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Abstract

With the increasing ability of large language
models (LLMs), in-context learning (ICL)
has become a new paradigm for natural
language processing (NLP), where LLMs
make predictions only based on contexts aug-
mented with a few examples. It has been a
new trend to explore ICL to evaluate and ex-
trapolate the ability of LLMs. In this paper,
we aim to survey and summarize the progress
and challenges of ICL. We first present a for-
mal definition of ICL and clarify its corre-
lation to related studies. Then, we organize
and discuss advanced techniques, including
training strategies, demonstration designing
strategies, as well as related analysis. Finally,
we discuss the challenges of ICL and provide
potential directions for further research. We
hope that our work can encourage more re-
search on uncovering how ICL works and
improving ICL.

1 Introduction

With the scaling of model size and corpus size (De-
vlin et al., 2019; Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2022), large language
models (LLMs) demonstrate an in-context learn-
ing (ICL) ability, that is, learning from a few ex-
amples in the context. Many studies have shown
that LLMs can perform a series of complex tasks
through ICL, such as solving mathematical reason-
ing problems (Wei et al., 2022c). These strong abil-
ities have been widely verified as emerging abilities
for large language models (Wei et al., 2022b).

The key idea of in-context learning is to learn
from analogy. Figure 1 gives an example describ-
ing how language models make decisions with ICL.
First, ICL requires a few examples to form a demon-
stration context. These examples are usually writ-
ten in natural language templates. Then, ICL con-
catenates a query question and a piece of demon-
stration context together to form a prompt, which
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Figure 1: Illustration of in-context learning. ICL re-
quires a piece of demonstration context containing a few
examples written in natural language templates. Taking
the demonstration and a query as the input, large lan-
guage models are responsible for making predictions.

is then fed into the language model for prediction.
Different from supervised learning requiring a train-
ing stage that uses backward gradients to update
model parameters, ICL does not conduct parameter
updates and directly performs predictions on the
pretrained language models. The model is expected
to learn the pattern hidden in the demonstration and
accordingly make the right prediction.

As a new paradigm, ICL has multiple attractive
advantages. First, since the demonstration is writ-
ten in natural language, it provides an interpretable
interface to communicate with LLMs (Brown et al.,
2020). This paradigm makes it much easier to in-
corporate human knowledge into LLMs by chang-
ing the demonstration and templates (Liu et al.,
2022; Lu et al., 2022; Wu et al., 2022; Wei et al.,
2022c). Second, in-context learning is similar to
the decision process of human beings by learning
from analogy (Winston, 1980). Third, compared
with supervised training, ICL is a training-free
learning framework. This could not only greatly re-
duce the computation costs for adapting the model
to new tasks, but also make language-model-as-a-
service (Sun et al., 2022) possible and can be easily
applied to large-scale real-world tasks.

Despite being promising, there are also inter-
esting questions and intriguing properties that re-
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Super-NaturalInstructions (Wang et al., 2022c), Scaling Instruction (Chung et al., 2022),
Symbol Tuning (Wei et al., 2023a)
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Self-supervised ICL (Chen et al., 2022a), PICL (Gu et al., 2023)
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Demonstration
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(§5.1.1)

KATE (Liu et al., 2022), EPR (Rubin et al., 2022), PPL (Gonen et al., 2022),
SG-ICL (Kim et al., 2022a), Self Adaptive (Wu et al., 2022),MI (Sorensen et al., 2022),
Q-Learning (Zhang et al., 2022a), Informative Score (Li and Qiu, 2023a),
Topic (Wang et al., 2023e), UDR (Li et al., 2023f)

Ordering
(§5.1.2)

GlobalE&LocalE (Lu et al., 2022)

Formatting (§5.2)

Instruction
(§5.2.1)

Instruction Induction (Honovich et al., 2022), APE (Zhou et al., 2022c),
Self-Instruct (Wang et al., 2022b)

Reasoning
Steps
(§5.2.2)

CoT (Wang et al., 2022b), Complex CoT (Fu et al., 2022),
AutoCoT (Zhang et al., 2022b), Self-Ask (Press et al., 2022),
MoT(Li and Qiu, 2023b), SuperICL(Xu et al., 2023b)
iCAP (Wang et al., 2022a), Least-to-Most Prompting (Zhou et al., 2022a)

Scoring
Function (§6)

Channel prompt tuning (Min et al., 2022a), Structrured Prompting (Hao et al., 2022b),
kNN-Prompting (Xu et al., 2023a)

Figure 2: Taxonomy of in-context learning. The training and the inference stage are two main stages for ICL.
During the training stage, existing ICL studies mainly take a pretrained LLM as backbone, and optionally warmup
the model to strengthen and generalize the ICL ability. Towards the inference stage, the demonstration designing
and the scoring function selecting are crucial for the ultimate performance.

quire further investigation in ICL. While the vanilla
GPT-3 model itself shows promising ICL abilities,
several studies observed that the ability could be
significantly boosted via adaption during pretrain-
ing (Min et al., 2022b; Chen et al., 2022c). In
addition, the performance of ICL is sensitive to spe-
cific settings, including the prompting template, the
selection of in-context examples, and order of ex-
amples, and so on (Zhao et al., 2021). Furthermore,
while intuitively reasonable, the working mecha-
nism of the ICL remains unclear, and few studies
have provided preliminary explanations (Dai et al.,
2022; von Oswald et al., 2022).

With the rapid growth of studies in ICL, our
survey aims to sensitize the community toward the
current progress. Specifically, we present a detailed
paper survey with a paper list that will be continu-
ously updated, and make an in-depth discussion on
related studies of ICL. We highlight the challenges
and potential directions and hope our work may
provide a useful roadmap for beginners interested
in this area and shed light on future research.

2 Overview

The strong performance of ICL relies on two stages:
(1) the training stage that cultivates the ICL ability
of LLMs, and (2) the inference stage where LLMs
predict according to task-specific demonstrations.
In terms of the training stage, LLMs are directly
trained on language modeling objectives, such as
left-to-right generation. Although the models are

not specifically optimized for in-context learning,
they still exhibit the ICL ability. Existing studies on
ICL basically take a well-trained LLM as the back-
bone, and thus this survey will not cover the details
of pretraining language models. Towards the infer-
ence stage, as the input and output labels are all
represented in interpretable natural language tem-
plates, there are multiple directions for improving
ICL performance. This paper will give a detailed
description and comparison, such as selecting suit-
able examples for demonstrations and designing
specific scoring methods for different tasks.

