": 8009.84, + "end": 8012.22, + "probability": 0.994 + }, + { + "start": 8012.22, + "end": 8015.14, + "probability": 0.974 + }, + { + "start": 8015.88, + "end": 8020.82, + "probability": 0.9867 + }, + { + "start": 8020.82, + "end": 8024.02, + "probability": 0.9946 + }, + { + "start": 8024.06, + "end": 8027.58, + "probability": 0.9935 + }, + { + "start": 8027.58, + "end": 8030.92, + "probability": 0.9808 + }, + { + "start": 8030.92, + "end": 8035.78, + "probability": 0.8545 + }, + { + "start": 8036.7, + "end": 8038.7, + "probability": 0.95 + }, + { + "start": 8038.8, + "end": 8041.28, + "probability": 0.9871 + }, + { + "start": 8041.28, + "end": 8043.7, + "probability": 0.9885 + }, + { + "start": 8044.3, + "end": 8048.86, + "probability": 0.9862 + }, + { + "start": 8049.48, + "end": 8053.36, + "probability": 0.9681 + }, + { + "start": 8053.98, + "end": 8058.4, + "probability": 0.8557 + }, + { + "start": 8058.48, + "end": 8063.1, + "probability": 0.9357 + }, + { + "start": 8063.64, + "end": 8066.9, + "probability": 0.9184 + }, + { + "start": 8067.34, + "end": 8070.12, + "probability": 0.8055 + }, + { + "start": 8071.12, + "end": 8072.8, + "probability": 0.9705 + }, + { + "start": 8073.36, + "end": 8075.22, + "probability": 0.6051 + }, + { + "start": 8075.86, + "end": 8077.56, + "probability": 0.7347 + }, + { + "start": 8078.14, + "end": 8081.24, + "probability": 0.9316 + }, + { + "start": 8081.36, + "end": 8082.67, + "probability": 0.6151 + }, + { + "start": 8083.74, + "end": 8085.76, + "probability": 0.8696 + }, + { + "start": 8085.86, + "end": 8088.09, + "probability": 0.6622 + }, + { + "start": 8088.8, + "end": 8090.7, + "probability": 0.7247 + }, + { + "start": 8090.82, + "end": 8092.94, + "probability": 0.9288 + }, + { + "start": 8093.04, + "end": 8096.58, + "probability": 0.9822 + }, + { + "start": 8106.5, + "end": 8108.84, + "probability": 0.0044 + }, + { + "start": 8115.92, + "end": 8117.28, + "probability": 0.014 + }, + { + "start": 8117.7, + "end": 8121.0, + "probability": 0.5021 + }, + { + "start": 8121.84, + "end": 8126.14, + "probability": 0.9946 + }, + { + "start": 8126.3, + "end": 8128.2, + "probability": 0.8832 + }, + { + "start": 8128.24, + "end": 8129.2, + "probability": 0.8977 + }, + { + "start": 8129.3, + "end": 8130.88, + "probability": 0.7056 + }, + { + "start": 8131.66, + "end": 8134.74, + "probability": 0.0253 + }, + { + "start": 8150.48, + "end": 8155.52, + "probability": 0.047 + }, + { + "start": 8156.52, + "end": 8162.04, + "probability": 0.643 + }, + { + "start": 8162.26, + "end": 8165.84, + "probability": 0.8086 + }, + { + "start": 8166.0, + "end": 8167.18, + "probability": 0.3624 + }, + { + "start": 8167.72, + "end": 8173.64, + "probability": 0.8643 + }, + { + "start": 8175.7, + "end": 8177.48, + "probability": 0.999 + }, + { + "start": 8178.42, + "end": 8183.74, + "probability": 0.9502 + }, + { + "start": 8183.8, + "end": 8187.41, + "probability": 0.9677 + }, + { + "start": 8189.18, + "end": 8190.72, + "probability": 0.3338 + }, + { + "start": 8191.24, + "end": 8195.02, + "probability": 0.4896 + }, + { + "start": 8195.92, + "end": 8199.72, + "probability": 0.9305 + }, + { + "start": 8200.84, + "end": 8201.58, + "probability": 0.6701 + }, + { + "start": 8201.64, + "end": 8204.14, + "probability": 0.953 + }, + { + "start": 8204.28, + "end": 8205.12, + "probability": 0.9419 + }, + { + "start": 8205.74, + "end": 8206.76, + "probability": 0.8082 + }, + { + "start": 8206.96, + "end": 8208.28, + "probability": 0.9966 + }, + { + "start": 8208.4, + "end": 8211.38, + "probability": 0.7981 + }, + { + "start": 8211.48, + "end": 8212.3, + "probability": 0.7495 + }, + { + "start": 8212.44, + "end": 8215.48, + "probability": 0.9536 + }, + { + "start": 8217.2, + "end": 8219.12, + "probability": 0.4843 + }, + { + "start": 8219.44, + "end": 8220.74, + "probability": 0.8971 + }, + { + "start": 8221.2, + "end": 8223.26, + "probability": 0.9826 + }, + { + "start": 8223.26, + "end": 8225.84, + "probability": 0.885 + }, + { + "start": 8226.4, + "end": 8226.68, + "probability": 0.0236 + }, + { + "start": 8227.48, + "end": 8234.58, + "probability": 0.8987 + }, + { + "start": 8235.38, + "end": 8238.22, + "probability": 0.957 + }, + { + "start": 8239.24, + "end": 8242.14, + "probability": 0.998 + }, + { + "start": 8242.14, + "end": 8246.24, + "probability": 0.9937 + }, + { + "start": 8247.1, + "end": 8251.48, + "probability": 0.988 + }, + { + "start": 8252.26, + "end": 8254.78, + "probability": 0.2825 + }, + { + "start": 8254.78, + "end": 8256.04, + "probability": 0.7272 + }, + { + "start": 8256.28, + "end": 8258.44, + "probability": 0.5355 + }, + { + "start": 8259.18, + "end": 8260.84, + "probability": 0.9058 + }, + { + "start": 8261.6, + "end": 8265.32, + "probability": 0.9637 + }, + { + "start": 8266.06, + "end": 8267.38, + "probability": 0.9705 + }, + { + "start": 8267.64, + "end": 8271.68, + "probability": 0.618 + }, + { + "start": 8271.74, + "end": 8272.3, + "probability": 0.7515 + }, + { + "start": 8273.4, + "end": 8276.78, + "probability": 0.8569 + }, + { + "start": 8276.9, + "end": 8278.78, + "probability": 0.9814 + }, + { + "start": 8284.58, + "end": 8285.4, + "probability": 0.6432 + }, + { + "start": 8287.86, + "end": 8291.26, + "probability": 0.8519 + }, + { + "start": 8291.42, + "end": 8294.9, + "probability": 0.6538 + }, + { + "start": 8295.02, + "end": 8297.32, + "probability": 0.0961 + }, + { + "start": 8299.48, + "end": 8299.9, + "probability": 0.0009 + }, + { + "start": 8310.78, + "end": 8311.7, + "probability": 0.1034 + }, + { + "start": 8315.2, + "end": 8317.02, + "probability": 0.5217 + }, + { + "start": 8317.58, + "end": 8318.66, + "probability": 0.6261 + }, + { + "start": 8319.38, + "end": 8322.4, + "probability": 0.7829 + }, + { + "start": 8322.48, + "end": 8324.96, + "probability": 0.8656 + }, + { + "start": 8326.24, + "end": 8330.0, + "probability": 0.862 + }, + { + "start": 8330.0, + "end": 8332.66, + "probability": 0.9961 + }, + { + "start": 8332.74, + "end": 8336.32, + "probability": 0.5899 + }, + { + "start": 8336.38, + "end": 8336.98, + "probability": 0.7477 + }, + { + "start": 8342.52, + "end": 8349.8, + "probability": 0.1956 + }, + { + "start": 8350.14, + "end": 8350.86, + "probability": 0.0492 + }, + { + "start": 8350.86, + "end": 8350.86, + "probability": 0.1318 + }, + { + "start": 8354.48, + "end": 8358.64, + "probability": 0.6608 + }, + { + "start": 8358.86, + "end": 8362.04, + "probability": 0.8921 + }, + { + "start": 8362.16, + "end": 8363.38, + "probability": 0.1229 + }, + { + "start": 8363.48, + "end": 8367.76, + "probability": 0.9497 + }, + { + "start": 8368.48, + "end": 8373.48, + "probability": 0.8428 + }, + { + "start": 8373.62, + "end": 8374.82, + "probability": 0.8087 + }, + { + "start": 8375.58, + "end": 8376.44, + "probability": 0.6372 + }, + { + "start": 8376.7, + "end": 8378.72, + "probability": 0.99 + }, + { + "start": 8379.1, + "end": 8380.18, + "probability": 0.819 + }, + { + "start": 8380.48, + "end": 8381.68, + "probability": 0.8771 + }, + { + "start": 8382.52, + "end": 8383.38, + "probability": 0.7156 + }, + { + "start": 8395.76, + "end": 8398.24, + "probability": 0.7242 + }, + { + "start": 8399.1, + "end": 8402.44, + "probability": 0.9949 + }, + { + "start": 8402.44, + "end": 8406.18, + "probability": 0.9983 + }, + { + "start": 8406.76, + "end": 8410.2, + "probability": 0.9473 + }, + { + "start": 8411.1, + "end": 8415.1, + "probability": 0.9981 + }, + { + "start": 8415.1, + "end": 8420.4, + "probability": 0.9938 + }, + { + "start": 8421.38, + "end": 8427.32, + "probability": 0.9954 + }, + { + "start": 8427.32, + "end": 8433.08, + "probability": 0.9925 + }, + { + "start": 8434.04, + "end": 8436.74, + "probability": 0.986 + }, + { + "start": 8437.24, + "end": 8440.9, + "probability": 0.9941 + }, + { + "start": 8441.02, + "end": 8444.52, + "probability": 0.9943 + }, + { + "start": 8445.16, + "end": 8449.24, + "probability": 0.9839 + }, + { + "start": 8450.28, + "end": 8452.32, + "probability": 0.7422 + }, + { + "start": 8452.84, + "end": 8460.24, + "probability": 0.9956 + }, + { + "start": 8460.96, + "end": 8466.76, + "probability": 0.9657 + }, + { + "start": 8467.72, + "end": 8473.46, + "probability": 0.9983 + }, + { + "start": 8473.46, + "end": 8478.72, + "probability": 0.9977 + }, + { + "start": 8479.48, + "end": 8484.76, + "probability": 0.9988 + }, + { + "start": 8484.76, + "end": 8490.4, + "probability": 0.9901 + }, + { + "start": 8491.44, + "end": 8492.18, + "probability": 0.4179 + }, + { + "start": 8492.72, + "end": 8492.9, + "probability": 0.1355 + }, + { + "start": 8492.9, + "end": 8493.95, + "probability": 0.5324 + }, + { + "start": 8494.5, + "end": 8495.54, + "probability": 0.6155 + }, + { + "start": 8495.54, + "end": 8496.56, + "probability": 0.5501 + }, + { + "start": 8496.68, + "end": 8497.7, + "probability": 0.6348 + }, + { + "start": 8498.04, + "end": 8499.1, + "probability": 0.938 + }, + { + "start": 8499.24, + "end": 8502.94, + "probability": 0.824 + }, + { + "start": 8503.32, + "end": 8504.98, + "probability": 0.7257 + }, + { + "start": 8505.18, + "end": 8506.3, + "probability": 0.7101 + }, + { + "start": 8506.7, + "end": 8508.56, + "probability": 0.9858 + }, + { + "start": 8509.02, + "end": 8511.05, + "probability": 0.9876 + }, + { + "start": 8512.2, + "end": 8512.84, + "probability": 0.9465 + }, + { + "start": 8512.84, + "end": 8514.11, + "probability": 0.8904 + }, + { + "start": 8514.22, + "end": 8519.48, + "probability": 0.8995 + }, + { + "start": 8519.78, + "end": 8522.04, + "probability": 0.9705 + }, + { + "start": 8522.18, + "end": 8525.18, + "probability": 0.8274 + }, + { + "start": 8525.2, + "end": 8528.74, + "probability": 0.9601 + }, + { + "start": 8529.1, + "end": 8529.42, + "probability": 0.9196 + }, + { + "start": 8533.11, + "end": 8539.92, + "probability": 0.4884 + }, + { + "start": 8540.2, + "end": 8542.22, + "probability": 0.9492 + }, + { + "start": 8553.38, + "end": 8555.94, + "probability": 0.562 + }, + { + "start": 8556.46, + "end": 8560.3, + "probability": 0.6523 + }, + { + "start": 8560.54, + "end": 8561.44, + "probability": 0.7797 + }, + { + "start": 8561.56, + "end": 8562.5, + "probability": 0.8862 + }, + { + "start": 8562.7, + "end": 8564.1, + "probability": 0.6615 + }, + { + "start": 8564.64, + "end": 8566.8, + "probability": 0.9315 + }, + { + "start": 8566.9, + "end": 8568.88, + "probability": 0.9378 + }, + { + "start": 8569.88, + "end": 8574.82, + "probability": 0.9965 + }, + { + "start": 8575.68, + "end": 8579.74, + "probability": 0.9839 + }, + { + "start": 8579.74, + "end": 8583.28, + "probability": 0.9963 + }, + { + "start": 8584.18, + "end": 8589.76, + "probability": 0.9594 + }, + { + "start": 8590.04, + "end": 8593.38, + "probability": 0.991 + }, + { + "start": 8594.44, + "end": 8598.42, + "probability": 0.7903 + }, + { + "start": 8599.26, + "end": 8604.43, + "probability": 0.9351 + }, + { + "start": 8605.42, + "end": 8612.6, + "probability": 0.9738 + }, + { + "start": 8612.6, + "end": 8617.02, + "probability": 0.8761 + }, + { + "start": 8617.24, + "end": 8621.58, + "probability": 0.6534 + }, + { + "start": 8622.14, + "end": 8623.98, + "probability": 0.9819 + }, + { + "start": 8624.42, + "end": 8628.04, + "probability": 0.9938 + }, + { + "start": 8628.16, + "end": 8629.46, + "probability": 0.6769 + }, + { + "start": 8630.02, + "end": 8632.66, + "probability": 0.9661 + }, + { + "start": 8633.52, + "end": 8637.02, + "probability": 0.9619 + }, + { + "start": 8637.8, + "end": 8641.54, + "probability": 0.998 + }, + { + "start": 8641.92, + "end": 8644.42, + "probability": 0.9888 + }, + { + "start": 8644.74, + "end": 8646.67, + "probability": 0.9834 + }, + { + "start": 8647.34, + "end": 8648.43, + "probability": 0.9907 + }, + { + "start": 8649.44, + "end": 8651.3, + "probability": 0.9966 + }, + { + "start": 8652.09, + "end": 8655.32, + "probability": 0.8609 + }, + { + "start": 8655.56, + "end": 8657.42, + "probability": 0.8463 + }, + { + "start": 8657.5, + "end": 8657.98, + "probability": 0.8766 + }, + { + "start": 8658.54, + "end": 8659.28, + "probability": 0.7746 + }, + { + "start": 8660.18, + "end": 8662.6, + "probability": 0.6945 + }, + { + "start": 8663.35, + "end": 8665.58, + "probability": 0.9896 + }, + { + "start": 8666.08, + "end": 8667.32, + "probability": 0.0998 + }, + { + "start": 8667.62, + "end": 8669.85, + "probability": 0.7681 + }, + { + "start": 8670.7, + "end": 