hiyata commited on
Commit
ac15f24
·
verified ·
1 Parent(s): dc3368e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -194
README.md CHANGED
@@ -12,7 +12,6 @@ tags:
12
  size_categories:
13
  - 10K<n<100K
14
  ---
15
-
16
  # Virus-Host-Genomes Dataset
17
 
18
  ## Dataset Summary
@@ -79,24 +78,19 @@ The dataset contains the following fields:
79
  | segment_label | string | Label for genome segment | "NA" |
80
 
81
  #### Data Splits
82
-
83
  The dataset contains train and test splits:
84
-
85
  | Split Name | Number of Instances |
86
  |------------|---------------------|
87
  | train | 51,935 |
88
  | test | 6,111 |
89
 
90
  ## Dataset Creation
91
-
92
  ### Source Data
93
-
94
  This dataset compiles virus sequences from multiple public repositories, including:
95
  - NCBI Virus
96
  - GenBank
97
 
98
  ### Data Processing
99
-
100
  The dataset has undergone several processing steps:
101
  - Sequence standardization (using only unambigious IUPAC nucleotide characters)
102
  - Host information standardization
@@ -113,9 +107,7 @@ Host labels were generated through a tier-based approach:
113
  Some sequences were annotated using the Gemini AI system to provide additional metadata where information was incomplete.
114
 
115
  ## Considerations for Using the Data
116
-
117
  ### Limitations and Biases
118
-
119
  - **Sampling Bias**: The dataset may overrepresent viruses of clinical importance and underrepresent environmental viruses.
120
  - **Temporal Distribution**: More recent viruses (especially those causing outbreaks) may be overrepresented.
121
  - **Geographic Bias**: Samples from regions with stronger research infrastructure may be overrepresented.
@@ -124,213 +116,166 @@ Some sequences were annotated using the Gemini AI system to provide additional m
124
 
125
  ## Usage Examples
126
 
127
- ### Basic Loading
128
-
129
- Load the dataset using the Hugging Face Datasets library:
130
-
131
- ```python
132
- from datasets import load_dataset
133
-
134
- # Load the dataset
135
- dataset = load_dataset("hiyata/Virus-Host-Genomes")
136
-
137
- # Display sample
138
- print(dataset['train'][0])
139
- ```
140
-
141
- ### K-mer Frequency Extraction
142
-
143
- Extract k-mer frequencies from viral sequences to use as features:
144
 
145
  ```python
146
  import numpy as np
147
- from collections import Counter
148
  from itertools import product
149
- import pandas as pd
150
-
151
- def extract_kmers(sequence, k=3):
152
- """Extract k-mer frequencies from a sequence."""
153
- # Handle lowercase or non-standard characters
154
- sequence = sequence.upper()
155
- # Filter out non-standard nucleotides
156
- sequence = ''.join([c for c in sequence if c in 'ACGT'])
157
-
158
- # Generate all possible k-mers
159
- all_kmers = [''.join(i) for i in product('ACGT', repeat=k)]
160
-
161
- # Count k-mers in the sequence
162
- kmers = []
163
- for i in range(len(sequence) - k + 1):
164
- kmer = sequence[i:i+k]
165
- if 'N' not in kmer: # Skip k-mers with ambiguous nucleotides
166
- kmers.append(kmer)
167
-
168
- # Count occurrences of each k-mer
169
- kmer_counts = Counter(kmers)
170
-
171
- # Create a vector of k-mer frequencies
172
- kmer_vector = {kmer: kmer_counts.get(kmer, 0) / max(1, len(kmers)) for kmer in all_kmers}
173
-
174
- return kmer_vector
175
-
176
- # Apply the function to the dataset
177
- def process_batch(examples):
178
- kmer_vectors = [extract_kmers(seq) for seq in examples['sequence']]
179
- # Convert to DataFrame for easy handling
180
- df = pd.DataFrame(kmer_vectors)
181
- # Convert back to dictionary format
182
- result = {col: df[col].tolist() for col in df.columns}
183
- return result
184
-
185
- # Process the dataset
186
- kmer_features = dataset['train'].map(
187
- process_batch,
188
- batched=True,
189
- batch_size=100,
190
- remove_columns=['sequence'] # Remove original sequence to save memory
191
- )
192
-
193
- # Combine with original metadata
194
- kmer_dataset = kmer_features.add_column('host', dataset['train']['host'])
195
- print(kmer_dataset[0])
196
- ```
197
-
198
- ### Human/Non-Human Host Classification
199
-
200
- Train a classifier to predict if a virus infects humans or non-humans:
201
 
