giantfish-fly commited on
Commit
0daaf1a
·
verified ·
1 Parent(s): a008746

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -12
README.md CHANGED
@@ -316,7 +316,7 @@ def n_tokens(messages):
316
  """Count tokens in messages."""
317
  return sum([len(enc.encode(m["content"])) for m in messages])
318
 
319
- # Evaluate your model
320
  results = []
321
  for index, row in dataset.iterrows():
322
  messages = json.loads(row["prompt"])
@@ -365,9 +365,11 @@ if 'run_id' in results_df.columns:
365
  print("\n=== Experiment accuracy averaged across runs (run_id) ===")
366
  for _, r in exp_avg.iterrows():
367
  print(f"{r['experiment']}: {r['accuracy_percent']:.1f}% (averaged over runs)")
 
368
 
 
 
369
 
370
- ## 🏆 Advanced Evaluation with AUC Scoring
371
 
372
  ### Why AUC Scoring?
373
  - **Average accuracy** treats all tasks equally → poor model differentiation
@@ -376,7 +378,7 @@ if 'run_id' in results_df.columns:
376
 
377
  ### Complete Evaluation Function
378
 
379
- ```python
380
  import math
381
 
382
  def compute_pi_auc_score(results, log_base=1.5):
@@ -417,11 +419,11 @@ def compute_pi_auc_score(results, log_base=1.5):
417
  'auc_log1.5_hard': wmean(hard) if hard else 0.0,
418
  'total_samples': len(results),
419
  }
420
- ```
421
 
422
  ### Usage Example
423
 
424
- ```python
425
  from datasets import load_dataset
426
 
427
  # Load PI-LLM dataset
@@ -446,23 +448,23 @@ print(f"🏆 AUC Score: {scores['auc_log1.5']:.3f}") # PRIMARY metric
446
  if 'auc_log1.5_easy' in scores:
447
  print(f"📊 Easy Mode: {scores['auc_log1.5_easy']:.3f}")
448
  print(f"📊 Hard Mode: {scores['auc_log1.5_hard']:.3f}")
449
- ```
450
 
451
  ### Output Formats
452
 
453
  **Single-Mode Experiments** (`exp_updates`, `exp_sequential`):
454
- ```python
455
  {'avg_accuracy': 0.600, 'auc_log1.5': 0.412, 'total_samples': 100}
456
- ```
457
 
458
  **Two-Mode Experiments** (`exp_keys`, `exp_valuelength`):
459
- ```python
460
  {
461
  'avg_accuracy': 0.600, 'auc_log1.5': 0.576, # Overall metrics
462
  'auc_log1.5_easy': 0.850, 'auc_log1.5_hard': 0.350, # Mode breakdown
463
  'total_samples': 150
464
  }
465
- ```
466
 
467
  ### 🎯 For Model Ranking: Use `auc_log1.5` as your primary metric!
468
 
@@ -470,7 +472,6 @@ if 'auc_log1.5_easy' in scores:
470
 
471
  **Definition:** average of each test’s `auc_log1.5` (simple, clear leaderboard number).
472
 
473
- ```python
474
  def compute_total_pi_auc(all_tests, log_base=1.5):
475
  """
476
  Total PI-AUC1.5 across tests = average of per-test auc_log1.5.
@@ -487,7 +488,7 @@ def compute_total_pi_auc(all_tests, log_base=1.5):
487
  total = sum(per_test.values()) / len(per_test) if per_test else 0.0
488
  return {"per_test_auc_log1.5": per_test, "total_auc_log1.5": total}
489
 
490
-
491
 
492
 
493
  ## References
 
316
  """Count tokens in messages."""
317
  return sum([len(enc.encode(m["content"])) for m in messages])
318
 
319
+ # Evaluate your model (Recommnd Using below AUC/weighted score )
320
  results = []
321
  for index, row in dataset.iterrows():
322
  messages = json.loads(row["prompt"])
 
365
  print("\n=== Experiment accuracy averaged across runs (run_id) ===")
366
  for _, r in exp_avg.iterrows():
367
  print(f"{r['experiment']}: {r['accuracy_percent']:.1f}% (averaged over runs)")
368
+ ```
369
 
370
+ ## 🏆 Advanced Evaluation with AUC Scoring (Highly Recommand)
371
+ ```python
372
 
 
373
 
374
  ### Why AUC Scoring?
375
  - **Average accuracy** treats all tasks equally → poor model differentiation
 
378
 
379
  ### Complete Evaluation Function
380
 
381
+
382
  import math
383
 
384
  def compute_pi_auc_score(results, log_base=1.5):
 
419
  'auc_log1.5_hard': wmean(hard) if hard else 0.0,
420
  'total_samples': len(results),
421
  }
422
+
423
 
424
  ### Usage Example
425
 
426
+
427
  from datasets import load_dataset
428
 
429
  # Load PI-LLM dataset
 
448
  if 'auc_log1.5_easy' in scores:
449
  print(f"📊 Easy Mode: {scores['auc_log1.5_easy']:.3f}")
450
  print(f"📊 Hard Mode: {scores['auc_log1.5_hard']:.3f}")
451
+
452
 
453
  ### Output Formats
454
 
455
  **Single-Mode Experiments** (`exp_updates`, `exp_sequential`):
456
+
457
  {'avg_accuracy': 0.600, 'auc_log1.5': 0.412, 'total_samples': 100}
458
+
459
 
460
  **Two-Mode Experiments** (`exp_keys`, `exp_valuelength`):
461
+
462
  {
463
  'avg_accuracy': 0.600, 'auc_log1.5': 0.576, # Overall metrics
464
  'auc_log1.5_easy': 0.850, 'auc_log1.5_hard': 0.350, # Mode breakdown
465
  'total_samples': 150
466
  }
467
+
468
 
469
  ### 🎯 For Model Ranking: Use `auc_log1.5` as your primary metric!
470
 
 
472
 
473
  **Definition:** average of each test’s `auc_log1.5` (simple, clear leaderboard number).
474
 
 
475
  def compute_total_pi_auc(all_tests, log_base=1.5):
476
  """
477
  Total PI-AUC1.5 across tests = average of per-test auc_log1.5.
 
488
  total = sum(per_test.values()) / len(per_test) if per_test else 0.0
489
  return {"per_test_auc_log1.5": per_test, "total_auc_log1.5": total}
490
 
491
+ ```
492
 
493
 
494
  ## References