File size: 5,680 Bytes
5fa1ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Sentence Compression dataset"""


import gzip
import json

import datasets


_CITATION = """\
@inproceedings{filippova-altun-2013-overcoming,
    title = "Overcoming the Lack of Parallel Data in Sentence Compression",
    author = "Filippova, Katja  and
      Altun, Yasemin",
    booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
    month = oct,
    year = "2013",
    address = "Seattle, Washington, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D13-1155",
    pages = "1481--1491",
}
"""

_DESCRIPTION = """\
Large corpus of uncompressed and compressed sentences from news articles.
"""

_HOMEPAGE = "https://github.com/google-research-datasets/sentence-compression"


_URLs = {
    datasets.Split.VALIDATION: [
        "https://github.com/google-research-datasets/sentence-compression/raw/master/data/comp-data.eval.json.gz"
    ],
    datasets.Split.TRAIN: [
        f"https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train{str(i).zfill(2)}.json.gz"
        for i in range(1, 11)
    ],
}


class SentComp(datasets.GeneratorBasedBuilder):
    """Google Setence Compression dataset"""

    def _info(self):
        node_features = {
            "form": datasets.Value("string"),
            "type": datasets.Value("string"),
            "mid": datasets.Value("string"),
            "word": datasets.features.Sequence(
                {
                    "id": datasets.Value("int32"),
                    "form": datasets.Value("string"),
                    "stem": datasets.Value("string"),
                    "tag": datasets.Value("string"),
                }
            ),
            "gender": datasets.Value("int32"),
            "head_word_index": datasets.Value("int32"),
        }
        compression_edge_features = {
            "parent_id": datasets.Value("int32"),
            "child_id": datasets.Value("int32"),
        }
        edge_features = {**compression_edge_features, "label": datasets.Value("string")}
        entity_features = {
            "start": datasets.Value("int32"),
            "end": datasets.Value("int32"),
            "head": datasets.Value("int32"),
            "name": datasets.Value("string"),
            "type": datasets.Value("string"),
            "mid": datasets.Value("string"),
            "is_proper_name_entity": datasets.Value("bool"),
            "gender": datasets.Value("int32"),
        }
        tree_features = {
            "id": datasets.Value("string"),
            "sentence": datasets.Value("string"),
            "node": datasets.features.Sequence(node_features),
            "edge": datasets.features.Sequence(edge_features),
            "entity_mention": datasets.features.Sequence(entity_features),
        }
        compression_features = {
            "text": datasets.Value("string"),
            "edge": datasets.features.Sequence(compression_edge_features),
        }

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "graph": tree_features,
                    "compression": compression_features,
                    "headline": datasets.Value("string"),
                    "compression_ratio": datasets.Value("float"),
                    "doc_id": datasets.Value("string"),
                    "source_tree": tree_features,
                    "compression_untransformed": compression_features,
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        return [
            datasets.SplitGenerator(
                name=split,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepaths": dl_manager.download(_URLs[split])},
            )
            for split in _URLs
        ]

    def _generate_examples(self, filepaths):
        """ Yields examples. """
        id_ = -1
        for ix, filepath in enumerate(filepaths):
            with gzip.open(filepath, mode="rt", encoding="utf-8") as f:
                all_text = f.read()

            # in the data file, it's in the form of JSON objects, separated with '\n\n' characters
            # we'll format the file to be able to read with json package
            all_text = "[" + all_text + "]"
            all_text = all_text.replace("}\n\n{", "},\n{")

            samples = json.loads(all_text)
            for sample in samples:
                # add some default values
                for node in sample["graph"]["node"] + sample["source_tree"]["node"]:
                    if "type" not in node:
                        node["type"] = ""
                    if "mid" not in node:
                        node["mid"] = ""

                id_ += 1
                yield id_, sample