8671.21, + "probability": 0.0125 + }, + { + "start": 8673.11, + "end": 8675.36, + "probability": 0.4418 + }, + { + "start": 8675.57, + "end": 8678.83, + "probability": 0.9018 + }, + { + "start": 8690.98, + "end": 8694.84, + "probability": 0.619 + }, + { + "start": 8694.92, + "end": 8695.56, + "probability": 0.6763 + }, + { + "start": 8695.58, + "end": 8696.16, + "probability": 0.2745 + }, + { + "start": 8696.34, + "end": 8699.12, + "probability": 0.9568 + }, + { + "start": 8699.56, + "end": 8703.46, + "probability": 0.5555 + }, + { + "start": 8703.86, + "end": 8705.28, + "probability": 0.6635 + }, + { + "start": 8706.1, + "end": 8707.53, + "probability": 0.7559 + }, + { + "start": 8708.28, + "end": 8715.78, + "probability": 0.8421 + }, + { + "start": 8716.62, + "end": 8720.04, + "probability": 0.9598 + }, + { + "start": 8721.08, + "end": 8722.38, + "probability": 0.9951 + }, + { + "start": 8723.14, + "end": 8724.38, + "probability": 0.9137 + }, + { + "start": 8725.22, + "end": 8729.76, + "probability": 0.9339 + }, + { + "start": 8730.56, + "end": 8732.56, + "probability": 0.9091 + }, + { + "start": 8732.6, + "end": 8733.88, + "probability": 0.8675 + }, + { + "start": 8735.18, + "end": 8737.22, + "probability": 0.9537 + }, + { + "start": 8737.38, + "end": 8738.54, + "probability": 0.9097 + }, + { + "start": 8738.8, + "end": 8740.7, + "probability": 0.9908 + }, + { + "start": 8740.78, + "end": 8741.42, + "probability": 0.6151 + }, + { + "start": 8741.86, + "end": 8744.44, + "probability": 0.8174 + }, + { + "start": 8744.88, + "end": 8745.84, + "probability": 0.8513 + }, + { + "start": 8746.0, + "end": 8750.08, + "probability": 0.8628 + }, + { + "start": 8750.54, + "end": 8751.04, + "probability": 0.7393 + }, + { + "start": 8751.2, + "end": 8751.99, + "probability": 0.8408 + }, + { + "start": 8752.54, + "end": 8753.38, + "probability": 0.8163 + }, + { + "start": 8753.54, + "end": 8755.12, + "probability": 0.8286 + }, + { + "start": 8755.22, + "end": 8756.48, + "probability": 0.5813 + }, + { + "start": 8756.6, + "end": 8757.32, + "probability": 0.1914 + }, + { + "start": 8757.36, + "end": 8758.42, + "probability": 0.7002 + }, + { + "start": 8758.48, + "end": 8759.2, + "probability": 0.8035 + }, + { + "start": 8759.56, + "end": 8760.56, + "probability": 0.9102 + }, + { + "start": 8760.96, + "end": 8762.33, + "probability": 0.9083 + }, + { + "start": 8762.4, + "end": 8766.68, + "probability": 0.8802 + }, + { + "start": 8766.92, + "end": 8768.0, + "probability": 0.519 + }, + { + "start": 8768.9, + "end": 8769.99, + "probability": 0.7995 + }, + { + "start": 8771.06, + "end": 8774.86, + "probability": 0.9956 + }, + { + "start": 8774.98, + "end": 8779.0, + "probability": 0.9888 + }, + { + "start": 8780.14, + "end": 8780.62, + "probability": 0.479 + }, + { + "start": 8781.48, + "end": 8786.72, + "probability": 0.9606 + }, + { + "start": 8786.72, + "end": 8789.88, + "probability": 0.8762 + }, + { + "start": 8790.3, + "end": 8792.38, + "probability": 0.9961 + }, + { + "start": 8792.84, + "end": 8794.27, + "probability": 0.8076 + }, + { + "start": 8795.34, + "end": 8799.24, + "probability": 0.8752 + }, + { + "start": 8799.64, + "end": 8801.98, + "probability": 0.9594 + }, + { + "start": 8802.34, + "end": 8806.26, + "probability": 0.9827 + }, + { + "start": 8806.78, + "end": 8807.65, + "probability": 0.5902 + }, + { + "start": 8808.78, + "end": 8811.56, + "probability": 0.9612 + }, + { + "start": 8812.08, + "end": 8816.46, + "probability": 0.9563 + }, + { + "start": 8816.94, + "end": 8821.48, + "probability": 0.948 + }, + { + "start": 8821.62, + "end": 8822.86, + "probability": 0.9919 + }, + { + "start": 8823.26, + "end": 8824.32, + "probability": 0.9707 + }, + { + "start": 8824.94, + "end": 8827.98, + "probability": 0.9961 + }, + { + "start": 8829.24, + "end": 8830.71, + "probability": 0.1516 + }, + { + "start": 8831.3, + "end": 8833.28, + "probability": 0.9799 + }, + { + "start": 8833.4, + "end": 8834.8, + "probability": 0.9343 + }, + { + "start": 8834.94, + "end": 8835.88, + "probability": 0.9827 + }, + { + "start": 8843.32, + "end": 8843.88, + "probability": 0.0001 + }, + { + "start": 8845.28, + "end": 8846.62, + "probability": 0.5053 + }, + { + "start": 8846.68, + "end": 8847.62, + "probability": 0.824 + }, + { + "start": 8847.68, + "end": 8849.3, + "probability": 0.6806 + }, + { + "start": 8850.02, + "end": 8852.04, + "probability": 0.918 + }, + { + "start": 8852.7, + "end": 8856.26, + "probability": 0.9791 + }, + { + "start": 8857.08, + "end": 8858.06, + "probability": 0.9407 + }, + { + "start": 8858.1, + "end": 8858.96, + "probability": 0.6453 + }, + { + "start": 8858.98, + "end": 8859.86, + "probability": 0.4849 + }, + { + "start": 8859.98, + "end": 8861.22, + "probability": 0.8761 + }, + { + "start": 8861.66, + "end": 8863.22, + "probability": 0.8199 + }, + { + "start": 8863.34, + "end": 8863.44, + "probability": 0.2131 + }, + { + "start": 8863.9, + "end": 8864.1, + "probability": 0.2281 + }, + { + "start": 8864.24, + "end": 8864.24, + "probability": 0.0233 + }, + { + "start": 8864.28, + "end": 8864.56, + "probability": 0.9513 + }, + { + "start": 8864.62, + "end": 8868.2, + "probability": 0.9724 + }, + { + "start": 8868.62, + "end": 8873.48, + "probability": 0.9639 + }, + { + "start": 8873.86, + "end": 8875.28, + "probability": 0.6355 + }, + { + "start": 8875.96, + "end": 8878.2, + "probability": 0.7605 + }, + { + "start": 8878.84, + "end": 8880.0, + "probability": 0.9498 + }, + { + "start": 8880.24, + "end": 8883.92, + "probability": 0.9238 + }, + { + "start": 8884.0, + "end": 8885.16, + "probability": 0.965 + }, + { + "start": 8885.56, + "end": 8886.64, + "probability": 0.9824 + }, + { + "start": 8886.92, + "end": 8888.34, + "probability": 0.6712 + }, + { + "start": 8888.8, + "end": 8890.3, + "probability": 0.9743 + }, + { + "start": 8890.4, + "end": 8891.98, + "probability": 0.9902 + }, + { + "start": 8893.4, + "end": 8894.9, + "probability": 0.5579 + }, + { + "start": 8894.96, + "end": 8895.64, + "probability": 0.8062 + }, + { + "start": 8895.76, + "end": 8898.84, + "probability": 0.7928 + }, + { + "start": 8899.06, + "end": 8901.68, + "probability": 0.8213 + }, + { + "start": 8902.0, + "end": 8907.82, + "probability": 0.9899 + }, + { + "start": 8908.42, + "end": 8914.78, + "probability": 0.9468 + }, + { + "start": 8915.14, + "end": 8916.28, + "probability": 0.7781 + }, + { + "start": 8916.64, + "end": 8919.58, + "probability": 0.9927 + }, + { + "start": 8919.58, + "end": 8924.6, + "probability": 0.9744 + }, + { + "start": 8924.96, + "end": 8928.92, + "probability": 0.9438 + }, + { + "start": 8929.5, + "end": 8932.68, + "probability": 0.9992 + }, + { + "start": 8932.68, + "end": 8939.56, + "probability": 0.9974 + }, + { + "start": 8940.46, + "end": 8941.4, + "probability": 0.7429 + }, + { + "start": 8942.08, + "end": 8945.86, + "probability": 0.5094 + }, + { + "start": 8946.0, + "end": 8948.36, + "probability": 0.8907 + }, + { + "start": 8948.76, + "end": 8953.44, + "probability": 0.9784 + }, + { + "start": 8953.72, + "end": 8955.3, + "probability": 0.9934 + }, + { + "start": 8956.1, + "end": 8956.78, + "probability": 0.8735 + }, + { + "start": 8957.1, + "end": 8959.92, + "probability": 0.96 + }, + { + "start": 8960.02, + "end": 8962.74, + "probability": 0.7781 + }, + { + "start": 8962.8, + "end": 8966.0, + "probability": 0.9088 + }, + { + "start": 8966.18, + "end": 8967.54, + "probability": 0.9901 + }, + { + "start": 8967.72, + "end": 8968.84, + "probability": 0.6255 + }, + { + "start": 8968.98, + "end": 8972.86, + "probability": 0.987 + }, + { + "start": 8973.24, + "end": 8975.06, + "probability": 0.8628 + }, + { + "start": 8975.22, + "end": 8977.22, + "probability": 0.9941 + }, + { + "start": 8977.62, + "end": 8980.68, + "probability": 0.9921 + }, + { + "start": 8980.68, + "end": 8985.88, + "probability": 0.9952 + }, + { + "start": 8986.32, + "end": 8987.68, + "probability": 0.9463 + }, + { + "start": 8988.22, + "end": 8990.26, + "probability": 0.859 + }, + { + "start": 8990.88, + "end": 8994.48, + "probability": 0.9297 + }, + { + "start": 8994.9, + "end": 8997.36, + "probability": 0.9717 + }, + { + "start": 8997.84, + "end": 8998.78, + "probability": 0.951 + }, + { + "start": 8999.16, + "end": 8999.64, + "probability": 0.6905 + }, + { + "start": 9000.08, + "end": 9002.24, + "probability": 0.8948 + }, + { + "start": 9002.44, + "end": 9005.78, + "probability": 0.9846 + }, + { + "start": 9006.16, + "end": 9010.28, + "probability": 0.7941 + }, + { + "start": 9010.86, + "end": 9014.28, + "probability": 0.889 + }, + { + "start": 9014.34, + "end": 9018.5, + "probability": 0.687 + }, + { + "start": 9018.74, + "end": 9024.44, + "probability": 0.2537 + }, + { + "start": 9024.96, + "end": 9027.14, + "probability": 0.3297 + }, + { + "start": 9030.05, + "end": 9034.86, + "probability": 0.715 + }, + { + "start": 9043.7, + "end": 9045.68, + "probability": 0.4222 + }, + { + "start": 9045.74, + "end": 9046.78, + "probability": 0.4657 + }, + { + "start": 9046.92, + "end": 9049.98, + "probability": 0.8031 + }, + { + "start": 9050.04, + "end": 9051.62, + "probability": 0.9398 + }, + { + "start": 9051.76, + "end": 9052.22, + "probability": 0.1427 + }, + { + "start": 9061.94, + "end": 9062.1, + "probability": 0.1196 + }, + { + "start": 9062.1, + "end": 9064.4, + "probability": 0.0298 + }, + { + "start": 9065.58, + "end": 9065.62, + "probability": 0.0033 + }, + { + "start": 9068.78, + "end": 9069.24, + "probability": 0.0544 + }, + { + "start": 9069.24, + "end": 9069.66, + "probability": 0.0908 + }, + { + "start": 9069.88, + "end": 9071.38, + "probability": 0.0437 + }, + { + "start": 9072.56, + "end": 9074.38, + "probability": 0.1492 + }, + { + "start": 9076.6, + "end": 9081.28, + "probability": 0.1616 + }, + { + "start": 9081.28, + "end": 9083.36, + "probability": 0.0294 + }, + { + "start": 9086.7, + "end": 9086.7, + "probability": 0.0 + }, + { + "start": 9089.68, + "end": 9092.2, + "probability": 0.0411 + }, + { + "start": 9095.17, + "end": 9098.68, + "probability": 0.0245 + }, + { + "start": 9098.68, + "end": 9098.94, + "probability": 0.046 + }, + { + "start": 9098.94, + "end": 9099.06, + "probability": 0.037 + }, + { + "start": 9099.94, + "end": 9099.98, + "probability": 0.0354 + }, + { + "start": 9100.0, + "end": 9100.0, + "probability": 0.0 + }, + { + "start": 9100.0, + "end": 9100.0, + "probability": 0.0 + }, + { + "start": 9100.0, + "end": 9100.0, + "probability": 0.0 + }, + { + "start": 9100.0, + "end": 9100.0, + "probability": 0.0 + }, + { + "start": 9100.0, + "end": 9100.0, + "probability": 0.0 + }, + { + "start": 9100.0, + "end": 9100.0, + "probability": 0.0 + }, + { + "start": 9100.1, + "end": 9100.1, + "probability": 0.012 + }, + { + "start": 9100.1, + "end": 9102.52, + "probability": 0.9116 + }, + { + "start": 9102.52, + "end": 9105.28, + "probability": 0.8684 + }, + { + "start": 9105.92, + "end": 9110.56, + "probability": 0.8019 + }, + { + "start": 9112.94, + "end": 9115.64, + "probability": 0.9836 + }, + { + "start": 9116.38, + "end": 9119.98, + "probability": 0.995 + }, + { + "start": 9120.84, + "end": 9123.32, + "probability": 0.9917 + }, + { + "start": 9123.88, + "end": 9125.16, + "probability": 0.9927 + }, + { + "start": 9125.84, + "end": 9129.9, + "probability": 0.8876 + }, + { + "start": 9130.64, + "end": 9133.76, + "probability": 0.9813 + }, + { + "start": 9134.88, + "end": 9135.92, + "probability": 0.8543 + }, + { + "start": 9136.96, + "end": 9139.38, + "probability": 0.7426 + }, + { + "start": 9139.4, + "end": 9140.96, + "probability": 0.9771 + }, + { + "start": 9141.58, + "end": 9147.8, + "probability": 0.9958 + }, + { + "start": 9147.8, + "end": 9151.28, + "probability": 0.9914 + }, + { + "start": 9152.6, + "end": 9154.78, + "probability": 0.9962 + }, + { + "start": 9155.06, + "end": 9156.54, + "probability": 0.7728 + }, + { + "start": 9156.86, + "end": 9160.44, + "probability": 0.9906 + }, + { + "start": 9160.56, + "end": 9162.7, + "probability": 0.9977 + }, + { + "start": 9163.16, + "end": 9166.52, + "probability": 0.8165 + }, + { + "start": 9166.58, + "end": 9168.4, + "probability": 0.8625 + }, + { + "start": 9168.8, + "end": 9170.58, + "probability": 0.9882 + }, + { + "start": 9170.66, + "end": 9171.54, + "probability": 0.7921 + }, + { + "start": 9171.98, + "end": 9175.8, + "probability": 0.9206 + }, + { + "start": 9175.8, + "end": 9179.48, + "probability": 0.8794 + }, + { + "start": 9180.18, + "end": 9183.34, + "probability": 0.9941 + }, + { + "start": 9184.02, + "end": 9190.48, + "probability": 0.9836 + }, + { + "start": 9190.84, + "end": 9194.08, + "probability": 0.9968 + }, + { + "start": 9194.08, + "end": 9198.26, + "probability": 0.9985 + }, + { + "start": 9198.8, + "end": 9202.56, + "probability": 0.9751 + }, + { + "start": 9203.04, + "end": 9207.26, + "probability": 0.7678 + }, + { + "start": 9208.34, + "end": 9209.24, + "probability": 0.6086 + }, + { + "start": 9209.34, + "end": 9210.26, + "probability": 0.9337 + }, + { + "start": 9210.32, + "end": 9214.68, + "probability": 0.9456 + }, + { + "start": 9215.4, + "end": 9219.76, + "probability": 0.7268 + }, + { + "start": 9220.44, + "end": 9228.1, + "probability": 0.7852 + }, + { + "start": 9229.0, + "end": 9235.36, + "probability": 0.949 + }, + { + "start": 9235.4, + "end": 9237.02, + "probability": 0.9495 + }, + { + "start": 9237.62, + "end": 9239.56, + "probability": 0.9779 + }, + { + "start": 9239.82, + "end": 9240.4, + "probability": 0.3078 + }, + { + "start": 9240.46, + "end": 9241.56, + "probability": 0.9006 + }, + { + "start": 9242.0, + "end": 9248.16, + "probability": 0.9863 + }, + { + "start": 9248.64, + "end": 9251.96, + "probability": 0.9858 + }, + { + "start": 9251.96, + "end": 9255.36, + "probability": 0.9935 + }, + { + "start": 9255.74, + "end": 9257.25, + "probability": 0.7708 + }, + { + "start": 9257.86, + "end": 9260.92, + "probability": 0.8608 + }, + { + "start": 9261.42, + "end": 9262.56, + "probability": 0.8454 + }, + { + "start": 9262.62, + "end": 9265.52, + "probability": 0.9532 + }, + { + "start": 9265.64, + "end": 9271.08, + "probability": 0.9582 + }, + { + "start": 9271.18, + "end": 9272.76, + "probability": 0.6633 + }, + { + "start": 9273.18, + "end": 9276.7, + "probability": 0.9922 + }, + { + "start": 9276.8, + "end": 9281.44, + "probability": 0.8258 + }, + { + "start": 9281.74, + "end": 9284.58, + "probability": 0.9527 + }, + { + "start": 9284.7, + "end": 9287.02, + "probability": 0.7984 + }, + { + "start": 9287.52, + "end": 9288.98, + "probability": 0.8663 + }, + { + "start": 9289.34, + "end": 9294.44, + "probability": 0.978 + }, + { + "start": 9294.44, + "end": 9295.04, + "probability": 0.9119 + }, + { + "start": 9295.18, + "end": 9296.06, + "probability": 0.9543 + }, + { + "start": 9296.68, + "end": 9299.34, + "probability": 0.8041 + }, + { + "start": 9299.9, + "end": 9303.0, + "probability": 0.9742 + }, + { + "start": 9303.18, + "end": 9303.54, + "probability": 0.776 + }, + { + "start": 9304.16, + "end": 9305.6, + "probability": 0.6962 + }, + { + "start": 9306.62, + "end": 9309.2, + "probability": 0.9114 + }, + { + "start": 9309.84, + "end": 9311.62, + "probability": 0.9202 + }, + { + "start": 9313.5, + "end": 9315.96, + "probability": 0.6363 + }, + { + "start": 9316.0, + "end": 9316.8, + "probability": 0.9719 + }, + { + "start": 9316.92, + "end": 9317.74, + "probability": 0.7832 + }, + { + "start": 9318.02, + "end": 9318.42, + "probability": 0.3005 + }, + { + "start": 9318.42, + "end": 9318.64, + "probability": 0.8715 + }, + { + "start": 9318.74, + "end": 9320.4, + "probability": 0.83 + }, + { + "start": 9320.44, + "end": 9321.8, + "probability": 0.8693 + }, + { + "start": 9321.84, + "end": 9322.0, + "probability": 0.8779 + }, + { + "start": 9326.82, + "end": 9327.32, + "probability": 0.013 + }, + { + "start": 9327.52, + "end": 9328.08, + "probability": 0.1121 + }, + { + "start": 9329.32, + "end": 9331.48, + "probability": 0.0572 + }, + { + "start": 9333.88, + "end": 9334.22, + "probability": 0.0691 + }, + { + "start": 9334.22, + "end": 9334.22, + "probability": 0.0271 + }, + { + "start": 9334.22, + "end": 9336.1, + "probability": 0.5491 + }, + { + "start": 9336.74, + "end": 9337.4, + "probability": 0.6819 + }, + { + "start": 9337.48, + "end": 9338.62, + "probability": 0.6881 + }, + { + "start": 9338.74, + "end": 9339.78, + "probability": 0.7607 + }, + { + "start": 9339.88, + "end": 9340.96, + "probability": 0.8931 + }, + { + "start": 9342.34, + "end": 9342.54, + "probability": 0.2725 + }, + { + "start": 9342.54, + "end": 9343.03, + "probability": 0.6519 + }, + { + "start": 9343.76, + "end": 9348.24, + "probability": 0.8084 + }, + { + "start": 9349.24, + "end": 9355.28, + "probability": 0.963 + }, + { + "start": 9355.92, + "end": 9359.08, + "probability": 0.9825 + }, + { + "start": 9359.32, + "end": 9363.88, + "probability": 0.6377 + }, + { + "start": 9363.96, + "end": 9364.54, + "probability": 0.9485 + }, + { + "start": 9364.7, + "end": 9366.8, + "probability": 0.9665 + }, + { + "start": 9367.5, + "end": 9369.82, + "probability": 0.8191 + }, + { + "start": 9369.88, + "end": 9374.16, + "probability": 0.7273 + }, + { + "start": 9374.2, + "end": 9375.12, + "probability": 0.962 + }, + { + "start": 9375.76, + "end": 9378.14, + "probability": 0.8246 + }, + { + "start": 9378.14, + "end": 9380.04, + "probability": 0.7637 + }, + { + "start": 9380.22, + "end": 9380.88, + "probability": 0.7315 + }, + { + "start": 9380.96, + "end": 9383.74, + "probability": 0.8217 + }, + { + "start": 9383.76, + "end": 9384.32, + "probability": 0.6015 + }, + { + "start": 9386.13, + "end": 9392.28, + "probability": 0.9878 + }, + { + "start": 9392.98, + "end": 9394.34, + "probability": 0.9769 + }, + { + "start": 9394.66, + "end": 9397.78, + "probability": 0.8423 + }, + { + "start": 9399.14, + "end": 9402.06, + "probability": 0.9775 + }, + { + "start": 9402.42, + "end": 9403.78, + "probability": 0.7905 + }, + { + "start": 9403.84, + "end": 9405.62, + "probability": 0.8401 + }, + { + "start": 9405.74, + "end": 9409.64, + "probability": 0.9941 + }, + { + "start": 9410.08, + "end": 9411.88, + "probability": 0.6859 + }, + { + "start": 9412.38, + "end": 9414.62, + "probability": 0.9496 + }, + { + "start": 9414.74, + "end": 9414.88, + "probability": 0.5886 + }, + { + "start": 9414.98, + "end": 9418.05, + "probability": 0.8668 + }, + { + "start": 9418.14, + "end": 9421.86, + "probability": 0.9586 + }, + { + "start": 9422.02, + "end": 9424.24, + "probability": 0.6517 + }, + { + "start": 9424.68, + "end": 9426.74, + "probability": 0.9978 + }, + { + "start": 9427.02, + "end": 9428.14, + "probability": 0.9409 + }, + { + "start": 9428.32, + "end": 9430.3, + "probability": 0.3272 + }, + { + "start": 9430.4, + "end": 9432.48, + "probability": 0.8214 + }, + { + "start": 9433.02, + "end": 9433.72, + "probability": 0.8982 + }, + { + "start": 9434.06, + "end": 9435.08, + "probability": 0.8662 + }, + { + "start": 9435.14, + "end": 9435.96, + "probability": 0.6124 + }, + { + "start": 9436.3, + "end": 9440.34, + "probability": 0.9977 + }, + { + "start": 9440.78, + "end": 9442.1, + "probability": 0.9871 + }, + { + "start": 9442.3, + "end": 9446.68, + "probability": 0.9663 + }, + { + "start": 9446.8, + "end": 9447.16, + "probability": 0.6759 + }, + { + "start": 9447.32, + "end": 9450.32, + "probability": 0.9646 + }, + { + "start": 9450.58, + "end": 9454.34, + "probability": 0.987 + }, + { + "start": 9454.6, + "end": 9455.4, + "probability": 0.7671 + }, + { + "start": 9455.7, + "end": 9457.66, + "probability": 0.9492 + }, + { + "start": 9457.9, + "end": 9459.64, + "probability": 0.9337 + }, + { + "start": 9459.82, + "end": 9460.42, + "probability": 0.4211 + }, + { + "start": 9460.78, + "end": 9466.32, + "probability": 0.7935 + }, + { + "start": 9466.74, + "end": 9470.74, + "probability": 0.7068 + }, + { + "start": 9471.18, + "end": 9473.0, + "probability": 0.8916 + }, + { + "start": 9473.3, + "end": 9473.86, + "probability": 0.7325 + }, + { + "start": 9476.8, + "end": 9480.58, + "probability": 0.4108 + }, + { + "start": 9480.96, + "end": 9484.66, + "probability": 0.9885 + }, + { + "start": 9485.42, + "end": 9488.08, + "probability": 0.897 + }, + { + "start": 9488.08, + "end": 9491.34, + "probability": 0.5395 + }, + { + "start": 9492.24, + "end": 9494.17, + "probability": 0.9597 + }, + { + "start": 9494.68, + "end": 9501.78, + "probability": 0.0961 + }, + { + "start": 9502.02, + "end": 9502.58, + "probability": 0.0299 + }, + { + "start": 9504.84, + "end": 9504.84, + "probability": 0.02 + }, + { + "start": 9504.84, + "end": 9504.84, + "probability": 0.1386 + }, + { + "start": 9504.84, + "end": 9504.84, + "probability": 0.063 + }, + { + "start": 9504.84, + "end": 9504.84, + "probability": 0.0264 + }, + { + "start": 9504.84, + "end": 9504.84, + "probability": 0.1132 + }, + { + "start": 9504.84, + "end": 9504.84, + "probability": 0.0413 + }, + { + "start": 9504.84, + "end": 9511.78, + "probability": 0.8955 + }, + { + "start": 9511.82, + "end": 9512.2, + "probability": 0.5047 + }, + { + "start": 9512.56, + "end": 9513.24, + "probability": 0.4225 + }, + { + "start": 9513.84, + "end": 9516.38, + "probability": 0.8478 + }, + { + "start": 9516.38, + "end": 9519.3, + "probability": 0.933 + }, + { + "start": 9521.4, + "end": 9522.3, + "probability": 0.7487 + }, + { + "start": 9522.76, + "end": 9527.76, + "probability": 0.5198 + }, + { + "start": 9528.26, + "end": 9530.08, + "probability": 0.9966 + }, + { + "start": 9530.08, + "end": 9532.76, + "probability": 0.6756 + }, + { + "start": 9533.0, + "end": 9534.0, + "probability": 0.3922 + }, + { + "start": 9534.14, + "end": 9536.42, + "probability": 0.7341 + }, + { + "start": 9536.54, + "end": 9540.38, + "probability": 0.946 + }, + { + "start": 9541.62, + "end": 9542.55, + "probability": 0.6655 + }, + { + "start": 9544.32, + "end": 9547.42, + "probability": 0.9806 + }, + { + "start": 9547.6, + "end": 9548.92, + "probability": 0.3988 + }, + { + "start": 9549.3, + "end": 9550.24, + "probability": 0.6261 + }, + { + "start": 9550.3, + "end": 9554.86, + "probability": 0.9616 + }, + { + "start": 9561.56, + "end": 9561.92, + "probability": 0.0101 + }, + { + "start": 9573.5, + "end": 9575.34, + "probability": 0.6212 + }, + { + "start": 9576.0, + "end": 9577.18, + "probability": 0.8237 + }, + { + "start": 9577.9, + "end": 9578.58, + "probability": 0.6544 + }, + { + "start": 9581.0, + "end": 9582.32, + "probability": 0.8506 + }, + { + "start": 9582.54, + "end": 9588.88, + "probability": 0.8671 + }, + { + "start": 9589.2, + "end": 9594.08, + "probability": 0.8047 + }, + { + "start": 9594.08, + "end": 9597.46, + "probability": 0.7758 + }, + { + "start": 9598.06, + "end": 9599.32, + "probability": 0.4946 + }, + { + "start": 9600.2, + "end": 9602.56, + "probability": 0.2532 + }, + { + "start": 9602.64, + "end": 9604.48, + "probability": 0.3286 + }, + { + "start": 9604.52, + "end": 9607.13, + "probability": 0.4896 + }, + { + "start": 9610.74, + "end": 9611.44, + "probability": 0.0552 + }, + { + "start": 9612.06, + "end": 9612.3, + "probability": 0.1414 + }, + { + "start": 9612.3, + "end": 9612.3, + "probability": 0.1686 + }, + { + "start": 9612.3, + "end": 9615.46, + "probability": 0.1941 + }, + { + "start": 9615.66, + "end": 9617.1, + "probability": 0.3788 + }, + { + "start": 9617.14, + "end": 9618.32, + "probability": 0.6908 + }, + { + "start": 9618.56, + "end": 9619.18, + "probability": 0.5547 + }, + { + "start": 9619.3, + "end": 9619.79, + "probability": 0.582 + }, + { + "start": 9620.52, + "end": 9620.94, + "probability": 0.2852 + }, + { + "start": 9620.96, + "end": 9622.58, + "probability": 0.6319 + }, + { + "start": 9623.54, + "end": 9629.08, + "probability": 0.8038 + }, + { + "start": 9629.82, + "end": 9635.44, + "probability": 0.9878 + }, + { + "start": 9635.44, + "end": 9639.78, + "probability": 0.9676 + }, + { + "start": 9640.94, + "end": 9642.42, + "probability": 0.5304 + }, + { + "start": 9642.56, + "end": 9643.66, + "probability": 0.6301 + }, + { + "start": 9643.8, + "end": 9647.14, + "probability": 0.9807 + }, + { + "start": 9648.44, + "end": 9652.2, + "probability": 0.9606 + }, + { + "start": 9652.2, + "end": 9656.38, + "probability": 0.9927 + }, + { + "start": 9656.38, + "end": 9659.7, + "probability": 0.9823 + }, + { + "start": 9661.66, + "end": 9667.4, + "probability": 0.9305 + }, + { + "start": 9668.86, + "end": 9671.48, + "probability": 0.9691 + }, + { + "start": 9671.48, + "end": 9676.0, + "probability": 0.9736 + }, + { + "start": 9676.6, + "end": 9678.14, + "probability": 0.8147 + }, + { + "start": 9678.58, + "end": 9684.3, + "probability": 0.8171 + }, + { + "start": 9684.92, + "end": 9685.76, + "probability": 0.4537 + }, + { + "start": 9685.88, + "end": 9686.25, + "probability": 0.9324 + }, + { + "start": 9686.48, + "end": 9687.42, + "probability": 0.9303 + }, + { + "start": 