Datasets:
File size: 12,116 Bytes
22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 69aa891 305afbb 24aa3f7 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 69aa891 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb 305afbb 22abbdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to them that record what is written. The meetings
were recorded in English using three different rooms with different acoustic properties, and include mostly
non-native speakers.
"""
import os
import datasets
_CITATION = """\
@inproceedings{10.1007/11677482_3,
author = {Carletta, Jean and Ashby, Simone and Bourban, Sebastien and Flynn, Mike and Guillemot, Mael and Hain, Thomas and Kadlec, Jaroslav and Karaiskos, Vasilis and Kraaij, Wessel and Kronenthal, Melissa and Lathoud, Guillaume and Lincoln, Mike and Lisowska, Agnes and McCowan, Iain and Post, Wilfried and Reidsma, Dennis and Wellner, Pierre},
title = {The AMI Meeting Corpus: A Pre-Announcement},
year = {2005},
isbn = {3540325492},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
url = {https://doi.org/10.1007/11677482_3},
doi = {10.1007/11677482_3},
abstract = {The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting
recordings. It is being created in the context of a project that is developing meeting
browsing technology and will eventually be released publicly. Some of the meetings
it contains are naturally occurring, and some are elicited, particularly using a scenario
in which the participants play different roles in a design team, taking a design project
from kick-off to completion over the course of a day. The corpus is being recorded
using a wide range of devices including close-talking and far-field microphones, individual
and room-view video cameras, projection, a whiteboard, and individual pens, all of
which produce output signals that are synchronized with each other. It is also being
hand-annotated for many different phenomena, including orthographic transcription,
discourse properties such as named entities and dialogue acts, summaries, emotions,
and some head and hand gestures. We describe the data set, including the rationale
behind using elicited material, and explain how the material is being recorded, transcribed
and annotated.},
booktitle = {Proceedings of the Second International Conference on Machine Learning for Multimodal Interaction},
pages = {28–39},
numpages = {12},
location = {Edinburgh, UK},
series = {MLMI'05}
}
"""
_DESCRIPTION = """\
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to them that record what is written. The meetings
were recorded in English using three different rooms with different acoustic properties, and include mostly
non-native speakers. \n
"""
_HOMEPAGE = "https://groups.inf.ed.ac.uk/ami/corpus/"
_LICENSE = "CC BY 4.0"
_TRAIN_SAMPLE_IDS = [
"EN2001a",
"EN2001b",
"EN2001d",
"EN2001e",
"EN2003a",
"EN2004a",
"EN2005a",
"EN2006a",
"EN2006b",
"EN2009b",
"EN2009c",
"EN2009d",
"ES2002a",
"ES2002b",
"ES2002c",
"ES2002d",
"ES2003a",
"ES2003b",
"ES2003c",
"ES2003d",
"ES2005a",
"ES2005b",
"ES2005c",
"ES2005d",
"ES2006a",
"ES2006b",
"ES2006c",
"ES2006d",
"ES2007a",
"ES2007b",
"ES2007c",
"ES2007d",
"ES2008a",
"ES2008b",
"ES2008c",
"ES2008d",
"ES2009a",
"ES2009b",
"ES2009c",
"ES2009d",
"ES2010a",
"ES2010b",
"ES2010c",
"ES2010d",
"ES2012a",
"ES2012b",
"ES2012c",
"ES2012d",
"ES2013a",
"ES2013b",
"ES2013c",
"ES2013d",
"ES2014a",
"ES2014b",
"ES2014c",
"ES2014d",
"ES2015a",
"ES2015b",
"ES2015c",
"ES2015d",
"ES2016a",
"ES2016b",
"ES2016c",
"ES2016d",
"IB4005",
"IN1001",
"IN1002",
"IN1005",
"IN1007",
"IN1008",
"IN1009",
"IN1012",
"IN1013",
"IN1014",
"IN1016",
"IS1000a",
"IS1000b",
"IS1000c",
"IS1000d",
"IS1001a",
"IS1001b",
"IS1001c",
"IS1001d",
"IS1002b",
"IS1002c",
"IS1002d",
"IS1003a",
"IS1003b",
"IS1003c",
"IS1003d",
"IS1004a",
"IS1004b",
"IS1004c",
"IS1004d",
"IS1005a",
"IS1005b",
"IS1005c",
"IS1006a",
"IS1006b",
"IS1006c",
"IS1006d",
"IS1007a",
"IS1007b",
"IS1007c",
"IS1007d",
"TS3005a",
"TS3005b",
"TS3005c",
"TS3005d",
"TS3006a",
"TS3006b",
"TS3006c",
"TS3006d",
"TS3007a",
"TS3007b",
"TS3007c",
"TS3007d",
"TS3008a",
"TS3008b",
"TS3008c",
"TS3008d",
"TS3009a",