202
- ```python
203
- import pandas as pd
204
- from sklearn.model_selection import train_test_split
205
- from sklearn.ensemble import RandomForestClassifier
206
- from sklearn.metrics import classification_report
207
-
208
- # Extract features and labels
209
- def prepare_data(dataset):
210
- # Process sequences to extract k-mer features
211
- kmer_vectors = []
212
- hosts = []
213
-
214
- for i in range(len(dataset)):
215
- if i % 1000 == 0:
216
- print(f"Processing sample {i}/{len(dataset)}")
217
-
218
- sequence = dataset[i]['sequence']
219
- host = dataset[i]['host']
220
-
221
- kmer_vector = extract_kmers(sequence, k=4)
222
- kmer_vectors.append(kmer_vector)
223
- hosts.append(host)
224
-
225
- # Convert to DataFrame
226
- X = pd.DataFrame(kmer_vectors)
227
- y = pd.Series(hosts)
228
-
229
  return X, y
230
 
231
- # Prepare the data
232
- X, y = prepare_data(dataset['train'].select(range(5000))) # Use a subset for demonstration
233
 
234
- # Split into train and test sets
235
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
236
 
237
- # Train a RandomForest classifier
238
- clf = RandomForestClassifier(n_estimators=100, random_state=42)
239
- clf.fit(X_train, y_train)
 
240
 
241
- # Evaluate the model
242
- y_pred = clf.predict(X_test)
243
- print(classification_report(y_test, y_pred))
244
 
245
- # Feature importance
246
- feature_importance = pd.DataFrame({
247
- 'feature': X.columns,
248
- 'importance': clf.feature_importances_
249
- }).sort_values('importance', ascending=False)
250
 
251
- print("Top 10 important k-mers:")
252
- print(feature_importance.head(10))
253
  ```
254
 
255
- ### Multi-Host Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256
 
257
- Train a classifier to predict specific host species using the standardized_host field:
258
 
259
  ```python
260
- from sklearn.preprocessing import LabelEncoder
261
- from sklearn.multiclass import OneVsRestClassifier
262
- from sklearn.svm import LinearSVC
263
-
264
- # Prepare the data
265
- def prepare_multihost_data(dataset):
266
- # Process sequences to extract k-mer features
267
- kmer_vectors = []
268
- hosts = []
269
-
270
- for i in range(len(dataset)):
271
- if i % 1000 == 0:
272
- print(f"Processing sample {i}/{len(dataset)}")
273
-
274
- sequence = dataset[i]['sequence']
275
- host = dataset[i]['standardized_host']
276
-
277
- # Skip entries with missing host information
278
- if host is None or host == '':
279
- continue
280
-
281
- kmer_vector = extract_kmers(sequence, k=5)
282
- kmer_vectors.append(kmer_vector)
283
- hosts.append(host)
284
-
285
- # Convert to DataFrame
286
- X = pd.DataFrame(kmer_vectors)
287
-
288
- # Encode host labels
289
- label_encoder = LabelEncoder()
290
- y = label_encoder.fit_transform(hosts)
291
-
292
- return X, y, label_encoder
293
-
294
- # Prepare the data
295
- X, y, label_encoder = prepare_multihost_data(dataset['train'].select(range(5000)))
296
-
297
- # Split into train and test sets
298
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
299
-
300
- # Train a multi-class classifier
301
- clf = OneVsRestClassifier(LinearSVC(random_state=42))
302
- clf.fit(X_train, y_train)
303
-
304
- # Evaluate the model
305
- y_pred = clf.predict(X_test)
306
- print(classification_report(y_test, y_pred))
307
-
308
- # Display host labels
309
- host_labels = label_encoder.classes_
310
- print(f"Number of host classes: {len(host_labels)}")
311
- print("Sample host classes:", host_labels[:10])
312
-
313
- # Function to predict host for a new sequence
314
- def predict_host(sequence, clf, label_encoder, k=5):
315
- kmer_vector = extract_kmers(sequence, k=k)
316
- X_new = pd.DataFrame([kmer_vector])
317
-
318
- # Make prediction
319
- y_pred = clf.predict(X_new)
320
- predicted_host = label_encoder.inverse_transform(y_pred)[0]
321
-
322
- return predicted_host
323
-
324
- # Example prediction
325
- example_seq = dataset['train'][0]['sequence']
326
- predicted_host = predict_host(example_seq, clf, label_encoder)
327
- print(f"Predicted host: {predicted_host}")
328
  ```
329
 