9688.93, + "end": 9694.02, + "probability": 0.6508 + }, + { + "start": 9694.4, + "end": 9696.12, + "probability": 0.4643 + }, + { + "start": 9696.24, + "end": 9700.04, + "probability": 0.6357 + }, + { + "start": 9700.1, + "end": 9703.62, + "probability": 0.8618 + }, + { + "start": 9704.22, + "end": 9708.38, + "probability": 0.8017 + }, + { + "start": 9709.22, + "end": 9713.18, + "probability": 0.9114 + }, + { + "start": 9714.4, + "end": 9716.52, + "probability": 0.0958 + }, + { + "start": 9717.84, + "end": 9718.9, + "probability": 0.7067 + }, + { + "start": 9719.22, + "end": 9722.42, + "probability": 0.9862 + }, + { + "start": 9724.72, + "end": 9728.64, + "probability": 0.6663 + }, + { + "start": 9729.16, + "end": 9732.84, + "probability": 0.698 + }, + { + "start": 9732.84, + "end": 9737.42, + "probability": 0.8968 + }, + { + "start": 9738.02, + "end": 9739.94, + "probability": 0.9581 + }, + { + "start": 9741.44, + "end": 9745.74, + "probability": 0.8745 + }, + { + "start": 9745.74, + "end": 9750.26, + "probability": 0.9685 + }, + { + "start": 9751.18, + "end": 9753.94, + "probability": 0.8608 + }, + { + "start": 9754.62, + "end": 9756.0, + "probability": 0.8975 + }, + { + "start": 9756.72, + "end": 9757.08, + "probability": 0.2521 + }, + { + "start": 9757.12, + "end": 9757.58, + "probability": 0.4451 + }, + { + "start": 9757.96, + "end": 9762.0, + "probability": 0.7697 + }, + { + "start": 9762.0, + "end": 9765.2, + "probability": 0.9993 + }, + { + "start": 9766.36, + "end": 9768.6, + "probability": 0.6948 + }, + { + "start": 9768.74, + "end": 9773.24, + "probability": 0.968 + }, + { + "start": 9773.24, + "end": 9778.54, + "probability": 0.9924 + }, + { + "start": 9779.44, + "end": 9781.7, + "probability": 0.958 + }, + { + "start": 9782.0, + "end": 9784.58, + "probability": 0.9909 + }, + { + "start": 9784.66, + "end": 9787.08, + "probability": 0.976 + }, + { + "start": 9787.66, + "end": 9790.18, + "probability": 0.7385 + }, + { + "start": 9791.42, + "end": 9792.66, + "probability": 0.6517 + }, + { + "start": 9793.68, + "end": 9796.28, + "probability": 0.5146 + }, + { + "start": 9798.34, + "end": 9803.74, + "probability": 0.7924 + }, + { + "start": 9803.74, + "end": 9809.72, + "probability": 0.9751 + }, + { + "start": 9810.6, + "end": 9815.12, + "probability": 0.9401 + }, + { + "start": 9815.12, + "end": 9820.52, + "probability": 0.995 + }, + { + "start": 9820.98, + "end": 9824.6, + "probability": 0.9448 + }, + { + "start": 9824.6, + "end": 9828.6, + "probability": 0.9564 + }, + { + "start": 9829.14, + "end": 9832.24, + "probability": 0.8477 + }, + { + "start": 9833.38, + "end": 9836.84, + "probability": 0.6852 + }, + { + "start": 9836.84, + "end": 9838.78, + "probability": 0.8558 + }, + { + "start": 9839.44, + "end": 9843.48, + "probability": 0.799 + }, + { + "start": 9844.12, + "end": 9849.16, + "probability": 0.9138 + }, + { + "start": 9849.76, + "end": 9852.72, + "probability": 0.8747 + }, + { + "start": 9853.34, + "end": 9857.46, + "probability": 0.9314 + }, + { + "start": 9857.62, + "end": 9865.18, + "probability": 0.908 + }, + { + "start": 9867.18, + "end": 9869.76, + "probability": 0.7877 + }, + { + "start": 9869.76, + "end": 9872.6, + "probability": 0.9849 + }, + { + "start": 9873.32, + "end": 9876.18, + "probability": 0.9777 + }, + { + "start": 9876.68, + "end": 9882.68, + "probability": 0.7835 + }, + { + "start": 9882.68, + "end": 9885.81, + "probability": 0.8133 + }, + { + "start": 9885.92, + "end": 9892.48, + "probability": 0.7885 + }, + { + "start": 9892.48, + "end": 9896.88, + "probability": 0.9863 + }, + { + "start": 9896.88, + "end": 9900.12, + "probability": 0.8475 + }, + { + "start": 9901.34, + "end": 9906.3, + "probability": 0.9618 + }, + { + "start": 9906.92, + "end": 9909.94, + "probability": 0.8656 + }, + { + "start": 9910.54, + "end": 9911.94, + "probability": 0.9462 + }, + { + "start": 9912.92, + "end": 9915.5, + "probability": 0.9312 + }, + { + "start": 9915.5, + "end": 9919.16, + "probability": 0.9927 + }, + { + "start": 9919.56, + "end": 9921.92, + "probability": 0.5432 + }, + { + "start": 9922.58, + "end": 9927.08, + "probability": 0.9546 + }, + { + "start": 9927.28, + "end": 9929.92, + "probability": 0.991 + }, + { + "start": 9931.62, + "end": 9935.0, + "probability": 0.9939 + }, + { + "start": 9935.62, + "end": 9939.04, + "probability": 0.5142 + }, + { + "start": 9939.62, + "end": 9944.16, + "probability": 0.7853 + }, + { + "start": 9945.06, + "end": 9945.44, + "probability": 0.7769 + }, + { + "start": 9963.1, + "end": 9964.62, + "probability": 0.5324 + }, + { + "start": 9965.58, + "end": 9966.98, + "probability": 0.6769 + }, + { + "start": 9967.08, + "end": 9968.21, + "probability": 0.8505 + }, + { + "start": 9968.94, + "end": 9973.24, + "probability": 0.9637 + }, + { + "start": 9973.64, + "end": 9979.64, + "probability": 0.9932 + }, + { + "start": 9979.64, + "end": 9982.74, + "probability": 0.9011 + }, + { + "start": 9983.24, + "end": 9984.34, + "probability": 0.6121 + }, + { + "start": 9984.44, + "end": 9984.76, + "probability": 0.8117 + }, + { + "start": 9984.84, + "end": 9989.7, + "probability": 0.9886 + }, + { + "start": 9990.6, + "end": 9991.22, + "probability": 0.2522 + }, + { + "start": 9995.14, + "end": 9996.56, + "probability": 0.7737 + }, + { + "start": 9997.04, + "end": 10001.92, + "probability": 0.9871 + }, + { + "start": 10002.12, + "end": 10003.85, + "probability": 0.9775 + }, + { + "start": 10004.46, + "end": 10008.44, + "probability": 0.8972 + }, + { + "start": 10008.88, + "end": 10009.92, + "probability": 0.9106 + }, + { + "start": 10011.0, + "end": 10016.06, + "probability": 0.9897 + }, + { + "start": 10016.18, + "end": 10019.04, + "probability": 0.9901 + }, + { + "start": 10019.4, + "end": 10021.54, + "probability": 0.9883 + }, + { + "start": 10022.18, + "end": 10023.67, + "probability": 0.999 + }, + { + "start": 10024.9, + "end": 10027.82, + "probability": 0.9774 + }, + { + "start": 10028.26, + "end": 10030.78, + "probability": 0.9923 + }, + { + "start": 10030.92, + "end": 10031.62, + "probability": 0.7607 + }, + { + "start": 10032.02, + "end": 10032.82, + "probability": 0.7296 + }, + { + "start": 10032.96, + "end": 10036.12, + "probability": 0.8938 + }, + { + "start": 10036.32, + "end": 10041.58, + "probability": 0.9814 + }, + { + "start": 10041.94, + "end": 10044.02, + "probability": 0.4902 + }, + { + "start": 10044.08, + "end": 10048.56, + "probability": 0.8235 + }, + { + "start": 10049.16, + "end": 10053.84, + "probability": 0.9967 + }, + { + "start": 10055.82, + "end": 10060.92, + "probability": 0.9375 + }, + { + "start": 10061.04, + "end": 10061.98, + "probability": 0.692 + }, + { + "start": 10062.1, + "end": 10065.3, + "probability": 0.8889 + }, + { + "start": 10065.66, + "end": 10067.9, + "probability": 0.9748 + }, + { + "start": 10068.52, + "end": 10071.58, + "probability": 0.0755 + }, + { + "start": 10072.06, + "end": 10072.06, + "probability": 0.0724 + }, + { + "start": 10072.06, + "end": 10076.04, + "probability": 0.7787 + }, + { + "start": 10076.66, + "end": 10078.36, + "probability": 0.8705 + }, + { + "start": 10078.8, + "end": 10081.72, + "probability": 0.7605 + }, + { + "start": 10081.9, + "end": 10089.44, + "probability": 0.8455 + }, + { + "start": 10089.52, + "end": 10090.14, + "probability": 0.5172 + }, + { + "start": 10090.56, + "end": 10091.86, + "probability": 0.9598 + }, + { + "start": 10092.54, + "end": 10095.0, + "probability": 0.9854 + }, + { + "start": 10095.32, + "end": 10097.38, + "probability": 0.0834 + }, + { + "start": 10097.56, + "end": 10098.92, + "probability": 0.9766 + }, + { + "start": 10099.1, + "end": 10099.36, + "probability": 0.9114 + }, + { + "start": 10099.44, + "end": 10101.14, + "probability": 0.9979 + }, + { + "start": 10101.36, + "end": 10102.08, + "probability": 0.8774 + }, + { + "start": 10102.14, + "end": 10102.94, + "probability": 0.8713 + }, + { + "start": 10103.2, + "end": 10105.4, + "probability": 0.7519 + }, + { + "start": 10105.78, + "end": 10107.04, + "probability": 0.7909 + }, + { + "start": 10107.24, + "end": 10111.0, + "probability": 0.209 + }, + { + "start": 10111.5, + "end": 10113.52, + "probability": 0.806 + }, + { + "start": 10114.02, + "end": 10117.94, + "probability": 0.9697 + }, + { + "start": 10118.14, + "end": 10118.86, + "probability": 0.854 + }, + { + "start": 10118.88, + "end": 10120.07, + "probability": 0.9631 + }, + { + "start": 10122.54, + "end": 10122.54, + "probability": 0.1729 + }, + { + "start": 10122.54, + "end": 10128.28, + "probability": 0.9983 + }, + { + "start": 10128.82, + "end": 10129.9, + "probability": 0.9066 + }, + { + "start": 10130.26, + "end": 10133.62, + "probability": 0.9565 + }, + { + "start": 10134.52, + "end": 10135.48, + "probability": 0.7681 + }, + { + "start": 10135.54, + "end": 10136.96, + "probability": 0.9897 + }, + { + "start": 10137.24, + "end": 10141.18, + "probability": 0.9915 + }, + { + "start": 10141.18, + "end": 10145.92, + "probability": 0.9656 + }, + { + "start": 10146.2, + "end": 10147.14, + "probability": 0.6058 + }, + { + "start": 10147.34, + "end": 10149.12, + "probability": 0.8994 + }, + { + "start": 10149.26, + "end": 10155.94, + "probability": 0.8857 + }, + { + "start": 10156.18, + "end": 10156.7, + "probability": 0.705 + }, + { + "start": 10156.84, + "end": 10160.18, + "probability": 0.9901 + }, + { + "start": 10160.18, + "end": 10163.96, + "probability": 0.9702 + }, + { + "start": 10164.24, + "end": 10166.52, + "probability": 0.1828 + }, + { + "start": 10166.98, + "end": 10168.1, + "probability": 0.4325 + }, + { + "start": 10168.1, + "end": 10170.46, + "probability": 0.8043 + }, + { + "start": 10172.2, + "end": 10178.8, + "probability": 0.801 + }, + { + "start": 10179.1, + "end": 10180.22, + "probability": 0.6855 + }, + { + "start": 10180.38, + "end": 10181.38, + "probability": 0.1487 + }, + { + "start": 10181.56, + "end": 10181.58, + "probability": 0.0543 + }, + { + "start": 10181.58, + "end": 10182.26, + "probability": 0.1212 + }, + { + "start": 10182.62, + "end": 10185.98, + "probability": 0.7167 + }, + { + "start": 10187.48, + "end": 10187.62, + "probability": 0.4512 + }, + { + "start": 10188.48, + "end": 10190.4, + "probability": 0.7375 + }, + { + "start": 10190.52, + "end": 10193.92, + "probability": 0.9568 + }, + { + "start": 10195.42, + "end": 10196.26, + "probability": 0.8943 + }, + { + "start": 10196.96, + "end": 10197.46, + "probability": 0.2007 + }, + { + "start": 10197.46, + "end": 10200.84, + "probability": 0.9785 + }, + { + "start": 10202.24, + "end": 10208.78, + "probability": 0.6179 + }, + { + "start": 10209.78, + "end": 10213.86, + "probability": 0.6697 + }, + { + "start": 10215.79, + "end": 10220.6, + "probability": 0.7589 + }, + { + "start": 10221.2, + "end": 10225.16, + "probability": 0.9829 + }, + { + "start": 10225.46, + "end": 10226.4, + "probability": 0.7677 + }, + { + "start": 10226.52, + "end": 10226.86, + "probability": 0.49 + }, + { + "start": 10227.0, + "end": 10227.36, + "probability": 0.8695 + }, + { + "start": 10227.54, + "end": 10228.38, + "probability": 0.715 + }, + { + "start": 10228.56, + "end": 10230.28, + "probability": 0.5297 + }, + { + "start": 10231.28, + "end": 10234.97, + "probability": 0.9049 + }, + { + "start": 10236.48, + "end": 10237.4, + "probability": 0.909 + }, + { + "start": 10237.68, + "end": 10239.46, + "probability": 0.8175 + }, + { + "start": 10239.82, + "end": 10246.36, + "probability": 0.8936 + }, + { + "start": 10246.86, + "end": 10253.84, + "probability": 0.993 + }, + { + "start": 10254.78, + "end": 10255.4, + "probability": 0.2821 + }, + { + "start": 10255.54, + "end": 10259.12, + "probability": 0.971 + }, + { + "start": 10259.22, + "end": 10264.42, + "probability": 0.9985 + }, + { + "start": 10264.82, + "end": 10270.88, + "probability": 0.8962 + }, + { + "start": 10271.5, + "end": 10272.94, + "probability": 0.3225 + }, + { + "start": 10272.94, + "end": 10278.92, + "probability": 0.9699 + }, + { + "start": 10279.32, + "end": 10283.56, + "probability": 0.877 + }, + { + "start": 10283.56, + "end": 10289.0, + "probability": 0.941 + }, + { + "start": 10289.12, + "end": 10289.74, + "probability": 0.6643 + }, + { + "start": 10290.54, + "end": 10292.38, + "probability": 0.8462 + }, + { + "start": 10292.46, + "end": 10295.68, + "probability": 0.9429 + }, + { + "start": 10296.46, + "end": 10298.88, + "probability": 0.8406 + }, + { + "start": 10300.34, + "end": 