Datasets:
				
			
			
	
			
	
		
			
	
		
		Convert dataset to Parquet (#4)
Browse files- Convert dataset to Parquet (fa92a286ec1366cb88761017651c66611cdec4e1)
- Add 'sst2' config data files (d4777a0878ccd6102fb0983034c1d9719e1bde34)
- Add 'mrpc' config data files (2f8f549301686d49279f9ebda8f534336b0ed590)
- Add 'qqp' config data files (085747e9654f168d8ba6207847bcdea34aaaa9e7)
- Add 'stsb' config data files (4ba14c3e083223e4c9e779a97d0e187ac3441d3e)
- Add 'mnli' config data files (0d08c94327ffabecefd38c8c34a021d69b5b6b84)
- Add 'mnli_mismatched' config data files (849ca318a82f46ddc9d799cc80759cccd853ecec)
- Add 'mnli_matched' config data files (bfc7d1dcf8477aa1c2e48628a4fc4a17e4152254)
- Add 'qnli' config data files (9efb105f9e82389f519259f6509a14d458b4d358)
- Add 'rte' config data files (c613e454efa474a0f871052d16ec3172e93f2e5c)
- Add 'wnli' config data files (545ce75066b4289a0b3d5e5af9b431352a7ad7a3)
- Add 'ax' config data files (7c51fe651add106fbd8ae5018666b09249c96644)
- Delete loading script (4f5b02a5af8f14f94798018bfe56720b77db95b0)
- Delete legacy dataset_infos.json (db722846b1c981212f51d217ae7544196114d970)
- Delete data file (2a5098c5665aa88353149201b5dee6c6cdefca5b)
- Delete data file (594b130b6abcabfd0ab49242ce08724cdb70cd13)
- Delete data file (342e399bd2e80b9dfa0dd8effd634d148ea19eab)
- Delete data file (e90d3204043958ddca70af7d80649712ee6823d4)
- Delete data file (39653e9237ab17d81220c2c41ea79ad9ffacb890)
- Delete data file (2b46a14c1993f52a5bb9ba8650ed453b8c2928b5)
- Delete data file (604687ee0af4a0910d2bf27db6ee89d8c50d5cd6)
- Delete data file (f000b80bed69427cd6a01fbd8599a8fcccbfcb05)
- Delete data file (1a611daf3b9591d2ed91ad3616b20c85185c6eb0)
- Delete data file (b19d5973b72588876d4674683c2393d37744f4b4)
- README.md +396 -0
 - dummy/mrpc/1.0.0/dummy_data.zip → ax/test-00000-of-00001.parquet +2 -2
 - dummy/ax/1.0.0/dummy_data.zip → cola/test-00000-of-00001.parquet +2 -2
 - cola/train-00000-of-00001.parquet +3 -0
 - dummy/cola/1.0.0/dummy_data.zip → cola/validation-00000-of-00001.parquet +2 -2
 - dataset_infos.json +0 -1
 - dummy/qnli/1.0.0/dummy_data.zip +0 -3
 - dummy/qqp/1.0.0/dummy_data.zip +0 -3
 - dummy/rte/1.0.0/dummy_data.zip +0 -3
 - dummy/sst2/1.0.0/dummy_data.zip +0 -3
 - dummy/stsb/1.0.0/dummy_data.zip +0 -3
 - dummy/wnli/1.0.0/dummy_data.zip +0 -3
 - glue-ci.py +0 -628
 - mnli/test_matched-00000-of-00001.parquet +3 -0
 - mnli/test_mismatched-00000-of-00001.parquet +3 -0
 - mnli/train-00000-of-00001.parquet +3 -0
 - mnli/validation_matched-00000-of-00001.parquet +3 -0
 - mnli/validation_mismatched-00000-of-00001.parquet +3 -0
 - mnli_matched/test-00000-of-00001.parquet +3 -0
 - mnli_matched/validation-00000-of-00001.parquet +3 -0
 - mnli_mismatched/test-00000-of-00001.parquet +3 -0
 - mnli_mismatched/validation-00000-of-00001.parquet +3 -0
 - mrpc/test-00000-of-00001.parquet +3 -0
 - mrpc/train-00000-of-00001.parquet +3 -0
 - dummy/mnli/1.0.0/dummy_data.zip → mrpc/validation-00000-of-00001.parquet +2 -2
 - qnli/test-00000-of-00001.parquet +3 -0
 - qnli/train-00000-of-00001.parquet +3 -0
 - qnli/validation-00000-of-00001.parquet +3 -0
 - qqp/test-00000-of-00001.parquet +3 -0
 - qqp/train-00000-of-00001.parquet +3 -0
 - qqp/validation-00000-of-00001.parquet +3 -0
 - rte/test-00000-of-00001.parquet +3 -0
 - rte/train-00000-of-00001.parquet +3 -0
 - rte/validation-00000-of-00001.parquet +3 -0
 - sst2/test-00000-of-00001.parquet +3 -0
 - sst2/train-00000-of-00001.parquet +3 -0
 - sst2/validation-00000-of-00001.parquet +3 -0
 - stsb/test-00000-of-00001.parquet +3 -0
 - stsb/train-00000-of-00001.parquet +3 -0
 - stsb/validation-00000-of-00001.parquet +3 -0
 - wnli/test-00000-of-00001.parquet +3 -0
 - wnli/train-00000-of-00001.parquet +3 -0
 - wnli/validation-00000-of-00001.parquet +3 -0
 
| 
         @@ -23,6 +23,402 @@ task_ids: 
     | 
|
| 23 | 
         
             
            - text-scoring
         
     | 
| 24 | 
         
             
            paperswithcode_id: glue
         
     | 
| 25 | 
         
             
            pretty_name: GLUE (General Language Understanding Evaluation benchmark)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 26 | 
         
             
            train-eval-index:
         
     | 
| 27 | 
         
             
            - config: cola
         
     | 
| 28 | 
         
             
              task: text-classification
         
     | 
| 
         | 
|
| 23 | 
         
             
            - text-scoring
         
     | 
| 24 | 
         
             
            paperswithcode_id: glue
         
     | 
| 25 | 
         
             
            pretty_name: GLUE (General Language Understanding Evaluation benchmark)
         
     | 
| 26 | 
         
            +
            dataset_info:
         
     | 
| 27 | 
         
            +
            - config_name: ax
         
     | 
| 28 | 
         
            +
              features:
         
     | 
| 29 | 
         
            +
              - name: premise
         
     | 
| 30 | 
         
            +
                dtype: string
         
     | 
| 31 | 
         
            +
              - name: hypothesis
         
     | 
| 32 | 
         
            +
                dtype: string
         
     | 
| 33 | 
         
            +
              - name: label
         
     | 
| 34 | 
         
            +
                dtype:
         
     | 
| 35 | 
         
            +
                  class_label:
         
     | 
| 36 | 
         
            +
                    names:
         
     | 
| 37 | 
         
            +
                      '0': entailment
         
     | 
| 38 | 
         
            +
                      '1': neutral
         
     | 
| 39 | 
         
            +
                      '2': contradiction
         
     | 
| 40 | 
         
            +
              - name: idx
         
     | 
| 41 | 
         
            +
                dtype: int32
         
     | 
| 42 | 
         
            +
              splits:
         
     | 
| 43 | 
         
            +
              - name: test
         
     | 
| 44 | 
         
            +
                num_bytes: 237694
         
     | 
| 45 | 
         
            +
                num_examples: 1104
         
     | 
| 46 | 
         
            +
              download_size: 79191
         
     | 
| 47 | 
         
            +
              dataset_size: 237694
         
     | 
| 48 | 
         
            +
            - config_name: cola
         
     | 
| 49 | 
         
            +
              features:
         
     | 
| 50 | 
         
            +
              - name: sentence
         
     | 
| 51 | 
         
            +
                dtype: string
         
     | 
| 52 | 
         
            +
              - name: label
         
     | 
| 53 | 
         
            +
                dtype:
         
     | 
| 54 | 
         
            +
                  class_label:
         
     | 
| 55 | 
         
            +
                    names:
         
     | 
| 56 | 
         
            +
                      '0': unacceptable
         
     | 
| 57 | 
         
            +
                      '1': acceptable
         
     | 
| 58 | 
         
            +
              - name: idx
         
     | 
| 59 | 
         
            +
                dtype: int32
         
     | 
| 60 | 
         
            +
              splits:
         
     | 
| 61 | 
         
            +
              - name: train
         
     | 
| 62 | 
         
            +
                num_bytes: 484869
         
     | 
| 63 | 
         
            +
                num_examples: 8551
         
     | 
| 64 | 
         
            +
              - name: validation
         
     | 
| 65 | 
         
            +
                num_bytes: 60322
         
     | 
| 66 | 
         
            +
                num_examples: 1043
         
     | 
| 67 | 
         
            +
              - name: test
         
     | 
| 68 | 
         
            +
                num_bytes: 60513
         
     | 
| 69 | 
         
            +
                num_examples: 1063
         
     | 
| 70 | 
         
            +
              download_size: 322394
         
     | 
| 71 | 
         
            +
              dataset_size: 605704
         
     | 
| 72 | 
         
            +
            - config_name: mnli
         
     | 
| 73 | 
         
            +
              features:
         
     | 
| 74 | 
         
            +
              - name: premise
         
     | 
| 75 | 
         
            +
                dtype: string
         
     | 
| 76 | 
         
            +
              - name: hypothesis
         
     | 
| 77 | 
         
            +
                dtype: string
         
     | 
| 78 | 
         
            +
              - name: label
         
     | 
| 79 | 
         
            +
                dtype:
         
     | 
| 80 | 
         
            +
                  class_label:
         
     | 
| 81 | 
         
            +
                    names:
         
     | 
| 82 | 
         
            +
                      '0': entailment
         
     | 
| 83 | 
         
            +
                      '1': neutral
         
     | 
| 84 | 
         
            +
                      '2': contradiction
         
     | 
| 85 | 
         
            +
              - name: idx
         
     | 
| 86 | 
         
            +
                dtype: int32
         
     | 
| 87 | 
         
            +
              splits:
         
     | 
| 88 | 
         
            +
              - name: train
         
     | 
| 89 | 
         
            +
                num_bytes: 74619646
         
     | 
| 90 | 
         
            +
                num_examples: 392702
         
     | 
| 91 | 
         
            +
              - name: validation_matched
         
     | 
| 92 | 
         
            +
                num_bytes: 1833783
         
     | 
| 93 | 
         
            +
                num_examples: 9815
         
     | 
| 94 | 
         
            +
              - name: validation_mismatched
         
     | 
| 95 | 
         
            +
                num_bytes: 1949231
         
     | 
| 96 | 
         
            +
                num_examples: 9832
         
     | 
| 97 | 
         
            +
              - name: test_matched
         
     | 
| 98 | 
         
            +
                num_bytes: 1848654
         
     | 
| 99 | 
         
            +
                num_examples: 9796
         
     | 
| 100 | 
         
            +
              - name: test_mismatched
         
     | 
| 101 | 
         
            +
                num_bytes: 1950703
         
     | 
| 102 | 
         
            +
                num_examples: 9847
         
     | 
| 103 | 
         
            +
              download_size: 56899587
         
     | 
| 104 | 
         
            +
              dataset_size: 82202017
         
     | 
| 105 | 
         
            +
            - config_name: mnli_matched
         
     | 
| 106 | 
         
            +
              features:
         
     | 
| 107 | 
         
            +
              - name: premise
         
     | 
| 108 | 
         
            +
                dtype: string
         
     | 
| 109 | 
         
            +
              - name: hypothesis
         
     | 
| 110 | 
         
            +
                dtype: string
         
     | 
| 111 | 
         
            +
              - name: label
         
     | 
| 112 | 
         
            +
                dtype:
         
