Datasets:
Tasks:
Translation
Formats:
csv
Size:
10K - 100K
ArXiv:
Tags:
machine-translation
quality-estimation
post-editing
translation
behavioral-data
multidimensional-quality-metric
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,438 +1,450 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
- it
|
5 |
-
- nl
|
6 |
-
license:
|
7 |
-
- apache-2.0
|
8 |
-
tags:
|
9 |
-
- machine-translation
|
10 |
-
- quality-estimation
|
11 |
-
- post-editing
|
12 |
-
- translation
|
13 |
-
- behavioral-data
|
14 |
-
- multidimensional-quality-metric
|
15 |
-
- mqm
|
16 |
-
- comet
|
17 |
-
- qe
|
18 |
-
language_creators:
|
19 |
-
- machine-generated
|
20 |
-
- expert-generated
|
21 |
-
annotations_creators:
|
22 |
-
- machine-generated
|
23 |
-
pretty_name: qe4pe
|
24 |
-
size_categories:
|
25 |
-
- 10K<n<100K
|
26 |
-
source_datasets:
|
27 |
-
- Unbabel/TowerEval-Data-v0.1
|
28 |
-
task_categories:
|
29 |
-
- translation
|
30 |
-
configs:
|
31 |
-
- config_name: main
|
32 |
-
data_files:
|
33 |
-
- split: train
|
34 |
-
path: task/main/processed_main.csv
|
35 |
-
- config_name: pretask
|
36 |
-
data_files:
|
37 |
-
- split: train
|
38 |
-
path: task/pretask/processed_pretask.csv
|
39 |
-
- config_name: posttask
|
40 |
-
data_files:
|
41 |
-
- split: train
|
42 |
-
path: task/posttask/processed_posttask.csv
|
43 |
-
- config_name: pretask_questionnaire
|
44 |
-
data_files:
|
45 |
-
- split: train
|
46 |
-
path: questionnaires/pretask_results.csv
|
47 |
-
- config_name: posttask_highlight_questionnaire
|
48 |
-
data_files:
|
49 |
-
- split: train
|
50 |
-
path: questionnaires/posttask_highlight_results.csv
|
51 |
-
- config_name: posttask_no_highlight_questionnaire
|
52 |
-
data_files:
|
53 |
-
- split: train
|
54 |
-
path: questionnaires/posttask_no_highlight_results.csv
|
55 |
-
---
|
56 |
-
|
57 |
-
# Quality Estimation for Post-Editing (QE4PE)
|
58 |
-
|
59 |
-
*For more details on QE4PE, see our [paper](TBD) and our [Github repository](https://github.com/gsarti/qe4pe)*
|
60 |
-
|
61 |
-
## Dataset Description
|
62 |
-
- **Source:** [Github](https://github.com/gsarti/qe4pe)
|
63 |
-
- **Paper:** [Arxiv](
|
64 |
-
- **Point of Contact:** [Gabriele Sarti](mailto:[email protected])
|
65 |
-
|
66 |
-
[Gabriele Sarti](https://gsarti.com) • [Vilém Zouhar](https://vilda.net/) • [
|
67 |
-
|
68 |
-
|
69 |
-
<
|
70 |
-
|
71 |
-
>
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
**
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
The
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
├──
|
97 |
-
│ ├──
|
98 |
-
│ ├──
|
99 |
-
│
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
├──
|
108 |
-
│ ├── ...
|
109 |
-
│ ├── processed_main.csv
|
110 |
-
│ └── README.md
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
### Data
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|`
|
139 |
-
|`
|
140 |
-
|`
|
141 |
-
|`
|
142 |
-
|`
|
143 |
-
|`
|
144 |
-
|`
|
145 |
-
|
|
146 |
-
|`
|
147 |
-
|`
|
148 |
-
|`
|
149 |
-
|
150 |
-
|`
|
151 |
-
|`
|
152 |
-
|`
|
153 |
-
|`
|
154 |
-
|`
|
155 |
-
|`
|
156 |
-
|
|
157 |
-
|`
|
158 |
-
|`
|
159 |
-
|`
|
160 |
-
|
161 |
-
|`
|
162 |
-
|`
|
163 |
-
|`
|
164 |
-
|`
|
165 |
-
|`
|
166 |
-
|`
|
167 |
-
|`
|
168 |
-
|`
|
169 |
-
|
|
170 |
-
|`
|
171 |
-
|`
|
172 |
-
|`
|
173 |
-
|
174 |
-
|`
|
175 |
-
|`
|
176 |
-
|`
|
177 |
-
|`
|
178 |
-
|`
|
179 |
-
|`
|
180 |
-
|`
|
181 |
-
|`
|
182 |
-
|`
|
183 |
-
|`
|
184 |
-
|`
|
185 |
-
|`
|
186 |
-
|`
|
187 |
-
|`
|
188 |
-
|`
|
189 |
-
|`
|
190 |
-
|`
|
191 |
-
|`
|
192 |
-
|`
|
193 |
-
|`
|
194 |
-
|`
|
195 |
-
|`
|
196 |
-
|`
|
197 |
-
|`
|
198 |
-
|`
|
199 |
-
|`
|
200 |
-
|`
|
201 |
-
|`
|
202 |
-
|`
|
203 |
-
|`
|
204 |
-
|`
|
205 |
-
|`
|
206 |
-
|
|
207 |
-
|`
|
208 |
-
|`
|
209 |
-
|`
|
210 |
-
|
211 |
-
|`
|
212 |
-
|`
|
213 |
-
|`
|
214 |
-
|`
|
215 |
-
|`
|
216 |
-
|`
|
217 |
-
|`
|
218 |
-
|`
|
219 |
-
|`
|
220 |
-
|`
|
221 |
-
|`
|
222 |
-
|`
|
223 |
-
|
224 |
-
|`
|
225 |
-
|`
|
226 |
-
|`
|
227 |
-
|
228 |
-
|`
|
229 |
-
|`
|
230 |
-
|`
|
231 |
-
|
232 |
-
|`
|
233 |
-
|`
|
234 |
-
|`
|
235 |
-
|
236 |
-
|`
|
237 |
-
|`
|
238 |
-
|`
|
239 |
-
|`
|
240 |
-
|`
|
241 |
-
|`
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|`
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|`
|
250 |
-
|
251 |
-
|`
|
252 |
-
|`
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
"
|
