File size: 5,680 Bytes
5fa1ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Sentence Compression dataset"""
import gzip
import json
import datasets
_CITATION = """\
@inproceedings{filippova-altun-2013-overcoming,
title = "Overcoming the Lack of Parallel Data in Sentence Compression",
author = "Filippova, Katja and
Altun, Yasemin",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D13-1155",
pages = "1481--1491",
}
"""
_DESCRIPTION = """\
Large corpus of uncompressed and compressed sentences from news articles.
"""
_HOMEPAGE = "https://github.com/google-research-datasets/sentence-compression"
_URLs = {
datasets.Split.VALIDATION: [
"https://github.com/google-research-datasets/sentence-compression/raw/master/data/comp-data.eval.json.gz"
],
datasets.Split.TRAIN: [
f"https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train{str(i).zfill(2)}.json.gz"
for i in range(1, 11)
],
}
class SentComp(datasets.GeneratorBasedBuilder):
"""Google Setence Compression dataset"""
def _info(self):
node_features = {
"form": datasets.Value("string"),
"type": datasets.Value("string"),
"mid": datasets.Value("string"),
"word": datasets.features.Sequence(
{
"id": datasets.Value("int32"),
"form": datasets.Value("string"),
"stem": datasets.Value("string"),
"tag": datasets.Value("string"),
}
),
"gender": datasets.Value("int32"),
"head_word_index": datasets.Value("int32"),
}
compression_edge_features = {
"parent_id": datasets.Value("int32"),
"child_id": datasets.Value("int32"),
}
edge_features = {**compression_edge_features, "label": datasets.Value("string")}
entity_features = {
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"head": datasets.Value("int32"),
"name": datasets.Value("string"),
"type": datasets.Value("string"),
"mid": datasets.Value("string"),
"is_proper_name_entity": datasets.Value("bool"),
"gender": datasets.Value("int32"),
}
tree_features = {
"id": datasets.Value("string"),
"sentence": datasets.Value("string"),
"node": datasets.features.Sequence(node_features),
"edge": datasets.features.Sequence(edge_features),
"entity_mention": datasets.features.Sequence(entity_features),
}
compression_features = {
"text": datasets.Value("string"),
"edge": datasets.features.Sequence(compression_edge_features),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"graph": tree_features,
"compression": compression_features,
"headline": datasets.Value("string"),
"compression_ratio": datasets.Value("float"),
"doc_id": datasets.Value("string"),
"source_tree": tree_features,
"compression_untransformed": compression_features,
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
return [
datasets.SplitGenerator(
name=split,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepaths": dl_manager.download(_URLs[split])},
)
for split in _URLs
]
def _generate_examples(self, filepaths):
""" Yields examples. """
id_ = -1
for ix, filepath in enumerate(filepaths):
with gzip.open(filepath, mode="rt", encoding="utf-8") as f:
all_text = f.read()
# in the data file, it's in the form of JSON objects, separated with '\n\n' characters
# we'll format the file to be able to read with json package
all_text = "[" + all_text + "]"
all_text = all_text.replace("}\n\n{", "},\n{")
samples = json.loads(all_text)
for sample in samples:
# add some default values
for node in sample["graph"]["node"] + sample["source_tree"]["node"]:
if "type" not in node:
node["type"] = ""
if "mid" not in node:
node["mid"] = ""
id_ += 1
yield id_, sample
|