Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1M - 10M
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """The amazon polarity dataset for text classification.""" | |
| import csv | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{mcauley2013hidden, | |
| title={Hidden factors and hidden topics: understanding rating dimensions with review text}, | |
| author={McAuley, Julian and Leskovec, Jure}, | |
| booktitle={Proceedings of the 7th ACM conference on Recommender systems}, | |
| pages={165--172}, | |
| year={2013} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The Amazon reviews dataset consists of reviews from amazon. | |
| The data span a period of 18 years, including ~35 million reviews up to March 2013. | |
| Reviews include product and user information, ratings, and a plaintext review. | |
| """ | |
| _HOMEPAGE = "https://registry.opendata.aws/" | |
| _LICENSE = "Apache License 2.0" | |
| _URLs = { | |
| "amazon_polarity": "https://s3.amazonaws.com/fast-ai-nlp/amazon_review_polarity_csv.tgz", | |
| } | |
| class AmazonPolarityConfig(datasets.BuilderConfig): | |
| """BuilderConfig for AmazonPolarity.""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for AmazonPolarity. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(AmazonPolarityConfig, self).__init__(**kwargs) | |
| class AmazonPolarity(datasets.GeneratorBasedBuilder): | |
| """Amazon Polarity Classification Dataset.""" | |
| VERSION = datasets.Version("3.0.0") | |
| BUILDER_CONFIGS = [ | |
| AmazonPolarityConfig( | |
| name="amazon_polarity", version=VERSION, description="Amazon Polarity Classification Dataset." | |
| ), | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "label": datasets.features.ClassLabel( | |
| names=[ | |
| "negative", | |
| "positive", | |
| ] | |
| ), | |
| "title": datasets.Value("string"), | |
| "content": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| my_urls = _URLs[self.config.name] | |
| archive = dl_manager.download(my_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": "/".join(["amazon_review_polarity_csv", "train.csv"]), | |
| "files": dl_manager.iter_archive(archive), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": "/".join(["amazon_review_polarity_csv", "test.csv"]), | |
| "files": dl_manager.iter_archive(archive), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, files): | |
| """Yields examples.""" | |
| for path, f in files: | |
| if path == filepath: | |
| lines = (line.decode("utf-8") for line in f) | |
| data = csv.reader(lines, delimiter=",", quoting=csv.QUOTE_ALL) | |
| for id_, row in enumerate(data): | |
| yield id_, { | |
| "title": row[1], | |
| "content": row[2], | |
| "label": int(row[0]) - 1, | |
| } | |
| break | |