     | 
| 113 | 
         
            +
                  class_label:
         
     | 
| 114 | 
         
            +
                    names:
         
     | 
| 115 | 
         
            +
                      '0': entailment
         
     | 
| 116 | 
         
            +
                      '1': neutral
         
     | 
| 117 | 
         
            +
                      '2': contradiction
         
     | 
| 118 | 
         
            +
              - name: idx
         
     | 
| 119 | 
         
            +
                dtype: int32
         
     | 
| 120 | 
         
            +
              splits:
         
     | 
| 121 | 
         
            +
              - name: validation
         
     | 
| 122 | 
         
            +
                num_bytes: 1833783
         
     | 
| 123 | 
         
            +
                num_examples: 9815
         
     | 
| 124 | 
         
            +
              - name: test
         
     | 
| 125 | 
         
            +
                num_bytes: 1848654
         
     | 
| 126 | 
         
            +
                num_examples: 9796
         
     | 
| 127 | 
         
            +
              download_size: 2421421
         
     | 
| 128 | 
         
            +
              dataset_size: 3682437
         
     | 
| 129 | 
         
            +
            - config_name: mnli_mismatched
         
     | 
| 130 | 
         
            +
              features:
         
     | 
| 131 | 
         
            +
              - name: premise
         
     | 
| 132 | 
         
            +
                dtype: string
         
     | 
| 133 | 
         
            +
              - name: hypothesis
         
     | 
| 134 | 
         
            +
                dtype: string
         
     | 
| 135 | 
         
            +
              - name: label
         
     | 
| 136 | 
         
            +
                dtype:
         
     | 
| 137 | 
         
            +
                  class_label:
         
     | 
| 138 | 
         
            +
                    names:
         
     | 
| 139 | 
         
            +
                      '0': entailment
         
     | 
| 140 | 
         
            +
                      '1': neutral
         
     | 
| 141 | 
         
            +
                      '2': contradiction
         
     | 
| 142 | 
         
            +
              - name: idx
         
     | 
| 143 | 
         
            +
                dtype: int32
         
     | 
| 144 | 
         
            +
              splits:
         
     | 
| 145 | 
         
            +
              - name: validation
         
     | 
| 146 | 
         
            +
                num_bytes: 1949231
         
     | 
| 147 | 
         
            +
                num_examples: 9832
         
     | 
| 148 | 
         
            +
              - name: test
         
     | 
| 149 | 
         
            +
                num_bytes: 1950703
         
     | 
| 150 | 
         
            +
                num_examples: 9847
         
     | 
| 151 | 
         
            +
              download_size: 2496567
         
     | 
| 152 | 
         
            +
              dataset_size: 3899934
         
     | 
| 153 | 
         
            +
            - config_name: mrpc
         
     | 
| 154 | 
         
            +
              features:
         
     | 
| 155 | 
         
            +
              - name: sentence1
         
     | 
| 156 | 
         
            +
                dtype: string
         
     | 
| 157 | 
         
            +
              - name: sentence2
         
     | 
| 158 | 
         
            +
                dtype: string
         
     | 
| 159 | 
         
            +
              - name: label
         
     | 
| 160 | 
         
            +
                dtype:
         
     | 
| 161 | 
         
            +
                  class_label:
         
     | 
| 162 | 
         
            +
                    names:
         
     | 
| 163 | 
         
            +
                      '0': not_equivalent
         
     | 
| 164 | 
         
            +
                      '1': equivalent
         
     | 
| 165 | 
         
            +
              - name: idx
         
     | 
| 166 | 
         
            +
                dtype: int32
         
     | 
| 167 | 
         
            +
              splits:
         
     | 
| 168 | 
         
            +
              - name: train
         
     | 
| 169 | 
         
            +
                num_bytes: 943843
         
     | 
| 170 | 
         
            +
                num_examples: 3668
         
     | 
| 171 | 
         
            +
              - name: validation
         
     | 
| 172 | 
         
            +
                num_bytes: 105879
         
     | 
| 173 | 
         
            +
                num_examples: 408
         
     | 
| 174 | 
         
            +
              - name: test
         
     | 
| 175 | 
         
            +
                num_bytes: 442410
         
     | 
| 176 | 
         
            +
                num_examples: 1725
         
     | 
| 177 | 
         
            +
              download_size: 1028112
         
     | 
| 178 | 
         
            +
              dataset_size: 1492132
         
     | 
| 179 | 
         
            +
            - config_name: qnli
         
     | 
| 180 | 
         
            +
              features:
         
     | 
| 181 | 
         
            +
              - name: question
         
     | 
| 182 | 
         
            +
                dtype: string
         
     | 
| 183 | 
         
            +
              - name: sentence
         
     | 
| 184 | 
         
            +
                dtype: string
         
     | 
| 185 | 
         
            +
              - name: label
         
     | 
| 186 | 
         
            +
                dtype:
         
     | 
| 187 | 
         
            +
                  class_label:
         
     | 
| 188 | 
         
            +
                    names:
         
     | 
| 189 | 
         
            +
                      '0': entailment
         
     | 
| 190 | 
         
            +
                      '1': not_entailment
         
     | 
| 191 | 
         
            +
              - name: idx
         
     | 
| 192 | 
         
            +
                dtype: int32
         
     | 
| 193 | 
         
            +
              splits:
         
     | 
| 194 | 
         
            +
              - name: train
         
     | 
| 195 | 
         
            +
                num_bytes: 25612443
         
     | 
| 196 | 
         
            +
                num_examples: 104743
         
     | 
| 197 | 
         
            +
              - name: validation
         
     | 
| 198 | 
         
            +
                num_bytes: 1368304
         
     | 
| 199 | 
         
            +
                num_examples: 5463
         
     | 
| 200 | 
         
            +
              - name: test
         
     | 
| 201 | 
         
            +
                num_bytes: 1373093
         
     | 
| 202 | 
         
            +
                num_examples: 5463
         
     | 
| 203 | 
         
            +
              download_size: 19190743
         
     | 
| 204 | 
         
            +
              dataset_size: 28353840
         
     | 
| 205 | 
         
            +
            - config_name: qqp
         
     | 
| 206 | 
         
            +
              features:
         
     | 
| 207 | 
         
            +
              - name: question1
         
     | 
| 208 | 
         
            +
                dtype: string
         
     | 
| 209 | 
         
            +
              - name: question2
         
     | 
| 210 | 
         
            +
                dtype: string
         
     | 
| 211 | 
         
            +
              - name: label
         
     | 
| 212 | 
         
            +
                dtype:
         
     | 
| 213 | 
         
            +
                  class_label:
         
     | 
| 214 | 
         
            +
                    names:
         
     | 
| 215 | 
         
            +
                      '0': not_duplicate
         
     | 
| 216 | 
         
            +
                      '1': duplicate
         
     | 
| 217 | 
         
            +
              - name: idx
         
     | 
| 218 | 
         
            +
                dtype: int32
         
     | 
| 219 | 
         
            +
              splits:
         
     | 
| 220 | 
         
            +
              - name: train
         
     | 
| 221 | 
         
            +
                num_bytes: 50900820
         
     | 
| 222 | 
         
            +
                num_examples: 363846
         
     | 
| 223 | 
         
            +
              - name: validation
         
     | 
| 224 | 
         
            +
                num_bytes: 5653754
         
     | 
| 225 | 
         
            +
                num_examples: 40430
         
     | 
| 226 | 
         
            +
              - name: test
         
     | 
| 227 | 
         
            +
                num_bytes: 55171111
         
     | 
| 228 | 
         
            +
                num_examples: 390965
         
     | 
| 229 | 
         
            +
              download_size: 73472088
         
     | 
| 230 | 
         
            +
              dataset_size: 111725685
         
     | 
| 231 | 
         
            +
            - config_name: rte
         
     | 
| 232 | 
         
            +
              features:
         
     | 
| 233 | 
         
            +
              - name: sentence1
         
     | 
| 234 | 
         
            +
                dtype: string
         
     | 
| 235 | 
         
            +
              - name: sentence2
         
     | 
| 236 | 
         
            +
                dtype: string
         
     | 
| 237 | 
         
            +
              - name: label
         
     | 
| 238 | 
         
            +
                dtype:
         
     | 
| 239 | 
         
            +
                  class_label:
         
     | 
| 240 | 
         
            +
                    names:
         
     | 
| 241 | 
         
            +
                      '0': entailment
         
     | 
| 242 | 
         
            +
                      '1': not_entailment
         
     | 
| 243 | 
         
            +
              - name: idx
         
     | 
| 244 | 
         
            +
                dtype: int32
         
     | 
| 245 | 
         
            +
              splits:
         
     | 
| 246 | 
         
            +
              - name: train
         
     | 
| 247 | 
         
            +
                num_bytes: 847320
         
     | 
| 248 | 
         
            +
                num_examples: 2490
         
     | 
| 249 | 
         
            +
              - name: validation
         
     | 
| 250 | 
         
            +
                num_bytes: 90728
         
     | 
| 251 | 
         
            +
                num_examples: 277
         
     | 
| 252 | 
         
            +
              - name: test
         
     | 
| 253 | 
         
            +
                num_bytes: 974053
         
     | 
| 254 | 
         
            +
                num_examples: 3000
         
     | 
| 255 | 
         
            +
              download_size: 1267150
         
     | 
| 256 | 
         
            +
              dataset_size: 1912101
         
     | 
| 257 | 
         
            +
            - config_name: sst2
         
     | 
| 258 | 
         
            +
              features:
         
     | 
| 259 | 
         
            +
              - name: sentence
         
     | 
| 260 | 
         
            +
                dtype: string
         
     | 
| 261 | 
         
            +
              - name: label
         
     | 
| 262 | 
         
            +
                dtype:
         
     | 
| 263 | 
         
            +
                  class_label:
         
     | 
| 264 | 
         
            +
                    names:
         
     | 
| 265 | 
         
            +
                      '0': negative
         
     | 
| 266 | 
         
            +
                      '1': positive
         
     | 
| 267 | 
         
            +
              - name: idx
         
     | 
| 268 | 
         
            +
                dtype: int32
         
     | 
| 269 | 
         
            +
              splits:
         
     | 
| 270 | 
         
            +
              - name: train
         
     | 
| 271 | 
         
            +
                num_bytes: 4681603
         
     | 
| 272 | 
         
            +
                num_examples: 67349
         
     | 
| 273 | 
         
            +
              - name: validation
         
     | 
| 274 | 
         
            +
                num_bytes: 106252
         
     | 
| 275 | 
         
            +
                num_examples: 872
         
     | 
| 276 | 
         
            +
              - name: test
         
     | 
| 277 | 
         
            +
                num_bytes: 216640
         
     | 
| 278 | 
         
            +
                num_examples: 1821
         
     | 
| 279 | 
         
            +
              download_size: 3305163
         
     | 
| 280 | 
         
            +
              dataset_size: 5004495
         
     | 
| 281 | 
         
            +
            - config_name: stsb
         
     | 
| 282 | 
         
            +
              features:
         
     | 
| 283 | 
         
            +
              - name: sentence1
         
     | 
| 284 | 
         
            +
                dtype: string
         
     | 
| 285 | 
         
            +
              - name: sentence2
         
     | 
| 286 | 
         
            +
                dtype: string
         
     | 
| 287 | 
         
            +
              - name: label
         
     | 
| 288 | 
         
            +
                dtype: float32
         
     | 
| 289 | 
         
            +
              - name: idx
         
     | 
| 290 | 
         
            +
                dtype: int32
         
     | 
| 291 | 
         
            +
              splits:
         
