ShuxianZou commited on
Commit
d0555d8
·
verified ·
1 Parent(s): 2f6aa73

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -46
README.md CHANGED
@@ -3,135 +3,137 @@ configs:
3
  - config_name: expression_HEK
4
  data_files:
5
  - split: train
6
- path: "expression_level/HEK_10fold_cv_split.tsv"
7
  - config_name: expression_Muscle
8
  data_files:
9
  - split: train
10
- path: "expression_level/Muscle_10fold_cv_split.tsv"
11
  - config_name: expression_pc3
12
  data_files:
13
  - split: train
14
- path: "expression_level/pc3_10fold_cv_split.tsv"
15
  - config_name: translation_efficiency_HEK
16
  data_files:
17
  - split: train
18
- path: "translation_efficiency/HEK_10fold_cv_split.tsv"
19
  - config_name: translation_efficiency_Muscle
20
  data_files:
21
  - split: train
22
- path: "translation_efficiency/Muscle_10fold_cv_split.tsv"
23
  - config_name: translation_efficiency_pc3
24
  data_files:
25
  - split: train
26
- path: "translation_efficiency/pc3_10fold_cv_split.tsv"
27
  - config_name: modification_site
28
  data_files:
29
  - split: train
30
- path: "modification_site_prediction/train.tsv"
31
  - split: validation
32
- path: "modification_site_prediction/valid.tsv"
33
  - split: test
34
- path: "modification_site_prediction/test.tsv"
35
  - config_name: ncrna_family_bnoise0
36
  data_files:
37
  - split: train
38
- path: "ncrna_family_classification/bnoise0/train.tsv"
39
  - split: validation
40
- path: "ncrna_family_classification/bnoise0/valid.tsv"
41
  - split: test
42
- path: "ncrna_family_classification/bnoise0/test.tsv"
43
  - config_name: ncrna_family_bnoise200
44
  data_files:
45
  - split: train
46
- path: "ncrna_family_classification/bnoise200/train.tsv"
47
  - split: validation
48
- path: "ncrna_family_classification/bnoise200/valid.tsv"
49
  - split: test
50
- path: "ncrna_family_classification/bnoise200/test.tsv"
51
  - config_name: protein_abundance_athaliana
52
  data_files:
53
  - split: train
54
- path: "protein_abundance/athaliana_5fold_cv_split.tsv"
55
  - config_name: protein_abundance_dmelanogaster
56
  data_files:
57
  - split: train
58
- path: "protein_abundance/dmelanogaster_5fold_cv_split.tsv"
59
  - config_name: protein_abundance_ecoli
60
  data_files:
61
  - split: train
62
- path: "protein_abundance/ecoli_5fold_cv_split.tsv"
63
  - config_name: protein_abundance_hsapiens
64
  data_files:
65
  - split: train
66
- path: "protein_abundance/hsapiens_5fold_cv_split.tsv"
67
  - config_name: protein_abundance_scerevisiae
68
  data_files:
69
  - split: train
70
- path: "protein_abundance/scerevisiae_5fold_cv_split.tsv"
71
  - config_name: splice_site_acceptor
72
  data_files:
73
  - split: train
74
- path: "splice_site_prediction/acceptor/train.tsv"
75
  - split: validation
76
- path: "splice_site_prediction/acceptor/valid.tsv"
77
  - split: test_danio
78
- path: "splice_site_prediction/acceptor/test_Danio.tsv"
79
  - split: test_fly
80
- path: "splice_site_prediction/acceptor/test_Fly.tsv"
81
  - split: test_thaliana
82
- path: "splice_site_prediction/acceptor/test_Thaliana.tsv"
83
  - split: test_worm
84
- path: "splice_site_prediction/acceptor/test_Worm.tsv"
85
  - config_name: splice_site_donor
86
  data_files:
87
  - split: train
88
- path: "splice_site_prediction/donor/train.tsv"
89
  - split: validation
90
- path: "splice_site_prediction/donor/valid.tsv"
91
  - split: test_danio
92
- path: "splice_site_prediction/donor/test_Danio.tsv"
93
  - split: test_fly
94
- path: "splice_site_prediction/donor/test_Fly.tsv"
95
  - split: test_thaliana
96
- path: "splice_site_prediction/donor/test_Thaliana.tsv"
97
  - split: test_worm
98
- path: "splice_site_prediction/donor/test_Worm.tsv"
99
  - config_name: transcript_abundance_athaliana
100
  data_files:
101
  - split: train
102
- path: "transcript_abundance/athaliana_5fold_cv_split.tsv"
103
  - config_name: transcript_abundance_dmelanogaster
104
  data_files:
105
  - split: train
106
- path: "transcript_abundance/dmelanogaster_5fold_cv_split.tsv"
107
  - config_name: transcript_abundance_ecoli
108
  data_files:
109
  - split: train
110
- path: "transcript_abundance/ecoli_5fold_cv_split.tsv"
111
  - config_name: transcript_abundance_hsapiens
112
  data_files:
113
  - split: train
114
- path: "transcript_abundance/hsapiens_5fold_cv_split.tsv"
115
  - config_name: transcript_abundance_hvolcanii
116
  data_files:
117
  - split: train
118
- path: "transcript_abundance/hvolcanii_5fold_cv_split.tsv"
119
  - config_name: transcript_abundance_ppastoris
120
  data_files:
121
  - split: train
122
- path: "transcript_abundance/ppastoris_5fold_cv_split.tsv"
123
  - config_name: transcript_abundance_scerevisiae
124
  data_files:
125
  - split: train
126
- path: "transcript_abundance/scerevisiae_5fold_cv_split.tsv"
127
  - config_name: mean_ribosome_load
128
  data_files:
129
  - split: train
130
- path: "mean_ribosome_load/train.tsv"
131
  - split: validation
132
- path: "mean_ribosome_load/validation_random7600.tsv"
133
  - split: test
134
- path: "mean_ribosome_load/test_human7600.tsv"
 
