File size: 4,306 Bytes
d24046d 034808a d24046d 034808a d24046d e0ec01c d24046d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
pretty_name: FaQuAD
annotations_creators:
- expert-generated
language_creators:
- found
language:
- pt
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- extended|wikipedia
task_categories:
- question-answering
task_ids:
- extractive-qa
# paperswithcode_id: faquad
train-eval-index:
- config: plain_text
task: question-answering
task_id: extractive_question_answering
splits:
train_split: train
eval_split: validation
col_mapping:
question: question
context: context
answers:
text: text
answer_start: answer_start
metrics:
- type: squad
name: SQuAD
---
# Dataset Card for FaQuAD
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/liafacom/faquad
- **Repository:** https://github.com/liafacom/faquad
- **Paper:** https://ieeexplore.ieee.org/document/8923668/
<!-- - **Leaderboard:** -->
- **Point of Contact:** Eraldo R. Fernandes <[email protected]>
### Dataset Summary
Academic secretaries and faculty members of higher education institutions face a common problem:
the abundance of questions sent by academics
whose answers are found in available institutional documents.
The official documents produced by Brazilian public universities are vast and disperse,
which discourage students to further search for answers in such sources.
In order to lessen this problem, we present FaQuAD:
a novel machine reading comprehension dataset
in the domain of Brazilian higher education institutions.
FaQuAD follows the format of SQuAD (Stanford Question Answering Dataset) [Rajpurkar et al. 2016].
It comprises 900 questions about 249 reading passages (paragraphs),
which were taken from 18 official documents of a computer science college
from a Brazilian federal university
and 21 Wikipedia articles related to Brazilian higher education system.
As far as we know, this is the first Portuguese reading comprehension dataset in this format.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
| name |train|validation|
|---------|----:|----:|
|faquad|837|63|
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|