We organize the current progress in ICL follow-
ing the taxonomy above (as shown in Figure 2).
With a formal definition of ICL (§3), we provide a
detailed discussion of the warmup approaches (§4),
the demonstration designing strategies (§5), and the
main scoring functions(§6). §7 provides in-depth
discussions of current explorations on unveiling the
secrets behind the ICL. We further provide useful
evaluation and resources for ICL (§8) and introduce
potential application scenarios where ICL shows
its effectiveness (§10). Finally, we summarize the
challenges and potential directions (§11) and hope
this could pave the way for researchers in this field.

3 Definition and Formulation

Following the paper of GPT-3 (Brown et al., 2020),
we provide a definition of in-context learning: In-
context learning is a paradigm that allows language
models to learn tasks given only a few examples



in the form of demonstration. Essentially, it esti-
mates the likelihood of the potential answer condi-
tioned on the demonstration by using a well-trained
language model.

Formally, given a query input text x and a
set of candidate answers Y = {y1, . . . , ym}
(Y could be class labels or a set of free text
phrases), a pretrained language model M takes
the candidate answer with the maximum score
as the prediction conditioning a demonstration
set C. C contains an optional task instruc-
tion I and k demonstration examples; there-
fore, C = {I, s(x1, y1), . . . , s(xk, yk)} or C =
{s(x1, y1), . . . , s(xk, yk)}, where s(xk, yk, I) is
an example written in natural language texts ac-
cording to the task. The likelihood of a candidate
answer yj could be represented by a scoring func-
tion f of the whole input sequence with the model
M:

P (yj | x) ≜ fM(yj , C, x) (1)

The final predicted label ŷ is the candidate answer
with the highest probability:

ŷ = argmax
yj∈Y

P (yj |x). (2)

The scoring function f estimates how possible the
current answer is given the demonstration and the
query text. For example, we could predict the class
label in a binary sentiment classification by compar-
ing the token probability of Negative and Positive.
There are many f variants for different applications,
which will be elaborated in §6.

According to the definition, we can see the dif-
ference between ICL and other related concepts.
(1) Prompt Learning: Prompts can be discrete tem-
plates or soft parameters that encourage the model
to predict the desired output. Strictly speaking,
ICL can be regarded as a subclass of prompt tuning
where the demonstration is part of the prompt. Liu
et al. (2021) made a thorough survey on prompt
learning. However, ICL is not included. (2) Few-
shot Learning: few-shot learning is a general ma-
chine learning approach that uses parameter adap-
tation to learn the best model parameters for the
task with a limited number of supervised exam-
ples (Wang and Yao, 2019). In contrast, ICL does
not require parameter updates and is directly per-
formed on pretrained LLMs.

4 Model Warmup

Although LLMs have shown promising ICL ca-
pability, many studies also show that the ICL ca-

pability can be further improved through a con-
tinual training stage between pretraining and ICL
inference, which we call model warmup for short.
Warmup is an optional procedure for ICL, which
adjusts LLMs before ICL inference, including mod-
ifying the parameters of the LLMs or adding ad-
ditional parameters. Unlike finetuning, warmup
does not aim to train the LLM for specific tasks but
enhances the overall ICL capability of the model.

4.1 Supervised In-context Training
To enhance ICL capability, researchers proposed
a series of supervised in-context finetuning strate-
gies by constructing in-context training data and
multitask training. Since the pretraining objectives
are not optimized for in-context learning (Chen
et al., 2022a), Min et al. (2022b) proposed a method
MetaICL to eliminate the gap between pretraining
and downstream ICL usage. The pretrained LLM
is continually trained on a broad range of tasks
with demonstration examples, which boosts its few-
shot abilities. To further encourage the model to
learn input-label mappings from the context, Wei
et al. (2023a) propose symbol tuning. This ap-
proach fine-tunes language models on in-context
input-label pairs, substituting natural language la-
bels (e.g., "positive/negative sentiment") with arbi-
trary symbols (e.g., "foo/bar"). As a result, symbol
tuning demonstrates an enhanced capacity to utilize
in-context information for overriding prior seman-
tic knowledge.

Besides, recent work indicates the potential
value of instructions (Mishra et al., 2021) and there
is a research direction focusing on supervised in-
struction tuning. Instruction tuning enhances the
ICL ability of LLMs through training on task in-
structions. Tuning the 137B LaMDA-PT (Thop-
pilan et al., 2022) on over 60 NLP datasets ver-
balized via natural language instruction templates,
FLAN (Wei et al., 2022a) improves both the zero-
shot and the few-shot ICL performance. Compared
to MetaICL, which constructs several demonstra-
tion examples for each task, instruction tuning
mainly considers an explanation of the task and
is more easier to scale up. Chung et al. (2022) and
Wang et al. (2022c) proposed to scale up instruction
tuning with more than 1000+ task instructions.

4.2 Self-supervised In-context Training
Leveraging raw corpora for warmup, Chen et al.
(2022a) proposed constructing self-supervised
training data aligned with ICL formats in down-



stream tasks. They transformed raw text into input-
output pairs, exploring four self-supervised objec-
tives, including masked token prediction and classi-
fication tasks. Alternatively, PICL (Gu et al., 2023)
also utilizes raw corpora but employs a simple lan-
guage modeling objective, promoting task infer-
ence and execution based on context while preserv-
ing pre-trained models’ task generalization. Con-
sequently, PICL outperforms Chen et al. (2022a)’s
method in effectiveness and task generalizability.
3 Takeaway: (1) Supervised training and self-

supervised training both propose to train the LLMs
before ICL inference. The key idea is to bridge the
gap between pretraining and downstream ICL for-
mats by introducing objectives close to in-context
learning. Compared to in-context finetuning involv-
ing demonstration, instruction finetuning without a
few examples as demonstration is simpler and more
popular. (2) To some extent, these methods all im-
prove the ICL capability by updating the model pa-
rameters, which implies that the ICL capability of
the original LLMs has great potential for improve-
ment. Therefore, although ICL does not strictly
require model warmup, we recommend adding a
warmup stage before ICL inference. (3) The perfor-
mance advancement made by warmup encounters
a plateau when increasingly scaling up the training
data. This phenomenon appears both in supervised
in-context training and self-supervised in-context
training, indicating that LLMs only need a small
amount of data to adapt to learn from the context
during warmup.

