# Dataset Card for Secondary Structure Prediction (Q3) Dataset for RAGProtein ### Dataset Summary The study of a protein’s secondary structure (Sec. Struc. P.) forms a fundamental cornerstone in understanding its biological function. This secondary structure, comprising helices, strands, and various turns, bestows the protein with a specific three-dimensional configuration, which is critical for the formation of its tertiary structure. In the context of this work, a given protein sequence is classified into three distinct categories, each representing a different structural element: H - Helix (includes alpha-helix, 3-10 helix, and pi helix), E - Strand (includes beta-strand and beta-bridge), C - Coil (includes turns, bends, and random coils). ## Dataset Structure ### Data Instances For each instance, there is a string of the protein sequences, a sequence for the strucutral labels. See the [Secondary structure prediction dataset viewer](https://huggingface.co/datasets/Bo1015/ssp_q8/viewer/default/test) to explore more examples. ``` {'seq':'MRGSHHHHHHGSVKVKFVSSGEEKEVDTSKIKKVWRNLTKYGTIVQFTYDDNGKTGRGYVRELDAPKELLDMLARAEGKLN' 'label':[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 ] 'msa': 'MRGSHHHHHHGSVKVKFVSSGEEKEVDTSKIKKVWRNLTKYGTIVQFTYDDNGKTGRGYVRELDAPKELLDMLARAEGKLN|MRGSHHHHHHGSVKVKFVSSGEEKEVDTSKIKKVWRNLTKYGTIVQFTYDDNGKTGRGYVRELDAPKELLDMLARAEGKLN...', 'str_emb': [seq_len, 384] } ``` The average for the `seq` and the `label` are provided below: | Feature | Mean Count | | ---------- | ---------------- | | seq | 256 | | label (0) | 109 | | label (1) | 54 | | label (2) | 92 | ### Data Fields - `seq`: a string containing the protein sequence - `label`: a sequence containing the structural label of each residue. - `msa`: "|" seperated MSA sequences - `str_emb`: AIDO.StructureTokenizer generated structure embedding from AF2 predicted structures ### Data Splits The secondary structure prediction dataset has 2 splits: _train_ and _test_. Below are the statistics of the dataset. | Dataset Split | Number of Instances in Split | | ------------- | ------------------------------------------- | | Train | 10,848 | | Test | 667 | ### Source Data #### Initial Data Collection and Normalization The datasets applied in this study were originally published by [NetSurfP-2.0](https://pubmed.ncbi.nlm.nih.gov/30785653/). ### Licensing Information The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). ### Processed data collection Single sequence data are collected from this paper: ``` @misc{chen2024xtrimopglm, title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein}, author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others}, year={2024}, eprint={2401.06199}, archivePrefix={arXiv}, primaryClass={cs.CL}, note={arXiv preprint arXiv:2401.06199} } ```