|
|
|
|
|
import json |
|
import argparse |
|
import random |
|
import os |
|
import pandas as pd |
|
import datasets |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SNIPPET_USER_MSG = """Analyse following RPM build log snippet. Describe contents accurately, without speculation or suggestions for resolution. |
|
Your analysis must be as concise as possible, while keeping relevant information intact. |
|
Snippet: |
|
{}""" |
|
|
|
FULL_CONVERSATION_MSG = """Given following log snippets, their explanation, and nothing else, explain what failure, if any, occurred during build of this package. |
|
|
|
Snippets are in a format of [X] : [Y], where [X] is a log snippet, and [Y] is the explanation. |
|
|
|
Snippets are delimited with '================'. |
|
|
|
Drawing on information from all snippets, provide a concise explanation of the issue and recommend a solution. |
|
|
|
Explanation of the issue, and recommended solution, should take a handful of sentences. |
|
|
|
Snippets: |
|
|
|
{} |
|
""" |
|
|
|
ANALYSIS_MSG = "Issue: {issue}\nResolution: {resolution}" |
|
|
|
def n_snippets(logs: dict): |
|
"""Count number of snippets in a log.""" |
|
cnt = 0 |
|
for log in logs: |
|
if logs[log]: |
|
cnt += len(logs[log]["snippets"]) |
|
return cnt |
|
|
|
|
|
def none_snippet(logs: dict): |
|
"""Presence of snippet with text set to `None`""" |
|
for log in logs: |
|
if logs[log]: |
|
for snippet in logs[log]["snippets"]: |
|
if not snippet["text"]: |
|
return True |
|
return False |
|
|
|
|
|
def total_snippet_annotation_len(logs: dict): |
|
"""Total length of snippet annotations""" |
|
total = 0 |
|
for log in logs: |
|
if logs[log]: |
|
for snippet in logs[log]["snippets"]: |
|
if snippet["user_comment"]: |
|
total += len(snippet["user_comment"]) |
|
return total |
|
|
|
|
|
def fix_snippets(logs: dict): |
|
"""Set snippet text to equal log content delimited by indices""" |
|
for log in logs: |
|
if logs[log]: |
|
for snippet in logs[log]["snippets"]: |
|
snippet_text = logs[log]["content"][snippet["start_index"]:snippet["end_index"]] |
|
if "text" not in snippet or not snippet["text"]: |
|
snippet["text"] = snippet_text |
|
return logs |
|
|
|
|
|
def cleanup(dataset: pd.DataFrame): |
|
"""Cleaning the dataset |
|
|
|
For sake of simplicity we are going to assume following. |
|
|
|
1. Descriptions of issues and fixes shorter than `10` chars are not useful. |
|
2. Submissions without annotated snippets are not useful. |
|
3. Submissions with total length of snippet annotations shorter than `10` chars are not useful. |
|
4. Submissions with snippets set to `None` are not useful.""" |
|
|
|
|
|
filled_snippets = dataset.logs.apply(fix_snippets) |
|
dataset['filled_snippets'] = filled_snippets |
|
dataset.logs = dataset.filled_snippets |
|
|
|
|
|
dataset['how_to_fix_len'] = dataset.how_to_fix.apply(len) |
|
dataset['fail_reason_len'] = dataset.fail_reason.apply(len) |
|
dataset["tot_snippet_annot_len"] = dataset['logs'].apply(total_snippet_annotation_len) |
|
|
|
|
|
almost_empty_fix = dataset['how_to_fix_len'] < 10 |
|
almost_empty_reason = dataset['fail_reason_len'] < 10 |
|
almost_empty_snippet_annotations = dataset["tot_snippet_annot_len"] < 10 |
|
none_snippets = dataset['logs'].apply(none_snippet) |
|
|
|
sparse_annotation_criteria = ( |
|
almost_empty_snippet_annotations | |
|
almost_empty_reason | |
|
almost_empty_fix | |
|
none_snippets) |
|
|
|
sparse_count = dataset[sparse_annotation_criteria].shape[0] |
|
print( |
|
f"Total sparse annotations: {sparse_count} \ |
|
Relative to original dataset: {sparse_count / dataset.shape[0]}") |
|
|
|
|
|
final_dataset = dataset[~sparse_annotation_criteria] |
|
final_dataset.reindex() |
|
|
|
return final_dataset |
|
|
|
|
|
def save_dataset(dataset: pd.DataFrame, path: str): |
|
"""Turn dataframe into parquet""" |
|
dataset.to_parquet(path) |
|
|
|
|
|
def load_data(data_path: str): |