5 Demonstration Designing

Many studies have shown that the performance
of ICL strongly relies on the demonstration sur-
face, including demonstration format, the order of
demonstration examples, and so on (Zhao et al.,
2021; Lu et al., 2022). As demonstrations play a vi-
tal role in ICL, in this section, we survey demonstra-
tion designing strategies and classify them into two
groups: demonstration organization and demonstra-
tion formatting, as shown in Table 1.

5.1 Demonstration Organization
Given a pool of training examples, demonstration
organization focuses on how to select a subset of
examples and the order of the selected examples.

5.1.1 Demonstration Selection
Demonstrations selection aims to answer a funda-
mental question: Which examples are good exam-

ples for ICL? We classify related studies into two
categories, including unsupervised methods based
on pre-defined metrics and supervised methods.

Unsupervised Method Liu et al. (2022) showed
that selecting the closest neighbors as the in-context
examples is a good solution. The distance metrics
are pre-defined L2 distance or cosine-similarity
distance based on sentence embeddings. They
proposed KATE, a kNN-based unsupervised re-
triever for selecting in-context examples. In addi-
tion to distance metrics, mutual information is also
a valuable selection metric (Sorensen et al., 2022).
Similarly, k-NN cross-lingual demonstrations can
be retrieved for multi-lingual ICL (Tanwar et al.,
2023) to strengthen source-target language align-
ment. The advantage of mutual information is that
it does not require labeled examples and specific
LLMs. In addition, Gonen et al. (2022) attempted
to choose prompts with low perplexity. Levy et al.
(2022) consider the diversity of demonstrations to
improve compositional generalization. They select
diverse demonstrations to cover different kinds of
training demonstrations. Different from these stud-
ies selecting examples from human-labeled data,
Kim et al. (2022a) proposed to generate demonstra-
tions from LLM itself.

Some other methods utilized the output scores
of LMs P (y|C, x) as unsupervised metrics to se-
lect demonstrations. Wu et al. (2022) selected the
best subset permutation of kNN examples based
on the code-length for data transmission to com-
press label y given x and C. Nguyen and Wong
(2023) measured the influence of a demonstration
xi by calculating the difference between the av-
erage performance of the demonstration subsets
{C|xi ∈ C} and {C|xi /∈ C}. Furthermore, Li
and Qiu (2023a) used infoscore, i.e., the average
of P (y|xi, yi, x)− P (y|x) for all (x, y) pairs in a
validation set with a diversity regularization.

Supervised Method Rubin et al. (2022) pro-
posed a two-stage retrieval method to select demon-
strations. For a specific input, it first built an un-
supervised retriever (e.g., BM25) to recall simi-
lar examples as candidates and then built a su-
pervised retriever EPR to select demonstrations
from candidates. A scoring LM is used to eval-
uate the concatenation of each candidate exam-
ple and the input. Candidates with high scores
are labeled as positive examples, and candidates
with low scores are hard negative examples. Li



Category Methods Demonstration Acquisition LLMs Main Tasks

Demonstration Selection
KATE (Liu et al., 2022) Human design GPT-3 SST, table-to-text

SG-ICL (Kim et al., 2022a) LM generated GPT-J SST, NLI
EPR (Rubin et al., 2022) Human design GPT-{J, 3}/CodeX Semantic parsing

Demonstration Ordering GlobalE & LocalE (Lu et al., 2022) Human design GPT-{2, 3} Text classification

Instruction Formatting Self Instruct (Wang et al., 2022b) LM generated GPT-3/InstructGPT SuperNaturalInstruction

Reasoning Steps Formatting
CoT (Wei et al., 2022c) Human design GPT-3/CodeX Reasoning tasks

AutoCoT (Zhang et al., 2022b) LM generated GPT-3/PaLM Reasoning tasks
Self-Ask (Press et al., 2022) LM generated GPT-3/InstructGPT MultihopQA

Table 1: Summary of representative demonstration designing methods.

et al. (2023f) further enhanced the EPR by adopt-
ing a unified demonstration retriever to unify the
demonstration selection across different tasks. Ye
et al. (2023a) retrieved the entire set of demonstra-
tions instead of individual demonstrations to model
inter-relationships between demonstrations. They
trained a DPP retriever to align with LM output
scores by contrastive learning and obtained the op-
timal demonstration set with maximum a posteriori
at inference.

Based on prompt tuning, Wang et al. (2023e)
view LLMs as topic models that can infer con-
cepts θ from few demonstrations and generate to-
kens based on concept variables θ. They use task-
related concept tokens to represent latent concepts.
Concept tokens are learned to maximize P (y|x, θ).
They select demonstrations that are most likely to
infer the concept variable based on P (θ|x, y). Be-
sides, reinforcement learning was introduced by
Zhang et al. (2022a) for example selection. They
formulated demonstration selection as a Markov de-
cision process (Bellman, 1957) and selected demon-
strations via Q-learning. The action is choosing an
example, and the reward is defined as the accuracy
of a labeled validation set.

5.1.2 Demonstration Ordering
Ordering the selected demonstration examples is
also an important aspect of demonstration orga-
nization. Lu et al. (2022) have proven that order
sensitivity is a common problem and always exists
for various models. To handle this problem, pre-
vious studies have proposed several training-free
methods to sort examples in the demonstration. Liu
et al. (2022) sorted examples decently by their dis-
tances to the input, so the rightmost demonstration
is the closest example. Lu et al. (2022) defined the
global and local entropy metrics. They found a pos-
itive correlation between the entropy metric and the
ICL performance. They directly used the entropy
metric to select the best ordering of examples.

5.2 Demonstration Formatting
A common way to format demonstrations is con-
catenating examples (x1, y1), . . . , (xk, yk) with a
template T directly. However, in some tasks that
need complex reasoning (e.g., math word problems,
commonsense reasoning), it is not easy to learn the
mapping from xi to yi with only k demonstrations.
Although template engineering has been studied in
prompting (Liu et al., 2021), some researchers aim
to design a better format of demonstrations for ICL
by describing tasks with the instruction I (§5.2.1)
and adding intermediate reasoning steps between
xi and yi (§5.2.2).