10303.14, + "probability": 0.9427 + }, + { + "start": 10303.4, + "end": 10303.52, + "probability": 0.4081 + }, + { + "start": 10303.52, + "end": 10304.7, + "probability": 0.4996 + }, + { + "start": 10304.76, + "end": 10304.82, + "probability": 0.0453 + }, + { + "start": 10304.82, + "end": 10305.14, + "probability": 0.3922 + }, + { + "start": 10305.28, + "end": 10307.28, + "probability": 0.9604 + }, + { + "start": 10308.26, + "end": 10314.23, + "probability": 0.9972 + }, + { + "start": 10314.44, + "end": 10315.6, + "probability": 0.9749 + }, + { + "start": 10315.68, + "end": 10316.7, + "probability": 0.9902 + }, + { + "start": 10318.48, + "end": 10320.8, + "probability": 0.837 + }, + { + "start": 10321.46, + "end": 10323.32, + "probability": 0.9043 + }, + { + "start": 10323.86, + "end": 10327.4, + "probability": 0.6789 + }, + { + "start": 10328.18, + "end": 10329.0, + "probability": 0.8337 + }, + { + "start": 10330.1, + "end": 10334.04, + "probability": 0.8479 + }, + { + "start": 10335.26, + "end": 10337.04, + "probability": 0.9878 + }, + { + "start": 10337.8, + "end": 10338.82, + "probability": 0.8728 + }, + { + "start": 10338.86, + "end": 10343.64, + "probability": 0.9869 + }, + { + "start": 10344.42, + "end": 10346.66, + "probability": 0.9624 + }, + { + "start": 10347.44, + "end": 10351.8, + "probability": 0.9951 + }, + { + "start": 10352.0, + "end": 10356.55, + "probability": 0.9897 + }, + { + "start": 10356.88, + "end": 10358.46, + "probability": 0.9308 + }, + { + "start": 10359.74, + "end": 10362.82, + "probability": 0.9053 + }, + { + "start": 10363.82, + "end": 10366.3, + "probability": 0.9968 + }, + { + "start": 10368.08, + "end": 10368.78, + "probability": 0.7349 + }, + { + "start": 10370.26, + "end": 10370.96, + "probability": 0.8672 + }, + { + "start": 10372.22, + "end": 10377.66, + "probability": 0.9987 + }, + { + "start": 10378.34, + "end": 10379.04, + "probability": 0.961 + }, + { + "start": 10379.38, + "end": 10381.17, + "probability": 0.9988 + }, + { + "start": 10381.48, + "end": 10382.31, + "probability": 0.2729 + }, + { + "start": 10382.64, + "end": 10383.46, + "probability": 0.0403 + }, + { + "start": 10383.54, + "end": 10384.04, + "probability": 0.4762 + }, + { + "start": 10384.36, + "end": 10386.34, + "probability": 0.6131 + }, + { + "start": 10386.46, + "end": 10387.99, + "probability": 0.7163 + }, + { + "start": 10388.58, + "end": 10389.36, + "probability": 0.952 + }, + { + "start": 10389.36, + "end": 10390.08, + "probability": 0.9543 + }, + { + "start": 10390.18, + "end": 10390.9, + "probability": 0.9122 + }, + { + "start": 10391.18, + "end": 10394.38, + "probability": 0.9907 + }, + { + "start": 10395.06, + "end": 10400.94, + "probability": 0.9305 + }, + { + "start": 10401.48, + "end": 10407.74, + "probability": 0.8925 + }, + { + "start": 10408.28, + "end": 10412.56, + "probability": 0.9968 + }, + { + "start": 10412.84, + "end": 10413.84, + "probability": 0.84 + }, + { + "start": 10414.68, + "end": 10416.04, + "probability": 0.8014 + }, + { + "start": 10416.32, + "end": 10417.44, + "probability": 0.8391 + }, + { + "start": 10417.5, + "end": 10418.32, + "probability": 0.8639 + }, + { + "start": 10418.78, + "end": 10420.22, + "probability": 0.9978 + }, + { + "start": 10420.4, + "end": 10423.01, + "probability": 0.8506 + }, + { + "start": 10423.44, + "end": 10426.1, + "probability": 0.9984 + }, + { + "start": 10426.1, + "end": 10429.5, + "probability": 0.9922 + }, + { + "start": 10429.94, + "end": 10430.76, + "probability": 0.9903 + }, + { + "start": 10431.7, + "end": 10432.2, + "probability": 0.2503 + }, + { + "start": 10432.5, + "end": 10438.86, + "probability": 0.9152 + }, + { + "start": 10439.26, + "end": 10441.66, + "probability": 0.9963 + }, + { + "start": 10441.92, + "end": 10449.78, + "probability": 0.9939 + }, + { + "start": 10449.9, + "end": 10450.92, + "probability": 0.8712 + }, + { + "start": 10451.0, + "end": 10451.34, + "probability": 0.3621 + }, + { + "start": 10451.36, + "end": 10452.15, + "probability": 0.4993 + }, + { + "start": 10452.92, + "end": 10458.84, + "probability": 0.9958 + }, + { + "start": 10459.52, + "end": 10462.48, + "probability": 0.9859 + }, + { + "start": 10462.68, + "end": 10463.48, + "probability": 0.8503 + }, + { + "start": 10464.18, + "end": 10469.2, + "probability": 0.994 + }, + { + "start": 10471.56, + "end": 10474.48, + "probability": 0.4307 + }, + { + "start": 10476.02, + "end": 10477.46, + "probability": 0.7534 + }, + { + "start": 10477.64, + "end": 10478.34, + "probability": 0.8496 + }, + { + "start": 10478.78, + "end": 10481.66, + "probability": 0.9631 + }, + { + "start": 10482.16, + "end": 10485.6, + "probability": 0.992 + }, + { + "start": 10485.6, + "end": 10488.34, + "probability": 0.9358 + }, + { + "start": 10488.62, + "end": 10490.12, + "probability": 0.8413 + }, + { + "start": 10490.5, + "end": 10491.98, + "probability": 0.8925 + }, + { + "start": 10492.4, + "end": 10494.02, + "probability": 0.7537 + }, + { + "start": 10494.06, + "end": 10495.48, + "probability": 0.9664 + }, + { + "start": 10495.56, + "end": 10496.31, + "probability": 0.6556 + }, + { + "start": 10497.44, + "end": 10500.9, + "probability": 0.9895 + }, + { + "start": 10500.9, + "end": 10504.76, + "probability": 0.9951 + }, + { + "start": 10505.26, + "end": 10507.02, + "probability": 0.9405 + }, + { + "start": 10507.08, + "end": 10508.24, + "probability": 0.8491 + }, + { + "start": 10508.48, + "end": 10509.22, + "probability": 0.791 + }, + { + "start": 10509.34, + "end": 10513.54, + "probability": 0.9821 + }, + { + "start": 10513.82, + "end": 10514.5, + "probability": 0.6979 + }, + { + "start": 10514.54, + "end": 10515.28, + "probability": 0.9673 + }, + { + "start": 10515.92, + "end": 10519.38, + "probability": 0.9575 + }, + { + "start": 10519.38, + "end": 10522.42, + "probability": 0.998 + }, + { + "start": 10522.44, + "end": 10522.86, + "probability": 0.7392 + }, + { + "start": 10522.96, + "end": 10523.42, + "probability": 0.6029 + }, + { + "start": 10523.52, + "end": 10525.58, + "probability": 0.9248 + }, + { + "start": 10526.3, + "end": 10529.54, + "probability": 0.9573 + }, + { + "start": 10529.66, + "end": 10533.24, + "probability": 0.8814 + }, + { + "start": 10533.46, + "end": 10536.78, + "probability": 0.8291 + }, + { + "start": 10536.9, + "end": 10539.86, + "probability": 0.9523 + }, + { + "start": 10540.0, + "end": 10541.32, + "probability": 0.9886 + }, + { + "start": 10542.44, + "end": 10548.04, + "probability": 0.2152 + }, + { + "start": 10560.26, + "end": 10562.72, + "probability": 0.1956 + }, + { + "start": 10562.72, + "end": 10564.96, + "probability": 0.3528 + }, + { + "start": 10565.08, + "end": 10565.66, + "probability": 0.3296 + }, + { + "start": 10566.1, + "end": 10567.68, + "probability": 0.5767 + }, + { + "start": 10568.32, + "end": 10571.8, + "probability": 0.9938 + }, + { + "start": 10572.36, + "end": 10575.92, + "probability": 0.4834 + }, + { + "start": 10576.68, + "end": 10580.22, + "probability": 0.9817 + }, + { + "start": 10581.12, + "end": 10583.18, + "probability": 0.8964 + }, + { + "start": 10584.88, + "end": 10587.94, + "probability": 0.8665 + }, + { + "start": 10588.6, + "end": 10589.38, + "probability": 0.3659 + }, + { + "start": 10591.1, + "end": 10592.42, + "probability": 0.3842 + }, + { + "start": 10592.67, + "end": 10594.12, + "probability": 0.9961 + }, + { + "start": 10594.8, + "end": 10598.23, + "probability": 0.8286 + }, + { + "start": 10614.6, + "end": 10619.22, + "probability": 0.5974 + }, + { + "start": 10620.14, + "end": 10622.54, + "probability": 0.9045 + }, + { + "start": 10623.2, + "end": 10627.44, + "probability": 0.7576 + }, + { + "start": 10627.94, + "end": 10630.24, + "probability": 0.9588 + }, + { + "start": 10630.88, + "end": 10634.39, + "probability": 0.9069 + }, + { + "start": 10634.6, + "end": 10640.64, + "probability": 0.9987 + }, + { + "start": 10641.06, + "end": 10642.4, + "probability": 0.7298 + }, + { + "start": 10642.6, + "end": 10643.18, + "probability": 0.3414 + }, + { + "start": 10643.96, + "end": 10648.36, + "probability": 0.7994 + }, + { + "start": 10648.36, + "end": 10653.0, + "probability": 0.9006 + }, + { + "start": 10653.2, + "end": 10654.86, + "probability": 0.7411 + }, + { + "start": 10655.3, + "end": 10660.1, + "probability": 0.9921 + }, + { + "start": 10660.7, + "end": 10663.82, + "probability": 0.9979 + }, + { + "start": 10663.82, + "end": 10668.14, + "probability": 0.9897 + }, + { + "start": 10668.56, + "end": 10672.52, + "probability": 0.9981 + }, + { + "start": 10672.52, + "end": 10677.36, + "probability": 0.9794 + }, + { + "start": 10678.0, + "end": 10678.36, + "probability": 0.8141 + }, + { + "start": 10679.0, + "end": 10682.58, + "probability": 0.9873 + }, + { + "start": 10682.96, + "end": 10686.56, + "probability": 0.944 + }, + { + "start": 10686.72, + "end": 10687.84, + "probability": 0.7823 + }, + { + "start": 10688.4, + "end": 10694.26, + "probability": 0.8396 + }, + { + "start": 10694.6, + "end": 10698.76, + "probability": 0.9762 + }, + { + "start": 10698.84, + "end": 10700.21, + "probability": 0.9341 + }, + { + "start": 10701.02, + "end": 10704.88, + "probability": 0.9761 + }, + { + "start": 10704.98, + "end": 10705.28, + "probability": 0.8334 + }, + { + "start": 10705.82, + "end": 10708.82, + "probability": 0.8958 + }, + { + "start": 10709.4, + "end": 10712.16, + "probability": 0.7919 + }, + { + "start": 10713.13, + "end": 10717.1, + "probability": 0.9958 + }, + { + "start": 10717.1, + "end": 10721.8, + "probability": 0.9786 + }, + { + "start": 10722.14, + "end": 10722.58, + "probability": 0.3302 + }, + { + "start": 10722.58, + "end": 10725.4, + "probability": 0.2141 + }, + { + "start": 10725.46, + "end": 10726.6, + "probability": 0.36 + }, + { + "start": 10726.88, + "end": 10728.76, + "probability": 0.3762 + }, + { + "start": 10728.92, + "end": 10731.22, + "probability": 0.699 + }, + { + "start": 10731.86, + "end": 10734.38, + "probability": 0.4995 + }, + { + "start": 10735.02, + "end": 10741.56, + "probability": 0.9695 + }, + { + "start": 10748.58, + "end": 10749.22, + "probability": 0.443 + }, + { + "start": 10749.22, + "end": 10750.2, + "probability": 0.5531 + }, + { + "start": 10750.44, + "end": 10752.4, + "probability": 0.8695 + }, + { + "start": 10752.58, + "end": 10753.82, + "probability": 0.9923 + }, + { + "start": 10754.78, + "end": 10755.7, + "probability": 0.6231 + }, + { + "start": 10755.8, + "end": 10755.8, + "probability": 0.6533 + }, + { + "start": 10756.22, + "end": 10756.8, + "probability": 0.5663 + }, + { + "start": 10756.82, + "end": 10757.4, + "probability": 0.662 + }, + { + "start": 10758.14, + "end": 10760.38, + "probability": 0.9934 + }, + { + "start": 10760.48, + "end": 10764.32, + "probability": 0.9888 + }, + { + "start": 10764.6, + "end": 10766.3, + "probability": 0.3588 + }, + { + "start": 10766.3, + "end": 10768.46, + "probability": 0.4967 + }, + { + "start": 10768.76, + "end": 10769.16, + "probability": 0.5458 + }, + { + "start": 10769.32, + "end": 10770.02, + "probability": 0.8906 + }, + { + "start": 10770.18, + "end": 10773.22, + "probability": 0.9948 + }, + { + "start": 10773.42, + "end": 10774.0, + "probability": 0.6529 + }, + { + "start": 10774.06, + "end": 10776.41, + "probability": 0.9636 + }, + { + "start": 10776.94, + "end": 10783.02, + "probability": 0.9708 + }, + { + "start": 10784.08, + "end": 10785.34, + "probability": 0.9707 + }, + { + "start": 10785.98, + "end": 10787.52, + "probability": 0.9102 + }, + { + "start": 10787.88, + "end": 10789.03, + "probability": 0.9185 + }, + { + "start": 10789.98, + "end": 10791.82, + "probability": 0.8711 + }, + { + "start": 10791.94, + "end": 10793.09, + "probability": 0.979 + }, + { + "start": 10793.46, + "end": 10794.42, + "probability": 0.8872 + }, + { + "start": 10794.98, + "end": 10795.32, + "probability": 0.8221 + }, + { + "start": 10795.44, + "end": 10797.0, + "probability": 0.9767 + }, + { + "start": 10797.42, + "end": 10798.04, + "probability": 0.7359 + }, + { + "start": 10798.14, + "end": 10798.7, + "probability": 0.5469 + }, + { + "start": 10798.7, + "end": 10800.38, + "probability": 0.9902 + }, + { + "start": 10802.16, + "end": 10802.6, + "probability": 0.1309 + }, + { + "start": 10802.6, + "end": 10805.32, + "probability": 0.5268 + }, + { + "start": 10805.32, + "end": 10805.68, + "probability": 0.4793 + }, + { + "start": 10806.4, + "end": 10808.48, + "probability": 