|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Google Sentence Compression dataset""" |
|
|
|
|
|
import gzip |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{filippova-altun-2013-overcoming, |
|
title = "Overcoming the Lack of Parallel Data in Sentence Compression", |
|
author = "Filippova, Katja and |
|
Altun, Yasemin", |
|
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", |
|
month = oct, |
|
year = "2013", |
|
address = "Seattle, Washington, USA", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/D13-1155", |
|
pages = "1481--1491", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Large corpus of uncompressed and compressed sentences from news articles. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/sentence-compression" |
|
|
|
|
|
_URLs = { |
|
datasets.Split.VALIDATION: [ |
|
"https://github.com/google-research-datasets/sentence-compression/raw/master/data/comp-data.eval.json.gz" |
|
], |
|
datasets.Split.TRAIN: [ |
|
f"https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train{str(i).zfill(2)}.json.gz" |
|
for i in range(1, 11) |
|
], |
|
} |
|
|
|
|
|
class SentComp(datasets.GeneratorBasedBuilder): |
|
"""Google Setence Compression dataset""" |
|
|
|
def _info(self): |
|
node_features = { |
|
"form": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"mid": datasets.Value("string"), |
|
"word": datasets.features.Sequence( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"form": datasets.Value("string"), |
|
"stem": datasets.Value("string"), |
|
"tag": datasets.Value("string"), |
|
} |
|
), |
|
"gender": datasets.Value("int32"), |
|
"head_word_index": datasets.Value("int32"), |
|
} |
|
compression_edge_features = { |
|
"parent_id": datasets.Value("int32"), |
|
"child_id": datasets.Value("int32"), |
|
} |
|
edge_features = {**compression_edge_features, "label": datasets.Value("string")} |
|
entity_features = { |
|
"start": datasets.Value("int32"), |
|
"end": datasets.Value("int32"), |
|
"head": datasets.Value("int32"), |
|
"name": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"mid": datasets.Value("string"), |
|
"is_proper_name_entity": datasets.Value("bool"), |
|
"gender": datasets.Value("int32"), |
|
} |
|
tree_features = { |
|
"id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"node": datasets.features.Sequence(node_features), |
|
"edge": datasets.features.Sequence(edge_features), |
|
"entity_mention": datasets.features.Sequence(entity_features), |
|
} |
|
compression_features = { |
|
"text": datasets.Value("string"), |
|
"edge": datasets.features.Sequence(compression_edge_features), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"graph": tree_features, |
|
"compression": compression_features, |
|
"headline": datasets.Value("string"), |
|
"compression_ratio": datasets.Value("float"), |
|
"doc_id": datasets.Value("string"), |
|
"source_tree": tree_features, |
|
"compression_untransformed": compression_features, |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
|
|
gen_kwargs={"filepaths": dl_manager.download(_URLs[split])}, |
|
) |
|
for split in _URLs |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""Yields examples.""" |
|
id_ = -1 |
|
for ix, filepath in enumerate(filepaths): |
|
with gzip.open(filepath, mode="rt", encoding="utf-8") as f: |
|
all_text = f.read() |
|
|
|
|
|
|
|
all_text = "[" + all_text + "]" |
|
all_text = all_text.replace("}\n\n{", "},\n{") |
|
|
|
samples = json.loads(all_text) |
|
for sample in samples: |
|
|
|
for node in sample["graph"]["node"] + sample["source_tree"]["node"]: |
|
if "type" not in node: |
|
node["type"] = "" |
|
if "mid" not in node: |
|
node["mid"] = "" |
|
|
|
id_ += 1 |
|
yield id_, sample |
|
|