Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1M<n<10M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Neural-Code-Search-Evaluation-Dataset presents an evaluation dataset consisting of natural language query and code snippet pairs""" | |
import json | |
from itertools import chain | |
import datasets | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {Neural Code Search Evaluation Dataset}, | |
authors = {Hongyu Li, Seohyun Kim and Satish Chandra}, | |
journal = {arXiv e-prints}, | |
year = 2018, | |
eid = {arXiv:1908.09804 [cs.SE]}, | |
pages = {arXiv:1908.09804 [cs.SE]}, | |
archivePrefix = {arXiv}, | |
eprint = {1908.09804}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
Neural-Code-Search-Evaluation-Dataset presents an evaluation dataset \ | |
consisting of natural language query and code snippet pairs and a search corpus \ | |
consisting of code snippets collected from the most popular Android repositories \ | |
on GitHub. | |
""" | |
_HOMEPAGE = "https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset/tree/master/data" | |
_LICENSE = "CC-BY-NC 4.0 (Attr Non-Commercial Inter.)" | |
_BASE_URL = "https://raw.githubusercontent.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset/master/data/" | |
_URLs = { | |
"evaluation_dataset": _BASE_URL + "287_android_questions.json", | |
"search_corpus_1": _BASE_URL + "search_corpus_1.tar.gz", | |
"search_corpus_2": _BASE_URL + "search_corpus_2.tar.gz", | |
} | |
class NeuralCodeSearch(datasets.GeneratorBasedBuilder): | |
"""Neural Code Search Evaluation Dataset""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="evaluation_dataset", | |
version=VERSION, | |
description="The evaluation dataset is composed of \ | |
287 Stack Overflow question and answer pairs", | |
), | |
datasets.BuilderConfig( | |
name="search_corpus", | |
version=VERSION, | |
description="The search corpus is indexed using all \ | |
method bodies parsed from the 24,549 GitHub repositories.", | |
), | |
] | |
FILENAME_MAP = { | |
"evaluation_dataset": "287_android_questions.json", | |
"search_corpus": "search_corpus_1.jsonl", | |
} | |
def _info(self): | |
if self.config.name == "evaluation_dataset": | |
features = datasets.Features( | |
{ | |
"stackoverflow_id": datasets.Value("int32"), | |
"question": datasets.Value("string"), | |
"question_url": datasets.Value("string"), | |
"question_author": datasets.Value("string"), | |
"question_author_url": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"answer_url": datasets.Value("string"), | |
"answer_author": datasets.Value("string"), | |
"answer_author_url": datasets.Value("string"), | |
"examples": datasets.features.Sequence(datasets.Value("int32")), | |
"examples_url": datasets.features.Sequence(datasets.Value("string")), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"filepath": datasets.Value("string"), | |
"method_name": datasets.Value("string"), | |
"start_line": datasets.Value("int32"), | |
"end_line": datasets.Value("int32"), | |
"url": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
if self.config.name == "evaluation_dataset": | |
filepath = dl_manager.download_and_extract(_URLs[self.config.name]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": filepath}, | |
), | |
] | |
else: | |
my_urls = [url for config, url in _URLs.items() if config.startswith(self.config.name)] | |
archives = dl_manager.download(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"files": chain(*(dl_manager.iter_archive(archive) for archive in archives)), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath=None, files=None): | |
"""Yields examples.""" | |
id_ = 0 | |
if self.config.name == "evaluation_dataset": | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for row in data: | |
yield id_, { | |
"stackoverflow_id": row["stackoverflow_id"], | |
"question": row["question"], | |
"question_url": row["question_url"], | |
"question_author": row["question_author"], | |
"question_author_url": row["question_author_url"], | |
"answer": row["answer"], | |
"answer_url": row["answer_url"], | |
"answer_author": row["answer_author"], | |
"answer_author_url": row["answer_author_url"], | |
"examples": row["examples"], | |
"examples_url": row["examples_url"], | |
} | |
id_ += 1 | |
else: | |
for _, f in files: | |
for row in f: | |
data_dict = json.loads(row.decode("utf-8")) | |
yield id_, { | |
"id": data_dict["id"], | |
"filepath": data_dict["filepath"], | |
"method_name": data_dict["method_name"], | |
"start_line": data_dict["start_line"], | |
"end_line": data_dict["end_line"], | |
"url": data_dict["url"], | |
} | |
id_ += 1 | |