0.9132 + }, + { + "start": 10808.66, + "end": 10813.38, + "probability": 0.9281 + }, + { + "start": 10813.76, + "end": 10816.74, + "probability": 0.8026 + }, + { + "start": 10817.78, + "end": 10819.96, + "probability": 0.896 + }, + { + "start": 10820.36, + "end": 10821.1, + "probability": 0.7515 + }, + { + "start": 10821.74, + "end": 10823.18, + "probability": 0.6046 + }, + { + "start": 10823.76, + "end": 10825.72, + "probability": 0.7491 + }, + { + "start": 10825.94, + "end": 10829.64, + "probability": 0.6832 + }, + { + "start": 10829.74, + "end": 10831.0, + "probability": 0.8052 + }, + { + "start": 10831.62, + "end": 10836.46, + "probability": 0.91 + }, + { + "start": 10837.24, + "end": 10840.62, + "probability": 0.6791 + }, + { + "start": 10841.16, + "end": 10843.5, + "probability": 0.8112 + }, + { + "start": 10843.68, + "end": 10843.98, + "probability": 0.6591 + }, + { + "start": 10844.04, + "end": 10844.64, + "probability": 0.9144 + }, + { + "start": 10844.7, + "end": 10845.48, + "probability": 0.9493 + }, + { + "start": 10845.64, + "end": 10848.38, + "probability": 0.8539 + }, + { + "start": 10848.72, + "end": 10848.86, + "probability": 0.7927 + }, + { + "start": 10848.96, + "end": 10852.96, + "probability": 0.7777 + }, + { + "start": 10853.18, + "end": 10853.66, + "probability": 0.5247 + }, + { + "start": 10854.1, + "end": 10856.6, + "probability": 0.8901 + }, + { + "start": 10857.36, + "end": 10861.52, + "probability": 0.9116 + }, + { + "start": 10862.12, + "end": 10865.8, + "probability": 0.9195 + }, + { + "start": 10866.86, + "end": 10868.18, + "probability": 0.7887 + }, + { + "start": 10868.68, + "end": 10870.74, + "probability": 0.9108 + }, + { + "start": 10871.16, + "end": 10873.84, + "probability": 0.9877 + }, + { + "start": 10874.58, + "end": 10878.1, + "probability": 0.9631 + }, + { + "start": 10878.28, + "end": 10878.62, + "probability": 0.8148 + }, + { + "start": 10878.8, + "end": 10879.78, + "probability": 0.9155 + }, + { + "start": 10880.36, + "end": 10880.6, + "probability": 0.5271 + }, + { + "start": 10880.64, + "end": 10882.0, + "probability": 0.9507 + }, + { + "start": 10882.16, + "end": 10887.44, + "probability": 0.7844 + }, + { + "start": 10887.69, + "end": 10891.22, + "probability": 0.6707 + }, + { + "start": 10891.42, + "end": 10896.74, + "probability": 0.9899 + }, + { + "start": 10896.98, + "end": 10898.6, + "probability": 0.6479 + }, + { + "start": 10898.94, + "end": 10900.02, + "probability": 0.9573 + }, + { + "start": 10900.44, + "end": 10901.8, + "probability": 0.5366 + }, + { + "start": 10901.88, + "end": 10904.5, + "probability": 0.9694 + }, + { + "start": 10904.56, + "end": 10904.8, + "probability": 0.4789 + }, + { + "start": 10906.28, + "end": 10909.7, + "probability": 0.9496 + }, + { + "start": 10910.0, + "end": 10912.2, + "probability": 0.9827 + }, + { + "start": 10912.8, + "end": 10916.6, + "probability": 0.7403 + }, + { + "start": 10918.08, + "end": 10920.08, + "probability": 0.1643 + }, + { + "start": 10920.16, + "end": 10924.14, + "probability": 0.9753 + }, + { + "start": 10924.14, + "end": 10927.06, + "probability": 0.3853 + }, + { + "start": 10927.4, + "end": 10931.14, + "probability": 0.7528 + }, + { + "start": 10931.44, + "end": 10934.34, + "probability": 0.8063 + }, + { + "start": 10935.32, + "end": 10937.82, + "probability": 0.64 + }, + { + "start": 10938.12, + "end": 10942.88, + "probability": 0.9837 + }, + { + "start": 10943.24, + "end": 10946.56, + "probability": 0.6557 + }, + { + "start": 10946.74, + "end": 10947.6, + "probability": 0.7971 + }, + { + "start": 10947.66, + "end": 10949.36, + "probability": 0.7861 + }, + { + "start": 10950.04, + "end": 10952.18, + "probability": 0.7513 + }, + { + "start": 10952.46, + "end": 10953.22, + "probability": 0.0557 + }, + { + "start": 10953.22, + "end": 10956.62, + "probability": 0.9864 + }, + { + "start": 10958.46, + "end": 10960.3, + "probability": 0.5173 + }, + { + "start": 10960.78, + "end": 10961.08, + "probability": 0.2796 + }, + { + "start": 10967.5, + "end": 10968.1, + "probability": 0.1048 + }, + { + "start": 10983.26, + "end": 10987.34, + "probability": 0.2466 + }, + { + "start": 10987.64, + "end": 10989.24, + "probability": 0.0724 + }, + { + "start": 10989.24, + "end": 10992.66, + "probability": 0.6061 + }, + { + "start": 10992.76, + "end": 10995.36, + "probability": 0.7418 + }, + { + "start": 10996.6, + "end": 10997.4, + "probability": 0.0419 + }, + { + "start": 10999.3, + "end": 10999.64, + "probability": 0.0709 + }, + { + "start": 11005.6, + "end": 11008.72, + "probability": 0.0509 + }, + { + "start": 11009.4, + "end": 11010.08, + "probability": 0.0752 + }, + { + "start": 11015.88, + "end": 11015.88, + "probability": 0.0017 + }, + { + "start": 11017.83, + "end": 11020.08, + "probability": 0.0192 + }, + { + "start": 11021.78, + "end": 11022.58, + "probability": 0.0616 + }, + { + "start": 11024.16, + "end": 11024.72, + "probability": 0.0223 + }, + { + "start": 11025.8, + "end": 11028.47, + "probability": 0.042 + }, + { + "start": 11029.18, + "end": 11030.38, + "probability": 0.2105 + }, + { + "start": 11030.38, + "end": 11030.68, + "probability": 0.0552 + }, + { + "start": 11030.68, + "end": 11030.94, + "probability": 0.1507 + }, + { + "start": 11030.94, + "end": 11032.36, + "probability": 0.075 + }, + { + "start": 11033.22, + "end": 11033.22, + "probability": 0.2923 + }, + { + "start": 11033.22, + "end": 11033.22, + "probability": 0.0224 + }, + { + "start": 11033.22, + "end": 11033.22, + "probability": 0.0681 + }, + { + "start": 11033.22, + "end": 11033.22, + "probability": 0.1331 + }, + { + "start": 11033.22, + "end": 11033.22, + "probability": 0.1096 + }, + { + "start": 11033.22, + "end": 11039.17, + "probability": 0.8619 + }, + { + "start": 11041.34, + "end": 11043.18, + "probability": 0.2327 + }, + { + "start": 11043.18, + "end": 11045.52, + "probability": 0.6919 + }, + { + "start": 11045.6, + "end": 11050.5, + "probability": 0.8794 + }, + { + "start": 11050.68, + "end": 11053.76, + "probability": 0.6101 + }, + { + "start": 11055.74, + "end": 11056.6, + "probability": 0.6446 + }, + { + "start": 11056.66, + "end": 11058.96, + "probability": 0.7927 + }, + { + "start": 11059.1, + "end": 11059.52, + "probability": 0.4404 + }, + { + "start": 11059.6, + "end": 11061.18, + "probability": 0.7647 + }, + { + "start": 11061.56, + "end": 11062.64, + "probability": 0.6679 + }, + { + "start": 11062.7, + "end": 11063.84, + "probability": 0.8705 + }, + { + "start": 11063.96, + "end": 11065.66, + "probability": 0.9189 + }, + { + "start": 11084.06, + "end": 11085.66, + "probability": 0.5904 + }, + { + "start": 11089.23, + "end": 11093.28, + "probability": 0.9922 + }, + { + "start": 11094.48, + "end": 11099.16, + "probability": 0.9922 + }, + { + "start": 11099.16, + "end": 11101.94, + "probability": 0.8006 + }, + { + "start": 11102.1, + "end": 11103.74, + "probability": 0.1461 + }, + { + "start": 11104.04, + "end": 11105.12, + "probability": 0.4904 + }, + { + "start": 11106.06, + "end": 11108.18, + "probability": 0.9139 + }, + { + "start": 11108.8, + "end": 11109.94, + "probability": 0.7522 + }, + { + "start": 11109.98, + "end": 11111.66, + "probability": 0.916 + }, + { + "start": 11112.04, + "end": 11112.8, + "probability": 0.852 + }, + { + "start": 11113.02, + "end": 11113.7, + "probability": 0.6581 + }, + { + "start": 11113.88, + "end": 11114.78, + "probability": 0.6526 + }, + { + "start": 11115.28, + "end": 11117.92, + "probability": 0.9803 + }, + { + "start": 11118.06, + "end": 11120.22, + "probability": 0.9954 + }, + { + "start": 11120.28, + "end": 11124.8, + "probability": 0.9937 + }, + { + "start": 11124.8, + "end": 11130.16, + "probability": 0.8224 + }, + { + "start": 11130.68, + "end": 11131.22, + "probability": 0.0221 + }, + { + "start": 11131.54, + "end": 11133.7, + "probability": 0.9866 + }, + { + "start": 11133.84, + "end": 11136.41, + "probability": 0.9434 + }, + { + "start": 11137.38, + "end": 11140.3, + "probability": 0.9722 + }, + { + "start": 11140.4, + "end": 11143.52, + "probability": 0.8425 + }, + { + "start": 11144.6, + "end": 11147.46, + "probability": 0.7494 + }, + { + "start": 11147.9, + "end": 11151.44, + "probability": 0.9929 + }, + { + "start": 11151.74, + "end": 11154.12, + "probability": 0.9118 + }, + { + "start": 11154.72, + "end": 11156.68, + "probability": 0.9938 + }, + { + "start": 11156.68, + "end": 11159.46, + "probability": 0.8975 + }, + { + "start": 11159.94, + "end": 11161.0, + "probability": 0.6967 + }, + { + "start": 11161.14, + "end": 11162.3, + "probability": 0.8494 + }, + { + "start": 11162.42, + "end": 11165.56, + "probability": 0.9237 + }, + { + "start": 11166.02, + "end": 11166.64, + "probability": 0.8064 + }, + { + "start": 11166.68, + "end": 11170.75, + "probability": 0.9607 + }, + { + "start": 11171.9, + "end": 11172.56, + "probability": 0.0952 + }, + { + "start": 11172.62, + "end": 11172.88, + "probability": 0.6826 + }, + { + "start": 11174.22, + "end": 11176.82, + "probability": 0.6239 + }, + { + "start": 11177.9, + "end": 11184.52, + "probability": 0.8511 + }, + { + "start": 11184.86, + "end": 11186.12, + "probability": 0.8547 + }, + { + "start": 11186.82, + "end": 11190.62, + "probability": 0.7336 + }, + { + "start": 11190.62, + "end": 11196.26, + "probability": 0.6796 + }, + { + "start": 11196.4, + "end": 11199.1, + "probability": 0.0263 + }, + { + "start": 11199.22, + "end": 11200.7, + "probability": 0.4564 + }, + { + "start": 11200.9, + "end": 11202.98, + "probability": 0.9016 + }, + { + "start": 11204.24, + "end": 11210.08, + "probability": 0.0254 + }, + { + "start": 11210.66, + "end": 11210.82, + "probability": 0.0196 + }, + { + "start": 11216.4, + "end": 11218.66, + "probability": 0.0343 + }, + { + "start": 11219.36, + "end": 11223.0, + "probability": 0.2126 + }, + { + "start": 11225.68, + "end": 11225.8, + "probability": 0.0794 + }, + { + "start": 11228.94, + "end": 11229.18, + "probability": 0.0851 + }, + { + "start": 11229.18, + "end": 11233.06, + "probability": 0.3115 + }, + { + "start": 11234.0, + "end": 11236.2, + "probability": 0.6459 + }, + { + "start": 11241.34, + "end": 11243.96, + "probability": 0.8203 + }, + { + "start": 11244.4, + "end": 11245.76, + "probability": 0.7912 + }, + { + "start": 11245.82, + "end": 11246.96, + "probability": 0.8252 + }, + { + "start": 11247.06, + "end": 11248.48, + "probability": 0.9001 + }, + { + "start": 11248.74, + "end": 11250.42, + "probability": 0.9453 + }, + { + "start": 11251.0, + "end": 11255.42, + "probability": 0.8608 + }, + { + "start": 11255.58, + "end": 11256.2, + "probability": 0.3877 + }, + { + "start": 11257.94, + "end": 11257.94, + "probability": 0.6914 + }, + { + "start": 11258.98, + "end": 11261.88, + "probability": 0.5856 + }, + { + "start": 11263.66, + "end": 11267.56, + "probability": 0.9105 + }, + { + "start": 11267.56, + "end": 11271.78, + "probability": 0.6754 + }, + { + "start": 11272.26, + "end": 11274.46, + "probability": 0.9084 + }, + { + "start": 11275.14, + "end": 11277.86, + "probability": 0.9309 + }, + { + "start": 11278.46, + "end": 11278.66, + "probability": 0.7519 + }, + { + "start": 11285.64, + "end": 11287.39, + "probability": 0.1646 + }, + { + "start": 11295.44, + "end": 11296.68, + "probability": 0.3455 + }, + { + "start": 11299.82, + "end": 11305.78, + "probability": 0.4609 + }, + { + "start": 11306.38, + "end": 11311.1, + "probability": 0.7851 + }, + { + "start": 11311.44, + "end": 11313.8, + "probability": 0.7287 + }, + { + "start": 11315.56, + "end": 11317.62, + "probability": 0.7737 + }, + { + "start": 11320.44, + "end": 11322.52, + "probability": 0.8496 + }, + { + "start": 11322.52, + "end": 11324.0, + "probability": 0.4637 + }, + { + "start": 11324.66, + "end": 11327.32, + "probability": 0.7667 + }, + { + "start": 11329.5, + "end": 11332.72, + "probability": 0.8175 + }, + { + "start": 11332.72, + "end": 11339.38, + "probability": 0.9854 + }, + { + "start": 11340.42, + "end": 11343.88, + "probability": 0.9308 + }, + { + "start": 11343.94, + "end": 11348.48, + "probability": 0.8427 + }, + { + "start": 11348.48, + "end": 11352.58, + "probability": 0.9852 + }, + { + "start": 11352.84, + "end": 11353.8, + "probability": 0.5952 + }, + { + "start": 11354.4, + "end": 11355.68, + "probability": 0.7317 + }, + { + "start": 11356.64, + "end": 11358.5, + "probability": 0.8659 + }, + { + "start": 11359.0, + "end": 11363.68, + "probability": 0.9882 + }, + { + "start": 