     | 
| 292 | 
         
            +
              - name: train
         
     | 
| 293 | 
         
            +
                num_bytes: 754791
         
     | 
| 294 | 
         
            +
                num_examples: 5749
         
     | 
| 295 | 
         
            +
              - name: validation
         
     | 
| 296 | 
         
            +
                num_bytes: 216064
         
     | 
| 297 | 
         
            +
                num_examples: 1500
         
     | 
| 298 | 
         
            +
              - name: test
         
     | 
| 299 | 
         
            +
                num_bytes: 169974
         
     | 
| 300 | 
         
            +
                num_examples: 1379
         
     | 
| 301 | 
         
            +
              download_size: 761235
         
     | 
| 302 | 
         
            +
              dataset_size: 1140829
         
     | 
| 303 | 
         
            +
            - config_name: wnli
         
     | 
| 304 | 
         
            +
              features:
         
     | 
| 305 | 
         
            +
              - name: sentence1
         
     | 
| 306 | 
         
            +
                dtype: string
         
     | 
| 307 | 
         
            +
              - name: sentence2
         
     | 
| 308 | 
         
            +
                dtype: string
         
     | 
| 309 | 
         
            +
              - name: label
         
     | 
| 310 | 
         
            +
                dtype:
         
     | 
| 311 | 
         
            +
                  class_label:
         
     | 
| 312 | 
         
            +
                    names:
         
     | 
| 313 | 
         
            +
                      '0': not_entailment
         
     | 
| 314 | 
         
            +
                      '1': entailment
         
     | 
| 315 | 
         
            +
              - name: idx
         
     | 
| 316 | 
         
            +
                dtype: int32
         
     | 
| 317 | 
         
            +
              splits:
         
     | 
| 318 | 
         
            +
              - name: train
         
     | 
| 319 | 
         
            +
                num_bytes: 107109
         
     | 
| 320 | 
         
            +
                num_examples: 635
         
     | 
| 321 | 
         
            +
              - name: validation
         
     | 
| 322 | 
         
            +
                num_bytes: 12162
         
     | 
| 323 | 
         
            +
                num_examples: 71
         
     | 
| 324 | 
         
            +
              - name: test
         
     | 
| 325 | 
         
            +
                num_bytes: 37889
         
     | 
| 326 | 
         
            +
                num_examples: 146
         
     | 
| 327 | 
         
            +
              download_size: 61250
         
     | 
| 328 | 
         
            +
              dataset_size: 157160
         
     | 
| 329 | 
         
            +
            configs:
         
     | 
| 330 | 
         
            +
            - config_name: ax
         
     | 
| 331 | 
         
            +
              data_files:
         
     | 
| 332 | 
         
            +
              - split: test
         
     | 
| 333 | 
         
            +
                path: ax/test-*
         
     | 
| 334 | 
         
            +
            - config_name: cola
         
     | 
| 335 | 
         
            +
              data_files:
         
     | 
| 336 | 
         
            +
              - split: train
         
     | 
| 337 | 
         
            +
                path: cola/train-*
         
     | 
| 338 | 
         
            +
              - split: validation
         
     | 
| 339 | 
         
            +
                path: cola/validation-*
         
     | 
| 340 | 
         
            +
              - split: test
         
     | 
| 341 | 
         
            +
                path: cola/test-*
         
     | 
| 342 | 
         
            +
            - config_name: mnli
         
     | 
| 343 | 
         
            +
              data_files:
         
     | 
| 344 | 
         
            +
              - split: train
         
     | 
| 345 | 
         
            +
                path: mnli/train-*
         
     | 
| 346 | 
         
            +
              - split: validation_matched
         
     | 
| 347 | 
         
            +
                path: mnli/validation_matched-*
         
     | 
| 348 | 
         
            +
              - split: validation_mismatched
         
     | 
| 349 | 
         
            +
                path: mnli/validation_mismatched-*
         
     | 
| 350 | 
         
            +
              - split: test_matched
         
     | 
| 351 | 
         
            +
                path: mnli/test_matched-*
         
     | 
| 352 | 
         
            +
              - split: test_mismatched
         
     | 
| 353 | 
         
            +
                path: mnli/test_mismatched-*
         
     | 
| 354 | 
         
            +
            - config_name: mnli_matched
         
     | 
| 355 | 
         
            +
              data_files:
         
     | 
| 356 | 
         
            +
              - split: validation
         
     | 
| 357 | 
         
            +
                path: mnli_matched/validation-*
         
     | 
| 358 | 
         
            +
              - split: test
         
     | 
| 359 | 
         
            +
                path: mnli_matched/test-*
         
     | 
| 360 | 
         
            +
            - config_name: mnli_mismatched
         
     | 
| 361 | 
         
            +
              data_files:
         
     | 
| 362 | 
         
            +
              - split: validation
         
     | 
| 363 | 
         
            +
                path: mnli_mismatched/validation-*
         
     | 
| 364 | 
         
            +
              - split: test
         
     | 
| 365 | 
         
            +
                path: mnli_mismatched/test-*
         
     | 
| 366 | 
         
            +
            - config_name: mrpc
         
     | 
| 367 | 
         
            +
              data_files:
         
     | 
| 368 | 
         
            +
              - split: train
         
     | 
| 369 | 
         
            +
                path: mrpc/train-*
         
     | 
| 370 | 
         
            +
              - split: validation
         
     | 
| 371 | 
         
            +
                path: mrpc/validation-*
         
     | 
| 372 | 
         
            +
              - split: test
         
     | 
| 373 | 
         
            +
                path: mrpc/test-*
         
     | 
| 374 | 
         
            +
            - config_name: qnli
         
     | 
| 375 | 
         
            +
              data_files:
         
     | 
| 376 | 
         
            +
              - split: train
         
     | 
| 377 | 
         
            +
                path: qnli/train-*
         
     | 
| 378 | 
         
            +
              - split: validation
         
     | 
| 379 | 
         
            +
                path: qnli/validation-*
         
     | 
| 380 | 
         
            +
              - split: test
         
     | 
| 381 | 
         
            +
                path: qnli/test-*
         
     | 
| 382 | 
         
            +
            - config_name: qqp
         
     | 
| 383 | 
         
            +
              data_files:
         
     | 
| 384 | 
         
            +
              - split: train
         
     | 
| 385 | 
         
            +
                path: qqp/train-*
         
     | 
| 386 | 
         
            +
              - split: validation
         
     | 
| 387 | 
         
            +
                path: qqp/validation-*
         
     | 
| 388 | 
         
            +
              - split: test
         
     | 
| 389 | 
         
            +
                path: qqp/test-*
         
     | 
| 390 | 
         
            +
            - config_name: rte
         
     | 
| 391 | 
         
            +
              data_files:
         
     | 
| 392 | 
         
            +
              - split: train
         
     | 
| 393 | 
         
            +
                path: rte/train-*
         
     | 
| 394 | 
         
            +
              - split: validation
         
     | 
| 395 | 
         
            +
                path: rte/validation-*
         
     | 
| 396 | 
         
            +
              - split: test
         
     | 
| 397 | 
         
            +
                path: rte/test-*
         
     | 
| 398 | 
         
            +
            - config_name: sst2
         
     | 
| 399 | 
         
            +
              data_files:
         
     | 
| 400 | 
         
            +
              - split: train
         
     | 
| 401 | 
         
            +
                path: sst2/train-*
         
     | 
| 402 | 
         
            +
              - split: validation
         
     | 
| 403 | 
         
            +
                path: sst2/validation-*
         
     | 
| 404 | 
         
            +
              - split: test
         
     | 
| 405 | 
         
            +
                path: sst2/test-*
         
     | 
| 406 | 
         
            +
            - config_name: stsb
         
     | 
| 407 | 
         
            +
              data_files:
         
     | 
| 408 | 
         
            +
              - split: train
         
     | 
| 409 | 
         
            +
                path: stsb/train-*
         
     | 
| 410 | 
         
            +
              - split: validation
         
     | 
| 411 | 
         
            +
                path: stsb/validation-*
         
     | 
| 412 | 
         
            +
              - split: test
         
     | 
| 413 | 
         
            +
                path: stsb/test-*
         
     | 
| 414 | 
         
            +
            - config_name: wnli
         
     | 
| 415 | 
         
            +
              data_files:
         
     | 
| 416 | 
         
            +
              - split: train
         
     | 
| 417 | 
         
            +
                path: wnli/train-*
         
     | 
| 418 | 
         
            +
              - split: validation
         
     | 
| 419 | 
         
            +
                path: wnli/validation-*
         
     | 
| 420 | 
         
            +
              - split: test
         
     | 
| 421 | 
         
            +
                path: wnli/test-*
         
     | 
| 422 | 
         
             
            train-eval-index:
         
     | 
| 423 | 
         
             
            - config: cola
         
     | 
| 424 | 
         
             
              task: text-classification
         
     | 
| 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3a47cbc39a3617a4121f9c30d5f0c77a0f37e96427dbaef01647cb0c4ff92638
         
     | 
| 3 | 
         
            +
            size 79191
         
     | 
| 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:a062af38745f295a5bd520db8ec9891c0b8bdf27ff41bfc758ddc5b6f8d13f2e
         
     | 
| 3 | 
         
            +
            size 37133
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:c93ec046925d08d9153e3a888e18c6d4355d3aca8c0c41b7e4a2b118e90d661b
         
     | 
| 3 | 
         
            +
            size 248320
         
     | 
| 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:34ca31bcad53a8a85805c872863ab167a245ca569f6105c603498e94ed8b1ad0
         