 
135
  ---
136
 
137
  # AIDO.RNA Benchmark Datasets
@@ -166,14 +168,14 @@ configs:
166
 
167
  ## RNA function prediction tasks
168
  The datasets listed below are collected following the setting in Wang et al. (2023) [4].
169
- * Cross-species splice site prediction
170
  * 2 datasets: acceptor, donor
171
  * 4 test species: zebrafish, fruit fly, worm, and plant
172
  * input sequence: pre-mRNA fragment
173
- * ncRNA family classification
174
  * 2 datasets: boundary noise 0, boundary noise 200
175
  * input sequence: small noncoding RNA with different level of boundary noise
176
- * RNA modification site prediction
177
  * 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I.
178
 
179
 
@@ -181,4 +183,7 @@ The datasets listed below are collected following the setting in Wang et al. (20
181
  1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
182
  2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
183
  3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
184
- 4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
 
 
 
 
3
  - config_name: expression_HEK
4
  data_files:
5
  - split: train
6
+ path: expression_level/HEK_10fold_cv_split.tsv
7
  - config_name: expression_Muscle
8
  data_files:
9
  - split: train
10
+ path: expression_level/Muscle_10fold_cv_split.tsv
11
  - config_name: expression_pc3
12
  data_files:
13
  - split: train
14
+ path: expression_level/pc3_10fold_cv_split.tsv
15
  - config_name: translation_efficiency_HEK
16
  data_files:
17
  - split: train
18
+ path: translation_efficiency/HEK_10fold_cv_split.tsv
19
  - config_name: translation_efficiency_Muscle
20
  data_files:
21
  - split: train
22
+ path: translation_efficiency/Muscle_10fold_cv_split.tsv
23
  - config_name: translation_efficiency_pc3
24
  data_files:
25
  - split: train
26
+ path: translation_efficiency/pc3_10fold_cv_split.tsv
27
  - config_name: modification_site
28
  data_files:
29
  - split: train
30
+ path: modification_site_prediction/train.tsv
31
  - split: validation
32
+ path: modification_site_prediction/valid.tsv
33
  - split: test
34
+ path: modification_site_prediction/test.tsv
35
  - config_name: ncrna_family_bnoise0
36
  data_files:
37
  - split: train
38
+ path: ncrna_family_classification/bnoise0/train.tsv
39
  - split: validation
40
+ path: ncrna_family_classification/bnoise0/valid.tsv
41
  - split: test
42
+ path: ncrna_family_classification/bnoise0/test.tsv
43
  - config_name: ncrna_family_bnoise200
44
  data_files:
45
  - split: train
46
+ path: ncrna_family_classification/bnoise200/train.tsv
47
  - split: validation
48
+ path: ncrna_family_classification/bnoise200/valid.tsv
49
  - split: test
50
+ path: ncrna_family_classification/bnoise200/test.tsv
51
  - config_name: protein_abundance_athaliana
52
  data_files:
53
  - split: train
54
+ path: protein_abundance/athaliana_5fold_cv_split.tsv
55
  - config_name: protein_abundance_dmelanogaster
56
  data_files:
57
  - split: train
58
+ path: protein_abundance/dmelanogaster_5fold_cv_split.tsv
59
  - config_name: protein_abundance_ecoli
60
  data_files:
61
  - split: train
62
+ path: protein_abundance/ecoli_5fold_cv_split.tsv
63
  - config_name: protein_abundance_hsapiens
64
  data_files:
65
  - split: train
66
+ path: protein_abundance/hsapiens_5fold_cv_split.tsv
67
  - config_name: protein_abundance_scerevisiae
68
  data_files:
69
  - split: train
70
+ path: protein_abundance/scerevisiae_5fold_cv_split.tsv
71
  - config_name: splice_site_acceptor
72
  data_files:
73
  - split: train
74
+ path: splice_site_prediction/acceptor/train.tsv
75
  - split: validation
76
+ path: splice_site_prediction/acceptor/valid.tsv
77
  - split: test_danio
78
+ path: splice_site_prediction/acceptor/test_Danio.tsv
79
  - split: test_fly
80
+ path: splice_site_prediction/acceptor/test_Fly.tsv
