Update README.md
Browse files
README.md
CHANGED
@@ -78,48 +78,6 @@ import pandas as pd
|
|
78 |
df = pd.read_parquet("path/to/dataset.parquet")
|
79 |
```
|
80 |
|
81 |
-
### Example: Training a Tokenizer
|
82 |
-
|
83 |
-
```python
|
84 |
-
from transformers import BertTokenizerFast
|
85 |
-
|
86 |
-
# Initialize a new tokenizer from the dataset text
|
87 |
-
tokenizer = BertTokenizerFast.from_pretrained("bert-base-multilingual-uncased")
|
88 |
-
tokenizer = tokenizer.train_new_from_iterator(dataset["train"]["title"], vocab_size=30000)
|
89 |
-
|
90 |
-
# Save the tokenizer
|
91 |
-
tokenizer.save_pretrained("./cantonese-tokenizer")
|
92 |
-
```
|
93 |
-
|
94 |
-
### Example: Fine-tuning a Model
|
95 |
-
|
96 |
-
```python
|
97 |
-
from transformers import BertForMaskedLM, Trainer, TrainingArguments
|
98 |
-
|
99 |
-
# Initialize model
|
100 |
-
model = BertForMaskedLM.from_pretrained("bert-base-multilingual-uncased")
|
101 |
-
|
102 |
-
# Define training arguments
|
103 |
-
training_args = TrainingArguments(
|
104 |
-
output_dir="./cantonese-bert",
|
105 |
-
overwrite_output_dir=True,
|
106 |
-
num_train_epochs=3,
|
107 |
-
per_device_train_batch_size=16,
|
108 |
-
save_steps=10_000,
|
109 |
-
save_total_limit=2,
|
110 |
-
)
|
111 |
-
|
112 |
-
# Initialize trainer
|
113 |
-
trainer = Trainer(
|
114 |
-
model=model,
|
115 |
-
args=training_args,
|
116 |
-
train_dataset=dataset["train"],
|
117 |
-
)
|
118 |
-
|
119 |
-
# Train model
|
120 |
-
trainer.train()
|
121 |
-
```
|
122 |
-
|
123 |
## Data Format
|
124 |
|
125 |
Each row in the dataset contains:
|
|
|
78 |
df = pd.read_parquet("path/to/dataset.parquet")
|
79 |
```
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
## Data Format
|
82 |
|
83 |
Each row in the dataset contains:
|