5.2.1 Instruction Formatting
Except for the well-designed demonstration ex-
amples, good instructions which describe the task
precisely are also helpful to the inference perfor-
mance. However, unlike the demonstration exam-
ples, which are common in traditional datasets, the
task instructions depend heavily on human-written
sentences. Honovich et al. (2022) found that given
several demonstration examples, LLMs can gener-
ate the task instruction. According to the genera-
tion ability of LLMs, Zhou et al. (2022c) proposed
Automatic Prompt Engineer for automatic instruc-
tion generation and selection. To further improve
the quality of the automatically generated instruc-
tions, Wang et al. (2022b) proposed to use LLMs
to bootstrap off its own generations. Existing work
has achieved good results in automatically generat-
ing instructions, which provided opportunities for
future research on combining human feedback with
automatic instruction generation.

5.2.2 Reasoning Steps Formatting
Wei et al. (2022c) added intermediate reasoning
steps between inputs and outputs to construct
demonstrations, which are called chain-of-thoughts
(CoT). With CoT, LLMs predict the reasoning steps
and the final answer. CoT prompting can learn



complex reasoning by decomposing input-output
mappings into many intermediate steps. There are
many pieces of research on CoT prompting strate-
gies (Qiao et al., 2022) including prompt designing
and process optimization. In this paper, we mainly
focus on CoT designing strategies.

Similar to demonstration selection, CoT design-
ing also considers CoT selection. Different from
Wei et al. (2022c) manually writing CoTs, Auto-
CoT (Zhang et al., 2022b) used LLMs with Let’s
think step by step to generate CoTs. In addi-
tion, Fu et al. (2022) proposed a complexity-based
demonstration selection method. They selected
demonstrations with more reasoning steps for CoT
prompting.

As input-output mappings are decomposed into
step-by-step reasoning, some researchers apply
multi-stage ICL for CoT prompting and design
CoT demonstrations for each step. Multi-stage
ICL queries LLMs with different demonstrations in
each reasoning step. Self-Ask (Press et al., 2022) al-
lows LLMs to generate follow-up questions for the
input and ask themselves these questions. Then the
questions and intermediate answers will be added
to CoTs. iCAP (Wang et al., 2022a) proposes a
context-aware prompter that can dynamically ad-
just contexts for each reasoning step. Least-to-
Most Prompting (Zhou et al., 2022a) is a two-stage
ICL including question reduction and subquestion
solution. The first stage decomposes a complex
question into subquestions; in the second stage,
LLMs answer subquestions sequentially, and previ-
ously answered questions and generated answers
will be added into the context.

Xu et al. (2023b) fine-tuned small LMs on spe-
cific task as plug-ins to generate pseudo reasoning
steps. Given an input-output pair (xi, yi), Super-
ICL regarded the prediction y′i and confidence ci
of small LMs for the input xi as reasoning steps by
concatenating (xi, y

′
i, ci, yi).

3 Takeaway: (1) Demonstration selection
strategies improve the ICL performance, but most
of them are instance level. Since ICL is mainly
evaluated under few-shot settings, the corpus-level
selection strategy is more important yet under-
explored. (2) The output score or probability distri-
bution of LLMs plays an important role in instance
selecting. (3) For k demonstrations, the size of
search space of permutations is k!. How to find the
best orders efficiently or how to approximate the
optimal ranking better is also a challenging ques-

Scoring Function Target Efficiency Task Coverage Stability

Direct M(yj | C, x) +++ + +
PPL PPL(Sj) + +++ +
Channel M(x | C, yj) + + ++

Table 2: Summary of different scoring functions.

tion. (4) Adding chain-of-thoughts can effectively
decompose complex reasoning tasks into intermedi-
ate reasoning steps. During inference, multi-stage
demonstration designing strategies are applied to
generate CoTs better. How to improve the CoT
prompting ability of LLMs is also worth explor-
ing (5) In addition to human-written demonstra-
tions, the generative nature of LLMs can be utilized
in demonstration designing. LLMs can generate
instructions, demonstrations, probing sets, chain-
of-thoughts, and so on. By using LLM-generated
demonstrations, ICL can largely get rid of human
efforts on writing templates.

6 Scoring Function

The scoring function decides how we can transform
the predictions of a language model into an estima-
tion of the likelihood of a specific answer. A direct
estimation method (Direct) adopts the conditional
probability of candidate answers that can be rep-
resented by tokens in the vocabulary of language
models (Brown et al., 2020). The answer with a
higher probability is selected as the final answer.
However, this method poses some restrictions on
the template design, e.g., the answer tokens should
be placed at the end of input sequences. Perplex-
ity (PPL) is another commonly-used metric, which
computes the sentence perplexity of the whole in-
put sequence Sj = {C, s(x, yj , I)} consists of the
tokens of demonstration examples C, input query x
and candidate label yj . As PPL evaluates the prob-
ability of the whole sentence, it removes the limi-
tations of token positions but requires extra com-
putation time. Note that in generation tasks such
as machine translation, ICL predicts the answer by
decoding tokens with the highest sentence probabil-
ity combined with diversity-promoting strategies
such as beam search or Top-p and Top-k (Holtzman
et al., 2020) sampling algorithms.

Different from previous methods, which esti-
mate the probability of the label given the input
context, Min et al. (2022a) proposed to utilize chan-
nel models (Channel) to compute the conditional
probability in a reversed direction, i.e., estimating
the likelihood of input query given the label. In



this way, language models are required to generate
every token in the input, which could boost the per-
formance under imbalanced training data regimes.
We summarize all three scoring functions in Table 2.
As ICL is sensitive to the demonstration (see §5
for more details), normalizing the obtained score
by subtracting a model-dependent prior with empty
inputs is also effective for improving the stability
and overall performance (Zhao et al., 2021).

Another direction is to incorporate informa-
tion beyond the context length constrain to cali-
brate the score. Structured Prompting (Hao et al.,
2022b) proposes to encode demonstration exam-
ples separately with special positional embeddings,
which then are provided to the test examples with
a rescaled attention mechanism. kNN Prompt-
ing (Xu et al., 2023a) first queries LLMs with train-
ing data for distributed representations, then pre-
dicts test instances by simply referring to nearest
neighbors with closing representations with stored
anchor representations.