268 |
-
"
|
269 |
-
"
|
270 |
-
"
|
271 |
-
"
|
272 |
-
"
|
273 |
-
"
|
274 |
-
|
275 |
-
"
|
276 |
-
"
|
277 |
-
"
|
278 |
-
|
279 |
-
"
|
280 |
-
"
|
281 |
-
|
282 |
-
"
|
283 |
-
"
|
284 |
-
"
|
285 |
-
|
286 |
-
"
|
287 |
-
"
|
288 |
-
"
|
289 |
-
"
|
290 |
-
"
|
291 |
-
"
|
292 |
-
"
|
293 |
-
"
|
294 |
-
|
295 |
-
"
|
296 |
-
"
|
297 |
-
"
|
298 |
-
|
299 |
-
"
|
300 |
-
"
|
301 |
-
"
|
302 |
-
"
|
303 |
-
"
|
304 |
-
"
|
305 |
-
"
|
306 |
-
"
|
307 |
-
"
|
308 |
-
"
|
309 |
-
"
|
310 |
-
"
|
311 |
-
"
|
312 |
-
"
|
313 |
-
"
|
314 |
-
"
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
318 |
-
"
|
319 |
-
"
|
320 |
-
"
|
321 |
-
"
|
322 |
-
"
|
323 |
-
"
|
324 |
-
"
|
325 |
-
"
|
326 |
-
"
|
327 |
-
"
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"
|
331 |
-
|
332 |
-
"
|
333 |
-
"
|
334 |
-
"
|
335 |
-
|
336 |
-
"
|
337 |
-
"
|
338 |
-
"
|
339 |
-
"
|
340 |
-
"
|
341 |
-
"
|
342 |
-
"
|
343 |
-
"
|
344 |
-
"
|
345 |
-
"
|
346 |
-
"
|
347 |
-
"
|
348 |
-
|
349 |
-
"
|
350 |
-
"
|
351 |
-
"
|
352 |
-
|
353 |
-
"
|
354 |
-
|
355 |
-
|
356 |
-
"
|
357 |
-
|
358 |
-
"
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
'
|
368 |
-
'
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
"
|
377 |
-
|
378 |
-
"
|
379 |
-
"
|
380 |
-
"
|
381 |
-
"
|
382 |
-
"
|
383 |
-
"
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
"
|
390 |
-
"
|
391 |
-
"
|
392 |
-
"
|
393 |
-
"
|
394 |
-
"
|
395 |
-
"
|
396 |
-
"
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
The
|
408 |
-
|
409 |
-
###
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
###
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
```
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- it
|
5 |
+
- nl
|
6 |
+
license:
|
7 |
+
- apache-2.0
|
8 |
+
tags:
|
9 |
+
- machine-translation
|
10 |
+
- quality-estimation
|
11 |
+
- post-editing
|
12 |
+
- translation
|
13 |
+
- behavioral-data
|
14 |
+
- multidimensional-quality-metric
|
15 |
+
- mqm
|
16 |
+
- comet
|
17 |
+
- qe
|
18 |
+
language_creators:
|
19 |
+
- machine-generated
|
20 |
+
- expert-generated
|
21 |
+
annotations_creators:
|
22 |
+
- machine-generated
|
23 |
+
pretty_name: qe4pe
|
24 |
+
size_categories:
|
25 |
+
- 10K<n<100K
|
26 |
+
source_datasets:
|
27 |
+
- Unbabel/TowerEval-Data-v0.1
|
28 |
+
task_categories:
|
29 |
+
- translation
|
30 |
+
configs:
|
31 |
+
- config_name: main
|
32 |
+
data_files:
|
33 |
+
- split: train
|
34 |
+
path: task/main/processed_main.csv
|
35 |
+
- config_name: pretask
|
36 |
+
data_files:
|
37 |
+
- split: train
|
38 |
+
path: task/pretask/processed_pretask.csv
|
39 |
+
- config_name: posttask
|
40 |
+
data_files:
|
41 |
+
- split: train
|
42 |
+
path: task/posttask/processed_posttask.csv
|
43 |
+
- config_name: pretask_questionnaire
|
44 |
+
data_files:
|
45 |
+
- split: train
|
46 |
+
path: questionnaires/pretask_results.csv
|
47 |
+
- config_name: posttask_highlight_questionnaire
|
48 |
+
data_files:
|
49 |
+
- split: train
|
50 |
+
path: questionnaires/posttask_highlight_results.csv
|
51 |
+
- config_name: posttask_no_highlight_questionnaire
|
52 |
+
data_files:
|
53 |
+
- split: train
|
54 |
+
path: questionnaires/posttask_no_highlight_results.csv
|
55 |
+
---
|
56 |
+
|
57 |
+
# Quality Estimation for Post-Editing (QE4PE)
|
58 |
+
|
59 |
+
*For more details on QE4PE, see our [paper](TBD) and our [Github repository](https://github.com/gsarti/qe4pe)*
|
60 |
+
|
61 |
+
## Dataset Description
|
62 |
+
- **Source:** [Github](https://github.com/gsarti/qe4pe)
|
63 |
+
- **Paper:** [Arxiv](https://arxiv.org/abs/2503.03044)
|
64 |
+
- **Point of Contact:** [Gabriele Sarti](mailto:[email protected])
|
65 |
+
|
66 |
+
[Gabriele Sarti](https://gsarti.com) • [Vilém Zouhar](https://vilda.net/) • [Grzegorz Chrupała](https://grzegorz.chrupala.me/) • [Ana Guerberof Arenas](https://scholar.google.com/citations?user=i6bqaTsAAAAJ) • [Malvina Nissim](https://malvinanissim.github.io/) • [Arianna Bisazza](https://www.cs.rug.nl/~bisazza/)
|
67 |
+
|
68 |
+
|
69 |
+
<p float="left">
|
70 |
+
<img src="https://github.com/gsarti/qe4pe/blob/main/figures/highlevel_qe4pe.png?raw=true" alt="QE4PE annotation pipeline" width=400/>
|
71 |
+
</p>
|
72 |
+
|
73 |
+