     | 
| 3 | 
         
            +
            size 36941
         
     | 
| 
         @@ -1 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            {"cola": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{warstadt2018neural,\n  title={Neural Network Acceptability Judgments},\n  author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},\n  journal={arXiv preprint arXiv:1805.12471},\n  year={2018}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://nyu-mll.github.io/CoLA/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["unacceptable", "acceptable"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "cola", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 61049, "num_examples": 1063, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 489149, "num_examples": 8551, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 60850, "num_examples": 1043, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/CoLA.zip": {"num_bytes": 376971, "checksum": "f212fcd832b8f7b435fb991f101abf89f96b933ab400603bf198960dfc32cbff"}}, "download_size": 376971, "post_processing_size": null, "dataset_size": 611048, "size_in_bytes": 988019}, "sst2": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{socher2013recursive,\n  title={Recursive deep models for semantic compositionality over a sentiment treebank},\n  author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n  booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n  pages={1631--1642},\n  year={2013}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://nlp.stanford.edu/sentiment/index.html", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "sst2", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 217556, "num_examples": 1821, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 4715283, "num_examples": 67349, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 106692, "num_examples": 872, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5039531, "size_in_bytes": 12478808}, "mrpc": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{dolan2005automatically,\n  title={Automatically constructing a corpus of sentential paraphrases},\n  author={Dolan, William B and Brockett, Chris},\n  booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n  year={2005}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://www.microsoft.com/en-us/download/details.aspx?id=52398", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_equivalent", "equivalent"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mrpc", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 443498, "num_examples": 1725, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 946146, "num_examples": 3668, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 106142, "num_examples": 408, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv": {"num_bytes": 6222, "checksum": "971d7767d81b997fd9060ade0ec23c4fc31cbb226a55d1bd4a1bac474eb81dc7"}, "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt": {"num_bytes": 1047044, "checksum": "60a9b09084528f0673eedee2b69cb941920f0b8cd0eeccefc464a98768457f89"}, "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt": {"num_bytes": 441275, "checksum": "a04e271090879aaba6423d65b94950c089298587d9c084bf9cd7439bd785f784"}}, "download_size": 1494541, "post_processing_size": null, "dataset_size": 1495786, "size_in_bytes": 2990327}, "qqp": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@online{WinNT,\n  author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},\n  title = {First Quora Dataset Release: Question Pairs},\n  year = {2017},\n  url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},\n  urldate = {2019-04-03}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n", "homepage": "https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs", "license": "", "features": {"question1": {"dtype": "string", "id": null, "_type": "Value"}, "question2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_duplicate", "duplicate"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "qqp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 50901116, "num_examples": 363846, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 5653794, "num_examples": 40430, "dataset_name": "glue"}, "test": {"name": "test", "num_bytes": 55171431, "num_examples": 390965, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip": {"num_bytes": 41696084, "checksum": "40e7c862c04eb26ee04b67fd900e76c45c6ba8e6d8fab4f8f1f8072a1a3fbae0"}}, "download_size": 41696084, "post_processing_size": null, "dataset_size": 111726341, "size_in_bytes": 153422425}, "stsb": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{cer2017semeval,\n  title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},\n  author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},\n  journal={arXiv preprint arXiv:1708.00055},\n  year={2017}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "float32", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "stsb", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 170847, "num_examples": 1379, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 758394, "num_examples": 5749, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 217012, "num_examples": 1500, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/STS-B.zip": {"num_bytes": 802872, "checksum": "e60a6393de5a8b5b9bac5020a1554b54e3691f9d600b775bd131e613ac179c85"}}, "download_size": 802872, "post_processing_size": null, "dataset_size": 1146253, "size_in_bytes": 1949125}, "mnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n  author = \"Williams, Adina\n            and Nangia, Nikita\n            and Bowman, Samuel\",\n  title = \"A Broad-Coverage Challenge Corpus for\n           Sentence Understanding through Inference\",\n  booktitle = \"Proceedings of the 2018 Conference of\n               the North American Chapter of the\n               Association for Computational Linguistics:\n               Human Language Technologies, Volume 1 (Long\n               Papers)\",\n  year = \"2018\",\n  publisher = \"Association for Computational Linguistics\",\n  pages = \"1112--1122\",\n  location = \"New Orleans, Louisiana\",\n  url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n  title={A large annotated corpus for learning natural language inference},\n  author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n  journal={arXiv preprint arXiv:1508.05326},\n  year={2015}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test_matched": {"name": "test_matched", "num_bytes": 1854787, "num_examples": 9796, "dataset_name": "glue"}, "test_mismatched": {"name": "test_mismatched", "num_bytes": 1956866, "num_examples": 9847, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 74865118, "num_examples": 392702, "dataset_name": "glue"}, "validation_matched": {"name": "validation_matched", "num_bytes": 1839926, "num_examples": 9815, "dataset_name": "glue"}, "validation_mismatched": {"name": "validation_mismatched", "num_bytes": 1955384, "num_examples": 9832, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "post_processing_size": null, "dataset_size": 82472081, "size_in_bytes": 395255588}, "mnli_mismatched": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n  author = \"Williams, Adina\n            and Nangia, Nikita\n            and Bowman, Samuel\",\n  title = \"A Broad-Coverage Challenge Corpus for\n           Sentence Understanding through Inference\",\n  booktitle = \"Proceedings of the 2018 Conference of\n               the North American Chapter of the\n               Association for Computational Linguistics:\n               Human Language Technologies, Volume 1 (Long\n               Papers)\",\n  year = \"2018\",\n  publisher = \"Association for Computational Linguistics\",\n  pages = \"1112--1122\",\n  location = \"New Orleans, Louisiana\",\n  url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n  title={A large annotated corpus for learning natural language inference},\n  author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n  journal={arXiv preprint arXiv:1508.05326},\n  year={2015}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli_mismatched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1956866, "num_examples": 9847, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1955384, "num_examples": 9832, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "post_processing_size": null, "dataset_size": 3912250, "size_in_bytes": 316695757}, "mnli_matched": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n  author = \"Williams, Adina\n            and Nangia, Nikita\n            and Bowman, Samuel\",\n  title = \"A Broad-Coverage Challenge Corpus for\n           Sentence Understanding through Inference\",\n  booktitle = \"Proceedings of the 2018 Conference of\n               the North American Chapter of the\n               Association for Computational Linguistics:\n               Human Language Technologies, Volume 1 (Long\n               Papers)\",\n  year = \"2018\",\n  publisher = \"Association for Computational Linguistics\",\n  pages = \"1112--1122\",\n  location = \"New Orleans, Louisiana\",\n  url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n  title={A large annotated corpus for learning natural language inference},\n  author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n  journal={arXiv preprint arXiv:1508.05326},\n  year={2015}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli_matched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1854787, "num_examples": 9796, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1839926, "num_examples": 9815, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "post_processing_size": null, "dataset_size": 3694713, "size_in_bytes": 316478220}, "qnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{rajpurkar2016squad,\n  title={Squad: 100,000+ questions for machine comprehension of text},\n  author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},\n  journal={arXiv preprint arXiv:1606.05250},\n  year={2016}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "qnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1376516, "num_examples": 5463, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 25677924, "num_examples": 104743, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1371727, "num_examples": 5463, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip": {"num_bytes": 10627589, "checksum": "e634e78627a29adaecd4f955359b22bf5e70f2cbd93b493f2d624138a0c0e5f5"}}, "download_size": 10627589, "post_processing_size": null, "dataset_size": 28426167, "size_in_bytes": 39053756}, "rte": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{dagan2005pascal,\n  title={The PASCAL recognising textual entailment challenge},\n  author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n  booktitle={Machine Learning Challenges Workshop},\n  pages={177--190},\n  year={2005},\n  organization={Springer}\n}\n@inproceedings{bar2006second,\n  title={The second pascal recognising textual entailment challenge},\n  author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n  booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n  volume={6},\n  number={1},\n  pages={6--4},\n  year={2006},\n  organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n  title={The third pascal recognizing textual entailment challenge},\n  author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n  booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n  pages={1--9},\n  year={2007},\n  organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n  title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n  author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n  booktitle={TAC},\n  year={2009}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "rte", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 975936, "num_examples": 3000, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 848888, "num_examples": 2490, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 90911, "num_examples": 277, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/RTE.zip": {"num_bytes": 697150, "checksum": "6bf86de103ecd335f3441bd43574d23fef87ecc695977a63b82d5efb206556ee"}}, "download_size": 697150, "post_processing_size": null, "dataset_size": 1915735, "size_in_bytes": 2612885}, "wnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{levesque2012winograd,\n  title={The winograd schema challenge},\n  author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n  booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n  year={2012}\n}\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_entailment", "entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "wnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 37992, "num_examples": 146, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 107517, "num_examples": 635, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 12215, "num_examples": 71, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/WNLI.zip": {"num_bytes": 28999, "checksum": "ae0e8e4d16f4d46d4a0a566ec7ecceccfd3fbfaa4a7a4b4e02848c0f2561ac46"}}, "download_size": 28999, "post_processing_size": null, "dataset_size": 157724, "size_in_bytes": 186723}, "ax": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "\n@inproceedings{wang2019glue,\n  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n  note={In the Proceedings of ICLR.},\n  year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://gluebenchmark.com/diagnostics", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "ax", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 238392, "num_examples": 1104, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/AX.tsv": {"num_bytes": 222257, "checksum": "0e13510b1bb14436ff7e2ee82338f0efb0133ecf2e73507a697dc210db3f05fd"}}, "download_size": 222257, "post_processing_size": null, "dataset_size": 238392, "size_in_bytes": 460649}}
         
     | 
| 
         | 
|
| 
         | 
| 
         @@ -1,3 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256:a771b312be26048e7d921ff4bf01ac7de224641cd51977629bb54b9839637fb0
         
     | 
| 3 | 
         
            -
            size 1859
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -1,3 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256:3a1f6bf7c3ae0587a99d4ecfc2c4ab900efbd23dc1c68e2556426da9feab0163
         
     | 
| 3 | 
         
            -
            size 1588
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -1,3 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256:7bec2e7562503a3b7ef577986b4cd10b075818b66fb03df8d4dec79d28a5bf5f
         
     | 
| 3 | 
         
            -
            size 1613
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -1,3 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256:5ff05ebd2679fd60f174cd19415e8dd0c2f701f49f8f9dbb63f7b30707d9b06e
         
     | 
| 3 | 
         
            -
            size 1143
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -1,3 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256:8027e1188e092ea53eede8a2b2bd245f4c98f2b37132ea5d7dd173bac36e025e
         
     | 
| 3 | 
         
            -
            size 1353
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -1,3 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256:e52960c15224df1f7202371029b3a5fad3b4dfec72132d3c8b996ff03db92755
         
     | 
| 3 | 
         
            -
            size 1407
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -1,628 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # coding=utf-8
         
     | 
| 2 | 
         
            -
            # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
         
     | 
| 3 | 
         
            -
            #
         
     | 
| 4 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 5 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 6 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 7 | 
         
            -
            #
         
     | 
| 8 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 9 | 
         
            -
            #
         
     | 
| 10 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 11 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 12 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 13 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 14 | 
         
            -
            # limitations under the License.
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            # Lint as: python3
         
     | 
| 17 | 
         
            -
            """The General Language Understanding Evaluation (GLUE) benchmark."""
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            import csv
         
     | 
| 21 | 
         
            -
            import os
         
     | 
| 22 | 
         
            -
            import textwrap
         
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            import numpy as np
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            import datasets
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            _GLUE_CITATION = """\
         
     | 
| 30 | 
         
            -
            @inproceedings{wang2019glue,
         
     | 
| 31 | 
         
            -
              title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
         
     | 
| 32 | 
         
            -
              author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
         
     | 
| 33 | 
         
            -
              note={In the Proceedings of ICLR.},
         
     | 
| 34 | 
         
            -
              year={2019}
         
     | 
| 35 | 
         
            -
            }
         
     | 
| 36 | 
         
            -
            """
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            _GLUE_DESCRIPTION = """\
         
     | 
| 39 | 
         
            -
            GLUE, the General Language Understanding Evaluation benchmark
         
     | 
| 40 | 
         
            -
            (https://gluebenchmark.com/) is a collection of resources for training,
         
     | 
| 41 | 
         
            -
            evaluating, and analyzing natural language understanding systems.
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
            """
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            _MRPC_DEV_IDS = "https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv"
         
     | 
| 46 | 
         
            -
            _MRPC_TRAIN = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
         
     | 
| 47 | 
         
            -
            _MRPC_TEST = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt"
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
            _MNLI_BASE_KWARGS = dict(
         
     | 
| 50 | 
         
            -
                text_features={
         
     | 
| 51 | 
         
            -
                    "premise": "sentence1",
         
     | 
| 52 | 
         
            -
                    "hypothesis": "sentence2",
         
     | 
| 53 | 
         
            -
                },
         
     | 
| 54 | 
         
            -
                label_classes=["entailment", "neutral", "contradiction"],
         
     | 
| 55 | 
         
            -
                label_column="gold_label",
         
     | 
| 56 | 
         
            -
                data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
         
     | 
| 57 | 
         
            -
                data_dir="MNLI",
         
     | 
| 58 | 
         
            -
                citation=textwrap.dedent(
         
     | 
| 59 | 
         
            -
                    """\
         
     | 
| 60 | 
         
            -
                  @InProceedings{N18-1101,
         
     | 
| 61 | 
         
            -
                    author = "Williams, Adina
         
     | 
| 62 | 
         
            -
                              and Nangia, Nikita
         
     | 
| 63 | 
         
            -
                              and Bowman, Samuel",
         
     | 
| 64 | 
         
            -
                    title = "A Broad-Coverage Challenge Corpus for
         
     | 
| 65 | 
         
            -
                             Sentence Understanding through Inference",
         
     | 
| 66 | 
         
            -
                    booktitle = "Proceedings of the 2018 Conference of
         
     | 
| 67 | 
         
            -
                                 the North American Chapter of the
         
     | 
| 68 | 
         
            -
                                 Association for Computational Linguistics:
         
     | 
| 69 | 
         
            -
                                 Human Language Technologies, Volume 1 (Long
         
     | 
| 70 | 
         
            -
                                 Papers)",
         
     | 
| 71 | 
         
            -
                    year = "2018",
         
     | 
| 72 | 
         
            -
                    publisher = "Association for Computational Linguistics",
         
     | 
| 73 | 
         
            -
                    pages = "1112--1122",
         
     | 
| 74 | 
         
            -
                    location = "New Orleans, Louisiana",
         
     | 
| 75 | 
         
            -
                    url = "http://aclweb.org/anthology/N18-1101"
         
     | 
| 76 | 
         
            -
                  }
         
     | 
| 77 | 
         
            -
                  @article{bowman2015large,
         
     | 
| 78 | 
         
            -
                    title={A large annotated corpus for learning natural language inference},
         
     | 
| 79 | 
         
            -
                    author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
         
     | 
| 80 | 
         
            -
                    journal={arXiv preprint arXiv:1508.05326},
         
     | 
| 81 | 
         
            -
                    year={2015}
         
     | 
| 82 | 
         
            -
                  }"""
         
     | 
| 83 | 
         
            -
                ),
         
     | 
| 84 | 
         
            -
                url="http://www.nyu.edu/projects/bowman/multinli/",
         
     | 
| 85 | 
         
            -
            )
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
            class GlueConfig(datasets.BuilderConfig):
         
     | 
| 89 | 
         
            -
                """BuilderConfig for GLUE."""
         