11363.68, + "end": 11367.34, + "probability": 0.8987 + }, + { + "start": 11367.34, + "end": 11372.18, + "probability": 0.9468 + }, + { + "start": 11372.98, + "end": 11375.98, + "probability": 0.9937 + }, + { + "start": 11375.98, + "end": 11379.86, + "probability": 0.9863 + }, + { + "start": 11380.46, + "end": 11384.34, + "probability": 0.9784 + }, + { + "start": 11384.34, + "end": 11388.48, + "probability": 0.9805 + }, + { + "start": 11389.02, + "end": 11392.07, + "probability": 0.6999 + }, + { + "start": 11392.88, + "end": 11396.28, + "probability": 0.869 + }, + { + "start": 11396.28, + "end": 11401.1, + "probability": 0.9535 + }, + { + "start": 11401.96, + "end": 11406.36, + "probability": 0.9521 + }, + { + "start": 11407.0, + "end": 11411.28, + "probability": 0.8686 + }, + { + "start": 11411.34, + "end": 11415.98, + "probability": 0.814 + }, + { + "start": 11416.56, + "end": 11422.68, + "probability": 0.8553 + }, + { + "start": 11422.68, + "end": 11426.36, + "probability": 0.9876 + }, + { + "start": 11426.4, + "end": 11427.74, + "probability": 0.8208 + }, + { + "start": 11428.72, + "end": 11431.02, + "probability": 0.8296 + }, + { + "start": 11431.5, + "end": 11433.26, + "probability": 0.9297 + }, + { + "start": 11434.04, + "end": 11437.04, + "probability": 0.7474 + }, + { + "start": 11437.24, + "end": 11440.34, + "probability": 0.9503 + }, + { + "start": 11441.2, + "end": 11442.52, + "probability": 0.6 + }, + { + "start": 11443.02, + "end": 11446.58, + "probability": 0.8705 + }, + { + "start": 11446.9, + "end": 11448.08, + "probability": 0.7031 + }, + { + "start": 11448.66, + "end": 11449.02, + "probability": 0.4248 + }, + { + "start": 11450.06, + "end": 11450.18, + "probability": 0.3025 + }, + { + "start": 11450.46, + "end": 11452.38, + "probability": 0.5583 + }, + { + "start": 11453.28, + "end": 11457.8, + "probability": 0.6157 + }, + { + "start": 11457.94, + "end": 11459.96, + "probability": 0.002 + }, + { + "start": 11470.88, + "end": 11472.16, + "probability": 0.0272 + }, + { + "start": 11479.84, + "end": 11482.8, + "probability": 0.3601 + }, + { + "start": 11483.34, + "end": 11485.22, + "probability": 0.9906 + }, + { + "start": 11487.3, + "end": 11490.14, + "probability": 0.9746 + }, + { + "start": 11492.82, + "end": 11494.36, + "probability": 0.0154 + }, + { + "start": 11496.56, + "end": 11502.36, + "probability": 0.0106 + }, + { + "start": 11510.44, + "end": 11511.1, + "probability": 0.1205 + }, + { + "start": 11514.42, + "end": 11517.06, + "probability": 0.3428 + }, + { + "start": 11517.4, + "end": 11525.06, + "probability": 0.9845 + }, + { + "start": 11531.44, + "end": 11535.42, + "probability": 0.662 + }, + { + "start": 11535.88, + "end": 11538.6, + "probability": 0.0645 + }, + { + "start": 11540.0, + "end": 11541.96, + "probability": 0.8219 + }, + { + "start": 11542.58, + "end": 11544.9, + "probability": 0.9126 + }, + { + "start": 11545.06, + "end": 11547.22, + "probability": 0.6849 + }, + { + "start": 11547.26, + "end": 11548.36, + "probability": 0.6519 + }, + { + "start": 11548.5, + "end": 11548.84, + "probability": 0.8059 + }, + { + "start": 11551.0, + "end": 11553.74, + "probability": 0.7056 + }, + { + "start": 11554.48, + "end": 11560.08, + "probability": 0.9469 + }, + { + "start": 11560.6, + "end": 11564.3, + "probability": 0.5741 + }, + { + "start": 11564.8, + "end": 11570.16, + "probability": 0.8874 + }, + { + "start": 11570.7, + "end": 11575.58, + "probability": 0.8936 + }, + { + "start": 11576.18, + "end": 11578.04, + "probability": 0.8654 + }, + { + "start": 11579.13, + "end": 11585.74, + "probability": 0.9943 + }, + { + "start": 11586.04, + "end": 11587.84, + "probability": 0.8673 + }, + { + "start": 11588.42, + "end": 11589.46, + "probability": 0.7922 + }, + { + "start": 11589.88, + "end": 11592.46, + "probability": 0.9039 + }, + { + "start": 11592.88, + "end": 11596.34, + "probability": 0.5303 + }, + { + "start": 11596.74, + "end": 11601.58, + "probability": 0.9845 + }, + { + "start": 11601.58, + "end": 11605.32, + "probability": 0.9966 + }, + { + "start": 11605.9, + "end": 11609.22, + "probability": 0.99 + }, + { + "start": 11609.22, + "end": 11612.52, + "probability": 0.9854 + }, + { + "start": 11613.32, + "end": 11616.92, + "probability": 0.9892 + }, + { + "start": 11616.92, + "end": 11621.72, + "probability": 0.9945 + }, + { + "start": 11621.72, + "end": 11625.84, + "probability": 0.9305 + }, + { + "start": 11626.1, + "end": 11630.6, + "probability": 0.913 + }, + { + "start": 11631.22, + "end": 11637.56, + "probability": 0.9829 + }, + { + "start": 11637.56, + "end": 11649.18, + "probability": 0.9949 + }, + { + "start": 11649.76, + "end": 11655.14, + "probability": 0.9551 + }, + { + "start": 11655.62, + "end": 11657.82, + "probability": 0.9489 + }, + { + "start": 11658.44, + "end": 11663.88, + "probability": 0.9567 + }, + { + "start": 11664.64, + "end": 11664.9, + "probability": 0.1447 + }, + { + "start": 11664.9, + "end": 11665.72, + "probability": 0.7024 + }, + { + "start": 11666.32, + "end": 11667.3, + "probability": 0.9939 + }, + { + "start": 11667.92, + "end": 11671.24, + "probability": 0.8614 + }, + { + "start": 11671.8, + "end": 11675.86, + "probability": 0.929 + }, + { + "start": 11681.16, + "end": 11686.44, + "probability": 0.8904 + }, + { + "start": 11687.22, + "end": 11687.26, + "probability": 0.0011 + }, + { + "start": 11687.26, + "end": 11688.74, + "probability": 0.6895 + }, + { + "start": 11688.86, + "end": 11691.86, + "probability": 0.9754 + }, + { + "start": 11692.36, + "end": 11693.86, + "probability": 0.8291 + }, + { + "start": 11693.9, + "end": 11697.2, + "probability": 0.9894 + }, + { + "start": 11697.66, + "end": 11700.4, + "probability": 0.9644 + }, + { + "start": 11700.8, + "end": 11702.28, + "probability": 0.9427 + }, + { + "start": 11703.18, + "end": 11705.44, + "probability": 0.9906 + }, + { + "start": 11705.84, + "end": 11709.36, + "probability": 0.9817 + }, + { + "start": 11709.74, + "end": 11714.14, + "probability": 0.9766 + }, + { + "start": 11714.14, + "end": 11720.1, + "probability": 0.9528 + }, + { + "start": 11721.42, + "end": 11723.84, + "probability": 0.9868 + }, + { + "start": 11724.18, + "end": 11727.24, + "probability": 0.9946 + }, + { + "start": 11727.36, + "end": 11727.97, + "probability": 0.8852 + }, + { + "start": 11728.34, + "end": 11732.12, + "probability": 0.9817 + }, + { + "start": 11732.2, + "end": 11733.54, + "probability": 0.7359 + }, + { + "start": 11737.75, + "end": 11742.76, + "probability": 0.7509 + }, + { + "start": 11742.76, + "end": 11747.24, + "probability": 0.7918 + }, + { + "start": 11747.28, + "end": 11749.56, + "probability": 0.8301 + }, + { + "start": 11749.92, + "end": 11752.82, + "probability": 0.9983 + }, + { + "start": 11753.26, + "end": 11756.86, + "probability": 0.7417 + }, + { + "start": 11757.16, + "end": 11758.5, + "probability": 0.6921 + }, + { + "start": 11758.9, + "end": 11762.56, + "probability": 0.9792 + }, + { + "start": 11763.06, + "end": 11764.69, + "probability": 0.9927 + }, + { + "start": 11765.34, + "end": 11770.04, + "probability": 0.9886 + }, + { + "start": 11771.44, + "end": 11773.74, + "probability": 0.9038 + }, + { + "start": 11774.06, + "end": 11775.14, + "probability": 0.212 + }, + { + "start": 11775.32, + "end": 11776.16, + "probability": 0.4622 + }, + { + "start": 11777.18, + "end": 11777.76, + "probability": 0.7553 + }, + { + "start": 11777.76, + "end": 11778.44, + "probability": 0.7883 + }, + { + "start": 11778.8, + "end": 11781.2, + "probability": 0.7794 + }, + { + "start": 11803.38, + "end": 11803.38, + "probability": 0.0033 + }, + { + "start": 11803.38, + "end": 11804.44, + "probability": 0.2897 + }, + { + "start": 11805.28, + "end": 11806.44, + "probability": 0.3314 + }, + { + "start": 11807.1, + "end": 11809.14, + "probability": 0.9919 + }, + { + "start": 11810.6, + "end": 11813.06, + "probability": 0.9931 + }, + { + "start": 11816.32, + "end": 11816.92, + "probability": 0.0391 + }, + { + "start": 11817.82, + "end": 11818.34, + "probability": 0.0271 + }, + { + "start": 11820.26, + "end": 11820.68, + "probability": 0.039 + }, + { + "start": 11834.8, + "end": 11834.8, + "probability": 0.0969 + }, + { + "start": 11834.8, + "end": 11837.0, + "probability": 0.4536 + }, + { + "start": 11837.94, + "end": 11838.6, + "probability": 0.9473 + }, + { + "start": 11839.18, + "end": 11841.2, + "probability": 0.9831 + }, + { + "start": 11841.82, + "end": 11845.1, + "probability": 0.9897 + }, + { + "start": 11847.06, + "end": 11849.48, + "probability": 0.6154 + }, + { + "start": 11850.26, + "end": 11850.7, + "probability": 0.6415 + }, + { + "start": 11851.0, + "end": 11851.44, + "probability": 0.9561 + }, + { + "start": 11857.66, + "end": 11858.7, + "probability": 0.6312 + }, + { + "start": 11859.26, + "end": 11863.46, + "probability": 0.8961 + }, + { + "start": 11863.64, + "end": 11864.82, + "probability": 0.887 + }, + { + "start": 11866.2, + "end": 11870.32, + "probability": 0.936 + }, + { + "start": 11872.26, + "end": 11876.12, + "probability": 0.8472 + }, + { + "start": 11876.84, + "end": 11878.9, + "probability": 0.9969 + }, + { + "start": 11879.74, + "end": 11883.36, + "probability": 0.8832 + }, + { + "start": 11884.4, + "end": 11887.4, + "probability": 0.9966 + }, + { + "start": 11887.5, + "end": 11889.5, + "probability": 0.9261 + }, + { + "start": 11890.38, + "end": 11892.98, + "probability": 0.9912 + }, + { + "start": 11895.04, + "end": 11896.36, + "probability": 0.8137 + }, + { + "start": 11896.38, + "end": 11898.88, + "probability": 0.6107 + }, + { + "start": 11899.14, + "end": 11901.48, + "probability": 0.8403 + }, + { + "start": 11901.6, + "end": 11905.14, + "probability": 0.9468 + }, + { + "start": 11905.24, + "end": 11906.1, + "probability": 0.831 + }, + { + "start": 11906.24, + "end": 11907.78, + "probability": 0.7886 + }, + { + "start": 11908.72, + "end": 11915.51, + "probability": 0.9569 + }, + { + "start": 11916.12, + "end": 11918.6, + "probability": 0.9521 + }, + { + "start": 11918.64, + "end": 11919.6, + "probability": 0.8318 + }, + { + "start": 11920.02, + "end": 11928.54, + "probability": 0.7473 + }, + { + "start": 11929.3, + "end": 11931.12, + "probability": 0.7109 + }, + { + "start": 11931.88, + "end": 11935.36, + "probability": 0.976 + }, + { + "start": 11935.55, + "end": 11941.94, + "probability": 0.9969 + }, + { + "start": 11942.56, + "end": 11944.7, + "probability": 0.9629 + }, + { + "start": 11944.78, + "end": 11947.18, + "probability": 0.958 + }, + { + "start": 11947.26, + "end": 11950.8, + "probability": 0.7328 + }, + { + "start": 11951.82, + "end": 11954.74, + "probability": 0.8647 + }, + { + "start": 11954.82, + "end": 11957.4, + "probability": 0.9536 + }, + { + "start": 11958.12, + "end": 11959.68, + "probability": 0.4454 + }, + { + "start": 11960.84, + "end": 11965.66, + "probability": 0.6426 + }, + { + "start": 11965.66, + "end": 11966.04, + "probability": 0.3425 + }, + { + "start": 11966.12, + "end": 11968.08, + "probability": 0.8506 + }, + { + "start": 11969.02, + "end": 11971.1, + "probability": 0.7566 + }, + { + "start": 11972.36, + "end": 11974.58, + "probability": 0.8272 + }, + { + "start": 11974.68, + "end": 11975.48, + "probability": 0.8757 + }, + { + "start": 11975.7, + "end": 11978.04, + "probability": 0.9743 + }, + { + "start": 11978.12, + "end": 11979.48, + "probability": 0.888 + }, + { + "start": 11980.44, + "end": 11981.28, + "probability": 0.8086 + }, + { + "start": 11982.34, + "end": 11987.66, + "probability": 0.9574 + }, + { + "start": 11988.2, + "end": 11989.82, + "probability": 0.9578 + }, + { + "start": 11991.56, + "end": 11994.58, + "probability": 0.2878 + }, + { + "start": 11994.6, + "end": 11998.94, + "probability": 0.7383 + }, + { + "start": 11999.16, + "end": 12000.46, + "probability": 0.6745 + }, + { + "start": 12002.26, + "end": 12005.84, + "probability": 0.9559 + }, + { + "start": 12006.76, + "end": 12009.56, + "probability": 0.816 + }, + { + "start": 12014.34, + "end": 12018.48, + "probability": 0.408 + }, + { + "start": 12019.14, + "end": 12020.18, + "probability": 0.3803 + }, + { + "start": 12020.96, + "end": 12026.15, + "probability": 0.54 + }, + { + "start": 12026.88, + "end": 12028.36, + "probability": 0.8927 + }, + { + "start": 12028.84, + "end": 12031.34, + "probability": 0.905 + }, + { + "start": 12031.5, + "end": 12033.13, + "probability": 0.7043 + }, + { + "start": 12033.4, + "end": 