File size: 8,892 Bytes
2d26871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ebf6a2
 
5bfd8f9
 
 
 
 
2d26871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ebe2da
 
 
 
f44dd46
 
 
 
 
 
 
 
 
 
 
 
 
 
f2ee240
 
 
 
2d26871
 
 
 
 
 
 
 
 
 
 
 
 
5bfd8f9
 
2d26871
 
 
 
 
 
 
 
f44dd46
 
 
 
2d26871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
dataset_info:
- config_name: Causal reasoning
  features:
  - name: language
    dtype: string
  - name: idx
    dtype: int64
  - name: premise
    dtype: string
  - name: choice1
    dtype: string
  - name: choice2
    dtype: string
  - name: question_type
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: test
    num_bytes: 1286108
    num_examples: 8395
  download_size: 662062
  dataset_size: 1286108
- config_name: Cultural QA
  features:
  - name: language
    dtype: string
  - name: context
    dtype: string
  - name: option A
    dtype: string
  - name: option B
    dtype: string
  - name: option C
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 2894281
    num_examples: 11730
  download_size: 1709305
  dataset_size: 2894281
- config_name: MCQA
  features:
  - name: language
    dtype: string
  - name: Pair ID
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: context
    dtype: string
  - name: title
    dtype: string
  splits:
  - name: test
    num_bytes: 9351170
    num_examples: 12972
  - name: train
    num_bytes: 1636826
    num_examples: 2300
  download_size: 3547417
  dataset_size: 10987996
- config_name: NLI
  features:
  - name: language
    dtype: string
  - name: Premise ID
    dtype: int64
  - name: Pair ID
    dtype: int64
  - name: Premise
    dtype: string
  - name: Hypothesis
    dtype: string
  - name: Label
    dtype: string
  splits:
  - name: test
    num_bytes: 8411303
    num_examples: 33258
  download_size: 2106539
  dataset_size: 8411303
- config_name: Open QA
  features:
  - name: language
    dtype: string
  - name: Pair ID
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 1648899
    num_examples: 12834
  download_size: 806311
  dataset_size: 1648899
- config_name: Translation
  features:
  - name: Premise ID
    dtype: int64
  - name: source_lang
    dtype: string
  - name: target_lang
    dtype: string
  - name: source
    dtype: string
  - name: target
    dtype: string
  splits:
  - name: test
    num_bytes: 1832278
    num_examples: 5522
  download_size: 710432
  dataset_size: 1832278
configs:
- config_name: Causal reasoning
  data_files:
  - split: test
    path: Causal reasoning/test-*
- config_name: Cultural QA
  data_files:
  - split: test
    path: Cultural QA/test-*
- config_name: MCQA
  data_files:
  - split: test
    path: MCQA/test-*
  - split: train
    path: MCQA/train-*
- config_name: NLI
  data_files:
  - split: test
    path: NLI/test-*
- config_name: Open QA
  data_files:
  - split: test
    path: Open QA/test-*
- config_name: Translation
  data_files:
  - split: test
    path: Translation/test-*
---
# LoraxBench: A Benchmark for Indonesian Local Languages and Registers

## Dataset Summary

LoraxBench is a comprehensive multilingual benchmark focusing on Indonesian and 19 Indonesian local languages, covering 6 diverse NLP tasks. It includes multiple registers for select languages, emphasizing the impact of formal and casual speech on model performance. LoraxBench is professionally translated and validated by natives, and were sourced from Indonesian-originated dataset, Our data is sourced from Indonesian-originated content, thus capturing local nuances better than English-centric data.

LoraxBench fills a critical gap in NLP for Indonesia’s linguistic diversity, where over 700 languages are spoken but few resources exist. Beyond Indonesia, it serves as a valuable resource for modeling challenges common in linguistically rich, resource-scarce regions worldwide.

