# Dataset Card for Contact Prediction Dataset for RAGProtein ### Dataset Summary Contact map prediction aims to determine whether two residues, $i$ and $j$, are in contact or not, based on their distance with a certain threshold ($<$8 Angstrom). This task is an important part of the early Alphafold version for structural prediction. ## Dataset Structure ### Data Instances For each instance, there is a string of the protein sequences, a sequence for the contact labels. Each of the sub-labels "[2, 3]" indicates the 3rd residue are in contact with the 4th residue (start from index 0). See the [Contact map prediction dataset viewer](https://huggingface.co/datasets/Bo1015/contact_prediction_binary/viewer/default/test) to explore more examples. ``` {'seq':'QNLLKNLAASLGRKPFVADKQGVYRLTIDKHLVMLAPHGSELVLRTPIDAPMLREGNNVNVTLLRSLMQQALAWAKRYPQTLVLDDCGQLVLEARLRLQELDTHGLQEVINKQLALLEHLIPQLTP' 'label': [ [ 0, 0 ], [ 0, 1 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 101 ], [ 2, 2 ], [ 2, 3 ], [ 2, 4 ], [ 3, 3 ], [ 3, 4 ], [ 3, 5 ], [ 3, 99 ], [ 3, 100 ], [ 3, 101 ], [ 4, 4 ], [ 4, 5 ], [ 4, 53 ], ...], 'msa': 'QNLLKNLAASLGRKPFVADKQGVYRLTIDKHLVMLAPHGSELVLRTPIDAPMLREGNNVNVTLLRSLMQQALAWAKRYPQTLVLDDCGQLVLEARLRLQELDTHGLQEVINKQLALLEHLIPQLTP|QNLLKNLAASLGRKPFVADKQGVYRLTIDKHLVMLAPHGSELVLRTPIDAPMLREGNNVNVTLLRSLMQQALAWAKRYPQTLVLDDCGQLVLEARLRLQELDTHGLQEVINKQLALLEHLIPQLTP...', 'str_emb': [seq_len, 384]} ``` The average for the `seq` and the `label` are provided below: | Feature | Mean Count | | ---------- | ---------------- | | seq | 249 | | label | 1,500 | ### Data Fields - `seq`: a string containing the protein sequence - `label`: a string containing the contact label of each residue pair. - `msa`: "|" seperated MSA sequences - `str_emb`: AIDO.StructureTokenizer generated structure embedding from AF2 predicted structures ### Data Splits The contact map prediction dataset has 3 splits: _train_, _validation_, and _test_. Below are the statistics of the dataset. | Dataset Split | Number of Instances in Split | | ------------- | ------------------------------------------- | | Train | 12,041 | | Validation | 1,505 | | Test | 1,505 | ### Source Data #### Initial Data Collection and Normalization The [trRosetta dataset](https://www.pnas.org/doi/10.1073/pnas.1914677117) is employed as the initilized dataset. ### Licensing Information The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). ### Processed data collection Single sequence data are collected from this paper: ``` @misc{chen2024xtrimopglm, title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein}, author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others}, year={2024}, eprint={2401.06199}, archivePrefix={arXiv}, primaryClass={cs.CL}, note={arXiv preprint arXiv:2401.06199} } ```