3 Takeaway: (1) We conclude the characteris-
tics of three widely-used scoring functions in Ta-
ble 2. Although directly adopting the conditional
probability of candidate answers is efficient, this
method still poses some restrictions on the tem-
plate design. Perplexity is also a simple and widely
scoring function. This method has universal ap-
plications, including both classification tasks and
generation tasks. However, both methods are still
sensitive to demonstration surface, while Chan-
nel is a remedy that especially works under im-
balanced data regimes. (2) Existing scoring func-
tions all compute a score straightforwardly from
the conditional probability of LLMs. There is lim-
ited research on calibrating the bias or mitigating
the sensitivity via scoring strategies. For instance,
some studies add additional calibration parame-
ters to adjust the model predictions (Zhao et al.,
2021).

7 Analysis

To understand ICL, many analytical studies attempt
to investigate what factors may influence the perfor-
mance and aim to figure out why ICL works. We
summarize the factors that have a relatively strong
correlation to ICL performance in Table 3 for easy
reference.

Stage Factor

Pretraining

Pretraining corpus domain
(Shin et al., 2022a)
Pretraining corpus combination
(Shin et al., 2022a)
Number of model parameters
(Wei et al., 2022b; Brown et al., 2020)
Number of pretraining steps
(Wei et al., 2022b)

Inference

Label space exposure
(Min et al., 2022c)
Demonstration input distribution
(Min et al., 2022c)
Format of input-label pairing
(Min et al., 2022c; An et al., 2023)
Demonstration input-label mapping
(Min et al., 2022c; Kim et al., 2022b)
(Wei et al., 2023b)
Demonstration sample ordering
(Lu et al., 2022)
Demonstration-query similarity
(Liu et al., 2022)
Demonstration diversity
(An et al., 2023)
Demonstration complexity
(An et al., 2023)

Table 3: Summary of factors that have a relatively strong
correlation to ICL performance.

7.1 What Influences ICL Performance

Pre-training Stage We first introduce influence
factors in the LLM pretraining stage. Shin et al.
(2022a) investigated the influence of the pretrain-
ing corpora. They found that the domain source is
more important than the corpus size. Putting mul-
tiple corpora together may give rise to emergent
ICL ability, pretraining on corpora related to the
downstream tasks does not always improve the ICL
performance, and models with lower perplexity
do not always perform better in the ICL scenar-
ios. Wei et al. (2022b) investigated the emergent
abilities of many large-scale models on multiple
tasks. They suggested that a pretrained model sud-
denly acquires some emergent ICL abilities when it
achieves a large scale of pretraining steps or model
parameters. Brown et al. (2020) also showed that
the ICL ability grows as the parameters of LLMs
increase from 0.1 billion to 175 billion.

Inference Stage In the inference stage, the prop-
erties of the demonstration samples also influence
the ICL performance. Min et al. (2022c) investi-
gated that the influence of demonstration samples
comes from four aspects: the input-label pairing



format, the label space, the input distribution, and
the input-label mapping. They prove that all of the
input-label pairing formats, the exposure of label
space, and the input distribution contribute substan-
tially to the ICL performance. Counter-intuitively,
the input-label mapping matters little to ICL. In
terms of the effect of input-label mapping, Kim
et al. (2022b) drew an opposite conclusion that
correct input-label mapping does impact the ICL
performance, depending on specific experimental
settings. Wei et al. (2023b) further found that when
a model is large enough, it will show an emer-
gent ability to learn input-label mappings, even
if the labels are flipped or semantically-unrelated.
From the compositional generalization perspective,
An et al. (2023) validated that ICL demonstrations
should be diverse, simple, and similar to the test ex-
ample in terms of the structure. Lu et al. (2022) in-
dicated that the demonstration sample order is also
an important factor. In addition, Liu et al. (2022)
found that the demonstration samples that have
closer embeddings to the query samples usually
bring better performance than those with farther
embeddings.

7.2 Understanding Why ICL Works

Distribution of Training Data Concentrating on
the pretraining data, Chan et al. (2022) showed that
the ICL ability is driven by data distributional prop-
erties. They found that the ICL ability emerges
when the training data have examples appearing in
clusters and have enough rare classes. Xie et al.
(2022) explained ICL as implicit Bayesian infer-
ence and constructed a synthetic dataset to prove
that the ICL ability emerges when the pretraining
distribution follows a mixture of hidden Markov
models.

Learning Mechanism By learning linear func-
tions, Garg et al. (2022) proved that Transformers
could encode effective learning algorithms to learn
unseen linear functions according to demonstra-
tion samples. They also found that the learning
algorithm encoded in an ICL model can achieve
a comparable error to that from a least squares
estimator. Li et al. (2023g) abstracted ICL as an
algorithm learning problem and showed that Trans-
formers can implement a proper function class
through implicit empirical risk minimization for
the demonstrations. Pan et al. (2023) decoupled the
ICL ability into task recognition ability and task
learning ability, and further showed how they uti-

lize demonstrations. From an information-theoretic
perspective, Hahn and Goyal (2023) showed an er-
ror bound for ICL under linguistically motivated
assumptions to explain how next-token prediction
can bring about the ICL ability. Si et al. (2023)
found that large language models exhibit prior fea-
ture biases and showed a way to use intervention
to avoid unintended features in ICL.

Another series of work attempted to build con-
nections between ICL and gradient descent. Tak-
ing linear regression as a starting point, Akyürek
et al. (2022) found that Transformer-based in-
context learners can implement standard finetun-
ing algorithms implicitly, and von Oswald et al.
(2022) showed that linear attention-only Transform-
ers with hand-constructed parameters and mod-
els learned by gradient descent are highly related.
Based on softmax regression, Li et al. (2023e)
found that self-attention-only Transformers showed
similarity with models learned by gradient-descent.
Dai et al. (2022) figured out a dual form between
Transformer attention and gradient descent and fur-
ther proposed to understand ICL as implicit fine-
tuning. Further, they compared GPT-based ICL
and explicit finetuning on real tasks and found that
ICL indeed behaves similarly to finetuning from
multiple perspectives.

