Update README.md
Browse files
README.md
CHANGED
@@ -3,135 +3,137 @@ configs:
|
|
3 |
- config_name: expression_HEK
|
4 |
data_files:
|
5 |
- split: train
|
6 |
-
path:
|
7 |
- config_name: expression_Muscle
|
8 |
data_files:
|
9 |
- split: train
|
10 |
-
path:
|
11 |
- config_name: expression_pc3
|
12 |
data_files:
|
13 |
- split: train
|
14 |
-
path:
|
15 |
- config_name: translation_efficiency_HEK
|
16 |
data_files:
|
17 |
- split: train
|
18 |
-
path:
|
19 |
- config_name: translation_efficiency_Muscle
|
20 |
data_files:
|
21 |
- split: train
|
22 |
-
path:
|
23 |
- config_name: translation_efficiency_pc3
|
24 |
data_files:
|
25 |
- split: train
|
26 |
-
path:
|
27 |
- config_name: modification_site
|
28 |
data_files:
|
29 |
- split: train
|
30 |
-
path:
|
31 |
- split: validation
|
32 |
-
path:
|
33 |
- split: test
|
34 |
-
path:
|
35 |
- config_name: ncrna_family_bnoise0
|
36 |
data_files:
|
37 |
- split: train
|
38 |
-
path:
|
39 |
- split: validation
|
40 |
-
path:
|
41 |
- split: test
|
42 |
-
path:
|
43 |
- config_name: ncrna_family_bnoise200
|
44 |
data_files:
|
45 |
- split: train
|
46 |
-
path:
|
47 |
- split: validation
|
48 |
-
path:
|
49 |
- split: test
|
50 |
-
path:
|
51 |
- config_name: protein_abundance_athaliana
|
52 |
data_files:
|
53 |
- split: train
|
54 |
-
path:
|
55 |
- config_name: protein_abundance_dmelanogaster
|
56 |
data_files:
|
57 |
- split: train
|
58 |
-
path:
|
59 |
- config_name: protein_abundance_ecoli
|
60 |
data_files:
|
61 |
- split: train
|
62 |
-
path:
|
63 |
- config_name: protein_abundance_hsapiens
|
64 |
data_files:
|
65 |
- split: train
|
66 |
-
path:
|
67 |
- config_name: protein_abundance_scerevisiae
|
68 |
data_files:
|
69 |
- split: train
|
70 |
-
path:
|
71 |
- config_name: splice_site_acceptor
|
72 |
data_files:
|
73 |
- split: train
|
74 |
-
path:
|
75 |
- split: validation
|
76 |
-
path:
|
77 |
- split: test_danio
|
78 |
-
path:
|
79 |
- split: test_fly
|
80 |
-
path:
|
81 |
- split: test_thaliana
|
82 |
-
path:
|
83 |
- split: test_worm
|
84 |
-
path:
|
85 |
- config_name: splice_site_donor
|
86 |
data_files:
|
87 |
- split: train
|
88 |
-
path:
|
89 |
- split: validation
|
90 |
-
path:
|
91 |
- split: test_danio
|
92 |
-
path:
|
93 |
- split: test_fly
|
94 |
-
path:
|
95 |
- split: test_thaliana
|
96 |
-
path:
|
97 |
- split: test_worm
|
98 |
-
path:
|
99 |
- config_name: transcript_abundance_athaliana
|
100 |
data_files:
|
101 |
- split: train
|
102 |
-
path:
|
103 |
- config_name: transcript_abundance_dmelanogaster
|
104 |
data_files:
|
105 |
- split: train
|
106 |
-
path:
|
107 |
- config_name: transcript_abundance_ecoli
|
108 |
data_files:
|
109 |
- split: train
|
110 |
-
path:
|
111 |
- config_name: transcript_abundance_hsapiens
|
112 |
data_files:
|
113 |
- split: train
|
114 |
-
path:
|
115 |
- config_name: transcript_abundance_hvolcanii
|
116 |
data_files:
|
117 |
- split: train
|
118 |
-
path:
|
119 |
- config_name: transcript_abundance_ppastoris
|
120 |
data_files:
|
121 |
- split: train
|
122 |
-
path:
|
123 |
- config_name: transcript_abundance_scerevisiae
|
124 |
data_files:
|
125 |
- split: train
|
126 |
-
path:
|
127 |
- config_name: mean_ribosome_load
|
128 |
data_files:
|
129 |
- split: train
|
130 |
-
path:
|
131 |
- split: validation
|
132 |
-
path:
|
133 |
- split: test
|
134 |
-
path:
|
|
|
|
|
135 |
---
|
136 |
|
137 |
# AIDO.RNA Benchmark Datasets
|
@@ -166,14 +168,14 @@ configs:
|
|
166 |
|
167 |
## RNA function prediction tasks
|
168 |
The datasets listed below are collected following the setting in Wang et al. (2023) [4].
