Update README.md
Browse files
README.md
CHANGED
@@ -17,3 +17,125 @@ configs:
|
|
17 |
- split: train
|
18 |
path: data/train-*
|
19 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
- split: train
|
18 |
path: data/train-*
|
19 |
---
|
20 |
+
|
21 |
+
```python
|
22 |
+
|
23 |
+
import os
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
import torch
|
27 |
+
from transformers import ModernBertForSequenceClassification, pipeline
|
28 |
+
|
29 |
+
_GPU_ID = os.getenv("CUDA_VISIBLE_DEVICES", "0")
|
30 |
+
|
31 |
+
|
32 |
+
def load_model(gpu_index=0):
|
33 |
+
model = ModernBertForSequenceClassification.from_pretrained(
|
34 |
+
"flozi00/GermanEduScorer-ModernBERT-base",
|
35 |
+
reference_compile=False,
|
36 |
+
attn_implementation="sdpa",
|
37 |
+
).to(torch.bfloat16)
|
38 |
+
|
39 |
+
model = torch.compile(model, dynamic=True, mode="max-autotune")
|
40 |
+
|
41 |
+
pipe = pipeline(
|
42 |
+
"text-classification",
|
43 |
+
model=model,
|
44 |
+
tokenizer="flozi00/GermanEduScorer-ModernBERT-base",
|
45 |
+
device=gpu_index,
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
)
|
48 |
+
|
49 |
+
return pipe
|
50 |
+
|
51 |
+
pipe0 = load_model(0)
|
52 |
+
tokenizer_kwargs = {"truncation": True}
|
53 |
+
|
54 |
+
BAD_WORDS = [
|
55 |
+
"Sofort lieferbar",
|
56 |
+
]
|
57 |
+
|
58 |
+
|
59 |
+
def process_chunk(pipe, texts):
|
60 |
+
if not texts:
|
61 |
+
return []
|
62 |
+
return [
|
63 |
+
int(x["label"])
|
64 |
+
for x in pipe(
|
65 |
+
texts,
|
66 |
+
batch_size=256,
|
67 |
+
truncation=True,
|
68 |
+
max_length=1024,
|
69 |
+
)
|
70 |
+
]
|
71 |
+
|
72 |
+
def classification_wrapper(text_list: list):
|
73 |
+
return process_chunk(pipe0, text_list)
|
74 |
+
|
75 |
+
def map_edu(example):
|
76 |
+
example["content"] = example["text"]
|
77 |
+
example["label"] = classification_wrapper(example["text"])
|
78 |
+
return example
|
79 |
+
|
80 |
+
for SET_ID in ["0", "1", "2", "3"]:
|
81 |
+
base_url = "https://huggingface.co/datasets/HuggingFaceFW/fineweb-2/resolve/main/data/deu_Latn/train/"
|
82 |
+
data_files = {
|
83 |
+
"train": [base_url + f"00{SET_ID}_0000{i}.parquet" for i in range(10)]
|
84 |
+
+ [base_url + f"00{SET_ID}_000{i}.parquet" for i in range(10, 38)]
|
85 |
+
}
|
86 |
+
|
87 |
+
fineweb = datasets.load_dataset(
|
88 |
+
"parquet",
|
89 |
+
data_files=data_files,
|
90 |
+
split="train",
|
91 |
+
num_proc=4,
|
92 |
+
cache_dir=f"./cache_fineweb_{SET_ID}",
|
93 |
+
)
|
94 |
+
|
95 |
+
chunk_size = 100_000
|
96 |
+
part_size = len(fineweb) // 4
|
97 |
+
total_samples = part_size * (int(_GPU_ID) + 1)
|
98 |
+
output_path = f"fineweb2_edu_4up_german_split_{int(SET_ID)+1}-of-4"
|
99 |
+
|
100 |
+
for i in range(part_size * int(_GPU_ID), total_samples, chunk_size):
|
101 |
+
end_idx = min(i + chunk_size, total_samples)
|
102 |
+
checkpoint_path = f"chunks/{output_path}_chunk_{i}"
|
103 |
+
|
104 |
+
# Try to load existing chunk
|
105 |
+
try:
|
106 |
+
dset = datasets.load_from_disk(checkpoint_path)
|
107 |
+
print(f"Chunk {i} to {end_idx} already processed, skipping...")
|
108 |
+
continue
|
109 |
+
except Exception:
|
110 |
+
print(f"Processing chunk {i} to {end_idx} of {total_samples}")
|
111 |
+
|
112 |
+
chunk = fineweb.select(range(i, end_idx))
|
113 |
+
processed_chunk = chunk.map(
|
114 |
+
map_edu,
|
115 |
+
remove_columns=chunk.column_names,
|
116 |
+
batch_size=1024,
|
117 |
+
batched=True,
|
118 |
+
).filter(lambda x: x["label"] >= 4, num_proc=8)
|
119 |
+
processed_chunk = processed_chunk.rename_column("content", "text")
|
120 |
+
|
121 |
+
processed_chunk.save_to_disk(checkpoint_path)
|
122 |
+
print(f"Saved checkpoint to {checkpoint_path}")
|
123 |
+
|
124 |
+
if i % 1_000_000 == 0 and _GPU_ID == "0" and i > 0:
|
125 |
+
sets_to_push = []
|
126 |
+
# list all folders in the chunks directory
|
127 |
+
for folder in os.listdir("chunks"):
|
128 |
+
# load the dataset
|
129 |
+
sets_to_push.append(datasets.load_from_disk(f"chunks/{folder}"))
|
130 |
+
state_ds = datasets.concatenate_datasets(sets_to_push)
|
131 |
+
for bad_word in BAD_WORDS:
|
132 |
+
state_ds = state_ds.filter(
|
133 |
+
lambda x: bad_word not in x["text"], num_proc=8
|
134 |
+
)
|
135 |
+
state_ds = state_ds.filter(
|
136 |
+
lambda x: len(x["text"]) > 1024 and len(x["text"]) <= 100_000,
|
137 |
+
num_proc=8,
|
138 |
+
)
|
139 |
+
state_ds.push_to_hub("Fineweb2-German-Eduscore-4andMore")
|
140 |
+
|
141 |
+
```
|