>Word-level quality estimation (QE) detects erroneous spans in machine translations, which can direct and facilitate human post-editing. While the accuracy of word-level QE systems has been assessed extensively, their usability and downstream influence on the speed, quality and editing choices of human post-editing remain understudied. Our QE4PE study investigates the impact of word-level QE on machine translation (MT) post-editing in a realistic setting involving 42 professional post-editors across two translation directions. We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods, for identifying potential errors in the outputs of a state-of-the-art neural MT model. Post-editing effort and productivity are estimated by behavioral logs, while quality improvements are assessed by word- and segment-level human annotation. We find that domain, language and editors' speed are critical factors in determining highlights' effectiveness, with modest differences between human-made and automated QE highlights underlining a gap between accuracy and usability in professional workflows.
|
74 |
+
|
75 |
+
### Dataset Summary
|
76 |
+
|
77 |
+
This dataset provides a convenient access to the processed `pretask`, `main` and `posttask` splits and the questionnaires for the QE4PE study. A sample of challenging documents extracted from WMT23 evaluation data were machine translated from English to Italian and Dutch using [NLLB 3.3B](https://huggingface.co/facebook/nllb-200-3.3B), and post-edited by 12 translators per direction across 4 highlighting modalities employing various word-level quality estimation (QE) strategies to present translators with potential errors during the editing. Additional details are provided in the [main task readme](./task/main/README.md) and in our paper. During the post-editing, behavioral data (keystrokes, pauses and editing times) were collected using the [GroTE](https://github.com/gsarti/grote) online platform. For the main task, a subset of the data was annotated with Multidimensional Quality Metrics (MQM) by professional annotators.
|
78 |
+
|
79 |
+
We publicly release the granular editing logs alongside the processed dataset to foster new research on the usability of word-level QE strategies in modern post-editing workflows.
|
80 |
+
|
81 |
+
### News 📢
|
82 |
+
|
83 |
+
**March 2025**: The QE4PE paper is available on [Arxiv](https://arxiv.org/abs/2503.03044).
|
84 |
+
|
85 |
+
**January 2025**: MQM annotations are now available for the `main` task.
|
86 |
+
|
87 |
+
**October 2024**: The QE4PE dataset is released on the HuggingFace Hub! 🎉
|
88 |
+
|
89 |
+
### Repository Structure
|
90 |
+
|
91 |
+
The repository is organized as follows:
|
92 |
+
|
93 |
+
```shell
|
94 |
+
qe4pe/
|
95 |
+
├── questionnaires/ # Configs and results for pre- and post-task questionnaires for translators
|
96 |
+
│ ├── pretask_results.csv # Results of the pretask questionnaire, corresponding to the `pretask_questionnaire` configuration
|
97 |
+
│ ├── posttask_highlight_results.csv # Results of the posttask questionnaire for highlighted modalities, corresponding to the `posttask_highlight_questionnaire` configuration
|
98 |
+
│ ├── posttask_no_highlight_results.csv # Results of the posttask questionnaire for the `no_highlight` modality, corresponding to the `posttask_no_highlight_questionnaire` configuration
|
99 |
+
│ └── ... # Configurations reporting the exact questionnaires questions and options.
|
100 |
+
├── setup/
|
101 |
+
│ ├── highlights/ # Outputs of word-level QE strategies used to setup highlighted spans in the tasks
|
102 |
+
│ ├── qa/ # MQM/ESA annotations for the main task
|
103 |
+
│ ├── processed/ # Intermediate outputs of the selection process for the main task
|
104 |
+
│ └── wmt23/ # Original collection of WMT23 sources and machine-translated outputs
|
105 |
+
└── task/
|
106 |
+
├── example/ # Example folder with task structure
|
107 |
+
├── main/ # Main task data, logs, outputs and guidelines
|
108 |
+
│ ├── ...
|
109 |
+
│ ├── processed_main.csv # Processed main task data, corresponds to the `main` configuration
|
110 |
+
│ └── README.md # Details about the main task
|
111 |
+
├── posttask/ # Posttask task data, logs, outputs and guidelines
|
112 |
+
│ ├── ...
|
113 |
+
│ ├── processed_main.csv # Processed posttask task data, corresponds to the `posttask` configuration
|
114 |
+
│ └── README.md # Details about the post-task
|
115 |
+
└── pretask/ # Pretask data, logs, outputs and guidelines
|
116 |
+
├── ...