## Languages

The dataset covers the following 20 languages:

| Language          | ISO Code | Approx. Speakers (millions) | Region             |
|-------------------|----------|-----------------------------|--------------------|
| Acehnese          | ace      | 3.7                         | Aceh               |
| Ambonese Malay    | abs      | 0.2                         | Ambon              |
| Balinese          | ban      | 4.8                         | Bali               |
| Banjar            | bjn      | 4.0                         | South Sulawesi     |
| Batak Toba        | bbc      | 2.5                         | North Sumatra      |
| Betawi            | bew      | 5.6                         | Jakarta            |
| Buginese          | bug      | 4.3                         | South Sulawesi     |
| Gorontalo         | gor      | 1.1                         | Gorontalo          |
| Iban              | iba      | 0.8                         | West Kalimantan    |
| Jambi Malay       | jax      | 1.0                         | Jambi              |
| Javanese          | jv       | 91.0                        | East/Central Java  |
| Lampung Nyo       | abl      | 1.5                         | Lampung            |
| Madurese          | mad      | 17.0                        | East Java          |
| Makasar           | mak      | 1.9                         | Makasar            |
| Minangkabau       | min      | 8.0                         | West Sumatra       |
| Musi              | mui      | 3.1                         | South Sumatra      |
| Ngaju             | nij      | 0.9                         | Central Kalimantan |
| Sasak             | sas      | 2.6                         | West Nusa Tenggara |
| Sundanese         | su       | 32.0                        | West Java          |
| Indonesian        | id       | > 170.0                     | Indonesia          |

## Registers Included

For three languages, LoraxBench includes two distinct registers capturing different levels of formality:

| Language  | Formal Register | Casual Register |
|-----------|-----------------|-----------------|
| Javanese  | Krama           | Ngoko           |
| Sundanese | Lemes           | Loma            |
| Madurese  | Engghi Ethen    | Enja’Iya        |

Formal registers are used in respectful or formal contexts; casual registers are used among peers and friends, showing significant lexical and stylistic differences.

## Tasks and Data Sources

The following are tasks covered in LoraxBench
### Reading Comprehension

Answering questions based on Indonesian text passages. This data is translated from the [TyDi QA](https://huggingface.co/datasets/tydiqa) secondary, Indonesian subset.

### Open-Domain Question Answering

Answering questions without access to context passages. This data is derived from the [TyDi QA](https://huggingface.co/datasets/tydiqa) secondary, Indonesian subset.

### Natural Language Inference (NLI)

Determining entailment, contradiction, or neutrality between sentence pairs. This data is translated from the test-expert subset of [IndoNLI](https://huggingface.co/datasets/afaji/indonli), specifically on single-sentence sets.

### Causal Reasoning

Reasoning about cause-effect relations in text. This data is translated from locally-nuanced causal reasoning data, [COPAL-ID](https://huggingface.co/datasets/haryoaw/COPAL). We have filtered some of the entries that are too Jakartan-specific.

### Machine Translation

Translating text to Indonesian. This data is taken from IndoNLI premises, which itself originated from various webpages, news, and articles.

### Cultural Question Answering

Answering culturally relevant questions about Indonesia. We source this from [IndoCulture](https://huggingface.co/datasets/indolem/IndoCulture), with further filtering and clean-up. Specifically, we change some of the distractors that were deemed obviously wrong, fix some typos and writing inconsistencies, as well as remove some trivially easy questions. More on this in the paper.


## Personal and Sensitive Information

The corpora contain no personal or sensitive information. Data was sourced and translated with respect to privacy and ethical guidelines.

## Additional Information

- LoraxBench exposes challenges for multilingual models in low-resource and register-variant settings.
- Benchmark results highlight performance gaps between Indonesian, local languages, and registers.

## Dataset Curators

Google Research

## Licensing Information

This project is licensed under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).

## Citation Information

Please cite the following papers when using this dataset:

- The main LoraxBench paper
- Clark et al., 2020. TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages.
- Mahendra et al., 2021. IndoNLI: A Natural Language Inference Dataset for Indonesian.
- Wibowo et al., 2024. COPAL-ID: Causal Reasoning in Indonesian.
- Koto et al., 2024. IndoCulture: Cultural Question Answering in Indonesia.
- Cahyawijaya et al., 2023. NusaCrowd: Indonesian NLP Dataset Collection.