albertvillanova HF staff commited on
Commit
404bc41
1 Parent(s): 8ed550e

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -58,13 +58,20 @@ dataset_info:
58
  dtype: string
59
  splits:
60
  - name: train
61
- num_bytes: 1829167
62
  num_examples: 8437
63
  - name: test
64
- num_bytes: 458218
65
  num_examples: 2110
66
- download_size: 750717
67
- dataset_size: 2287385
 
 
 
 
 
 
 
68
  ---
69
 
70
  # Dataset Card for ArSarcasm
 
58
  dtype: string
59
  splits:
60
  - name: train
61
+ num_bytes: 1829159
62
  num_examples: 8437
63
  - name: test
64
+ num_bytes: 458210
65
  num_examples: 2110
66
+ download_size: 1180619
67
+ dataset_size: 2287369
68
+ configs:
69
+ - config_name: default
70
+ data_files:
71
+ - split: train
72
+ path: data/train-*
73
+ - split: test
74
+ path: data/test-*
75
  ---
76
 
77
  # Dataset Card for ArSarcasm
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc52d603c68a4b886ffba5a1674a2dc34797449add6aa6ceb0ff1b38f4fef023
3
+ size 239166
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1841c0864a1de32495e8040b409f5ffc1cdafffb27b117c7f716eba2db82c93
3
+ size 941453
dataset_infos.json CHANGED
@@ -1 +1,77 @@
1
- {"default": {"description": "ArSarcasm is a new Arabic sarcasm detection dataset.\nThe dataset was created using previously available Arabic sentiment analysis datasets (SemEval 2017 and ASTD)\n and adds sarcasm and dialect labels to them. The dataset contains 10,547 tweets, 1,682 (16%) of which are sarcastic.\n", "citation": "@inproceedings{abu-farha-magdy-2020-arabic,\n title = \"From {A}rabic Sentiment Analysis to Sarcasm Detection: The {A}r{S}arcasm Dataset\",\n author = \"Abu Farha, Ibrahim and Magdy, Walid\",\n booktitle = \"Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resource Association\",\n url = \"https://www.aclweb.org/anthology/2020.osact-1.5\",\n pages = \"32--39\",\n language = \"English\",\n ISBN = \"979-10-95546-51-1\",\n}", "homepage": "https://github.com/iabufarha/ArSarcasm", "license": "MIT", "features": {"dialect": {"num_classes": 5, "names": ["egypt", "gulf", "levant", "magreb", "msa"], "names_file": null, "id": null, "_type": "ClassLabel"}, "sarcasm": {"num_classes": 2, "names": ["non-sarcastic", "sarcastic"], "names_file": null, "id": null, "_type": "ClassLabel"}, "sentiment": {"num_classes": 3, "names": ["negative", "neutral", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "original_sentiment": {"num_classes": 3, "names": ["negative", "neutral", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "tweet": {"dtype": "string", "id": null, "_type": "Value"}, "source": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ar_sarcasm", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1829167, "num_examples": 8437, "dataset_name": "ar_sarcasm"}, "test": {"name": "test", "num_bytes": 458218, "num_examples": 2110, "dataset_name": "ar_sarcasm"}}, "download_checksums": {"https://github.com/iabufarha/ArSarcasm/archive/master.zip": {"num_bytes": 750717, "checksum": "a148877c4c933827d83b6e679880eeccf58b751c5ed5785f2f5a93aa950d0d41"}}, "download_size": 750717, "post_processing_size": null, "dataset_size": 2287385, "size_in_bytes": 3038102}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "default": {
3
+ "description": "ArSarcasm is a new Arabic sarcasm detection dataset.\nThe dataset was created using previously available Arabic sentiment analysis datasets (SemEval 2017 and ASTD)\n and adds sarcasm and dialect labels to them. The dataset contains 10,547 tweets, 1,682 (16%) of which are sarcastic.\n",
4
+ "citation": "@inproceedings{abu-farha-magdy-2020-arabic,\n title = \"From {A}rabic Sentiment Analysis to Sarcasm Detection: The {A}r{S}arcasm Dataset\",\n author = \"Abu Farha, Ibrahim and Magdy, Walid\",\n booktitle = \"Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resource Association\",\n url = \"https://www.aclweb.org/anthology/2020.osact-1.5\",\n pages = \"32--39\",\n language = \"English\",\n ISBN = \"979-10-95546-51-1\",\n}",
5
+ "homepage": "https://github.com/iabufarha/ArSarcasm",
6
+ "license": "MIT",
7
+ "features": {
8
+ "dialect": {
9
+ "names": [
10
+ "egypt",
11
+ "gulf",
12
+ "levant",
13
+ "magreb",
14
+ "msa"
15
+ ],
16
+ "_type": "ClassLabel"
17
+ },
18
+ "sarcasm": {
19
+ "names": [
20
+ "non-sarcastic",
21
+ "sarcastic"
22
+ ],
23
+ "_type": "ClassLabel"
24
+ },
25
+ "sentiment": {
26
+ "names": [
27
+ "negative",
28
+ "neutral",
29
+ "positive"
30
+ ],
31
+ "_type": "ClassLabel"
32
+ },
33
+ "original_sentiment": {
34
+ "names": [
35
+ "negative",
36
+ "neutral",
37
+ "positive"
38
+ ],
39
+ "_type": "ClassLabel"
40
+ },
41
+ "tweet": {
42
+ "dtype": "string",
43
+ "_type": "Value"
44
+ },
45
+ "source": {
46
+ "dtype": "string",
47
+ "_type": "Value"
48
+ }
49
+ },
50
+ "builder_name": "parquet",
51
+ "dataset_name": "ar_sarcasm",
52
+ "config_name": "default",
53
+ "version": {
54
+ "version_str": "1.0.0",
55
+ "major": 1,
56
+ "minor": 0,
57
+ "patch": 0
58
+ },
59
+ "splits": {
60
+ "train": {
61
+ "name": "train",
62
+ "num_bytes": 1829159,
63
+ "num_examples": 8437,
64
+ "dataset_name": null
65
+ },
66
+ "test": {
67
+ "name": "test",
68
+ "num_bytes": 458210,
69
+ "num_examples": 2110,
70
+ "dataset_name": null
71
+ }
72
+ },
73
+ "download_size": 1180619,
74
+ "dataset_size": 2287369,
75
+ "size_in_bytes": 3467988
76
+ }
77
+ }