81
  - split: test_thaliana
82
+ path: splice_site_prediction/acceptor/test_Thaliana.tsv
83
  - split: test_worm
84
+ path: splice_site_prediction/acceptor/test_Worm.tsv
85
  - config_name: splice_site_donor
86
  data_files:
87
  - split: train
88
+ path: splice_site_prediction/donor/train.tsv
89
  - split: validation
90
+ path: splice_site_prediction/donor/valid.tsv
91
  - split: test_danio
92
+ path: splice_site_prediction/donor/test_Danio.tsv
93
  - split: test_fly
94
+ path: splice_site_prediction/donor/test_Fly.tsv
95
  - split: test_thaliana
96
+ path: splice_site_prediction/donor/test_Thaliana.tsv
97
  - split: test_worm
98
+ path: splice_site_prediction/donor/test_Worm.tsv
99
  - config_name: transcript_abundance_athaliana
100
  data_files:
101
  - split: train
102
+ path: transcript_abundance/athaliana_5fold_cv_split.tsv
103
  - config_name: transcript_abundance_dmelanogaster
104
  data_files:
105
  - split: train
106
+ path: transcript_abundance/dmelanogaster_5fold_cv_split.tsv
107
  - config_name: transcript_abundance_ecoli
108
  data_files:
109
  - split: train
110
+ path: transcript_abundance/ecoli_5fold_cv_split.tsv
111
  - config_name: transcript_abundance_hsapiens
112
  data_files:
113
  - split: train
114
+ path: transcript_abundance/hsapiens_5fold_cv_split.tsv
115
  - config_name: transcript_abundance_hvolcanii
116
  data_files:
117
  - split: train
118
+ path: transcript_abundance/hvolcanii_5fold_cv_split.tsv
119
  - config_name: transcript_abundance_ppastoris
120
  data_files:
121
  - split: train
122
+ path: transcript_abundance/ppastoris_5fold_cv_split.tsv
123
  - config_name: transcript_abundance_scerevisiae
124
  data_files:
125
  - split: train
126
+ path: transcript_abundance/scerevisiae_5fold_cv_split.tsv
127
  - config_name: mean_ribosome_load
128
  data_files:
129
  - split: train
130
+ path: mean_ribosome_load/train.tsv
131
  - split: validation
132
+ path: mean_ribosome_load/validation_random7600.tsv
133
  - split: test
134
+ path: mean_ribosome_load/test_human7600.tsv
135
+ tags:
136
+ - biology
137
  ---
138
 
139
  # AIDO.RNA Benchmark Datasets
 
168
 
169
  ## RNA function prediction tasks
170
  The datasets listed below are collected following the setting in Wang et al. (2023) [4].
171
+ * Cross-species splice site prediction [5]
172
  * 2 datasets: acceptor, donor
173
  * 4 test species: zebrafish, fruit fly, worm, and plant
174
  * input sequence: pre-mRNA fragment
175
+ * ncRNA family classification [6]
176
  * 2 datasets: boundary noise 0, boundary noise 200
177
  * input sequence: small noncoding RNA with different level of boundary noise
178
+ * RNA modification site prediction [7]
179
  * 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I.
180
 
181
 
 
183
  1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
184
  2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
185
  3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
186
+ 4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
187
+ 5. Nicolas Scalzitti, Arnaud Kress, Romain Orhand, Thomas Weber, Luc Moulinier, Anne Jeannin-Girardon, Pierre Collet, Olivier Poch, and Julie D Thompson. Spliceator: Multi-species splice site prediction using convolutional neural networks. BMC bioinformatics, 22(1):1–26, 2021.
188
+ 6. Teresa Maria Rosaria Noviello, Francesco Ceccarelli, Michele Ceccarelli, and Luigi Cerulo. Deep learning predicts short non-coding rna functions from only raw sequence data. PLoS computational biology, 16(11):e1008415, 2020.
189
+ 7. Zitao Song, Daiyun Huang, Bowen Song, Kunqi Chen, Yiyou Song, Gang Liu, Jionglong Su, João Pedro de Magalhães, Daniel J Rigden, and Jia Meng. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring rna modifications. Nature communications, 12(1):4011, 2021.