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
                def __init__(
         
     | 
| 92 | 
         
            -
                    self,
         
     | 
| 93 | 
         
            -
                    text_features,
         
     | 
| 94 | 
         
            -
                    label_column,
         
     | 
| 95 | 
         
            -
                    data_url,
         
     | 
| 96 | 
         
            -
                    data_dir,
         
     | 
| 97 | 
         
            -
                    citation,
         
     | 
| 98 | 
         
            -
                    url,
         
     | 
| 99 | 
         
            -
                    label_classes=None,
         
     | 
| 100 | 
         
            -
                    process_label=lambda x: x,
         
     | 
| 101 | 
         
            -
                    **kwargs,
         
     | 
| 102 | 
         
            -
                ):
         
     | 
| 103 | 
         
            -
                    """BuilderConfig for GLUE.
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                    Args:
         
     | 
| 106 | 
         
            -
                      text_features: `dict[string, string]`, map from the name of the feature
         
     | 
| 107 | 
         
            -
                        dict for each text field to the name of the column in the tsv file
         
     | 
| 108 | 
         
            -
                      label_column: `string`, name of the column in the tsv file corresponding
         
     | 
| 109 | 
         
            -
                        to the label
         
     | 
| 110 | 
         
            -
                      data_url: `string`, url to download the zip file from
         
     | 
| 111 | 
         
            -
                      data_dir: `string`, the path to the folder containing the tsv files in the
         
     | 
| 112 | 
         
            -
                        downloaded zip
         
     | 
| 113 | 
         
            -
                      citation: `string`, citation for the data set
         
     | 
| 114 | 
         
            -
                      url: `string`, url for information about the data set
         
     | 
| 115 | 
         
            -
                      label_classes: `list[string]`, the list of classes if the label is
         
     | 
| 116 | 
         
            -
                        categorical. If not provided, then the label will be of type
         
     | 
| 117 | 
         
            -
                        `datasets.Value('float32')`.
         
     | 
| 118 | 
         
            -
                      process_label: `Function[string, any]`, function  taking in the raw value
         
     | 
| 119 | 
         
            -
                        of the label and processing it to the form required by the label feature
         
     | 
| 120 | 
         
            -
                      **kwargs: keyword arguments forwarded to super.
         
     | 
| 121 | 
         
            -
                    """
         
     | 
| 122 | 
         
            -
                    super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
         
     | 
| 123 | 
         
            -
                    self.text_features = text_features
         
     | 
| 124 | 
         
            -
                    self.label_column = label_column
         
     | 
| 125 | 
         
            -
                    self.label_classes = label_classes
         
     | 
| 126 | 
         
            -
                    self.data_url = data_url
         
     | 
| 127 | 
         
            -
                    self.data_dir = data_dir
         
     | 
| 128 | 
         
            -
                    self.citation = citation
         
     | 
| 129 | 
         
            -
                    self.url = url
         
     | 
| 130 | 
         
            -
                    self.process_label = process_label
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
            class Glue(datasets.GeneratorBasedBuilder):
         
     | 
| 134 | 
         
            -
                """The General Language Understanding Evaluation (GLUE) benchmark."""
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                BUILDER_CONFIGS = [
         
     | 
| 137 | 
         
            -
                    GlueConfig(
         
     | 
| 138 | 
         
            -
                        name="cola",
         
     | 
| 139 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 140 | 
         
            -
                            """\
         
     | 
| 141 | 
         
            -
                        The Corpus of Linguistic Acceptability consists of English
         
     | 
| 142 | 
         
            -
                        acceptability judgments drawn from books and journal articles on
         
     | 
| 143 | 
         
            -
                        linguistic theory. Each example is a sequence of words annotated
         
     | 
| 144 | 
         
            -
                        with whether it is a grammatical English sentence."""
         
     | 
| 145 | 
         
            -
                        ),
         
     | 
| 146 | 
         
            -
                        text_features={"sentence": "sentence"},
         
     | 
| 147 | 
         
            -
                        label_classes=["unacceptable", "acceptable"],
         
     | 
| 148 | 
         
            -
                        label_column="is_acceptable",
         
     | 
| 149 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/CoLA.zip",
         
     | 
| 150 | 
         
            -
                        data_dir="CoLA",
         
     | 
| 151 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 152 | 
         
            -
                            """\
         
     | 
| 153 | 
         
            -
                        @article{warstadt2018neural,
         
     | 
| 154 | 
         
            -
                          title={Neural Network Acceptability Judgments},
         
     | 
| 155 | 
         
            -
                          author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
         
     | 
| 156 | 
         
            -
                          journal={arXiv preprint arXiv:1805.12471},
         
     | 
| 157 | 
         
            -
                          year={2018}
         
     | 
| 158 | 
         
            -
                        }"""
         
     | 
| 159 | 
         
            -
                        ),
         
     | 
| 160 | 
         
            -
                        url="https://nyu-mll.github.io/CoLA/",
         
     | 
| 161 | 
         
            -
                    ),
         
     | 
| 162 | 
         
            -
                    GlueConfig(
         
     | 
| 163 | 
         
            -
                        name="sst2",
         
     | 
| 164 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 165 | 
         
            -
                            """\
         
     | 
| 166 | 
         
            -
                        The Stanford Sentiment Treebank consists of sentences from movie reviews and
         
     | 
| 167 | 
         
            -
                        human annotations of their sentiment. The task is to predict the sentiment of a
         
     | 
| 168 | 
         
            -
                        given sentence. We use the two-way (positive/negative) class split, and use only
         
     | 
| 169 | 
         
            -
                        sentence-level labels."""
         
     | 
| 170 | 
         
            -
                        ),
         
     | 
| 171 | 
         
            -
                        text_features={"sentence": "sentence"},
         
     | 
| 172 | 
         
            -
                        label_classes=["negative", "positive"],
         
     | 
| 173 | 
         
            -
                        label_column="label",
         
     | 
| 174 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/SST-2.zip",
         
     | 
| 175 | 
         
            -
                        data_dir="SST-2",
         
     | 
| 176 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 177 | 
         
            -
                            """\
         
     | 
| 178 | 
         
            -
                        @inproceedings{socher2013recursive,
         
     | 
| 179 | 
         
            -
                          title={Recursive deep models for semantic compositionality over a sentiment treebank},
         
     | 
| 180 | 
         
            -
                          author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
         
     | 
| 181 | 
         
            -
                          booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
         
     | 
| 182 | 
         
            -
                          pages={1631--1642},
         
     | 
| 183 | 
         
            -
                          year={2013}
         
     | 
| 184 | 
         
            -
                        }"""
         
     | 
| 185 | 
         
            -
                        ),
         
     | 
| 186 | 
         
            -
                        url="https://datasets.stanford.edu/sentiment/index.html",
         
     | 
| 187 | 
         
            -
                    ),
         
     | 
| 188 | 
         
            -
                    GlueConfig(
         
     | 
| 189 | 
         
            -
                        name="mrpc",
         
     | 
| 190 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 191 | 
         
            -
                            """\
         
     | 
| 192 | 
         
            -
                        The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
         
     | 
| 193 | 
         
            -
                        sentence pairs automatically extracted from online news sources, with human annotations
         
     | 
| 194 | 
         
            -
                        for whether the sentences in the pair are semantically equivalent."""
         
     | 
| 195 | 
         
            -
                        ),  # pylint: disable=line-too-long
         
     | 
| 196 | 
         
            -
                        text_features={"sentence1": "", "sentence2": ""},
         
     | 
| 197 | 
         
            -
                        label_classes=["not_equivalent", "equivalent"],
         
     | 
| 198 | 
         
            -
                        label_column="Quality",
         
     | 
| 199 | 
         
            -
                        data_url="",  # MRPC isn't hosted by GLUE.
         
     | 
| 200 | 
         
            -
                        data_dir="MRPC",
         
     | 
| 201 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 202 | 
         
            -
                            """\
         
     | 
| 203 | 
         
            -
                        @inproceedings{dolan2005automatically,
         
     | 
| 204 | 
         
            -
                          title={Automatically constructing a corpus of sentential paraphrases},
         
     | 
| 205 | 
         
            -
                          author={Dolan, William B and Brockett, Chris},
         
     | 
| 206 | 
         
            -
                          booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},
         
     | 
| 207 | 
         
            -
                          year={2005}
         
     | 
| 208 | 
         
            -
                        }"""
         
     | 
| 209 | 
         
            -
                        ),
         
     | 
| 210 | 
         
            -
                        url="https://www.microsoft.com/en-us/download/details.aspx?id=52398",
         
     | 
| 211 | 
         
            -
                    ),
         
     | 
| 212 | 
         
            -
                    GlueConfig(
         
     | 
| 213 | 
         
            -
                        name="qqp",
         
     | 
| 214 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 215 | 
         
            -
                            """\
         
     | 
| 216 | 
         
            -
                        The Quora Question Pairs2 dataset is a collection of question pairs from the
         
     | 
| 217 | 
         
            -
                        community question-answering website Quora. The task is to determine whether a
         
     | 
| 218 | 
         
            -
                        pair of questions are semantically equivalent."""
         
