File size: 9,014 Bytes
5fa1ba0 3575a07 5fa1ba0 3575a07 5fa1ba0 19edeb2 9d02841 11e0e91 19edeb2 b5534f6 2bfbdf6 b5534f6 5fa1ba0 9d02841 5fa1ba0 719c680 5fa1ba0 0fd016e 19edeb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
task_ids: []
paperswithcode_id: sentence-compression
pretty_name: Google Sentence Compression
tags:
- sentence-compression
dataset_info:
features:
- name: graph
struct:
- name: id
dtype: string
- name: sentence
dtype: string
- name: node
sequence:
- name: form
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: word
sequence:
- name: id
dtype: int32
- name: form
dtype: string
- name: stem
dtype: string
- name: tag
dtype: string
- name: gender
dtype: int32
- name: head_word_index
dtype: int32
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
- name: label
dtype: string
- name: entity_mention
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: head
dtype: int32
- name: name
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: is_proper_name_entity
dtype: bool
- name: gender
dtype: int32
- name: compression
struct:
- name: text
dtype: string
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
- name: headline
dtype: string
- name: compression_ratio
dtype: float32
- name: doc_id
dtype: string
- name: source_tree
struct:
- name: id
dtype: string
- name: sentence
dtype: string
- name: node
sequence:
- name: form
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: word
sequence:
- name: id
dtype: int32
- name: form
dtype: string
- name: stem
dtype: string
- name: tag
dtype: string
- name: gender
dtype: int32
- name: head_word_index
dtype: int32
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
- name: label
dtype: string
- name: entity_mention
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: head
dtype: int32
- name: name
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: is_proper_name_entity
dtype: bool
- name: gender
dtype: int32
- name: compression_untransformed
struct:
- name: text
dtype: string
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
splits:
- name: validation
num_bytes: 55823979
num_examples: 10000
- name: train
num_bytes: 1135684803
num_examples: 200000
download_size: 259652560
dataset_size: 1191508782
---
# Dataset Card for Google Sentence Compression
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/google-research-datasets/sentence-compression](https://github.com/google-research-datasets/sentence-compression)
- **Repository:** [https://github.com/google-research-datasets/sentence-compression](https://github.com/google-research-datasets/sentence-compression)
- **Paper:** [https://www.aclweb.org/anthology/D13-1155/](https://www.aclweb.org/anthology/D13-1155/)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
A major challenge in supervised sentence compression is making use of rich feature representations because of very scarce parallel data. We address this problem and present a method to automatically build a compression corpus with hundreds of thousands of instances on which deletion-based algorithms can be trained. In our corpus, the syntactic trees of the compressions are subtrees of their uncompressed counterparts, and hence supervised systems which require a structural alignment between the input and output can be successfully trained. We also extend an existing unsupervised compression method with a learning module. The new system uses structured prediction to learn from lexical, syntactic and other features. An evaluation with human raters shows that the presented data harvesting method indeed produces a parallel corpus of high quality. Also, the supervised system trained on this corpus gets high scores both from human raters and in an automatic evaluation setting, significantly outperforming a strong baseline.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
Each data instance should contains the information about the original sentence in `instance["graph"]["sentence"]` as well as the compressed sentence in `instance["compression"]["text"]`. As this dataset was created by pruning dependency connections, the author also includes the dependency tree and transformed graph of the original sentence and compressed sentence.
### Data Fields
Each instance should contains these information:
- `graph` (`Dict`): the transformation graph/tree for extracting compression (a modified version of a dependency tree).
- This will have features similar to a dependency tree (listed bellow)
- `compression` (`Dict`)
- `text` (`str`)
- `edge` (`List`)
- `headline` (`str`): the headline of the original news page.
- `compression_ratio` (`float`): the ratio between compressed sentence vs original sentence.
- `doc_id` (`str`): url of the original news page.
- `source_tree` (`Dict`): the original dependency tree (features listed bellow).
- `compression_untransformed` (`Dict`)
- `text` (`str`)
- `edge` (`List`)
Dependency tree features:
- `id` (`str`)
- `sentence` (`str`)
- `node` (`List`): list of nodes, each node represent a word/word phrase in the tree.
- `form` (`string`)
- `type` (`string`): the enity type of a node. Defaults to `""` if it's not an entity.
- `mid` (`string`)
- `word` (`List`): list of words the node contains.
- `id` (`int`)
- `form` (`str`): the word from the sentence.
- `stem` (`str`): the stemmed/lemmatized version of the word.
- `tag` (`str`): dependency tag of the word.
- `gender` (`int`)
- `head_word_index` (`int`)
- `edge`: list of the dependency connections between words.
- `parent_id` (`int`)
- `child_id` (`int`)
- `label` (`str`)
- `entity_mention` list of the entities in the sentence.
- `start` (`int`)
- `end` (`int`)
- `head` (`str`)
- `name` (`str`)
- `type` (`str`)
- `mid` (`str`)
- `is_proper_name_entity` (`bool`)
- `gender` (`int`)
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset. |