|
117 |
+
├── processed_pretask.csv # Processed pretask data, corresponds to the `pretask` configuration
|
118 |
+
└── README.md # Details about the pretask
|
119 |
+
```
|
120 |
+
|
121 |
+
### Languages
|
122 |
+
|
123 |
+
The language data of QE4PE is in English (BCP-47 `en`), Italian (BCP-47 `it`) and Dutch (BCP-47 `nl`).
|
124 |
+
|
125 |
+
## Dataset Structure
|
126 |
+
|
127 |
+
### Data Instances
|
128 |
+
|
129 |
+
The dataset contains two configurations, corresponding to the two tasks: `pretask`, `main` and `posttask`. `main` contains the full data collected during the main task and analyzed during our experiments. `pretask` contains the data collected in the initial verification phase before the main task, in which all translators worked on texts highlighted in the `supervised` modality. `posttask` contains the data collected in the final phase in which all translators worked on texts in the `no_highlight` modality.
|
130 |
+
|
131 |
+
### Data Fields
|
132 |
+
|
133 |
+
A single entry in the dataframe represents a segment (~sentence) in the dataset, that was machine-translated and post-edited by a professional translator. The following fields are contained in the training set:
|
134 |
+
|
135 |
+
|Field |Description |
|
136 |
+
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|
137 |
+
| **Identification** | |
|
138 |
+
|`unit_id` | The full entry identifier. Format: `qe4pe-{task_id}-{src_lang}-{tgt_lang}-{doc_id}-{segment_in_doc_id}-{translator_main_task_id}`. |
|
139 |
+
|`wmt_id` | Identifier of the sentence in the original [WMT23](./data/setup/wmt23/wmttest2023.eng.jsonl) dataset. |
|
140 |
+
|`wmt_category` | Category of the document: `biomedical` or `social` |
|
141 |
+
|`doc_id` | The index of the document in the current configuration of the QE4PE dataset containing the current segment. |
|
142 |
+
|`segment_in_doc_id` | The index of the segment inside the current document. |
|
143 |
+
|`segment_id` | The index of the segment in the current configurations (i.e. concatenating all segments from all documents in order) |
|
144 |
+
|`translator_pretask_id` | The identifier for the translator according to the `pretask` format before modality assignments: `tXX`. |
|
145 |
+
|`translator_main_id` | The identifier for the translator according to the `main` task format after modality assignments: `{highlight_modality}_tXX`. |
|
146 |
+
|`src_lang` | The source language of the segment. For QE4PE, this is always English (`eng`) |
|
147 |
+
|`tgt_lang` | The target language of the segment: either Italian (`ita`) or Dutch (`nld`). |
|
148 |
+
|`highlight_modality` | The highlighting modality used for the segment. Values: `no_highlight`, `oracle`, `supervised`, `unsupervised`. |
|
149 |
+
| **Text statistics** | |
|
150 |
+
|`src_num_chars` | Length of the source segment in number of characters. |
|
151 |
+
|`mt_num_chars` | Length of the machine-translated segment in number of characters. |
|
152 |
+
|`pe_num_chars` | Length of the post-edited segment in number of characters. |
|
153 |
+
|`src_num_words` | Length of the source segment in number of words. |
|
154 |
+
|`mt_num_words` | Length of the machine-translated segment in number of words. |
|
155 |
+
|`pe_num_words` | Length of the post-edited segment in number of words. |
|
156 |
+
|`num_minor_highlighted_chars` | Number of characters highlighted as minor errors in the machine-translated text. |
|
157 |
+
|`num_major_highlighted_chars` | Number of characters highlighted as major errors in the machine-translated text. |
|
158 |
+
|`num_minor_highlighted_words` | Number of words highlighted as minor errors in the machine-translated text. |
|
159 |
+
|`num_major_highlighted_words` | Number of words highlighted as major errors in the machine-translated text. |
|
160 |
+
| **Edits statistics** | |
|
161 |
+
|`num_words_insert` | Number of post-editing insertions computed using [jiwer](https://github.com/jitsi/jiwer). |
|
162 |
+
|`num_words_delete` | Number of post-editing deletions computed using [jiwer](https://github.com/jitsi/jiwer). |
|
163 |
+
|`num_words_substitute` | Number of post-editing substitutions computed using [jiwer](https://github.com/jitsi/jiwer). |
|
164 |
+
|`num_words_unchanged` | Number of post-editing hits computed using [jiwer](https://github.com/jitsi/jiwer). |
|
165 |
+
|`tot_words_edits` | Total of all edit types for the sentence. |
|
166 |
+
|`wer` | Word Error Rate score computed between `mt_text` and `pe_text` using [jiwer](https://github.com/jitsi/jiwer). |
|
167 |
+
|`num_chars_insert` | Number of post-editing insertions computed using [jiwer](https://github.com/jitsi/jiwer). |
|
168 |
+
|`num_chars_delete` | Number of post-editing deletions computed using [jiwer](https://github.com/jitsi/jiwer). |
|
169 |
+
|`num_chars_substitute` | Number of post-editing substitutions computed using [jiwer](https://github.com/jitsi/jiwer). |
|
170 |
+
|`num_chars_unchanged` | Number of post-editing hits computed using [jiwer](https://github.com/jitsi/jiwer). |
|
171 |
+
|`tot_chars_edits` | Total of all edit types for the sentence. |
|
172 |
+
|`cer` | Character Error Rate score computed between `mt_text` and `pe_text` using [jiwer](https://github.com/jitsi/jiwer). |
|
173 |
+
| **Translation quality**| |
|
174 |
+
|`mt_bleu_max` | Max BLEU score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
175 |
+
|`mt_bleu_min` | Min BLEU score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
176 |
+
|`mt_bleu_mean` | Mean BLEU score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
177 |
+
|`mt_bleu_std` | Standard deviation of BLEU scores between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
178 |
+
|`mt_chrf_max` | Max chrF score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
179 |
+
|`mt_chrf_min` | Min chrF score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