     | 
| 219 | 
         
            -
                        ),
         
     | 
| 220 | 
         
            -
                        text_features={
         
     | 
| 221 | 
         
            -
                            "question1": "question1",
         
     | 
| 222 | 
         
            -
                            "question2": "question2",
         
     | 
| 223 | 
         
            -
                        },
         
     | 
| 224 | 
         
            -
                        label_classes=["not_duplicate", "duplicate"],
         
     | 
| 225 | 
         
            -
                        label_column="is_duplicate",
         
     | 
| 226 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip",
         
     | 
| 227 | 
         
            -
                        data_dir="QQP",
         
     | 
| 228 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 229 | 
         
            -
                            """\
         
     | 
| 230 | 
         
            -
                      @online{WinNT,
         
     | 
| 231 | 
         
            -
                        author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},
         
     | 
| 232 | 
         
            -
                        title = {First Quora Dataset Release: Question Pairs},
         
     | 
| 233 | 
         
            -
                        year = {2017},
         
     | 
| 234 | 
         
            -
                        url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},
         
     | 
| 235 | 
         
            -
                        urldate = {2019-04-03}
         
     | 
| 236 | 
         
            -
                      }"""
         
     | 
| 237 | 
         
            -
                        ),
         
     | 
| 238 | 
         
            -
                        url="https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
         
     | 
| 239 | 
         
            -
                    ),
         
     | 
| 240 | 
         
            -
                    GlueConfig(
         
     | 
| 241 | 
         
            -
                        name="stsb",
         
     | 
| 242 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 243 | 
         
            -
                            """\
         
     | 
| 244 | 
         
            -
                        The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of
         
     | 
| 245 | 
         
            -
                        sentence pairs drawn from news headlines, video and image captions, and natural
         
     | 
| 246 | 
         
            -
                        language inference data. Each pair is human-annotated with a similarity score
         
     | 
| 247 | 
         
            -
                        from 1 to 5."""
         
     | 
| 248 | 
         
            -
                        ),
         
     | 
| 249 | 
         
            -
                        text_features={
         
     | 
| 250 | 
         
            -
                            "sentence1": "sentence1",
         
     | 
| 251 | 
         
            -
                            "sentence2": "sentence2",
         
     | 
| 252 | 
         
            -
                        },
         
     | 
| 253 | 
         
            -
                        label_column="score",
         
     | 
| 254 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/STS-B.zip",
         
     | 
| 255 | 
         
            -
                        data_dir="STS-B",
         
     | 
| 256 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 257 | 
         
            -
                            """\
         
     | 
| 258 | 
         
            -
                        @article{cer2017semeval,
         
     | 
| 259 | 
         
            -
                          title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},
         
     | 
| 260 | 
         
            -
                          author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},
         
     | 
| 261 | 
         
            -
                          journal={arXiv preprint arXiv:1708.00055},
         
     | 
| 262 | 
         
            -
                          year={2017}
         
     | 
| 263 | 
         
            -
                        }"""
         
     | 
| 264 | 
         
            -
                        ),
         
     | 
| 265 | 
         
            -
                        url="http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
         
     | 
| 266 | 
         
            -
                        process_label=np.float32,
         
     | 
| 267 | 
         
            -
                    ),
         
     | 
| 268 | 
         
            -
                    GlueConfig(
         
     | 
| 269 | 
         
            -
                        name="mnli",
         
     | 
| 270 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 271 | 
         
            -
                            """\
         
     | 
| 272 | 
         
            -
                        The Multi-Genre Natural Language Inference Corpus is a crowdsourced
         
     | 
| 273 | 
         
            -
                        collection of sentence pairs with textual entailment annotations. Given a premise sentence
         
     | 
| 274 | 
         
            -
                        and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
         
     | 
| 275 | 
         
            -
                        (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
         
     | 
| 276 | 
         
            -
                        gathered from ten different sources, including transcribed speech, fiction, and government reports.
         
     | 
| 277 | 
         
            -
                        We use the standard test set, for which we obtained private labels from the authors, and evaluate
         
     | 
| 278 | 
         
            -
                        on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
         
     | 
| 279 | 
         
            -
                        the SNLI corpus as 550k examples of auxiliary training data."""
         
     | 
| 280 | 
         
            -
                        ),
         
     | 
| 281 | 
         
            -
                        **_MNLI_BASE_KWARGS,
         
     | 
| 282 | 
         
            -
                    ),
         
     | 
| 283 | 
         
            -
                    GlueConfig(
         
     | 
| 284 | 
         
            -
                        name="mnli_mismatched",
         
     | 
| 285 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 286 | 
         
            -
                            """\
         
     | 
| 287 | 
         
            -
                      The mismatched validation and test splits from MNLI.
         
     | 
| 288 | 
         
            -
                      See the "mnli" BuilderConfig for additional information."""
         
     | 
| 289 | 
         
            -
                        ),
         
     | 
| 290 | 
         
            -
                        **_MNLI_BASE_KWARGS,
         
     | 
| 291 | 
         
            -
                    ),
         
     | 
| 292 | 
         
            -
                    GlueConfig(
         
     | 
| 293 | 
         
            -
                        name="mnli_matched",
         
     | 
| 294 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 295 | 
         
            -
                            """\
         
     | 
| 296 | 
         
            -
                      The matched validation and test splits from MNLI.
         
     | 
| 297 | 
         
            -
                      See the "mnli" BuilderConfig for additional information."""
         
     | 
| 298 | 
         
            -
                        ),
         
     | 
| 299 | 
         
            -
                        **_MNLI_BASE_KWARGS,
         
     | 
| 300 | 
         
            -
                    ),
         
     | 
| 301 | 
         
            -
                    GlueConfig(
         
     | 
| 302 | 
         
            -
                        name="qnli",
         
     | 
| 303 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 304 | 
         
            -
                            """\
         
     | 
| 305 | 
         
            -
                        The Stanford Question Answering Dataset is a question-answering
         
     | 
| 306 | 
         
            -
                        dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn
         
     | 
| 307 | 
         
            -
                        from Wikipedia) contains the answer to the corresponding question (written by an annotator). We
         
     | 
| 308 | 
         
            -
                        convert the task into sentence pair classification by forming a pair between each question and each
         
     | 
| 309 | 
         
            -
                        sentence in the corresponding context, and filtering out pairs with low lexical overlap between the
         
     | 
| 310 | 
         
            -
                        question and the context sentence. The task is to determine whether the context sentence contains
         
     | 
| 311 | 
         
            -
                        the answer to the question. This modified version of the original task removes the requirement that
         
     | 
| 312 | 
         
            -
                        the model select the exact answer, but also removes the simplifying assumptions that the answer
         
     | 
| 313 | 
         
            -
                        is always present in the input and that lexical overlap is a reliable cue."""
         
     | 
| 314 | 
         
            -
                        ),  # pylint: disable=line-too-long
         
     | 
| 315 | 
         
            -
                        text_features={
         
     | 
| 316 | 
         
            -
                            "question": "question",
         
     | 
| 317 | 
         
            -
                            "sentence": "sentence",
         
     | 
| 318 | 
         
            -
                        },
         
     | 
| 319 | 
         
            -
                        label_classes=["entailment", "not_entailment"],
         
     | 
| 320 | 
         
            -
                        label_column="label",
         
     | 
| 321 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip",
         
     | 
| 322 | 
         
            -
                        data_dir="QNLI",
         
     | 
| 323 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 324 | 
         
            -
                            """\
         
     | 
| 325 | 
         
            -
                        @article{rajpurkar2016squad,
         
     | 
| 326 | 
         
            -
                          title={Squad: 100,000+ questions for machine comprehension of text},
         
     | 
| 327 | 
         
            -
                          author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
         
     | 
| 328 | 
         
            -
                          journal={arXiv preprint arXiv:1606.05250},
         
     | 
| 329 | 
         
            -
                          year={2016}
         
     | 
| 330 | 
         
            -
                        }"""
         
     | 
| 331 | 
         
            -
                        ),
         
     | 
| 332 | 
         
            -
                        url="https://rajpurkar.github.io/SQuAD-explorer/",
         
     | 
| 333 | 
         
            -
                    ),
         
     | 
| 334 | 
         
            -
                    GlueConfig(
         
     | 
| 335 | 
         
            -
                        name="rte",
         
     | 
| 336 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 337 | 
         
            -
                            """\
         
     | 
| 338 | 
         
            -
                        The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
         
     | 
| 339 | 
         
            -
                        entailment challenges. We combine the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
         
     | 
| 340 | 
         
            -
                        et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).4 Examples are
         
     | 
| 341 | 
         
            -
                        constructed based on news and Wikipedia text. We convert all datasets to a two-class split, where
         
     | 
| 342 | 
         
            -
                        for three-class datasets we collapse neutral and contradiction into not entailment, for consistency."""
         
     | 
| 343 | 
         
            -
                        ),  # pylint: disable=line-too-long
         
     | 
| 344 | 
         
            -
                        text_features={
         
     | 
| 345 | 
         
            -
                            "sentence1": "sentence1",
         
     | 
| 346 | 
         
            -
                            "sentence2": "sentence2",
         
     | 
| 347 | 
         
            -
                        },
         
     | 
| 348 | 
         
            -
                        label_classes=["entailment", "not_entailment"],
         
     | 
| 349 | 
         
            -
                        label_column="label",
         
     | 
| 350 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/RTE.zip",
         
     | 
| 351 | 
         
            -
                        data_dir="RTE",
         
     | 
| 352 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 353 | 
         
            -
                            """\
         
     | 
| 354 | 
         
            -
                        @inproceedings{dagan2005pascal,
         
     | 
| 355 | 
         
            -
                          title={The PASCAL recognising textual entailment challenge},
         
     | 
| 356 | 
         
            -
                          author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
         
     | 
| 357 | 
         
            -
                          booktitle={Machine Learning Challenges Workshop},
         
     | 
| 358 | 
         
            -
                          pages={177--190},
         
     | 
| 359 | 
         
            -
                          year={2005},
         
     | 
| 360 | 
         
            -
                          organization={Springer}
         
     | 
| 361 | 
         
            -
                        }
         
     | 
| 362 | 
         
            -
                        @inproceedings{bar2006second,
         
     | 
| 363 | 
         
            -
                          title={The second pascal recognising textual entailment challenge},
         
     | 
| 364 | 
         
            -
                          author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
         
     | 
| 365 | 
         
            -
                          booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
         
     | 
| 366 | 
         
            -
                          volume={6},
         
     | 
| 367 | 
         
            -
                          number={1},
         
     | 
| 368 | 
         
            -
                          pages={6--4},
         
     | 
| 369 | 
         
            -
                          year={2006},
         
     | 
| 370 | 
         
            -
                          organization={Venice}
         
     | 
| 371 | 
         
            -
                        }
         
     | 
| 372 | 
         
            -
                        @inproceedings{giampiccolo2007third,
         
     | 
| 373 | 
         
            -
                          title={The third pascal recognizing textual entailment challenge},
         
     | 
| 374 | 
         
            -
                          author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
         
     | 
| 375 | 
         
            -
                          booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
         
     | 
| 376 | 
         
            -
                          pages={1--9},
         
     | 
| 377 | 
         
            -
                          year={2007},
         
     | 
| 378 | 
         
            -
                          organization={Association for Computational Linguistics}
         
     | 
| 379 | 
         
            -
                        }
         
     | 
| 380 | 
         
            -
                        @inproceedings{bentivogli2009fifth,
         
     | 
| 381 | 
         
            -
                          title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
         
     | 
| 382 | 
         
            -
                          author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
         
     | 
| 383 | 
         
            -
                          booktitle={TAC},
         
     | 
| 384 | 
         
            -
                          year={2009}
         
     | 
| 385 | 
         
            -
                        }"""
         
     | 
| 386 | 
         
            -
                        ),
         
     | 
| 387 | 
         
            -
                        url="https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
         
     | 
| 388 | 
         
            -
                    ),
         
     | 
| 389 | 
         
            -
                    GlueConfig(
         
     | 
| 390 | 
         
            -
                        name="wnli",
         
     | 
| 391 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 392 | 
         
            -
                            """\
         
     | 
| 393 | 
         
            -
                        The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
         
     | 
| 394 | 
         
            -
                        in which a system must read a sentence with a pronoun and select the referent of that pronoun from
         
     | 
| 395 | 
         
            -
                        a list of choices. The examples are manually constructed to foil simple statistical methods: Each
         
     | 
| 396 | 
         
            -
                        one is contingent on contextual information provided by a single word or phrase in the sentence.
         