"TS3009b",
"TS3009c",
"TS3009d",
"TS3010a",
"TS3010b",
"TS3010c",
"TS3010d",
"TS3011a",
"TS3011b",
"TS3011c",
"TS3011d",
"TS3012a",
"TS3012b",
"TS3012c",
"TS3012d",
]
_VALIDATION_SAMPLE_IDS = [
"ES2011a",
"ES2011c",
"IB4001",
"IB4003",
"IB4010",
"IS1008a",
"IS1008c",
"TS3004a",
"TS3004c",
"ES2011b",
"ES2011d",
"IB4002",
"IB4004",
"IB4011",
"IS1008b",
"IS1008d",
"TS3004b",
"TS3004d",
]
_EVAL_SAMPLE_IDS = [
"EN2002a",
"EN2002b",
"EN2002c",
"EN2002d",
"ES2004a",
"ES2004b",
"ES2004c",
"ES2004d",
"IS1009a",
"IS1009b",
"IS1009c",
"IS1009d",
"TS3003a",
"TS3003b",
"TS3003c",
"TS3003d",
]
_SAMPLE_IDS = {
"train": _TRAIN_SAMPLE_IDS,
"dev": _VALIDATION_SAMPLE_IDS,
"eval": _EVAL_SAMPLE_IDS,
}
_SUBSETS = ("ihm", "sdm")
_BASE_DATA_URL = "https://huggingface.co/datasets/edinburghcstr/ami/resolve/main/"
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "audio/{subset}/{split}/{_id}.tar.gz"
_ANNOTATIONS_ARCHIVE_URL = _BASE_DATA_URL + "annotations/{split}/text"
logger = datasets.utils.logging.get_logger(__name__)
class AMIConfig(datasets.BuilderConfig):
"""BuilderConfig for AMI."""
def __init__(self, name, *args, **kwargs):
"""BuilderConfig for AMI"""
super().__init__(name=name, *args, **kwargs)
class AMI(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
AMIConfig(name=subset) for subset in _SUBSETS
]
DEFAULT_WRITER_BATCH_SIZE = 128
def _info(self):
features = datasets.Features(
{
"meeting_id": datasets.Value("string"),
"audio_id": datasets.Value("string"),
"text": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"begin_time": datasets.Value("float32"),
"end_time": datasets.Value("float32"),
"microphone_id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
splits = ["train", "dev", "eval"]
audio_archives_urls = {}
for split in splits:
audio_archives_urls[split] = [
_AUDIO_ARCHIVE_URL.format(subset=self.config.name, split=split, _id=m) for m in _SAMPLE_IDS[split]
]
audio_archives = dl_manager.download(audio_archives_urls)
local_extracted_archives_paths = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {
split: [None] * len(audio_archives[split]) for split in splits
}
annotations_urls = {split: _ANNOTATIONS_ARCHIVE_URL.format(split=split) for split in splits}
annotations = dl_manager.download(annotations_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]],
"local_extracted_archives_paths": local_extracted_archives_paths["train"],
"annotation": annotations["train"],
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]],
"local_extracted_archives_paths": local_extracted_archives_paths["dev"],
"annotation": annotations["dev"],
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["eval"]],
"local_extracted_archives_paths": local_extracted_archives_paths["eval"],
"annotation": annotations["eval"],
"split": "eval"
},
),
]
def _generate_examples(self, audio_archives, local_extracted_archives_paths, annotation, split):
# open annotation file
assert len(audio_archives) == len(local_extracted_archives_paths)
with open(annotation, "r", encoding="utf-8") as f:
transcriptions = {}
for line in f.readlines():
line_items = line.strip().split()
_id = line_items[0]
text = " ".join(line_items[1:])
_, meeting_id, microphone_id, speaker_id, begin_time, end_time = _id.split("_")
if self.config.name == "sdm":
microphone_id = "SDM1"
audio_filename = "_".join([split, _id.lower()]) + ".wav"
transcriptions[audio_filename] = {
"audio_id": _id,
"meeting_id": meeting_id,
"text": text,
"begin_time": int(begin_time) / 100,
"end_time": int(end_time) / 100,
"microphone_id": microphone_id,
"speaker_id": speaker_id,
}
features = ["meeting_id", "audio_id", "text", "begin_time", "end_time", "microphone_id", "speaker_id"]
for archive, local_archive_path in zip(audio_archives, local_extracted_archives_paths):
for audio_path, audio_file in archive:
# audio_path is like 'EN2001a/train_ami_en2001a_h00_mee068_0414915_0415078.wav'
audio_meta = transcriptions[audio_path.split("/")[-1]]
yield audio_path, {
"audio": {
"path": os.path.join(local_archive_path, audio_path) if local_archive_path else audio_path,
"bytes": audio_file.read(),
},
**{feature: audio_meta[feature] for feature in features}
}
|