hibana2077 commited on
Commit
f23b6eb
·
1 Parent(s): 2a5d9cc

Refactor data loading and hyperparameter tuning for improved model performance

Browse files
Files changed (1) hide show
  1. train.py +9 -8
train.py CHANGED
@@ -17,7 +17,7 @@ from cfg import DROP_LIST
17
 
18
  # Rest of the imports and class definitions remain unchanged...
19
 
20
- def load_and_balance_data(filename, ratio=1/30):
21
  """
22
  Loads data from a CSV file and balances classes to address potential imbalance.
23
 
@@ -55,10 +55,10 @@ def create_stock_prediction_pipeline(params=None):
55
 
56
  # Use default parameters if none provided
57
  if params is None:
58
- classifier = XGBClassifier(booster="dart", n_jobs=-1)
59
  else:
60
  classifier = XGBClassifier(
61
- booster="dart",
62
  n_jobs=-1,
63
  **params
64
  )
@@ -74,9 +74,10 @@ def objective(trial, X, y):
74
 
75
  # Define the hyperparameters to tune
76
  params = {
77
- 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3, log=True),
78
- 'max_depth': trial.suggest_int('max_depth', 3, 10),
79
- 'n_estimators': trial.suggest_int('n_estimators', 50, 300),
 
80
  'subsample': trial.suggest_float('subsample', 0.5, 1.0),
81
  'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0),
82
  'gamma': trial.suggest_float('gamma', 0, 5),
@@ -97,7 +98,7 @@ def objective(trial, X, y):
97
  def main():
98
  # Load and preprocess training data
99
  print("Loading and preprocessing training data...")
100
- combined = load_and_balance_data('./cleaned_training.csv', ratio=1/30)
101
 
102
  # Define features and target
103
  X = combined.drop(DROP_LIST)
@@ -109,7 +110,7 @@ def main():
109
  # Hyperparameter tuning with Optuna
110
  print("Starting hyperparameter optimization with Optuna...")
111
  study = optuna.create_study(direction='maximize') # We want to maximize the F1 score
112
- study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=20)
113
 
114
  # Print the best parameters
115
  best_params = study.best_params
 
17
 
18
  # Rest of the imports and class definitions remain unchanged...
19
 
20
+ def load_and_balance_data(filename, ratio=1/60):
21
  """
22
  Loads data from a CSV file and balances classes to address potential imbalance.
23
 
 
55
 
56
  # Use default parameters if none provided
57
  if params is None:
58
+ classifier = XGBClassifier(n_jobs=-1)
59
  else:
60
  classifier = XGBClassifier(
61
+ # booster="dart",
62
  n_jobs=-1,
63
  **params
64
  )
 
74
 
75
  # Define the hyperparameters to tune
76
  params = {
77
+ # 'booster': trial.suggest_categorical('booster', ['gbtree', 'dart']),
78
+ 'learning_rate': trial.suggest_float('learning_rate', 0.001, 0.3, log=True),
79
+ 'max_depth': trial.suggest_int('max_depth', 3, 140),
80
+ 'n_estimators': trial.suggest_int('n_estimators', 50, 3000),
81
  'subsample': trial.suggest_float('subsample', 0.5, 1.0),
82
  'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0),
83
  'gamma': trial.suggest_float('gamma', 0, 5),
 
98
  def main():
99
  # Load and preprocess training data
100
  print("Loading and preprocessing training data...")
101
+ combined = load_and_balance_data('./cleaned_training.csv', ratio=1/90)
102
 
103
  # Define features and target
104
  X = combined.drop(DROP_LIST)
 
110
  # Hyperparameter tuning with Optuna
111
  print("Starting hyperparameter optimization with Optuna...")
112
  study = optuna.create_study(direction='maximize') # We want to maximize the F1 score
113
+ study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=100, show_progress_bar=True)
114
 
115
  # Print the best parameters
116
  best_params = study.best_params