import os import argparse import polars as pl from datasets import load_dataset, Features, Value from datasets.features import Image def main(): parser = argparse.ArgumentParser( description="Export the Rare Species dataset into a legacy on-disk folder structure" ) parser.add_argument( "--dataset-path", default="dataset", help="Directory under which to write the `dataset/...` hierarchy" ) parser.add_argument( "--revision", default="main", help="Hugging Face dataset revision (branch, tag, or commit SHA)" ) args = parser.parse_args() # Read metadata.csv from the remote csv_url = ( f"https://huggingface.co/datasets/imageomics/rare-species/" f"resolve/main/metadata.csv?download=true" ) print(f"Loading metadata from {csv_url}") df_pl = pl.read_csv(csv_url) rel_paths = df_pl["file_name"].to_list() # Define schema: file_name as raw bytes (no PIL decode), others as strings features = Features({ "file_name": Image(decode=False), **{c: Value("string") for c in df_pl.columns if c != "file_name"} }) # Load the Parquet-backed dataset print(f"Loading dataset imageomics/rare-species @ {args.revision}") ds = load_dataset( "imageomics/rare-species", split="train", revision=args.revision, features=features ) # Export each image's raw bytes under /dataset/... print(f"Exporting {len(rel_paths)} images to {args.dataset_path}/") for idx, rel in enumerate(rel_paths): info = ds[idx]["file_name"] img_bytes = info["bytes"] dst = os.path.join(args.dataset_path, rel) os.makedirs(os.path.dirname(dst), exist_ok=True) with open(dst, "wb") as f: f.write(img_bytes) print(f"Export complete: images written under {args.dataset_path}/dataset") if __name__ == "__main__": main()