180 |
+
|`mt_chrf_mean` | Mean chrF score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
181 |
+
|`mt_chrf_std` | Standard deviation of chrF scores between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
182 |
+
|`mt_ter_max` | Max TER score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
183 |
+
|`mt_ter_min` | Min TER score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
184 |
+
|`mt_ter_mean` | Mean TER score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
185 |
+
|`mt_ter_std` | Standard deviation of TER scores between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
186 |
+
|`mt_comet_max` | Max COMET sentence-level score for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. |
|
187 |
+
|`mt_comet_min` | Min COMET sentence-level score for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. |
|
188 |
+
|`mt_comet_mean` | Mean COMET sentence-level score for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters.|
|
189 |
+
|`mt_comet_std` | Standard deviation of COMET sentence-level scores for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. |
|
190 |
+
|`mt_xcomet_qe` | `Unbabel/XCOMET-XXL` sentence-level quality estimation score for the mt_text. |
|
191 |
+
|`mt_xcomet_errors` | List of error spans detected by `Unbabel/XCOMET-XXL` for the mt_text. |
|
192 |
+
|`pe_bleu_max` | Max BLEU score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
193 |
+
|`pe_bleu_min` | Min BLEU score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
194 |
+
|`pe_bleu_mean` | Mean BLEU score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
195 |
+
|`pe_bleu_std` | Standard deviation of BLEU scores between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
196 |
+
|`pe_chrf_max` | Max chrF score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
197 |
+
|`pe_chrf_min` | Min chrF score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
198 |
+
|`pe_chrf_mean` | Mean chrF score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
199 |
+
|`pe_chrf_std` | Standard deviation of chrF scores between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
200 |
+
|`pe_ter_max` | Max TER score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
201 |
+
|`pe_ter_min` | Min TER score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
202 |
+
|`pe_ter_mean` | Mean TER score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
203 |
+
|`pe_ter_std` | Standard deviation of TER scores between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. |
|
204 |
+
|`pe_comet_max` | Max COMET sentence-level score for the `pe_text` and all other `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. |
|
205 |
+
|`pe_comet_min` | Min COMET sentence-level score for the `pe_text` and all other `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. |
|
206 |
+
|`pe_comet_mean` | Mean COMET sentence-level score for the `pe_text` and all other `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters.|
|
207 |
+
|`pe_comet_std` | Standard deviation of COMET sentence-level scores for the `pe_text` and all other `pe_text` for the corresponding segment using Unbabel/wmt22-comet-da with default parameters. |
|
208 |
+
|`pe_xcomet_qe` | `Unbabel/XCOMET-XXL` sentence-level quality estimation score for the pe_text. |
|
209 |
+
|`pe_xcomet_errors` | List of error spans detected by `Unbabel/XCOMET-XXL` for the pe_text. |
|
210 |
+
| **Behavioral data** | |
|
211 |
+
|`doc_num_edits` | Total number of edits performed by the translator on the current document. Only the last edit outputs are considered valid. |
|
212 |
+
|`doc_edit_order` | Index corresponding to the current document edit order. If equal to `doc_id`, the document was edited in the given order. |
|
213 |
+
|`doc_edit_time` | Total editing time for the current document in seconds (from `start` to `end`, no times ignored) |
|
214 |
+
|`doc_edit_time_filtered`| Total editing time for the current document in seconds (from `start` to `end`, >5m pauses between logged actions ignored) |
|
215 |
+
|`doc_keys_per_min` | Keystrokes per minute computed for the current document using `doc_edit_time_filtered`. |
|
216 |
+
|`doc_chars_per_min` | Characters per minute computed for the current document using `doc_edit_time_filtered`. |
|
217 |
+
|`doc_words_per_min` | Words per minute computed for the current document using `doc_edit_time_filtered`. |
|
218 |
+
|`segment_num_edits` | Total number of edits performed by the translator on the current segment. Only edits for the last edit of the doc are considered valid. |
|
219 |
+
|`segment_edit_order` | Index corresponding to the current segment edit order (only first `enter` action counts). If equal to `segment_in_doc_id`, the segment was edited in the given order. |
|
220 |
+
|`segment_edit_time` | Total editing time for the current segment in seconds (summed time between `enter`-`exit` blocks) |
|
221 |
+
|`segment_edit_time_filtered` | Total editing time for the current segment in seconds (>5m pauses between logged actions ignored). |
|
222 |
+
|`segment_keys_per_min` | Keystrokes per minute computed for the current segment using `segment_edit_time_filtered`. |
|
223 |
+
|`segment_chars_per_min` | Characters per minute computed for the current segment using `segment_edit_time_filtered`. |
|
224 |
+
|`segment_words_per_min` | Words per minute computed for the current segment using `segment_edit_time_filtered`. |
|
225 |
+
|`num_enter_actions` | Number of `enter` actions (focus on textbox) performed by the translator on the current segment during post-editing. |
|
226 |
+
|`remove_highlights` | If True, the Clear Highlights button was pressed for this segment (always false for `no_highlight` modality). |
|
227 |
+
|**Texts and annotations**| |
|
228 |
+
|`src_text` | The original source segment from WMT23 requiring translation. |
|
229 |
+