330
  ## Additional Information
331
-
332
  ### Citation Information
333
-
334
  ```
335
  @article
336
  author = {},
 
12
  size_categories:
13
  - 10K<n<100K
14
  ---
 
15
  # Virus-Host-Genomes Dataset
16
 
17
  ## Dataset Summary
 
78
  | segment_label | string | Label for genome segment | "NA" |
79
 
80
  #### Data Splits
 
81
  The dataset contains train and test splits:
 
82
  | Split Name | Number of Instances |
83
  |------------|---------------------|
84
  | train | 51,935 |
85
  | test | 6,111 |
86
 
87
  ## Dataset Creation
 
88
  ### Source Data
 
89
  This dataset compiles virus sequences from multiple public repositories, including:
90
  - NCBI Virus
91
  - GenBank
92
 
93
  ### Data Processing
 
94
  The dataset has undergone several processing steps:
95
  - Sequence standardization (using only unambigious IUPAC nucleotide characters)
96
  - Host information standardization
 
107
  Some sequences were annotated using the Gemini AI system to provide additional metadata where information was incomplete.
108
 
109
  ## Considerations for Using the Data
 
110
  ### Limitations and Biases
 
111
  - **Sampling Bias**: The dataset may overrepresent viruses of clinical importance and underrepresent environmental viruses.
112
  - **Temporal Distribution**: More recent viruses (especially those causing outbreaks) may be overrepresented.
113
  - **Geographic Bias**: Samples from regions with stronger research infrastructure may be overrepresented.
 
116
 
117
  ## Usage Examples
118
 
119
+ ### Data Preparation and K-mer Vectorization
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
  ```python
122
  import numpy as np
123
+ from datasets import load_dataset
124
  from itertools import product
125
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
126
+ import joblib
127
+ from tqdm import tqdm
128
+
129
+ # Load dataset
130
+ virus_dataset = load_dataset("hiyata/Virus-Host-Genomes")
131
+ train_dataset = virus_dataset['train']
132
+ test_dataset = virus_dataset['test']
133
+
134
+
135
+ # Generate k-mer dictionary once
136
+ def generate_kmer_dict(k):
137
+ return {''.join(kmer): i for i, kmer in enumerate(product('ACGT', repeat=k))}
138
+
139
+ # Calculate k-mer frequency
140
+ def calculate_kmer_freq(seq, k, kmer_dict):
141
+ freq = np.zeros(4**k)
142
+ total_kmers = len(seq) - k + 1
143
+ for i in range(total_kmers):
144
+ kmer = seq[i:i+k]
145
+ if 'N' not in kmer and all(base in 'ACGT' for base in kmer):
146
+ freq[kmer_dict[kmer]] += 1
147
+ return freq / total_kmers if total_kmers > 0 else freq
148
+
149
+ # Vectorize dataset
150
+ def vectorize_dataset(dataset, k=4):
151
+ kmer_dict = generate_kmer_dict(k)
152
+ num_samples = len(dataset['sequence'])
153
+ X = np.zeros((num_samples, 4**k))
154
+ y = np.array(['human' if host.lower() == 'human' else 'non-human' for host in dataset['host']])
155
+
156
+ for idx, seq in enumerate(tqdm(dataset['sequence'], desc="Vectorizing sequences")):
157
+ X[idx] = calculate_kmer_freq(seq.upper(), k, kmer_dict)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  return X, y
160
 
 
 
161
 
162
+ X_train, y_train = vectorize_dataset(train_dataset)
163
+ X_test, y_test = vectorize_dataset(test_dataset)
164
 
165
+ # Standard Scaler
166
+ scaler = StandardScaler()
167
+ X_train = scaler.fit_transform(X_train)
168
+ X_test = scaler.transform(X_test)
169
 
170
+ # Save scaler
171
+ joblib.dump(scaler, 'standard_scaler.joblib')
 
172
 
173
+ # Label encoding
174
+ le = LabelEncoder()
175
+ y_train_enc = le.fit_transform(y_train)
176
+ y_test_enc = le.transform(y_test)
 
177
 
178
+ print("Vectorization complete.")
 