|
169 |
-
* Cross-species splice site prediction
|
170 |
* 2 datasets: acceptor, donor
|
171 |
* 4 test species: zebrafish, fruit fly, worm, and plant
|
172 |
* input sequence: pre-mRNA fragment
|
173 |
-
* ncRNA family classification
|
174 |
* 2 datasets: boundary noise 0, boundary noise 200
|
175 |
* input sequence: small noncoding RNA with different level of boundary noise
|
176 |
-
* RNA modification site prediction
|
177 |
* 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I.
|
178 |
|
179 |
|
@@ -181,4 +183,7 @@ The datasets listed below are collected following the setting in Wang et al. (20
|
|
181 |
1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
|
182 |
2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
|
183 |
3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
|
184 |
-
4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
|
|
|
|
|
|
|
|
3 |
- config_name: expression_HEK
|
4 |
data_files:
|
5 |
- split: train
|
6 |
+
path: expression_level/HEK_10fold_cv_split.tsv
|
7 |
- config_name: expression_Muscle
|
8 |
data_files:
|
9 |
- split: train
|
10 |
+
path: expression_level/Muscle_10fold_cv_split.tsv
|
11 |
- config_name: expression_pc3
|
12 |
data_files:
|
13 |
- split: train
|
14 |
+
path: expression_level/pc3_10fold_cv_split.tsv
|
15 |
- config_name: translation_efficiency_HEK
|
16 |
data_files:
|
17 |
- split: train
|
18 |
+
path: translation_efficiency/HEK_10fold_cv_split.tsv
|
19 |
- config_name: translation_efficiency_Muscle
|
20 |
data_files:
|
21 |
- split: train
|
22 |
+
path: translation_efficiency/Muscle_10fold_cv_split.tsv
|
23 |
- config_name: translation_efficiency_pc3
|
24 |
data_files:
|
25 |
- split: train
|
26 |
+
path: translation_efficiency/pc3_10fold_cv_split.tsv
|
27 |
- config_name: modification_site
|
28 |
data_files:
|
29 |
- split: train
|
30 |
+
path: modification_site_prediction/train.tsv
|
31 |
- split: validation
|
32 |
+
path: modification_site_prediction/valid.tsv
|
33 |
- split: test
|
34 |
+
path: modification_site_prediction/test.tsv
|
35 |
- config_name: ncrna_family_bnoise0
|
36 |
data_files:
|
37 |
- split: train
|
38 |
+
path: ncrna_family_classification/bnoise0/train.tsv
|
39 |
- split: validation
|
40 |
+
path: ncrna_family_classification/bnoise0/valid.tsv
|
41 |
- split: test
|
42 |
+
path: ncrna_family_classification/bnoise0/test.tsv
|
43 |
- config_name: ncrna_family_bnoise200
|
44 |
data_files:
|
45 |
- split: train
|
46 |
+
path: ncrna_family_classification/bnoise200/train.tsv
|
47 |
- split: validation
|
48 |
+
path: ncrna_family_classification/bnoise200/valid.tsv
|
49 |
- split: test
|
50 |
+
path: ncrna_family_classification/bnoise200/test.tsv
|
51 |
- config_name: protein_abundance_athaliana
|
52 |
data_files:
|
53 |
- split: train
|
54 |
+
path: protein_abundance/athaliana_5fold_cv_split.tsv
|
55 |
- config_name: protein_abundance_dmelanogaster
|
56 |
data_files:
|
57 |
- split: train
|
58 |
+
path: protein_abundance/dmelanogaster_5fold_cv_split.tsv
|
59 |
- config_name: protein_abundance_ecoli
|
60 |
data_files:
|
61 |
- split: train
|
62 |
+
path: protein_abundance/ecoli_5fold_cv_split.tsv
|
63 |
- config_name: protein_abundance_hsapiens
|
64 |
data_files:
|
65 |
- split: train
|
66 |
+
path: protein_abundance/hsapiens_5fold_cv_split.tsv
|
67 |
- config_name: protein_abundance_scerevisiae
|
68 |
data_files:
|
69 |
- split: train
|
70 |
+
path: protein_abundance/scerevisiae_5fold_cv_split.tsv
|
71 |
- config_name: splice_site_acceptor
|
72 |
data_files:
|
73 |
- split: train
|
74 |
+
path: splice_site_prediction/acceptor/train.tsv
|
75 |
- split: validation
|
76 |
+
path: splice_site_prediction/acceptor/valid.tsv
|
77 |
- split: test_danio
|
78 |
+
path: splice_site_prediction/acceptor/test_Danio.tsv
|
79 |
- split: test_fly
|
80 |
+
path: splice_site_prediction/acceptor/test_Fly.tsv
|
81 |
- split: test_thaliana
|
82 |
+
path: splice_site_prediction/acceptor/test_Thaliana.tsv