Functional Components Focusing on specific
functional modules, Olsson et al. (2022) found that
there exist some induction heads in Transformers
that copy previous patterns to complete the next
token. Further, they expanded the function of in-
duction heads to more abstract pattern matching
and completion, which may implement ICL. Wang
et al. (2023b) focused on the information flow in
Transformers and found that during the ICL pro-
cess, demonstration label words serves as anchors,
which aggregates and distributes key information
for the final prediction.
3 Takeaway: (1) Knowing and considering

how ICL works can help us improve the ICL per-
formance, and the factors that strongly correlate to
ICL performance are listed in Table 3. (2) Although
some analytical studies have taken a preliminary
step to explain ICL, most of them are limited to
simple tasks and small models. Extending analysis
on extensive tasks and large models may be the
next step to be considered. In addition, among ex-
isting work, explaining ICL with gradient descent
seems to be a reasonable, general, and promising
direction for future research. If we build clear con-



Benchmark Tasks #Tasks

BIG-Bench
(Srivastava et al., 2022) Mixed tasks 204

BBH
(Suzgun et al., 2022) Unsolved problems 23

PRONTOQA
(Saparov and He, 2022) Question answering 1

MGSM
(Shi et al., 2022) Math problems 1

LLMAS
(Valmeekam et al., 2022) Plan and reasoning tasks 8

OPT-IML Bench
(Iyer et al., 2022) Mixed tasks 2000

Table 4: New challenging evaluation benchmarks for
ICL. For short, we use LLMAS to represent LLM As-
sessment Suite (Valmeekam et al., 2022).

nections between ICL and gradient-descent-based
learning, we can borrow ideas from the history of
traditional deep learning to improve ICL.

8 Evaluation and Resources

8.1 Traditional Tasks
As a general learning paradigm, ICL can be ex-
amined on various traditional datasets and bench-
marks, e.g., SuperGLUE (Wang et al., 2019),
SQuAD (Rajpurkar et al., 2018). Implementing
ICL with 32 randomly sampled examples on Su-
perGLUE, Brown et al. (2020) found that GPT-
3 can achieve results comparable to state-of-the-
art (SOTA) finetuning performance on COPA and
ReCoRD, but still falls behind finetuning on most
NLU tasks. Hao et al. (2022b) showed the po-
tential of scaling up the number of demonstration
examples. However, the improvement brought by
scaling is very limited. At present, compared to
finetuning, there still remains some room for ICL
to reach on traditional NLP tasks.

8.2 New Challenging Tasks
In the era of large language models with in-context
learning capabilities, researchers are more inter-
ested in evaluating the intrinsic capabilities of large
language models without downstream task finetun-
ing (Bommasani et al., 2021).

To explore the capability limitations of LLM on
various tasks, Srivastava et al. (2022) proposed
the BIG-Bench (Srivastava et al., 2022), a large
benchmark covering a large range of tasks, includ-
ing linguistics, chemistry, biology, social behav-
ior, and beyond. The best models have already
outperformed the average reported human-rater
results on 65% of the BIG-Bench tasks through

ICL (Suzgun et al., 2022). To further explore tasks
actually unsolvable by current language models,
Suzgun et al. (2022) proposed a more challenging
ICL benchmark, BIG-Bench Hard (BBH). BBH in-
cludes 23 unsolved tasks, constructed by selecting
challenging tasks where the state-of-art model per-
formances are far below the human performances.
Besides, researchers are searching for inverse scal-
ing tasks,1 that is, tasks where model performance
reduces when scaling up the model size. Such
tasks also highlight potential issues with the cur-
rent paradigm of ICL. To further probe the model
generalization ability, Iyer et al. (2022) proposed
OPT-IML Bench, consisting of 2000 NLP tasks
from 8 existing benchmarks, especially benchmark
for ICL on held-out categories.

Specifically, a series of studies focus on ex-
ploring the reasoning ability of ICL. Saparov and
He (2022) generated an example from a synthetic
world model represented in first-order logic and
parsed the ICL generations into symbolic proofs
for formal analysis. They found that LLMs can
make correct individual deduction steps via ICL.
Shi et al. (2022) constructed the MGSM bench-
mark to evaluate the chain-of-thought reasoning
abilities of LLMs in multilingual settings, finding
that LLMs manifest complex reasoning across mul-
tiple languages. To further probe more sophisti-
cated planning and reasoning abilities of LLMs,
Valmeekam et al. (2022) provided multiple test
cases for evaluating various reasoning abilities on
actions and change, where existing ICL methods
on LLMs show poor performance.

8.3 Open-source Tools

Noticing that ICL methods are often implemented
differently and evaluated using different LLMs and
tasks, Wu et al. (2023) developed OpenICL, an
open-source toolkit enabling flexible and unified
ICL assessment. With its adaptable architecture,
OpenICL facilitates the combination of distinct
components and offers state-of-the-art retrieval and
inference techniques to accelerate the integration
of ICL into advanced research.
3 Takeaway: (1) Due to the restrictions of

ICL on the number of demonstration examples, the
traditional evaluation tasks must be adapted to
few-shot settings; otherwise, the traditional bench-
marks cannot evaluate the ICL capability of LLMs
directly. (2) As ICL is a new paradigm that is dif-

1https://github.com/inverse-scaling/prize

https://github.com/inverse-scaling/prize


Visual prompt image Output

Inpainting 
Model
f

x1 y1 xq
vp

Concatenate 
into single 

image

x

Edge detection Colorization Inpainting Segmentation Style transfer

Task Input 
Example

Task Output 
Example

Query

Visual prompt image Output

Inpainting 
Model
f

x1 y1 xq
vp

Concatenate 
into single 

image

x

Edge detection Colorization Inpainting Segmentation Style transfer

Task Input 
Example

Task Output 
Example

Query

Visual prompt image Output

Inpainting 
Model
f

x1 y1 xq
vp

Concatenate 
into single 

image

x

Edge detection Colorization Inpainting Segmentation Style transfer

Task Input 
Example

Task Output 
Example

Query

Visual prompt image Output

Inpainting 
Model
f

x1 y1 xq
vp

Concatenate 
into single 

image

x

Edge detection Colorization Inpainting Segmentation Style transfer

Task Input 
Example

Task Output 
Example

Query
Task Input
Image

Task Output Image

Query Image

Visual Prompt Grid Image

Inpainting Model

Visual prompt image Output

Inpainting 
Model
f

x1 y1 xq
vp

Concatenate 
into single 

image

x

Edge detection Colorization Inpainting Segmentation Style transfer

Task Input 
Example

Task Output 
Example

Query

Task Text Prompt Task Input
Image

Task Output
Image

“Segment the horses from the 
rest of the image and generate 
a new image where the horse 
regions are white and the 
other regions are black.”