179
  ```
180
 
181
+ ### Neural Network Training for Host Classification
182
+
183
+ ```python
184
+ import torch
185
+ from torch import nn, optim
186
+ from torch.utils.data import DataLoader, TensorDataset
187
+
188
+ # Define your neural network
189
+ class VirusClassifier(nn.Module):
190
+ def __init__(self, input_shape: int):
191
+ super(VirusClassifier, self).__init__()
192
+ self.network = nn.Sequential(
193
+ nn.Linear(input_shape, 64),
194
+ nn.GELU(),
195
+ nn.BatchNorm1d(64),
196
+ nn.Dropout(0.3),
197
+
198
+ nn.Linear(64, 32),
199
+ nn.GELU(),
200
+ nn.BatchNorm1d(32),
201
+ nn.Dropout(0.3),
202
+
203
+ nn.Linear(32, 32),
204
+ nn.GELU(),
205
+
206
+ nn.Linear(32, 2)
207
+ )
208
+
209
+ def forward(self, x):
210
+ return self.network(x)
211
+
212
+ # Device configuration
213
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
214
+
215
+ # DataLoader setup
216
+ train_loader = DataLoader(TensorDataset(
217
+ torch.tensor(X_train, dtype=torch.float32),
218
+ torch.tensor(y_train_enc, dtype=torch.long)
219
+ ), batch_size=64, shuffle=True)
220
+
221
+ test_loader = DataLoader(TensorDataset(
222
+ torch.tensor(X_test, dtype=torch.float32),
223
+ torch.tensor(y_test_enc, dtype=torch.long)
224
+ ), batch_size=64, shuffle=False)
225
+
226
+ # Initialize the model
227
+ model = VirusClassifier(input_shape=X_train.shape[1]).to(device)
228
+ criterion = nn.CrossEntropyLoss()
229
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
230
+
231
+ # Training loop
232
+ epochs = 15
233
+ for epoch in range(epochs):
234
+ model.train()
235
+ epoch_loss = 0
236
+ for X_batch, y_batch in train_loader:
237
+ X_batch, y_batch = X_batch.to(device), y_batch.to(device)
238
+ optimizer.zero_grad()
239
+ outputs = model(X_batch)
240
+ loss = criterion(outputs, y_batch)
241
+ loss.backward()
242
+ optimizer.step()
243
+ epoch_loss += loss.item()
244
+ avg_loss = epoch_loss / len(train_loader)
245
+ print(f"Epoch [{epoch+1}/{epochs}], Loss: {avg_loss:.4f}")
246
+
247
+ # Save the trained model
248
+ torch.save(model.state_dict(), 'virus_classifier_model.pth')
249
+ ```
250
 
251
+ ### Model Evaluation with Matthews Correlation Coefficient
252
 
253
  ```python
254
+ from sklearn.metrics import classification_report, matthews_corrcoef
255
+
256
+ model.eval()
257
+ y_preds = []
258
+ y_true = []
259
+
260
+ with torch.no_grad():
261
+ for X_batch, y_batch in test_loader:
262
+ X_batch = X_batch.to(device)
263
+ outputs = model(X_batch)
264
+ preds = torch.argmax(outputs, dim=1).cpu().numpy()
265
+ y_preds.extend(preds)
266
+ y_true.extend(y_batch.numpy())
267
+
268
+ # Classification Report
269
+ report = classification_report(y_true, y_preds, target_names=['human', 'non-human'])
270
+ print("Classification Report:\n", report)
271
+
272
+ # MCC Score
273
+ mcc = matthews_corrcoef(y_true, y_preds)
274
+ print(f"Matthews Correlation Coefficient (MCC): {mcc:.4f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
  ```
276
 
277
  ## Additional Information
 
278
  ### Citation Information
 
279
  ```
280
  @article
281
  author = {},