Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 4,278 Bytes
20799af
 
747aaaa
20799af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747aaaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cd387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20799af
 
 
 
 
 
 
 
 
747aaaa
 
 
 
 
 
 
 
30cd387
 
 
 
 
 
 
 
ef9ced2
 
 
 
 
 
 
 
 
 
 
20799af
ef9ced2
 
 
 
 
b175fbf
ef9ced2
 
 
2f3e327
 
 
 
 
ef9ced2
2f3e327
 
 
ef9ced2
2f3e327
 
 
ef9ced2
 
b175fbf
ef9ced2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b175fbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
dataset_info:
- config_name: '5768'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 203695
    num_examples: 700
  - name: test
    num_bytes: 42710
    num_examples: 150
  - name: val
    num_bytes: 42632
    num_examples: 150
  download_size: 121088
  dataset_size: 289037
- config_name: '78516'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 201574
    num_examples: 700
  - name: test
    num_bytes: 43414
    num_examples: 150
  - name: val
    num_bytes: 44049
    num_examples: 150
  download_size: 120286
  dataset_size: 289037
- config_name: '944601'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 201591
    num_examples: 700
  - name: test
    num_bytes: 44468
    num_examples: 150
  - name: val
    num_bytes: 42978
    num_examples: 150
  download_size: 120379
  dataset_size: 289037
configs:
- config_name: '5768'
  data_files:
  - split: train
    path: 5768/train-*
  - split: test
    path: 5768/test-*
  - split: val
    path: 5768/val-*
- config_name: '78516'
  data_files:
  - split: train
    path: 78516/train-*
  - split: test
    path: 78516/test-*
  - split: val
    path: 78516/val-*
- config_name: '944601'
  data_files:
  - split: train
    path: 944601/train-*
  - split: test
    path: 944601/test-*
  - split: val
    path: 944601/val-*
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- en
tags:
- finance
- econ
pretty_name: peoples_bank_of_china
size_categories:
- 1K<n<10K
---

## Dataset Summary
For dataset summary, please refer to [https://huggingface.co/datasets/gtfintechlab/peoples_bank_of_china](https://huggingface.co/datasets/gtfintechlab/peoples_bank_of_china)

## Additional Information
This dataset is annotated across three different tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation. The tasks have four, two, and two unique labels, respectively. This dataset contains 1,000 sentences taken from the meeting minutes of the People's Bank of China. 

### Label Interpretation

#### Stance Detection
- **Hawkish:** The sentence supports contractionary monetary policy.
- **Dovish:** The sentence supports expansionary monetary policy.
- **Neutral:** The sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment.
- **Irrelevant:** The sentence is not related to monetary policy.

#### Temporal Classification
- **Forward-looking:** The sentence discusses future economic events or decisions.
- **Not Forward-looking:** The sentence discusses past or current economic events or decisions.

#### Uncertainty Estimation
- **Certain:** Indicates that the sentence presents information definitively.
- **Uncertain:** Indicates that the sentence presents information with speculation, possibility, or doubt.

## Licensing Information
The peoples_bank_of_china dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. [More information in the paper.](https://arxiv.org/)

## Citation Information
```bibtex
@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
  year={2025}
}
```
## Contact
For any peoples_bank_of_china dataset related issues and questions, please contact:

- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu

- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu

- Agam Shah: ashah482[at]gatech[dot]edu

## GitHub Link
[Link to our GitHub repository.](https://github.com/gtfintechlab/WorldsCentralBanks)