     | 
| 397 | 
         
            -
                        To convert the problem into sentence pair classification, we construct sentence pairs by replacing
         
     | 
| 398 | 
         
            -
                        the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the
         
     | 
| 399 | 
         
            -
                        pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of
         
     | 
| 400 | 
         
            -
                        new examples derived from fiction books that was shared privately by the authors of the original
         
     | 
| 401 | 
         
            -
                        corpus. While the included training set is balanced between two classes, the test set is imbalanced
         
     | 
| 402 | 
         
            -
                        between them (65% not entailment). Also, due to a data quirk, the development set is adversarial:
         
     | 
| 403 | 
         
            -
                        hypotheses are sometimes shared between training and development examples, so if a model memorizes the
         
     | 
| 404 | 
         
            -
                        training examples, they will predict the wrong label on corresponding development set
         
     | 
| 405 | 
         
            -
                        example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence
         
     | 
| 406 | 
         
            -
                        between a model's score on this task and its score on the unconverted original task. We
         
     | 
| 407 | 
         
            -
                        call converted dataset WNLI (Winograd NLI)."""
         
     | 
| 408 | 
         
            -
                        ),
         
     | 
| 409 | 
         
            -
                        text_features={
         
     | 
| 410 | 
         
            -
                            "sentence1": "sentence1",
         
     | 
| 411 | 
         
            -
                            "sentence2": "sentence2",
         
     | 
| 412 | 
         
            -
                        },
         
     | 
| 413 | 
         
            -
                        label_classes=["not_entailment", "entailment"],
         
     | 
| 414 | 
         
            -
                        label_column="label",
         
     | 
| 415 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/WNLI.zip",
         
     | 
| 416 | 
         
            -
                        data_dir="WNLI",
         
     | 
| 417 | 
         
            -
                        citation=textwrap.dedent(
         
     | 
| 418 | 
         
            -
                            """\
         
     | 
| 419 | 
         
            -
                        @inproceedings{levesque2012winograd,
         
     | 
| 420 | 
         
            -
                          title={The winograd schema challenge},
         
     | 
| 421 | 
         
            -
                          author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
         
     | 
| 422 | 
         
            -
                          booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
         
     | 
| 423 | 
         
            -
                          year={2012}
         
     | 
| 424 | 
         
            -
                        }"""
         
     | 
| 425 | 
         
            -
                        ),
         
     | 
| 426 | 
         
            -
                        url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
         
     | 
| 427 | 
         
            -
                    ),
         
     | 
| 428 | 
         
            -
                    GlueConfig(
         
     | 
| 429 | 
         
            -
                        name="ax",
         
     | 
| 430 | 
         
            -
                        description=textwrap.dedent(
         
     | 
| 431 | 
         
            -
                            """\
         
     | 
| 432 | 
         
            -
                        A manually-curated evaluation dataset for fine-grained analysis of
         
     | 
| 433 | 
         
            -
                        system performance on a broad range of linguistic phenomena. This
         
     | 
| 434 | 
         
            -
                        dataset evaluates sentence understanding through Natural Language
         
     | 
| 435 | 
         
            -
                        Inference (NLI) problems. Use a model trained on MulitNLI to produce
         
     | 
| 436 | 
         
            -
                        predictions for this dataset."""
         
     | 
| 437 | 
         
            -
                        ),
         
     | 
| 438 | 
         
            -
                        text_features={
         
     | 
| 439 | 
         
            -
                            "premise": "sentence1",
         
     | 
| 440 | 
         
            -
                            "hypothesis": "sentence2",
         
     | 
| 441 | 
         
            -
                        },
         
     | 
| 442 | 
         
            -
                        label_classes=["entailment", "neutral", "contradiction"],
         
     | 
| 443 | 
         
            -
                        label_column="",  # No label since we only have test set.
         
     | 
| 444 | 
         
            -
                        # We must use a URL shortener since the URL from GLUE is very long and
         
     | 
| 445 | 
         
            -
                        # causes issues in TFDS.
         
     | 
| 446 | 
         
            -
                        data_url="https://dl.fbaipublicfiles.com/glue/data/AX.tsv",
         
     | 
| 447 | 
         
            -
                        data_dir="",  # We are downloading a tsv.
         
     | 
| 448 | 
         
            -
                        citation="",  # The GLUE citation is sufficient.
         
     | 
| 449 | 
         
            -
                        url="https://gluebenchmark.com/diagnostics",
         
     | 
| 450 | 
         
            -
                    ),
         
     | 
| 451 | 
         
            -
                ]
         
     | 
| 452 | 
         
            -
             
     | 
| 453 | 
         
            -
                def _info(self):
         
     | 
| 454 | 
         
            -
                    features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
         
     | 
| 455 | 
         
            -
                    if self.config.label_classes:
         
     | 
| 456 | 
         
            -
                        features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
         
     | 
| 457 | 
         
            -
                    else:
         
     | 
| 458 | 
         
            -
                        features["label"] = datasets.Value("float32")
         
     | 
| 459 | 
         
            -
                    features["idx"] = datasets.Value("int32")
         
     | 
| 460 | 
         
            -
                    return datasets.DatasetInfo(
         
     | 
| 461 | 
         
            -
                        description=_GLUE_DESCRIPTION,
         
     | 
| 462 | 
         
            -
                        features=datasets.Features(features),
         
     | 
| 463 | 
         
            -
                        homepage=self.config.url,
         
     | 
| 464 | 
         
            -
                        citation=self.config.citation + "\n" + _GLUE_CITATION,
         
     | 
| 465 | 
         
            -
                    )
         
     | 
| 466 | 
         
            -
             
     | 
| 467 | 
         
            -
                def _split_generators(self, dl_manager):
         
     | 
| 468 | 
         
            -
                    if self.config.name == "ax":
         
     | 
| 469 | 
         
            -
                        data_file = dl_manager.download(self.config.data_url)
         
     | 
| 470 | 
         
            -
                        return [
         
     | 
| 471 | 
         
            -
                            datasets.SplitGenerator(
         
     | 
| 472 | 
         
            -
                                name=datasets.Split.TEST,
         
     | 
| 473 | 
         
            -
                                gen_kwargs={
         
     | 
| 474 | 
         
            -
                                    "data_file": data_file,
         
     | 
| 475 | 
         
            -
                                    "split": "test",
         
     | 
| 476 | 
         
            -
                                },
         
     | 
| 477 | 
         
            -
                            )
         
     | 
| 478 | 
         
            -
                        ]
         
     | 
| 479 | 
         
            -
             
     | 
| 480 | 
         
            -
                    if self.config.name == "mrpc":
         
     | 
| 481 | 
         
            -
                        data_dir = None
         
     | 
| 482 | 
         
            -
                        mrpc_files = dl_manager.download(
         
     | 
| 483 | 
         
            -
                            {
         
     | 
| 484 | 
         
            -
                                "dev_ids": _MRPC_DEV_IDS,
         
     | 
| 485 | 
         
            -
                                "train": _MRPC_TRAIN,
         
     | 
| 486 | 
         
            -
                                "test": _MRPC_TEST,
         
     | 
| 487 | 
         
            -
                            }
         
     | 
| 488 | 
         
            -
                        )
         
     | 
| 489 | 
         
            -
                    else:
         
     | 
| 490 | 
         
            -
                        dl_dir = dl_manager.download_and_extract(self.config.data_url)
         
     | 
| 491 | 
         
            -
                        data_dir = os.path.join(dl_dir, self.config.data_dir)
         
     | 
| 492 | 
         
            -
                        mrpc_files = None
         
     | 
| 493 | 
         
            -
                    train_split = datasets.SplitGenerator(
         
     | 
| 494 | 
         
            -
                        name=datasets.Split.TRAIN,
         
     | 
| 495 | 
         
            -
                        gen_kwargs={
         
     | 
| 496 | 
         
            -
                            "data_file": os.path.join(data_dir or "", "train.tsv"),
         
     | 
| 497 | 
         
            -
                            "split": "train",
         
     | 
| 498 | 
         
            -
                            "mrpc_files": mrpc_files,
         
     | 
| 499 | 
         
            -
                        },
         
     | 
| 500 | 
         
            -
                    )
         
     | 
| 501 | 
         
            -
                    if self.config.name == "mnli":
         
     | 
| 502 | 
         
            -
                        return [
         
     | 
| 503 | 
         
            -
                            train_split,
         
     | 
| 504 | 
         
            -
                            _mnli_split_generator("validation_matched", data_dir, "dev", matched=True),
         
     | 
| 505 | 
         
            -
                            _mnli_split_generator("validation_mismatched", data_dir, "dev", matched=False),
         
     | 
| 506 | 
         
            -
                            _mnli_split_generator("test_matched", data_dir, "test", matched=True),
         
     | 
| 507 | 
         
            -
                            _mnli_split_generator("test_mismatched", data_dir, "test", matched=False),
         
     | 
| 508 | 
         
            -
                        ]
         
     | 
| 509 | 
         
            -
                    elif self.config.name == "mnli_matched":
         
     | 
| 510 | 
         
            -
                        return [
         
     | 
| 511 | 
         
            -
                            _mnli_split_generator("validation", data_dir, "dev", matched=True),
         
     | 
| 512 | 
         
            -
                            _mnli_split_generator("test", data_dir, "test", matched=True),
         
     | 
| 513 | 
         
            -
                        ]
         
     | 
| 514 | 
         
            -
                    elif self.config.name == "mnli_mismatched":
         
     | 
| 515 | 
         
            -
                        return [
         
     | 
| 516 | 
         
            -
                            _mnli_split_generator("validation", data_dir, "dev", matched=False),
         
     | 
| 517 | 
         
            -
                            _mnli_split_generator("test", data_dir, "test", matched=False),
         
     | 
| 518 | 
         
            -
                        ]
         
     | 
| 519 | 
         
            -
                    else:
         
     | 
| 520 | 
         
            -
                        return [
         
     | 
| 521 | 
         
            -
                            train_split,
         
     | 
| 522 | 
         
            -
                            datasets.SplitGenerator(
         
     | 
| 523 | 
         
            -
                                name=datasets.Split.VALIDATION,
         
     | 
| 524 | 
         
            -
                                gen_kwargs={
         
     | 
| 525 | 
         
            -
                                    "data_file": os.path.join(data_dir or "", "dev.tsv"),
         
     | 
| 526 | 
         
            -
                                    "split": "dev",
         
     | 
| 527 | 
         
            -
                                    "mrpc_files": mrpc_files,
         
     | 
| 528 | 
         
            -
                                },
         
     | 
| 529 | 
         
            -
                            ),
         
     | 
| 530 | 
         
            -
                            datasets.SplitGenerator(
         
     | 
| 531 | 
         
            -
                                name=datasets.Split.TEST,
         
     | 
| 532 | 
         
            -
                                gen_kwargs={
         
     | 
| 533 | 
         
            -
                                    "data_file": os.path.join(data_dir or "", "test.tsv"),
         
     | 
| 534 | 
         
            -
                                    "split": "test",
         
     | 
| 535 | 
         
            -
                                    "mrpc_files": mrpc_files,
         
     | 
| 536 | 
         
            -
                                },
         
     | 
| 537 | 
         
            -
                            ),
         
     | 
| 538 | 
         
            -
                        ]
         
     | 
| 539 | 
         
            -
             
     | 
| 540 | 
         
            -
                def _generate_examples(self, data_file, split, mrpc_files=None):
         
     | 
| 541 | 
         
            -
                    if self.config.name == "mrpc":
         
     | 
| 542 | 
         
            -
                        # We have to prepare the MRPC dataset from the original sources ourselves.
         
