Datasets:

Modalities:
Text
Formats:
json
Languages:
Bengali
ArXiv:
Libraries:
Datasets
pandas
License:
nielsr HF Staff commited on
Commit
3b7ea4d
·
verified ·
1 Parent(s): 50ea7f1

Add link to Github repository and specify license

Browse files

This PR adds a link to the Github repository and specifies the license as MIT.

Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
  language:
3
  - bn
4
- license: unknown
5
- task_categories:
6
- - question-answering
7
  multilinguality:
8
  - monolingual
9
  size_categories:
10
  - 10K<n<100K
 
 
11
  task_ids:
12
  - multiple-choice-qa
13
  dataset_info:
@@ -25,10 +25,12 @@ dataset_info:
25
  '0': '0'
26
  '1': '1'
27
  ---
 
28
  ## Dataset Summary
29
 
30
  This is the translated version of the [PIQA](https://huggingface.co/datasets/ybisk/piqa) LLM evaluation dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Translation with LLM-based rewriting. PIQA introduces the task of physical commonsense reasoning and provides a corresponding benchmark for understanding physical interactions in everyday situations. It focuses on atypical solutions to practical problems, inspired by instructional guides from instructables.com, and aims to tackle one of the major challenges in AI: understanding and reasoning about physical commonsense knowledge.
31
 
 
32
 
33
  ## Dataset Structure
34
  ### Data Instances
@@ -75,4 +77,4 @@ The dataset is licensed under the MIT License.
75
  primaryClass={cs.CL},
76
  url={https://arxiv.org/abs/2502.11187},
77
  }
78
- ```
 
1
  ---
2
  language:
3
  - bn
4
+ license: mit
 
 
5
  multilinguality:
6
  - monolingual
7
  size_categories:
8
  - 10K<n<100K
9
+ task_categories:
10
+ - question-answering
11
  task_ids:
12
  - multiple-choice-qa
13
  dataset_info:
 
25
  '0': '0'
26
  '1': '1'
27
  ---
28
+
29
  ## Dataset Summary
30
 
31
  This is the translated version of the [PIQA](https://huggingface.co/datasets/ybisk/piqa) LLM evaluation dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Translation with LLM-based rewriting. PIQA introduces the task of physical commonsense reasoning and provides a corresponding benchmark for understanding physical interactions in everyday situations. It focuses on atypical solutions to practical problems, inspired by instructional guides from instructables.com, and aims to tackle one of the major challenges in AI: understanding and reasoning about physical commonsense knowledge.
32
 
33
+ Code: [https://github.com/hishab-nlp/lm-evaluation-harness](https://github.com/hishab-nlp/lm-evaluation-harness)
34
 
35
  ## Dataset Structure
36
  ### Data Instances
 
77
  primaryClass={cs.CL},
78
  url={https://arxiv.org/abs/2502.11187},
79
  }
80
+ ```