|
"""Load json files and return them as list of dicts""" |
|
data = [] |
|
for root, _, files in os.walk(data_path): |
|
for file in files: |
|
if file.endswith(".json"): |
|
with open(os.path.join(root, file), 'r', encoding='utf-8') as f: |
|
parsed_data = json.load(f) |
|
parsed_data["file_name"] = file |
|
data.append(parsed_data) |
|
|
|
return data |
|
|
|
|
|
def make_snippet_qa(snippet: dict, user_message_template: str): |
|
"""Create a QnA pair from a snippet""" |
|
return { |
|
"question": user_message_template.format(snippet["text"]), |
|
"answer": snippet["user_comment"] |
|
} |
|
|
|
|
|
def make_analysis_qa(snippets, issue, resolution, user_message_template, |
|
analysis_template): |
|
"""Create QnA pair from entire annotation.""" |
|
formatted_snippets = "\n=============\n".join( |
|
[ |
|
f'[{e["text"]}]: [{e["user_comment"]}]' |
|
for e in snippets |
|
] |
|
) |
|
|
|
return { |
|
"question": user_message_template.format(formatted_snippets), |
|
"answer": analysis_template.format(issue=issue, resolution=resolution) |
|
} |
|
|
|
|
|
def to_qa_pairs(dataframe: pd.DataFrame): |
|
"""Turn dataframe into list of QnA pairs for training.""" |
|
qa_pairs = [] |
|
|
|
for row in dataframe.iterrows(): |
|
sample_snippet_messages = [] |
|
|
|
|
|
data = row[1] |
|
|
|
logfiles = data.logs |
|
|
|
annotated_snippets = [] |
|
for file in logfiles: |
|
if logfiles[file] and "snippets" in logfiles[file]: |
|
for snippet in logfiles[file]["snippets"]: |
|
sample_snippet_messages.append( |
|
make_snippet_qa( |
|
snippet, |
|
SNIPPET_USER_MSG) |
|
) |
|
annotated_snippets.append(snippet) |
|
qa_pairs.append( |
|
make_analysis_qa( |
|
annotated_snippets, |
|
data.fail_reason, |
|
data.how_to_fix, |
|
FULL_CONVERSATION_MSG, |
|
ANALYSIS_MSG)) |
|
|
|
qa_pairs.extend(sample_snippet_messages) |
|
return qa_pairs |
|
|
|
|
|
def split_dataset(dataset: pd.DataFrame, seed: int): |
|
"""Splits dataset into training and evaluation subset""" |
|
split = dataset.shape[0] // 5 |
|
dataset = dataset.sample(frac=1.0, random_state=seed) |
|
train_dataset, test_dataset = dataset[split:], dataset[:split] |
|
|
|
return train_dataset, test_dataset |
|
|
|
|
|
def main(hf_token, data_path="results/results", sanitize=True, |
|
seed=42, repo_id="fedora-copr/log_detective_qna", |
|
): |
|
"""Process entire directory and turn contents into parquet files.""" |
|
|
|
|
|
random.seed = seed |
|
|
|
data = load_data(data_path) |
|
full_dataset = pd.DataFrame.from_records(data) |
|
|
|
if sanitize: |
|
full_dataset = cleanup(full_dataset) |
|
|
|
|
|
train_dataset, test_dataset = split_dataset(full_dataset, seed) |
|
|
|
|
|
train_dataset, test_dataset = to_qa_pairs(train_dataset), to_qa_pairs(test_dataset) |
|
|
|
dataset = { |
|
"train": datasets.Dataset.from_list(train_dataset), |
|
"test": datasets.Dataset.from_list(test_dataset)} |
|
|
|
dataset = datasets.DatasetDict(dataset) |
|
|
|
dataset.push_to_hub(repo_id=repo_id, private=True, token=hf_token) |
|
|
|
print("Saving full dataset as parquet...") |
|
save_dataset(full_dataset, "full_dataset.parquet") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser("Dataset Processor") |
|
parser.add_argument( |
|
"data_path", type=str, default="results/results", help="Path to annotations.") |
|
parser.add_argument( |
|
"--sanitize", type=bool, default=True, help="Run basic data cleanup procedure") |
|
parser.add_argument( |
|
"--seed", type=int, default=42, |
|
help="Seed for random generator to be used when generating split.") |
|
parser.add_argument( |
|
"--repo_id", type=str, default="fedora-copr/log_detective_qna", |
|
help="ID of Hugging Face repo") |
|
parser.add_argument("--token", type=str, required=True, help="Token for Hugging face") |
|
args = parser.parse_args() |
|
|
|
main( |
|
data_path=args.data_path, sanitize=args.sanitize, |
|
seed=args.seed, repo_id=args.repo_id, hf_token=args.token) |
|
|