|
83 |
- split: test_worm
|
84 |
+
path: splice_site_prediction/acceptor/test_Worm.tsv
|
85 |
- config_name: splice_site_donor
|
86 |
data_files:
|
87 |
- split: train
|
88 |
+
path: splice_site_prediction/donor/train.tsv
|
89 |
- split: validation
|
90 |
+
path: splice_site_prediction/donor/valid.tsv
|
91 |
- split: test_danio
|
92 |
+
path: splice_site_prediction/donor/test_Danio.tsv
|
93 |
- split: test_fly
|
94 |
+
path: splice_site_prediction/donor/test_Fly.tsv
|
95 |
- split: test_thaliana
|
96 |
+
path: splice_site_prediction/donor/test_Thaliana.tsv
|
97 |
- split: test_worm
|
98 |
+
path: splice_site_prediction/donor/test_Worm.tsv
|
99 |
- config_name: transcript_abundance_athaliana
|
100 |
data_files:
|
101 |
- split: train
|
102 |
+
path: transcript_abundance/athaliana_5fold_cv_split.tsv
|
103 |
- config_name: transcript_abundance_dmelanogaster
|
104 |
data_files:
|
105 |
- split: train
|
106 |
+
path: transcript_abundance/dmelanogaster_5fold_cv_split.tsv
|
107 |
- config_name: transcript_abundance_ecoli
|
108 |
data_files:
|
109 |
- split: train
|
110 |
+
path: transcript_abundance/ecoli_5fold_cv_split.tsv
|
111 |
- config_name: transcript_abundance_hsapiens
|
112 |
data_files:
|
113 |
- split: train
|
114 |
+
path: transcript_abundance/hsapiens_5fold_cv_split.tsv
|
115 |
- config_name: transcript_abundance_hvolcanii
|
116 |
data_files:
|
117 |
- split: train
|
118 |
+
path: transcript_abundance/hvolcanii_5fold_cv_split.tsv
|
119 |
- config_name: transcript_abundance_ppastoris
|
120 |
data_files:
|
121 |
- split: train
|
122 |
+
path: transcript_abundance/ppastoris_5fold_cv_split.tsv
|
123 |
- config_name: transcript_abundance_scerevisiae
|
124 |
data_files:
|
125 |
- split: train
|
126 |
+
path: transcript_abundance/scerevisiae_5fold_cv_split.tsv
|
127 |
- config_name: mean_ribosome_load
|
128 |
data_files:
|
129 |
- split: train
|
130 |
+
path: mean_ribosome_load/train.tsv
|
131 |
- split: validation
|
132 |
+
path: mean_ribosome_load/validation_random7600.tsv
|
133 |
- split: test
|
134 |
+
path: mean_ribosome_load/test_human7600.tsv
|
135 |
+
tags:
|
136 |
+
- biology
|
137 |
---
|
138 |
|
139 |
# AIDO.RNA Benchmark Datasets
|
|
|
168 |
|
169 |
## RNA function prediction tasks
|
170 |
The datasets listed below are collected following the setting in Wang et al. (2023) [4].
|
171 |
+
* Cross-species splice site prediction [5]
|
172 |
* 2 datasets: acceptor, donor
|
173 |
* 4 test species: zebrafish, fruit fly, worm, and plant
|
174 |
* input sequence: pre-mRNA fragment
|
175 |
+
* ncRNA family classification [6]
|
176 |
* 2 datasets: boundary noise 0, boundary noise 200
|
177 |
* input sequence: small noncoding RNA with different level of boundary noise
|
178 |
+
* RNA modification site prediction [7]
|
179 |
* 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I.
|
180 |
|
181 |
|
|
|
183 |
1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
|
184 |
2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
|
185 |
3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
|
186 |
+
4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
|
187 |
+
5. Nicolas Scalzitti, Arnaud Kress, Romain Orhand, Thomas Weber, Luc Moulinier, Anne Jeannin-Girardon, Pierre Collet, Olivier Poch, and Julie D Thompson. Spliceator: Multi-species splice site prediction using convolutional neural networks. BMC bioinformatics, 22(1):1–26, 2021.
|
188 |
+
6. Teresa Maria Rosaria Noviello, Francesco Ceccarelli, Michele Ceccarelli, and Luigi Cerulo. Deep learning predicts short non-coding rna functions from only raw sequence data. PLoS computational biology, 16(11):e1008415, 2020.
|
189 |
+
7. Zitao Song, Daiyun Huang, Bowen Song, Kunqi Chen, Yiyou Song, Gang Liu, Jionglong Su, João Pedro de Magalhães, Daniel J Rigden, and Jia Meng. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring rna modifications. Nature communications, 12(1):4011, 2021.
|