Datasets:
File size: 4,278 Bytes
20799af 747aaaa 20799af 747aaaa 30cd387 20799af 747aaaa 30cd387 ef9ced2 20799af ef9ced2 b175fbf ef9ced2 2f3e327 ef9ced2 2f3e327 ef9ced2 2f3e327 ef9ced2 b175fbf ef9ced2 b175fbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
dataset_info:
- config_name: '5768'
features:
- name: sentences
dtype: string
- name: stance_label
dtype: string
- name: time_label
dtype: string
- name: certain_label
dtype: string
- name: year
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 203695
num_examples: 700
- name: test
num_bytes: 42710
num_examples: 150
- name: val
num_bytes: 42632
num_examples: 150
download_size: 121088
dataset_size: 289037
- config_name: '78516'
features:
- name: sentences
dtype: string
- name: stance_label
dtype: string
- name: time_label
dtype: string
- name: certain_label
dtype: string
- name: year
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 201574
num_examples: 700
- name: test
num_bytes: 43414
num_examples: 150
- name: val
num_bytes: 44049
num_examples: 150
download_size: 120286
dataset_size: 289037
- config_name: '944601'
features:
- name: sentences
dtype: string
- name: stance_label
dtype: string
- name: time_label
dtype: string
- name: certain_label
dtype: string
- name: year
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 201591
num_examples: 700
- name: test
num_bytes: 44468
num_examples: 150
- name: val
num_bytes: 42978
num_examples: 150
download_size: 120379
dataset_size: 289037
configs:
- config_name: '5768'
data_files:
- split: train
path: 5768/train-*
- split: test
path: 5768/test-*
- split: val
path: 5768/val-*
- config_name: '78516'
data_files:
- split: train
path: 78516/train-*
- split: test
path: 78516/test-*
- split: val
path: 78516/val-*
- config_name: '944601'
data_files:
- split: train
path: 944601/train-*
- split: test
path: 944601/test-*
- split: val
path: 944601/val-*
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- en
tags:
- finance
- econ
pretty_name: peoples_bank_of_china
size_categories:
- 1K<n<10K
---
## Dataset Summary
For dataset summary, please refer to [https://huggingface.co/datasets/gtfintechlab/peoples_bank_of_china](https://huggingface.co/datasets/gtfintechlab/peoples_bank_of_china)
## Additional Information
This dataset is annotated across three different tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation. The tasks have four, two, and two unique labels, respectively. This dataset contains 1,000 sentences taken from the meeting minutes of the People's Bank of China.
### Label Interpretation
#### Stance Detection
- **Hawkish:** The sentence supports contractionary monetary policy.
- **Dovish:** The sentence supports expansionary monetary policy.
- **Neutral:** The sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment.
- **Irrelevant:** The sentence is not related to monetary policy.
#### Temporal Classification
- **Forward-looking:** The sentence discusses future economic events or decisions.
- **Not Forward-looking:** The sentence discusses past or current economic events or decisions.
#### Uncertainty Estimation
- **Certain:** Indicates that the sentence presents information definitively.
- **Uncertain:** Indicates that the sentence presents information with speculation, possibility, or doubt.
## Licensing Information
The peoples_bank_of_china dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. [More information in the paper.](https://arxiv.org/)
## Citation Information
```bibtex
@article{WCBShahSukhaniPardawala,
title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
year={2025}
}
```
## Contact
For any peoples_bank_of_china dataset related issues and questions, please contact:
- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu
- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu
- Agam Shah: ashah482[at]gatech[dot]edu
## GitHub Link
[Link to our GitHub repository.](https://github.com/gtfintechlab/WorldsCentralBanks)
|