Query Image

Diffusion Model

Output Image

Output Image

Text Visual Prompt

Figure 3: Image-only and textual augmented prompting
for visual in-context learning.

ferent from traditional learning paradigms in many
aspects, the evaluation of ICL presents new chal-
lenges and opportunities. Toward the challenges,
the results of existing evaluation methods are un-
stable, especially sensitive to the demonstration
examples and the instructions. Chen et al. (2022b)
observed that existing evaluations by accuracy un-
derestimate the sensitivity towards instruction per-
turbation of ICL. It is still an open question to con-
duct consistent ICL evaluation and OpenICL(Wu
et al., 2023) represents a valuable initial attempt to
address this challenge. Toward the opportunities
for evaluation, as ICL only requires a few instances
for the demonstration, it lowers the cost of evalua-
tion data construction.

9 In-Context Learning Beyond Text

The tremendous success of ICL in NLP has in-
spired researchers to explore its potential in differ-
ent modalities, including visual, vision+language
and speech tasks as well.

9.1 Visual In-Context Learning

Bar et al. (2022) employ an image patch infill-
ing task in grid-like images using masked auto-
encoders (MAE) to train their model. At the in-
ference stage, the model generates output images
consistent with provided input-output examples for
a novel input image, showcasing promising ICL
capabilities for unseen tasks such as image segmen-
tation. Painter (Wang et al., 2023c) extends this
approach by incorporating multiple tasks to build
a generalist model, achieving competitive perfor-
mance compared to task-specific models. Build-
ing upon this, SegGPT (Wang et al., 2023d) in-
tegrates diverse segmentation tasks into a unified
framework and investigates ensemble techniques

from spatial and feature perspectives to enhance the
quality of prompt examples. Wang et al. (2023f)
propose to utilize an extra text prompt to guide a
generative model in comprehensively producing
the desired image. The resulting Prompt Diffu-
sion model is the first diffusion-based model that
exhibits ICL ability. Figure 3 illustrates the key dif-
ference between the image-only and textual prompt
augmented in-context learning for visual in-context
learning.

Similar to ICL in NLP, the effectiveness of vi-
sual in-context learning is significantly influenced
by the selection of in-context demonstration im-
ages (Zhang et al., 2023a; Sun et al., 2023). To
address this, Zhang et al. (2023a) investigate two
approaches: (1) an unsupervised retriever that se-
lects nearest samples using an off-the-shelf model,
and (2) a supervised method training an additional
retriever model to maximize ICL performance. The
retrieved samples notably enhance performance, ex-
hibiting semantic similarity to the query and closer
contextual alignment regarding viewpoint, back-
ground, and appearance. Except for the prompt
retrieval, Sun et al. (2023) further explore a prompt
fusion technique for improving the results.

9.2 Multi-Modal In-Context Learning

In the vision-language area, Tsimpoukelli et al.
(2021) utilize a vision encoder to represent an im-
age as a prefix embedding sequence that is aligned
with a frozen language model after training on the
paired image-caption dataset. The resulting model,
Frozen, is capable of performing multi-modal few-
shot learning. Further, Alayrac et al. (2022) in-
troduce Flamingo, which combines a vision en-
coder with LLMs and adopts LLMs as the general
interface to perform in-context learning on many
multi-modal tasks. They show that training on
large-scale multi-modal web corpora with arbitrar-
ily interleaved text and images is key to endowing
them with in-context few-shot learning capabili-
ties. Kosmos-1 (Huang et al., 2023b) is another
multi-modal LLMs and demonstrates promising
zero-shot, few-shot, and even multimodal chain-
of-thought prompting abilities. Hao et al. (2022a)
present METALM, a general-purpose interface to
models across tasks and modalities. With a semi-
causal language modeling objective, METALM is
pretrained and exhibits strong ICL performance
across various vision-language tasks.

It is natural to further enhance the ICL ability



with instruction tuning, and the idea is also ex-
plored in the multi-modal scenarios as well. Re-
cent explorations first generate instruction tuning
datasets transforming existing vision-language task
dataset (Xu et al., 2022; Li et al., 2023a) or with
power LLMs such as GPT-4 (Liu et al., 2023; Zhu
et al., 2023a) , and connect LLMs with powerful vi-
sion foundational models such as BLIP-2 (Li et al.,
2023c) on these multi-modal datasets (Zhu et al.,
2023a; Dai et al., 2023).

9.3 Speech In-Context Learning

In the speech area, Wang et al. (2023a) treated text-
to-speech synthesis as a language modeling task.
They use audio codec codes as an intermediate rep-
resentation and propose the first TTS framework
with strong in-context learning capability. Subse-
quently, VALLE-X (Zhang et al., 2023b) extend the
idea to multi-lingual scenarios, demonstrating su-
perior performance in zero-shot cross-lingual text-
to-speech synthesis and zero-shot speech-to-speech
translation tasks.
3 Takeaway: (1) Recent studies have explored

in-context learning beyond natural language with
promising results. Properly formatted data (e.g.,
interleaved image-text datasets for vision-language
tasks) and architecture designs are key factors
for activating the potential of in-context learning.
Exploring it in a more complex structured space
such as for graph data is challenging and promis-
ing (Huang et al., 2023a). (2) Findings in textual
in-context learning demonstration design and selec-
tion cannot be trivially transferred to other modal-
ities. Domain-specific investigation is required to
fully leverage the potential of in-context learning
in various modalities.

10 Application

ICL manifests excellent performance on traditional
NLP tasks and methods (Kim et al., 2022a; Min
et al., 2022b), such as machine translation (Zhu
et al., 2023b; Sia and Duh, 2023), information ex-
traction (Wan et al., 2023; He et al., 2023) and
text-to-SQL (Pourreza and Rafiei, 2023). Espe-
cially, through demonstrations that explicitly guide
the process of reasoning, ICL manifests remark-
able effects on tasks that require complexity reason-
ing (Wei et al., 2022c; Li et al., 2023b; Zhou et al.,
2022b) and compositional generalization (Zhou
et al., 2022a).

Moreover, ICL offers potential for popular meth-

ods such as meta-learning and instruction-tuning.
Chen et al. (2022d) applied ICL to meta-learning,
adapting to new tasks with frozen model parame-
ters, thus addressing the complex nested optimiza-
tion issue. (Ye et al., 2023b) enhanced zero-shot
task generalization performance for both pretrained
and instruction-finetuned models by applying in-
context learning to instruction learning.

Specifically, we explore several emerging and
prevalent applications of ICL, showcasing their
potential in the following paragraphs.