     | 
| 543 | 
         
            -
                        examples = self._generate_example_mrpc_files(mrpc_files=mrpc_files, split=split)
         
     | 
| 544 | 
         
            -
                        for example in examples:
         
     | 
| 545 | 
         
            -
                            yield example["idx"], example
         
     | 
| 546 | 
         
            -
                    else:
         
     | 
| 547 | 
         
            -
                        process_label = self.config.process_label
         
     | 
| 548 | 
         
            -
                        label_classes = self.config.label_classes
         
     | 
| 549 | 
         
            -
             
     | 
| 550 | 
         
            -
                        # The train and dev files for CoLA are the only tsv files without a
         
     | 
| 551 | 
         
            -
                        # header.
         
     | 
| 552 | 
         
            -
                        is_cola_non_test = self.config.name == "cola" and split != "test"
         
     | 
| 553 | 
         
            -
             
     | 
| 554 | 
         
            -
                        with open(data_file, encoding="utf8") as f:
         
     | 
| 555 | 
         
            -
                            reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
         
     | 
| 556 | 
         
            -
                            if is_cola_non_test:
         
     | 
| 557 | 
         
            -
                                reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
         
     | 
| 558 | 
         
            -
             
     | 
| 559 | 
         
            -
                            for n, row in enumerate(reader):
         
     | 
| 560 | 
         
            -
                                if is_cola_non_test:
         
     | 
| 561 | 
         
            -
                                    row = {
         
     | 
| 562 | 
         
            -
                                        "sentence": row[3],
         
     | 
| 563 | 
         
            -
                                        "is_acceptable": row[1],
         
     | 
| 564 | 
         
            -
                                    }
         
     | 
| 565 | 
         
            -
             
     | 
| 566 | 
         
            -
                                example = {feat: row[col] for feat, col in self.config.text_features.items()}
         
     | 
| 567 | 
         
            -
                                example["idx"] = n
         
     | 
| 568 | 
         
            -
             
     | 
| 569 | 
         
            -
                                if self.config.label_column in row:
         
     | 
| 570 | 
         
            -
                                    label = row[self.config.label_column]
         
     | 
| 571 | 
         
            -
                                    # For some tasks, the label is represented as 0 and 1 in the tsv
         
     | 
| 572 | 
         
            -
                                    # files and needs to be cast to integer to work with the feature.
         
     | 
| 573 | 
         
            -
                                    if label_classes and label not in label_classes:
         
     | 
| 574 | 
         
            -
                                        label = int(label) if label else None
         
     | 
| 575 | 
         
            -
                                    example["label"] = process_label(label)
         
     | 
| 576 | 
         
            -
                                else:
         
     | 
| 577 | 
         
            -
                                    example["label"] = process_label(-1)
         
     | 
| 578 | 
         
            -
             
     | 
| 579 | 
         
            -
                                # Filter out corrupted rows.
         
     | 
| 580 | 
         
            -
                                for value in example.values():
         
     | 
| 581 | 
         
            -
                                    if value is None:
         
     | 
| 582 | 
         
            -
                                        break
         
     | 
| 583 | 
         
            -
                                else:
         
     | 
| 584 | 
         
            -
                                    yield example["idx"], example
         
     | 
| 585 | 
         
            -
             
     | 
| 586 | 
         
            -
                def _generate_example_mrpc_files(self, mrpc_files, split):
         
     | 
| 587 | 
         
            -
                    if split == "test":
         
     | 
| 588 | 
         
            -
                        with open(mrpc_files["test"], encoding="utf8") as f:
         
     | 
| 589 | 
         
            -
                            # The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
         
     | 
| 590 | 
         
            -
                            # the Quality key.
         
     | 
| 591 | 
         
            -
                            f.seek(3)
         
     | 
| 592 | 
         
            -
                            reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
         
     | 
| 593 | 
         
            -
                            for n, row in enumerate(reader):
         
     | 
| 594 | 
         
            -
                                yield {
         
     | 
| 595 | 
         
            -
                                    "sentence1": row["#1 String"],
         
     | 
| 596 | 
         
            -
                                    "sentence2": row["#2 String"],
         
     | 
| 597 | 
         
            -
                                    "label": int(row["Quality"]),
         
     | 
| 598 | 
         
            -
                                    "idx": n,
         
     | 
| 599 | 
         
            -
                                }
         
     | 
| 600 | 
         
            -
                    else:
         
     | 
| 601 | 
         
            -
                        with open(mrpc_files["dev_ids"], encoding="utf8") as f:
         
     | 
| 602 | 
         
            -
                            reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
         
     | 
| 603 | 
         
            -
                            dev_ids = [[row[0], row[1]] for row in reader]
         
     | 
| 604 | 
         
            -
                        with open(mrpc_files["train"], encoding="utf8") as f:
         
     | 
| 605 | 
         
            -
                            # The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
         
     | 
| 606 | 
         
            -
                            # the Quality key.
         
     | 
| 607 | 
         
            -
                            f.seek(3)
         
     | 
| 608 | 
         
            -
                            reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
         
     | 
| 609 | 
         
            -
                            for n, row in enumerate(reader):
         
     | 
| 610 | 
         
            -
                                is_row_in_dev = [row["#1 ID"], row["#2 ID"]] in dev_ids
         
     | 
| 611 | 
         
            -
                                if is_row_in_dev == (split == "dev"):
         
     | 
| 612 | 
         
            -
                                    yield {
         
     | 
| 613 | 
         
            -
                                        "sentence1": row["#1 String"],
         
     | 
| 614 | 
         
            -
                                        "sentence2": row["#2 String"],
         
     | 
| 615 | 
         
            -
                                        "label": int(row["Quality"]),
         
     | 
| 616 | 
         
            -
                                        "idx": n,
         
     | 
| 617 | 
         
            -
                                    }
         
     | 
| 618 | 
         
            -
             
     | 
| 619 | 
         
            -
             
     | 
| 620 | 
         
            -
            def _mnli_split_generator(name, data_dir, split, matched):
         
     | 
| 621 | 
         
            -
                return datasets.SplitGenerator(
         
     | 
| 622 | 
         
            -
                    name=name,
         
     | 
| 623 | 
         
            -
                    gen_kwargs={
         
     | 
| 624 | 
         
            -
                        "data_file": os.path.join(data_dir, "%s_%s.tsv" % (split, "matched" if matched else "mismatched")),
         
     | 
| 625 | 
         
            -
                        "split": split,
         
     | 
| 626 | 
         
            -
                        "mrpc_files": None,
         
     | 
| 627 | 
         
            -
                    },
         
     | 
| 628 | 
         
            -
                )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:260fbb26acee4e781e8bbe41d41356b129d8a4fd3f485ac764c928725c49c454
         
     | 
| 3 | 
         
            +
            size 1212996
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:dfac0b6d17a6ac08d07a86a8ac8d95e92e5dbe28f4512801b685f543a6ec6e09
         
     | 
| 3 | 
         
            +
            size 1251702
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:ad52fb2458a4e192c97bcab4b3574a8b7a0a59dc92d6d757ff64f7fd9fc88fbf
         
     | 
| 3 | 
         
            +
            size 51981599
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:a665d08615288ea2e6df41320f6e7dd70083c42d13bc0597c97c818b5c9c1aa5
         
     | 
| 3 | 
         
            +
            size 1208425
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3ae79dd1ea4a4eefa96309034a94071bdac58340fd98581fbb303afa3b157b87
         
     | 
| 3 | 
         
            +
            size 1244865
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:260fbb26acee4e781e8bbe41d41356b129d8a4fd3f485ac764c928725c49c454
         
     | 
| 3 | 
         
            +
            size 1212996
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:a665d08615288ea2e6df41320f6e7dd70083c42d13bc0597c97c818b5c9c1aa5
         
     | 
| 3 | 
         
            +
            size 1208425
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:dfac0b6d17a6ac08d07a86a8ac8d95e92e5dbe28f4512801b685f543a6ec6e09
         
     | 
| 3 | 
         
            +
            size 1251702
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3ae79dd1ea4a4eefa96309034a94071bdac58340fd98581fbb303afa3b157b87
         
     | 
| 3 | 
         
            +
            size 1244865
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:0bc4e66455101cc82afe92efe3cd387ebacb92d1585e05aa6eaa24068f58fffb
         
     | 
| 3 | 
         
            +
            size 306799
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3e894b7fc5f0cdb3caa270b40089a6d4776e4dad966359109ca3c7dfec4153dd
         
     | 
| 3 | 
         
            +
            size 646414
         
     | 
| 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:6cc82c8051a9d41b5b4c57fe7f1ed1bda8a1fbd0febb620724c348167c907cf9
         
     | 
| 3 | 
         
            +
            size 74899
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:6433b32f6a0bc104f023eab938d9a087f7776af8a90a82beb36d0f5ebde84411
         
     | 
| 3 | 
         
            +
            size 872949
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:31a832f5fe31b9944a643bcb47f8c34efc5e770573ccb41d5c81e5ed0d71c816
         
     | 
| 3 | 
         
            +
            size 17449932
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:868ef7832318910590393e9376088710be6f9f2eeb1d77f1e890b8e174c51a87
         
     | 
| 3 | 
         
            +
            size 867862
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d886a8ca34b9fe150242adb939f687cf3848a203b385cdd218595e05031b5373
         
     | 
| 3 | 
         
            +
            size 36440953
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:1bbbfa05598e7cea0a6be2eb7272313eb5a8714a31736ab849b818f929b781f1
         
     | 
| 3 | 
         
            +
            size 33327465
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:b3b8bada5edeed8e6e81bb8aade05badd2195475eb7fca315c1dcdc0e710a866
         
     | 
| 3 | 
         
            +
            size 3703670
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d6cad83b691b7df6b73738a91111a0e196a294ab3988b3fb261a0bc7a455af0d
         
     | 
| 3 | 
         
            +
            size 618851
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:adc4c0a0252a64a75b101f5e73bd5c1511864580763ddd4fb48c429e59f2dde2
         
     | 
| 3 | 
         
            +
            size 580730
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3c0487bc75ae68a5d7458807b57973c656ae9c47c64a114a8b01002226fddf4a
         
     | 
| 3 | 
         
            +
            size 67569
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d19212aaf09eca70f0bb8766ca4556bd54291b14ded2b4fc0efc2d74ebfd5cab
         
     | 
| 3 | 
         
            +
            size 146921
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:03c9228cab12cf54f2727ec20e269de359d6cf29511eba3b879c52b746681f45
         
     | 
| 3 | 
         
            +
            size 3085870
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:7ca1fcdf1e78bf5325982bbbdaebe432d96727ff1c41eb27c462407fa100e13c
         
     | 
| 3 | 
         
            +
            size 72372
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:f0c58c00eebf43f70cd4668fadadf5e541415bd9fb95809fc958690d8eeea07c
         
     | 
| 3 | 
         
            +
            size 113005
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:7e63fac541b6227ea1e7a3335f49c1772dcc8d58a953cb3a8f1c4e6c0daf2db2
         
     | 
| 3 | 
         
            +
            size 498786
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:9495d89f7272d26d28e2d446c962258a499cf38a26df0925b4823cf992f7808a
         
     | 
| 3 | 
         
            +
            size 149444
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:39f6607b5400cfc068ab613dd2ceadbdddf2c85aa56b8694d602e4612a170cab
         
     | 
| 3 | 
         
            +
            size 12837
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:69539c43069eb3f052f8b86abe7ca2cd4f23645e152f044e7d19d1e107458588
         
     | 
| 3 | 
         
            +
            size 38011
         
     | 
| 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3945356789e3b1b488f5469beb230abd2c5d4b79ec3319048ce63ab405eb14eb
         
     | 
| 3 | 
         
            +
            size 10402
         
     |