|`mt_text` | Output of the `NLLB-3.3B` model when translating `src_text` into `tgt_lang` (default config, 5 beams) |
|
230 |
+
|`mt_text_highlighted` | Highlighted version of `mt_text` with potential errors according to the `highlight_modality`. |
|
231 |
+
|`pe_text` | Post-edited version of `mt_text` produced by a professional translator with `highlight_modality`. |
|
232 |
+
|`mt_pe_word_aligned` | Aligned visual representation of word-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\\n` with `\n` to show the three aligned rows). |
|
233 |
+
|`mt_pe_char_aligned` | Aligned visual representation of character-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\\n` with `\n` to show the three aligned rows). |
|
234 |
+
|`highlights` | List of dictionaries for highlighted spans with error severity and position, matching XCOMET format for word-level error annotations. |
|
235 |
+
|**MQM annotations (`main` config only)**| |
|
236 |
+
|`qa_mt_annotator_id` | Annotator ID for the MQM evaluation of `qa_mt_annotated_text`. |
|
237 |
+
|`qa_pe_annotator_id` | Annotator ID for the MQM evaluation of `qa_pe_annotated_text`. |
|
238 |
+
|`qa_mt_esa_rating` | 0-100 quality rating for the `qa_mt_annotated_text` translation, following the [ESA framework](https://aclanthology.org/2024.wmt-1.131/). |
|
239 |
+
|`qa_pe_esa_rating` | 0-100 quality rating for the `qa_pe_annotated_text` translation, following the [ESA framework](https://aclanthology.org/2024.wmt-1.131/). |
|
240 |
+
|`qa_mt_annotated_text` | Version of `mt_text` annotated with MQM errors. Might differ (only slightly) from `mt_text`, included since `qa_mt_mqm_errors` indices are computed on this string. |
|
241 |
+
|`qa_pe_annotated_text` | Version of `pe_text` annotated with MQM errors. Might differ (only slightly) from `pe_text`, included since `qa_pe_mqm_errors` indices are computed on this string. |
|
242 |
+
|`qa_mt_fixed_text` | Proposed correction of `mqm_mt_annotated_text` following MQM annotation. |
|
243 |
+
|`qa_pe_fixed_text` | Proposed correction of `mqm_pe_annotated_text` following MQM annotation. |
|
244 |
+
|`qa_mt_mqm_errors` | List of error spans detected by the MQM annotator for the `qa_mt_annotated_text`. Each error span dictionary contains the following fields: `text`: the span in `mqm_mt_annotated_text` containing an error. `text_start`: the start index of the error span in `qa_mt_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `text_end`: the end index of the error span in `qa_mt_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `correction`: the proposed correction in `qa_mt_fixed_text` for the error span in `qa_mt_annotated_text`. `correction_start`: the start index of the error span in `mqm_mt_fixed_text`. -1 if no corrected span is present (e.g. for additions) `correction_end`: the end index of the error span in `qa_mt_fixed_text`. -1 if no corrected span is present (e.g. for additions) `description`: an optional error description provided by the annotator. `mqm_category`: the error category assigned by the annotator for the current span. One of: Addition, Omission, Mistranslation, Inconsistency, Untranslated, Punctuation, Spelling, Grammar, Inconsistent Style, Readability, Wrong Register. `severity`: the error severity for the current span. One of: Minor, Major, Neutral. `comment`: an optional comment provided by the annotator for the current span. `edit_order`: index of the edit in the current segment edit order (starting from 1). |
|
245 |
+
|`qa_pe_mqm_errors` | List of error spans detected by the MQM annotator for the `qa_pe_annotated_text`. Each error span dictionary contains the following fields: `text`: the span in `qa_pe_annotated_text` containing an error. `text_start`: the start index of the error span in `qa_pe_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `text_end`: the end index of the error span in `qa_pe_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `correction`: the proposed correction in `qa_pe_fixed_text` for the error span in `qa_pe_annotated_text`. `correction_start`: the start index of the error span in `qa_pe_fixed_text`. -1 if no corrected span is present (e.g. for additions) `correction_end`: the end index of the error span in `qa_pe_fixed_text`. -1 if no corrected span is present (e.g. for additions) `description`: an optional error description provided by the annotator. `mqm_category`: the error category assigned by the annotator for the current span. One of: Addition, Omission, Mistranslation, Inconsistency, Untranslated, Punctuation, Spelling, Grammar, Inconsistent Style, Readability, Wrong Register. `severity`: the error severity for the current span. One of: Minor, Major, Neutral. `comment`: an optional comment provided by the annotator for the current span. `edit_order`: index of the edit in the current segment edit order (starting from 1). |
|
246 |
+
|
247 |
+
### Data Splits
|
248 |
+
|
249 |
+
|`config` | `split`| |
|
250 |
+
|------------------------------------:|-------:|--------------------------------------------------------------:|
|
251 |
+
|`main` | `train`| 8100 (51 docs i.e. 324 sents x 25 translators) |
|
252 |
+
|`pretask` | `train`| 950 (6 docs i.e. 38 sents x 25 translators) |
|
253 |
+
|`posttask` | `train`| 1200 (8 docs i.e. 50 sents x 24 translators) |
|
254 |
+
|`pretask_questionnaire` | `train`| 26 (all translators, including replaced/replacements) |
|
255 |
+
|`posttask_highlight_questionnaire` | `train`| 19 (all translators for highlight modalities + 1 replacement) |
|
256 |
+
|`posttask_no_highlight_questionnaire`| `train`| 6 (all translators for `no_highlight` modality) |
|
257 |
+
|
258 |
+
#### Train Split
|
259 |
+
|
260 |
+
The `train` split contains the totality of triplets (or pairs, when translation from scratch is performed) annotated with behavioral data produced during the translation.