12034.1, + "probability": 0.6126 + }, + { + "start": 12034.24, + "end": 12037.46, + "probability": 0.5879 + }, + { + "start": 12038.74, + "end": 12044.38, + "probability": 0.9847 + }, + { + "start": 12045.62, + "end": 12046.7, + "probability": 0.9973 + }, + { + "start": 12048.02, + "end": 12050.54, + "probability": 0.9702 + }, + { + "start": 12051.34, + "end": 12053.06, + "probability": 0.9409 + }, + { + "start": 12054.6, + "end": 12058.46, + "probability": 0.9648 + }, + { + "start": 12060.02, + "end": 12061.36, + "probability": 0.6991 + }, + { + "start": 12062.44, + "end": 12068.72, + "probability": 0.9234 + }, + { + "start": 12069.68, + "end": 12071.76, + "probability": 0.9841 + }, + { + "start": 12072.42, + "end": 12077.72, + "probability": 0.9596 + }, + { + "start": 12079.12, + "end": 12079.5, + "probability": 0.0356 + }, + { + "start": 12081.42, + "end": 12083.0, + "probability": 0.9446 + }, + { + "start": 12083.58, + "end": 12086.24, + "probability": 0.9989 + }, + { + "start": 12086.92, + "end": 12091.9, + "probability": 0.9905 + }, + { + "start": 12092.66, + "end": 12096.86, + "probability": 0.9967 + }, + { + "start": 12097.36, + "end": 12099.72, + "probability": 0.9733 + }, + { + "start": 12100.24, + "end": 12103.02, + "probability": 0.999 + }, + { + "start": 12103.58, + "end": 12107.14, + "probability": 0.8145 + }, + { + "start": 12107.76, + "end": 12110.1, + "probability": 0.9713 + }, + { + "start": 12110.58, + "end": 12113.0, + "probability": 0.7738 + }, + { + "start": 12113.5, + "end": 12116.5, + "probability": 0.9773 + }, + { + "start": 12116.5, + "end": 12120.34, + "probability": 0.9201 + }, + { + "start": 12120.86, + "end": 12122.6, + "probability": 0.9968 + }, + { + "start": 12123.42, + "end": 12125.44, + "probability": 0.9961 + }, + { + "start": 12125.44, + "end": 12128.28, + "probability": 0.9949 + }, + { + "start": 12129.26, + "end": 12133.84, + "probability": 0.9823 + }, + { + "start": 12134.3, + "end": 12137.19, + "probability": 0.9956 + }, + { + "start": 12137.34, + "end": 12139.88, + "probability": 0.9636 + }, + { + "start": 12140.3, + "end": 12143.4, + "probability": 0.9922 + }, + { + "start": 12143.4, + "end": 12149.46, + "probability": 0.9527 + }, + { + "start": 12149.54, + "end": 12154.3, + "probability": 0.9906 + }, + { + "start": 12154.84, + "end": 12160.12, + "probability": 0.9928 + }, + { + "start": 12160.74, + "end": 12164.34, + "probability": 0.9951 + }, + { + "start": 12164.34, + "end": 12168.36, + "probability": 0.9886 + }, + { + "start": 12168.7, + "end": 12171.5, + "probability": 0.9944 + }, + { + "start": 12171.5, + "end": 12175.28, + "probability": 0.9927 + }, + { + "start": 12175.94, + "end": 12179.54, + "probability": 0.9924 + }, + { + "start": 12179.92, + "end": 12180.9, + "probability": 0.9775 + }, + { + "start": 12181.34, + "end": 12183.68, + "probability": 0.8691 + }, + { + "start": 12184.24, + "end": 12185.38, + "probability": 0.8308 + }, + { + "start": 12185.68, + "end": 12189.58, + "probability": 0.9771 + }, + { + "start": 12190.22, + "end": 12192.36, + "probability": 0.9935 + }, + { + "start": 12192.84, + "end": 12196.24, + "probability": 0.8486 + }, + { + "start": 12196.24, + "end": 12199.9, + "probability": 0.9915 + }, + { + "start": 12200.42, + "end": 12201.6, + "probability": 0.9773 + }, + { + "start": 12201.94, + "end": 12206.08, + "probability": 0.9948 + }, + { + "start": 12206.72, + "end": 12211.26, + "probability": 0.9987 + }, + { + "start": 12211.26, + "end": 12217.7, + "probability": 0.9882 + }, + { + "start": 12218.48, + "end": 12225.3, + "probability": 0.9693 + }, + { + "start": 12226.08, + "end": 12230.3, + "probability": 0.9944 + }, + { + "start": 12230.84, + "end": 12232.18, + "probability": 0.75 + }, + { + "start": 12233.06, + "end": 12236.84, + "probability": 0.6903 + }, + { + "start": 12238.08, + "end": 12244.46, + "probability": 0.8785 + }, + { + "start": 12244.54, + "end": 12247.78, + "probability": 0.7159 + }, + { + "start": 12247.86, + "end": 12249.8, + "probability": 0.9739 + }, + { + "start": 12249.94, + "end": 12250.74, + "probability": 0.7911 + }, + { + "start": 12250.88, + "end": 12254.62, + "probability": 0.9927 + }, + { + "start": 12255.18, + "end": 12257.22, + "probability": 0.9673 + }, + { + "start": 12257.78, + "end": 12260.22, + "probability": 0.6423 + }, + { + "start": 12260.28, + "end": 12263.02, + "probability": 0.791 + }, + { + "start": 12263.96, + "end": 12265.58, + "probability": 0.8342 + }, + { + "start": 12265.68, + "end": 12270.54, + "probability": 0.9919 + }, + { + "start": 12271.2, + "end": 12278.9, + "probability": 0.9695 + }, + { + "start": 12279.12, + "end": 12281.54, + "probability": 0.9943 + }, + { + "start": 12282.06, + "end": 12287.02, + "probability": 0.9912 + }, + { + "start": 12287.44, + "end": 12290.08, + "probability": 0.7883 + }, + { + "start": 12290.4, + "end": 12291.78, + "probability": 0.9464 + }, + { + "start": 12292.34, + "end": 12297.57, + "probability": 0.9492 + }, + { + "start": 12297.8, + "end": 12302.86, + "probability": 0.9942 + }, + { + "start": 12303.26, + "end": 12305.8, + "probability": 0.9861 + }, + { + "start": 12305.8, + "end": 12310.12, + "probability": 0.814 + }, + { + "start": 12310.2, + "end": 12313.62, + "probability": 0.9036 + }, + { + "start": 12313.62, + "end": 12316.96, + "probability": 0.9683 + }, + { + "start": 12317.82, + "end": 12320.42, + "probability": 0.9172 + }, + { + "start": 12320.42, + "end": 12323.48, + "probability": 0.9051 + }, + { + "start": 12324.0, + "end": 12324.48, + "probability": 0.43 + }, + { + "start": 12324.54, + "end": 12325.58, + "probability": 0.9804 + }, + { + "start": 12325.68, + "end": 12328.38, + "probability": 0.6101 + }, + { + "start": 12328.88, + "end": 12330.55, + "probability": 0.5032 + }, + { + "start": 12330.9, + "end": 12333.3, + "probability": 0.9186 + }, + { + "start": 12333.3, + "end": 12336.46, + "probability": 0.7464 + }, + { + "start": 12337.0, + "end": 12342.48, + "probability": 0.9026 + }, + { + "start": 12343.08, + "end": 12345.09, + "probability": 0.7424 + }, + { + "start": 12345.14, + "end": 12350.2, + "probability": 0.9736 + }, + { + "start": 12350.68, + "end": 12352.68, + "probability": 0.6886 + }, + { + "start": 12354.1, + "end": 12358.31, + "probability": 0.9943 + }, + { + "start": 12358.96, + "end": 12361.86, + "probability": 0.9864 + }, + { + "start": 12362.5, + "end": 12365.08, + "probability": 0.9751 + }, + { + "start": 12365.08, + "end": 12368.74, + "probability": 0.9966 + }, + { + "start": 12369.86, + "end": 12371.16, + "probability": 0.9181 + }, + { + "start": 12371.82, + "end": 12375.08, + "probability": 0.9988 + }, + { + "start": 12375.08, + "end": 12380.46, + "probability": 0.9326 + }, + { + "start": 12381.24, + "end": 12384.54, + "probability": 0.9194 + }, + { + "start": 12384.54, + "end": 12387.76, + "probability": 0.9949 + }, + { + "start": 12388.36, + "end": 12394.48, + "probability": 0.977 + }, + { + "start": 12395.18, + "end": 12401.74, + "probability": 0.9813 + }, + { + "start": 12402.08, + "end": 12407.62, + "probability": 0.9488 + }, + { + "start": 12407.88, + "end": 12413.36, + "probability": 0.9898 + }, + { + "start": 12413.64, + "end": 12415.54, + "probability": 0.5182 + }, + { + "start": 12415.8, + "end": 12418.85, + "probability": 0.5867 + }, + { + "start": 12420.56, + "end": 12427.48, + "probability": 0.9521 + }, + { + "start": 12428.14, + "end": 12431.3, + "probability": 0.9199 + }, + { + "start": 12431.3, + "end": 12435.42, + "probability": 0.8385 + }, + { + "start": 12435.96, + "end": 12443.78, + "probability": 0.9766 + }, + { + "start": 12443.78, + "end": 12449.56, + "probability": 0.9692 + }, + { + "start": 12450.16, + "end": 12451.38, + "probability": 0.8311 + }, + { + "start": 12451.48, + "end": 12455.78, + "probability": 0.942 + }, + { + "start": 12455.98, + "end": 12459.4, + "probability": 0.9731 + }, + { + "start": 12459.4, + "end": 12462.34, + "probability": 0.9971 + }, + { + "start": 12462.88, + "end": 12463.62, + "probability": 0.535 + }, + { + "start": 12464.22, + "end": 12464.7, + "probability": 0.5674 + }, + { + "start": 12465.34, + "end": 12466.13, + "probability": 0.9551 + }, + { + "start": 12466.92, + "end": 12470.64, + "probability": 0.9268 + }, + { + "start": 12471.06, + "end": 12474.72, + "probability": 0.9841 + }, + { + "start": 12475.06, + "end": 12479.52, + "probability": 0.9935 + }, + { + "start": 12480.42, + "end": 12483.62, + "probability": 0.9553 + }, + { + "start": 12483.62, + "end": 12488.54, + "probability": 0.994 + }, + { + "start": 12488.58, + "end": 12490.24, + "probability": 0.6912 + }, + { + "start": 12490.34, + "end": 12493.42, + "probability": 0.9489 + }, + { + "start": 12493.8, + "end": 12499.46, + "probability": 0.9891 + }, + { + "start": 12499.8, + "end": 12503.94, + "probability": 0.9946 + }, + { + "start": 12505.96, + "end": 12508.76, + "probability": 0.961 + }, + { + "start": 12509.16, + "end": 12513.12, + "probability": 0.9097 + }, + { + "start": 12514.62, + "end": 12520.74, + "probability": 0.9926 + }, + { + "start": 12520.74, + "end": 12526.46, + "probability": 0.9909 + }, + { + "start": 12526.88, + "end": 12527.56, + "probability": 0.7811 + }, + { + "start": 12528.24, + "end": 12532.56, + "probability": 0.9947 + }, + { + "start": 12532.56, + "end": 12536.8, + "probability": 0.9957 + }, + { + "start": 12537.52, + "end": 12540.4, + "probability": 0.9958 + }, + { + "start": 12540.4, + "end": 12544.44, + "probability": 0.9976 + }, + { + "start": 12545.08, + "end": 12545.98, + "probability": 0.2557 + }, + { + "start": 12547.06, + "end": 12549.26, + "probability": 0.9946 + }, + { + "start": 12549.68, + "end": 12552.2, + "probability": 0.8269 + }, + { + "start": 12552.76, + "end": 12557.6, + "probability": 0.7536 + }, + { + "start": 12557.74, + "end": 12561.0, + "probability": 0.6704 + }, + { + "start": 12561.04, + "end": 12564.0, + "probability": 0.9924 + }, + { + "start": 12564.4, + "end": 12565.52, + "probability": 0.8237 + }, + { + "start": 12565.62, + "end": 12566.72, + "probability": 0.8651 + }, + { + "start": 12566.98, + "end": 12567.8, + "probability": 0.5634 + }, + { + "start": 12567.82, + "end": 12568.66, + "probability": 0.7558 + }, + { + "start": 12568.92, + "end": 12570.84, + "probability": 0.8655 + }, + { + "start": 12571.12, + "end": 12572.36, + "probability": 0.5136 + }, + { + "start": 12572.66, + "end": 12574.46, + "probability": 0.9377 + }, + { + "start": 12574.96, + "end": 12576.72, + "probability": 0.99 + }, + { + "start": 12577.46, + "end": 12580.98, + "probability": 0.9784 + }, + { + "start": 12580.98, + "end": 12583.96, + "probability": 0.9879 + }, + { + "start": 12584.24, + "end": 12584.68, + "probability": 0.8177 + }, + { + "start": 12586.4, + "end": 12588.18, + "probability": 0.7307 + }, + { + "start": 12588.72, + "end": 12589.64, + "probability": 0.6905 + }, + { + "start": 12590.78, + "end": 12594.22, + "probability": 0.9155 + }, + { + "start": 12601.02, + "end": 12602.96, + "probability": 0.0964 + }, + { + "start": 12603.18, + "end": 12603.4, + "probability": 0.0288 + }, + { + "start": 12605.07, + "end": 12606.16, + "probability": 0.0694 + }, + { + "start": 12610.1, + "end": 12611.42, + "probability": 0.0234 + }, + { + "start": 12625.32, + "end": 12628.3, + "probability": 0.6802 + }, + { + "start": 12630.64, + "end": 12632.34, + "probability": 0.8101 + }, + { + "start": 12633.94, + "end": 12635.66, + "probability": 0.6688 + }, + { + "start": 12636.3, + "end": 12636.86, + "probability": 0.8648 + }, + { + "start": 12639.32, + "end": 12640.68, + "probability": 0.0061 + }, + { + "start": 12652.92, + "end": 12653.9, + "probability": 0.0942 + }, + { + "start": 12654.9, + "end": 12658.02, + "probability": 0.6336 + }, + { + "start": 12659.12, + "end": 12663.32, + "probability": 0.1914 + }, + { + "start": 12664.08, + "end": 12667.68, + "probability": 0.0728 + }, + { + "start": 12668.54, + "end": 12671.54, + "probability": 0.2707 + }, + { + "start": 12672.9, + "end": 12675.22, + "probability": 0.932 + }, + { + "start": 12676.3, + "end": 12678.62, + "probability": 0.6829 + }, + { + "start": 12680.34, + "end": 12687.62, + "probability": 0.868 + } + ], + "segments_count": 4076, + "words_count": 21003, + "avg_words_per_segment": 5.1528, + "avg_segment_duration": 2.3169, + "avg_words_per_minute": 21.3065, + "plenum_id": "11373", + "duration": 59145.26, + "title": null, + "plenum_date": "2011-01-03" +} \ No newline at end of file