Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 4,247 Bytes
c6b4cf7
 
d269d62
c6b4cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d269d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fcf538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6b4cf7
 
 
 
 
 
 
 
 
d269d62
 
 
 
 
 
 
 
9fcf538
 
 
 
 
 
 
 
3c5fef8
 
 
 
 
 
 
 
 
 
 
c6b4cf7
3c5fef8
 
 
 
 
26a2ae1
3c5fef8
 
 
5415e96
 
 
 
 
3c5fef8
5415e96
 
 
3c5fef8
5415e96
 
 
3c5fef8
 
26a2ae1
3c5fef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a2ae1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
dataset_info:
- config_name: '5768'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 160294
    num_examples: 700
  - name: test
    num_bytes: 34299
    num_examples: 150
  - name: val
    num_bytes: 36248
    num_examples: 150
  download_size: 104811
  dataset_size: 230841
- config_name: '78516'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 160349
    num_examples: 700
  - name: test
    num_bytes: 34519
    num_examples: 150
  - name: val
    num_bytes: 35973
    num_examples: 150
  download_size: 105027
  dataset_size: 230841
- config_name: '944601'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 162438
    num_examples: 700
  - name: test
    num_bytes: 34558
    num_examples: 150
  - name: val
    num_bytes: 33845
    num_examples: 150
  download_size: 105329
  dataset_size: 230841
configs:
- config_name: '5768'
  data_files:
  - split: train
    path: 5768/train-*
  - split: test
    path: 5768/test-*
  - split: val
    path: 5768/val-*
- config_name: '78516'
  data_files:
  - split: train
    path: 78516/train-*
  - split: test
    path: 78516/test-*
  - split: val
    path: 78516/val-*
- config_name: '944601'
  data_files:
  - split: train
    path: 944601/train-*
  - split: test
    path: 944601/test-*
  - split: val
    path: 944601/val-*
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- en
tags:
- finance
- econ
pretty_name: bank_of_thailand
size_categories:
- 1K<n<10K
---

## Dataset Summary
For dataset summary, please refer to [https://huggingface.co/datasets/gtfintechlab/bank_of_thailand](https://huggingface.co/datasets/gtfintechlab/bank_of_thailand)

## Additional Information
This dataset is annotated across three different tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation. The tasks have four, two, and two unique labels, respectively. This dataset contains 1,000 sentences taken from the meeting minutes of the Bank of Thailand. 

### Label Interpretation

#### Stance Detection
- **Hawkish:** The sentence supports contractionary monetary policy.
- **Dovish:** The sentence supports expansionary monetary policy.
- **Neutral:** The sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment.
- **Irrelevant:** The sentence is not related to monetary policy.

#### Temporal Classification
- **Forward-looking:** The sentence discusses future economic events or decisions.
- **Not Forward-looking:** The sentence discusses past or current economic events or decisions.

#### Uncertainty Estimation
- **Certain:** Indicates that the sentence presents information definitively.
- **Uncertain:** Indicates that the sentence presents information with speculation, possibility, or doubt.

## Licensing Information
The bank_of_thailand dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. [More information in the paper.](https://arxiv.org/)

## Citation Information
```bibtex
@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
  year={2025}
}
```
## Contact
For any bank_of_thailand dataset related issues and questions, please contact:

- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu

- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu

- Agam Shah: ashah482[at]gatech[dot]edu

## GitHub Link
[Link to our GitHub repository.](https://github.com/gtfintechlab/WorldsCentralBanks)