Data Engineering ICL has manifested the po-
tential to be widely applied in data engineering.
Benefiting from the strong ICL ability, it costs 50%
to 96% less to use labels from GPT-3 than using la-
bels from humans for data annotation. Combining
pseudo labels from GPT-3 with human labels leads
to even better performance at a small cost (Wang
et al., 2021). In more complex scenarios, such as
knowledge graph construction, Khorashadizadeh
et al. (2023) has demonstrated that ICL has the po-
tential to significantly improve the state of the art of
automatic construction and completion of knowl-
edge graphs, resulting in a reduction in manual
costs with minimal engineering effort. Therefore,
leveraging the capabilities of ICL in various data
engineering applications can yield significant bene-
fits. Compared to human annotation (e.g., crowd-
sourcing) or noisy automatic annotation (e.g., dis-
tant supervision), ICL generates relatively high
quality data at a low cost. However, how to use ICL
for data annotation remains an open question. For
example, Ding et al. (2022) performed a compre-
hensive analysis and found that generation-based
methods are more cost-effective in using GPT-3
than annotating unlabeled data via ICL.

Model Augmentating The context-flexible na-
ture of ICL demonstrates significant potential to
enhance retrieval-augmented methods. By keep-
ing the LM architecture unchanged and prepend-
ing grounding documents to the input, in-context
RALMRam et al. (2023) effectively utilizes off-
the-shelf general-purpose retrievers, resulting in
substantial LM gains across various model sizes
and diverse corpora. Furthermore, ICL for retrieval
also exhibits the potential to improve safety. In ad-
dition to efficiency and flexibility, ICL also shows
potential in safety (Panda et al., 2023), (Meade
et al., 2023) use ICL for retrieved demonstrations
to steer a model towards safer generations, reduc-



ing bias and toxicity in the model.

Knowledge Updating LLMs may contain out-
dated or incorrect knowledge, but ICL demon-
strates the potential for effectively editing and up-
dating this information. In an initial trial, Si et al.
(2022) found that GPT-3 updated its answers 85%
of the time when provided with counterfactual ex-
amples, with larger models performing better at
in-context knowledge updating. However, this ap-
proach may impact other correct knowledge in
LLMs. Compared to knowledge editing for fine-
tuned models (De Cao et al., 2021), ICL has proven
effective for lightweight model editing. Si et al.
(2022) explored the possibility of editing LLMs’
memorized knowledge through in-context demon-
strations, discovering that a larger model scale
and a mix of demonstration examples improved
ICL-based knowledge editing success rates. In a
comprehensive study, Zheng et al. (2023) investi-
gated ICL strategies for editing factual knowledge,
finding that well-designed demonstrations enabled
competitive success rates compared to gradient-
based methods, with significantly fewer side effects.
This underlines the potential of ICL for knowledge
editing.

11 Challenges and Future Directions

In this section, we review some of the existing chal-
lenges and propose possible directions for future
research on ICL.

11.1 New Pretraining Strategies
As investigated by Shin et al. (2022b), language
model objectives are not equal to ICL abilities. Re-
searchers have proposed to bridge the gap between
pretraining objectives and ICL through interme-
diate tuning before inference (Section 4), which
shows promising performance improvements. To
take it further, tailored pretraining objectives and
metrics for ICL have the potential to raise LLMs
with superior ICl capabilities.

11.2 ICL Ability Distillation
Previous studies have shown that in-context learn-
ing for reasoning tasks emerges as the scale of
computation and parameter exceed a certain thresh-
old (Wei et al., 2022b). Transferring the ICL ability
to smaller models could facilitate the model deploy-
ment greatly. Magister et al. (2022) showed that it
is possible to distill the reasoning ability to small
language models such as T5-XXL. The distillation

is achieved by finetuning the small model on the
chain-of-thought data (Wei et al., 2022c) generated
by a large teacher model. Although promising per-
formance is achieved, the improvements are likely
task-dependent. Further investigation on improv-
ing the reasoning ability by learning from larger
LLMs could be an interesting direction.

11.3 ICL Robustness
Previous studies have shown that ICL performance
is extremely unstable, from random guess to SOTA,
and can be sensitive to many factors, including
demonstration permutation, demonstration format,
etc. (Zhao et al., 2021; Lu et al., 2022). The robust-
ness of ICL is a critical yet challenging problem.

However, most of the existing methods fall into
the dilemma of accuracy and robustness (Chen
et al., 2022c), or even at the cost of sacrificing
inference efficiency. To effectively improve the
robustness of ICL, we need deeper analysis of the
working mechanism of the ICL. We believe that
the analysis of the robustness of the ICL from a
more theoretical perspective rather than an empir-
ical perspective can highlight future research on
more robust ICL.

11.4 ICL Efficiency and Scalability
ICL necessitates prepending a significant number
of demonstrations within the context. However, it
presents two challenges: (1) the quantity of demon-
strations is constrained by the maximum input
length of LMs, which is significantly fewer com-
pared to fine-tuning (scalability); (2) as the number
of demonstrations increases, the computation cost
becomes higher due to the quadratic complexity of
attention mechanism (efficiency). Previous work in
§5 focused on exploring how to achieve better ICL
performance using a limited number of demonstra-
tions and proposed several demonstration design-
ing strategies. Scaling ICL to more demonstrations
and improving its efficiency remains a challenging
task.

Recently, some works have been proposed to ad-
dress the issues of scalability and efficiency of ICL.
Efforts were made to optimize prompting strate-
gies with structured prompting (Hao et al., 2022b),
demonstration ensembling (Khalifa et al., 2023),
dynamic prompting (Zhou et al., 2023), and itera-
tive forward tuning (Yang et al., 2023). Addition-
ally, Li et al. (2023d) proposed EVaLM with longer
context length and enhanced long-range language
modeling capabilities. This model-level improve-



ment aims to improve the scalability and efficiency
of ICL. As LMs continue to scale up, exploring
ways to effectively and efficiently utilize a larger
number of demonstrations in ICL remains an ongo-
ing area of research.

12 Conclusion

In this paper, we survey the existing ICL literature
and provide an extensive review of advanced ICL
techniques, including training strategies, demon-
stration designing strategies, evaluation datasets
and resources, as well as related analytical studies.
Furthermore, we highlight critical challenges and
potential directions for future research. To the best
of our knowledge, this is the first survey about ICL.
We hope this survey can highlight the current re-
search status of ICL and shed light on future work
on this promising paradigm.
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