|
261 |
+
|
262 |
+
The following is an example of the subject `oracle_t1` post-editing for segment `3` of `doc20` in the `eng-nld` direction of the `main` task. The fields `mt_pe_word_aligned` and `mt_pe_char_aligned` are shown over three lines to provide a visual understanding of their contents.
|
263 |
+
|
264 |
+
```python
|
265 |
+
{
|
266 |
+
# Identification
|
267 |
+
"unit_id": "qe4pe-main-eng-nld-20-3-oracle_t1",
|
268 |
+
"wmt_id": "doc5",
|
269 |
+
"wmt_category": "biomedical",
|
270 |
+
"doc_id": 20,
|
271 |
+
"segment_in_doc_id": 3,
|
272 |
+
"segment_id": 129,
|
273 |
+
"translator_pretask_id": "t4",
|
274 |
+
"translator_main_id": "oracle_t1",
|
275 |
+
"src_lang": "eng",
|
276 |
+
"tgt_lang": "nld",
|
277 |
+
"highlight_modality": "oracle",
|
278 |
+
# Text statistics
|
279 |
+
"src_num_chars": 104,
|
280 |
+
"mt_num_chars": 136,
|
281 |
+
"pe_num_chars": 106,
|
282 |
+
"src_num_words": 15,
|
283 |
+
"mt_num_words": 16,
|
284 |
+
"pe_num_words": 16,
|
285 |
+
# Edits statistics
|
286 |
+
"num_words_insert": 0,
|
287 |
+
"num_words_delete": 0,
|
288 |
+
"num_words_substitute": 1,
|
289 |
+
"num_words_unchanged": 15,
|
290 |
+
"tot_words_edits": 1,
|
291 |
+
"wer": 0.0625,
|
292 |
+
"num_chars_insert": 0,
|
293 |
+
"num_chars_delete": 0,
|
294 |
+
"num_chars_substitute": 6,
|
295 |
+
"num_chars_unchanged": 100,
|
296 |
+
"tot_chars_edits": 6,
|
297 |
+
"cer": 0.0566,
|
298 |
+
# Translation quality
|
299 |
+
"mt_bleu_max": 100.0,
|
300 |
+
"mt_bleu_min": 7.159,
|
301 |
+
"mt_bleu_mean": 68.687,
|
302 |
+
"mt_bleu_std": 31.287,
|
303 |
+
"mt_chrf_max": 100.0,
|
304 |
+
"mt_chrf_min": 45.374,
|
305 |
+
"mt_chrf_mean": 83.683,
|
306 |
+
"mt_chrf_std": 16.754,
|
307 |
+
"mt_ter_max": 100.0,
|
308 |
+
"mt_ter_min": 0.0,
|
309 |
+
"mt_ter_mean": 23.912,
|
310 |
+
"mt_ter_std": 29.274,
|
311 |
+
"mt_comet_max": 0.977,
|
312 |
+
"mt_comet_min": 0.837,
|
313 |
+
"mt_comet_mean": 0.94,
|
314 |
+
"mt_comet_std": 0.042,
|
315 |
+
"mt_xcomet_qe": 0.985,
|
316 |
+
"mt_xcomet_errors": "[]",
|
317 |
+
"pe_bleu_max": 100.0,
|
318 |
+
"pe_bleu_min": 11.644,
|
319 |
+
"pe_bleu_mean": 61.335,
|
320 |
+
"pe_bleu_std": 28.617,
|
321 |
+
"pe_chrf_max": 100.0,
|
322 |
+
"pe_chrf_min": 53.0,
|
323 |
+
"pe_chrf_mean": 79.173,
|
324 |
+
"pe_chrf_std": 13.679,
|
325 |
+
"pe_ter_max": 100.0,
|
326 |
+
"pe_ter_min": 0.0,
|
327 |
+
"pe_ter_mean": 28.814,
|
328 |
+
"pe_ter_std": 28.827,
|
329 |
+
"pe_comet_max": 0.977,
|
330 |
+
"pe_comet_min": 0.851,
|
331 |
+
"pe_comet_mean": 0.937,
|
332 |
+
"pe_comet_std": 0.035,
|
333 |
+
"pe_xcomet_qe": 0.984,
|
334 |
+
"pe_xcomet_errors": "[]",
|
335 |
+
# Behavioral data
|
336 |
+
"doc_num_edits": 103,
|
337 |
+
"doc_edit_order": 20,
|
338 |
+
"doc_edit_time": 118,
|
339 |
+
"doc_edit_time_filtered": 118,
|
340 |
+
"doc_keys_per_min": 52.37,
|
341 |
+
"doc_chars_per_min": 584.24,
|
342 |
+
"doc_words_per_min": 79.83,
|
343 |
+
"segment_num_edits": 9,
|
344 |
+
"segment_edit_order": 3,
|
345 |
+
"segment_edit_time": 9,
|
346 |
+
"segment_edit_time_filtered": 9,
|
347 |
+
"segment_keys_per_min": 60.0,
|
348 |
+
"segment_chars_per_min": 906.67,
|
349 |
+
"segment_words_per_min": 106.67,
|
350 |
+
"num_enter_actions": 2,
|
351 |
+
"remove_highlights": False,
|
352 |
+
# Texts and annotations
|
353 |
+
"src_text": "The speed of its emerging growth frequently outpaces the development of quality assurance and education.",
|
354 |
+
"mt_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
|
355 |
+
"mt_text_highlighted": "De snelheid van de opkomende groei is vaak <minor>sneller</minor> dan de ontwikkeling van kwaliteitsborging en <major>onderwijs.</major>",
|
356 |
+
"pe_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.",
|
357 |
+
"mt_pe_word_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \
|
358 |
+
"PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \
|
359 |
+
" S",
|
360 |
+
"mt_pe_char_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \
|
361 |
+
"PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \
|
362 |
+
" SS SS SS ",
|
363 |
+
"highlights": """[
|
364 |
+
{
|
365 |
+
'text': 'sneller',
|
366 |
+
'severity': 'minor',
|
367 |
+
'start': 43,
|
368 |
+
'end': 50
|
369 |
+
},
|
370 |
+
{
|
371 |
+
'text': 'onderwijs.',
|
372 |
+
'severity': 'major',
|
373 |
+
'start': 96,
|
374 |
+
'end': 106
|
375 |
+
}
|
376 |
+
]"""
|
377 |
+
# QA annotations
|
378 |
+
"qa_mt_annotator_id": 'qa_nld_3',
|
379 |
+
"qa_pe_annotator_id": 'qa_nld_1',
|
380 |
+
"qa_mt_esa_rating": 100.0,
|
381 |
+
"qa_pe_esa_rating": 80.0,
|
382 |
+
"qa_mt_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
|
383 |
+
"qa_pe_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.",
|
384 |
+
"qa_mt_fixed_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
|
385 |
+
"qa_pe_fixed_text": "De snelheid van de ontluikende groei overtreft vaak de ontwikkeling van kwaliteitsborging en onderwijs.",
|
386 |
+
"qa_mt_mqm_errors": "[]",
|
387 |
+
"qa_pe_mqm_errors": """[
|
388 |
+
{
|
389 |
+
"text": "opkomende",
|
390 |
+
"text_start": 19,
|
391 |
+
"text_end": 28,
|
392 |
+
"correction":
|
393 |
+
"ontluikende",
|
394 |
+
"correction_start": 19,
|
395 |
+
"correction_end": 30,
|
396 |
+
"description": "Mistranslation - not the correct word",
|
397 |
+
"mqm_category": "Mistranslation",
|
398 |
+
"severity": "Minor",
|
399 |
+
"comment": "",
|
400 |
+
"edit_order": 1
|
401 |
+
}
|
402 |
+
]"""
|
403 |
+
|
404 |
+
}
|
405 |
+
```
|
406 |
+
|
407 |
+
The text is provided as-is, without further preprocessing or tokenization.
|
408 |
+
|
409 |
+
### Dataset Creation
|
410 |
+
|
411 |
+
The datasets were parsed from GroTE inputs, logs and outputs for the QE4PE study, available in this repository. Processed dataframes using the `qe4pe process_task_data` command. Refer to the [QE4PE Github repository](https://github.com/gsarti/qe4pe) for additional details. The overall structure and processing of the dataset were inspired by the [DivEMT dataset](https://huggingface.co/datasets/GroNLP/divemt).
|
412 |
+
|
413 |
+
### QA Annotations
|
414 |
+
|
415 |
+
MQM annotations were collected using Google Sheets and highlights were parsed from HTML exported output, ensuring their compliance with well-formedness checks. Out of the original 51 docs (324 segments) in `main`, 24 docs (10 biomedical, 14 social, totaling 148 segments) were samples at random and annotated by professional translators.
|
416 |
+
|
417 |
+
## Additional Information
|
418 |
+
|
419 |
+
### Metric signatures
|
420 |
+
|
421 |
+
The following signatures correspond to the metrics reported in the processed dataframes:
|
422 |
+
|
423 |
+
```shell
|
424 |
+
# Computed using SacreBLEU: https://github.com/mjpost/sacrebleu
|
425 |
+
BLEU: case:mixed|eff:yes|tok:13a|smooth:exp|version:2.3.1
|
426 |
+
ChrF: case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
|
427 |
+
TER: case:lc|tok:tercom|norm:no|punct:yes|asian:no|version:2.3.1
|
428 |
+
|
429 |
+
# Computed using Unbabel COMET: https://github.com/Unbabel/COMET
|
430 |
+
Comet: Python3.11.9|Comet2.2.2|fp32|Unbabel/wmt22-comet-da
|
431 |
+
XComet: Python3.10.12|Comet2.2.1|fp32|Unbabel/XCOMET-XXL
|
432 |
+
```
|
433 |
+
|
434 |
+
### Dataset Curators
|
435 |
+
|
436 |
+
For problems related to this 🤗 Datasets version, please contact me at [[email protected]](mailto:[email protected]).
|
437 |
+
|
438 |
+
### Citation Information
|
439 |
+
|
440 |
+
```bibtex
|
441 |
+
@misc{sarti-etal-2024-qe4pe,
|
442 |
+
title={{QE4PE}: Word-level Quality Estimation for Human Post-Editing},
|
443 |
+
author={Gabriele Sarti and Vilém Zouhar and Grzegorz Chrupała and Ana Guerberof-Arenas and Malvina Nissim and Arianna Bisazza},
|
444 |
+
year={2025},
|
445 |
+
eprint={2503.03044},
|
446 |
+
archivePrefix={arXiv},
|
447 |
+
primaryClass={cs.CL},
|
448 |
+
url={https://arxiv.org/abs/2503.03044},
|
449 |
+
}
|
450 |
```
|