|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Wikicorpus dataset.""" |
|
|
|
import re |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{reese-etal-2010-wikicorpus, |
|
title = "{W}ikicorpus: A Word-Sense Disambiguated Multilingual {W}ikipedia Corpus", |
|
author = "Reese, Samuel and |
|
Boleda, Gemma and |
|
Cuadros, Montse and |
|
Padr{\'o}, Llu{\'i}s and |
|
Rigau, German", |
|
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)", |
|
month = may, |
|
year = "2010", |
|
address = "Valletta, Malta", |
|
publisher = "European Language Resources Association (ELRA)", |
|
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/222_Paper.pdf", |
|
abstract = "This article presents a new freely available trilingual corpus (Catalan, Spanish, English) that contains large portions of the Wikipedia and has been automatically enriched with linguistic information. To our knowledge, this is the largest such corpus that is freely available to the community: In its present version, it contains over 750 million words. The corpora have been annotated with lemma and part of speech information using the open source library FreeLing. Also, they have been sense annotated with the state of the art Word Sense Disambiguation algorithm UKB. As UKB assigns WordNet senses, and WordNet has been aligned across languages via the InterLingual Index, this sort of annotation opens the way to massive explorations in lexical semantics that were not possible before. We present a first attempt at creating a trilingual lexical resource from the sense-tagged Wikipedia corpora, namely, WikiNet. Moreover, we present two by-products of the project that are of use for the NLP community: An open source Java-based parser for Wikipedia pages developed for the construction of the corpus, and the integration of the WSD algorithm UKB in FreeLing.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Wikicorpus is a trilingual corpus (Catalan, Spanish, English) that contains large portions of the Wikipedia (based on a 2006 dump) and has been automatically enriched with linguistic information. In its present version, it contains over 750 million words. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.cs.upc.edu/~nlp/wikicorpus/" |
|
|
|
_LICENSE = "GNU Free Documentation License" |
|
|
|
_URLs = "https://www.cs.upc.edu/~nlp/wikicorpus/{form}.{language}.tgz" |
|
|
|
_LANGUAGES = ["ca", "es", "en"] |
|
_FORMS = ["raw", "tagged"] |
|
|
|
METADATA_PATTERN = re.compile(r'.+id="(?P<id>[^"]+)".+title="(?P<title>[^"]+)".+') |
|
|
|
|
|
class WikicorpusConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Wikicorpus.""" |
|
|
|
def __init__(self, form=None, language=None, **kwargs): |
|
""" |
|
Args: |
|
form: form of the dataset. |
|
language: language of the dataset. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__( |
|
name=f"{form}_{language}", |
|
description=f"Wikicorpus dataset in {form} form and {language} language.", |
|
**kwargs, |
|
) |
|
self.form = form |
|
self.language = language |
|
|
|
|
|
class Wikicorpus(datasets.GeneratorBasedBuilder): |
|
"""Wikicorpus dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIG_CLASS = WikicorpusConfig |
|
BUILDER_CONFIGS = [WikicorpusConfig(form=form, language=language) for form in _FORMS for language in _LANGUAGES] |
|
|
|
def _info(self): |
|
if self.config.form == "raw": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.form == "tagged": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"sentence": datasets.Sequence(datasets.Value("string")), |
|
"lemmas": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence(datasets.Value("string")), |
|
"wordnet_senses": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url_to_download = _URLs.format(form=self.config.form, language=self.config.language) |
|
archive = dl_manager.download(url_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
for file_idx, (path, f) in enumerate(files): |
|
example = {} |
|
|
|
text = [] |
|
|
|
words = [] |
|
lemmas = [] |
|
pos_tags = [] |
|
wordnet_senses = [] |
|
for row_idx, row in enumerate(f): |
|
row = row.decode("latin-1") |
|
if self.config.form == "raw": |
|
if row.startswith("<doc id"): |
|
metadata_match = METADATA_PATTERN.match(row) |
|
example["id"] = metadata_match.group("id") if metadata_match else "" |
|
example["title"] = metadata_match.group("title") if metadata_match else "" |
|
elif row.startswith("</doc>"): |
|
pass |
|
elif row.startswith("ENDOFARTICLE"): |
|
yield f"{file_idx}_{row_idx}", { |
|
"id": example["id"], |
|
"title": example["title"], |
|
"text": "\n".join(text).strip(), |
|
} |
|
example = {} |
|
text = [] |
|
else: |
|
text.append(row) |
|
elif self.config.form == "tagged": |
|
if row.startswith("<doc id"): |
|
metadata_match = METADATA_PATTERN.match(row) |
|
example["id"] = metadata_match.group("id") if metadata_match else "" |
|
example["title"] = metadata_match.group("title") if metadata_match else "" |
|
elif row.startswith("</doc>"): |
|
pass |
|
elif row.startswith("ENDOFARTICLE") or row.startswith("\n"): |
|
if len(words) > 1: |
|
yield f"{file_idx}_{row_idx}", { |
|
"id": example["id"], |
|
"title": example["title"], |
|
"sentence": words, |
|
"lemmas": lemmas, |
|
"pos_tags": pos_tags, |
|
"wordnet_senses": wordnet_senses, |
|
} |
|
words = [] |
|
lemmas = [] |
|
pos_tags = [] |
|
wordnet_senses = [] |
|
if row.startswith("ENDOFARTICLE"): |
|
example = {} |
|
else: |
|
splits = row.split() |
|
for tag, tags in zip(splits, [words, lemmas, pos_tags, wordnet_senses]): |
|
tags.append(tag) |
|
|