--- license: odbl --- Weekly snapshots of Models, Datasets and Papers on the HF Hub ## Sample code To query the dataset to see which snapshots are observable, use e.g.: ```python import json from datasets import load_dataset from huggingface_hub import HfApi REPO_ID = "hfmlsoc/hub_weekly_snapshots" hf_api = HfApi() all_files = hf_api.list_repo_files(repo_id=REPO_ID, repo_type="dataset") repo_type_to_snapshots = {} for repo_fpath in all_files: if ".parquet" in repo_fpath: repo_type = repo_fpath.split("/")[0] repo_type_to_snapshots[repo_type] = repo_type_to_snapshots.get(repo_type, []) + [repo_fpath] for repo_type in repo_type_to_snapshots: repo_type_to_snapshots[repo_type] = sorted(repo_type_to_snapshots[repo_type], key=lambda x:x.split("/")[1]) repo_type_to_snapshots ``` You can then load a specific snapshot as e.g.: ```python date = "2025-01-01" snapshot = load_dataset(REPO_ID, data_files={date.replace("-",""): f"datasets/{date}/datasets.parquet"}) snapshot ``` Returning: ``` DatasetDict({ 20250101: Dataset({ features: ['_id', 'id', 'author', 'cardData', 'disabled', 'gated', 'lastModified', 'likes', 'trendingScore', 'private', 'sha', 'description', 'downloads', 'tags', 'createdAt', 'key', 'paperswithcode_id', 'citation'], num_rows: 276421 }) }) ``` ### Sample analysis of top datasets To look at the 10 most liked datasets as of January 1st 2025, you can then run: ```python [{ "id": row['id'], "tags": json.loads(row["cardData"]).get("tags", []), "tasks": json.loads(row["cardData"]).get("task_categories", []), "likes": row['likes'], } for row in snapshot["20250101"].sort("likes", reverse=True).select(range(10))] ``` Most of the user-maintained metadata for Hub repositories is stored in the cardData field, which is saved as a JSON-formated string