dwb2023 commited on
Commit
f30bb77
·
verified ·
1 Parent(s): eef7524

update dataset card

Browse files
Files changed (1) hide show
  1. README.md +215 -0
README.md CHANGED
@@ -16,4 +16,219 @@ configs:
16
  data_files:
17
  - split: train
18
  path: data/train-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  data_files:
17
  - split: train
18
  path: data/train-*
19
+ language:
20
+ - en
21
+ license: mit
22
+ task_categories:
23
+ - text-retrieval
24
+ - question-answering
25
+ - text-classification
26
+ tags:
27
+ - document-processing
28
+ - financial-aid
29
+ - education
30
+ - government-documents
31
+ - langchain
32
+ - prefect
33
+ - rag
34
+ - educational
35
+ pretty_name: "Federal Student Aid Document Loader Dataset"
36
  ---
37
+
38
+ # Federal Student Aid Document Loader Dataset
39
+
40
+ This dataset demonstrates document loading and processing techniques using LangChain's document loaders in an educational pipeline. It contains processed pages from official Federal Student Aid handbooks for the 2025-26 processing year.
41
+
42
+ ## Dataset Details
43
+
44
+ ### Dataset Description
45
+
46
+ This dataset contains 269 processed document pages extracted from four Federal Student Aid handbook volumes using LangChain's PyPDFDirectoryLoader. Each record includes the extracted text content and comprehensive metadata about the source document and processing pipeline.
47
+
48
+ The dataset serves as an educational example of:
49
+ - Document loading with LangChain
50
+ - Workflow orchestration with Prefect
51
+ - Metadata standardization across document sources
52
+ - Preparation for RAG (Retrieval Augmented Generation) systems
53
+
54
+ - **Curated by:** Educational demonstration project (dwb2023)
55
+ - **Language(s):** English
56
+ - **License:** MIT
57
+ - **Source Documents:** Federal Student Aid Handbooks 2025-26
58
+
59
+ ### Dataset Sources
60
+
61
+ - **Repository:** [langchain-dataset-loaders](https://github.com/user/langchain-dataset-loaders)
62
+ - **Original Documents:** Federal Student Aid Partner Connect Knowledge Center
63
+ - **Processing Pipeline:** LangChain + Prefect orchestration example
64
+ - **Related Tutorial:** [Document Loader Pipeline Guide](https://github.com/user/langchain-dataset-loaders/blob/main/README.md)
65
+
66
+ ## Uses
67
+
68
+ ### Direct Use
69
+
70
+ This dataset is designed for educational purposes to demonstrate:
71
+
72
+ 1. **Document Processing Pipelines**
73
+ - Learning LangChain document loader patterns
74
+ - Understanding metadata enrichment
75
+ - Practicing document chunking and retrieval
76
+
77
+ 2. **RAG System Development**
78
+ - Building question-answering systems over financial aid documentation
79
+ - Creating semantic search applications
80
+ - Developing document intelligence tools
81
+
82
+ 3. **Educational Research**
83
+ - Studying federal student aid policies and procedures
84
+ - Analyzing government document structure
85
+ - Understanding financial aid eligibility requirements
86
+
87
+ ### Out-of-Scope Use
88
+
89
+ - **Not for production financial aid decisions** - Use official FSA sources for actual student aid determinations
90
+ - **Not for legal advice** - Consult official regulations and qualified professionals
91
+ - **Not for current academic year processing** - This dataset reflects 2025-26 guidelines which may be outdated
92
+
93
+ ## Dataset Structure
94
+
95
+ Each record contains two main fields:
96
+
97
+ - **`page_content`** (string): Extracted text content from PDF pages (277-5,300 characters)
98
+ - **`metadata_json`** (string): JSON-formatted metadata including:
99
+ - Source file information (`source`, `total_pages`, `page`, `page_label`)
100
+ - Processing details (`loader_type`, `load_timestamp`)
101
+ - Document creation metadata (`producer`, `creator`, `creationdate`, `moddate`)
102
+
103
+ ### Example Record
104
+
105
+ ```json
106
+ {
107
+ "page_content": "Volume 7 The Federal Pell Grant Program Introduction This volume of the Federal Student Aid Handbook provides information to assist schools in determining student eligibility...",
108
+ "metadata_json": "{\"producer\": \"GPL Ghostscript 10.00.0\", \"creator\": \"wkhtmltopdf 0.12.6\", \"source\": \"data/raw/The_Federal_Pell_Grant_Program.pdf\", \"total_pages\": 65, \"page\": 0, \"loader_type\": \"pdf\", \"load_timestamp\": \"2025-07-03T15:05:37.091391\"}"
109
+ }
110
+ ```
111
+
112
+ ## Dataset Creation
113
+
114
+ ### Curation Rationale
115
+
116
+ This dataset was created to provide a realistic, domain-specific example for learning document processing techniques. Federal Student Aid handbooks were chosen because they:
117
+
118
+ - Represent real-world government documents with complex formatting
119
+ - Contain structured information suitable for Q&A applications
120
+ - Provide educational value about financial aid processes
121
+ - Demonstrate handling of large, multi-volume document sets
122
+
123
+ ### Source Data
124
+
125
+ #### Data Collection and Processing
126
+
127
+ The dataset was created using a LangChain + Prefect pipeline with the following steps:
128
+
129
+ 1. **Source Documents**: Four PDF volumes from the Federal Student Aid Handbook 2025-26:
130
+ - Volume 3: Applications and Verification Guide
131
+ - Volume 6: Academic Calendars, Cost of Attendance and Packaging
132
+ - Volume 7: The Federal Pell Grant Program
133
+ - Volume 8: The Direct Loan Program
134
+
135
+ 2. **Processing Pipeline**:
136
+ - PyPDFDirectoryLoader for PDF text extraction
137
+ - Metadata enrichment with source tracking
138
+ - Timestamp recording for provenance
139
+ - JSON serialization for storage
140
+
141
+ 3. **Quality Assurance**:
142
+ - Validation of extracted content length
143
+ - Metadata consistency checks
144
+ - Source file verification
145
+
146
+ #### Who are the source data producers?
147
+
148
+ - **Original Authors**: U.S. Department of Education, Federal Student Aid
149
+ - **Document Type**: Official federal government handbooks and guidance
150
+ - **Publication Year**: 2025-26 processing year
151
+ - **Processing**: Educational demonstration project
152
+
153
+ ### Personal and Sensitive Information
154
+
155
+ The source documents are public federal guidance materials that do not contain personal information. The dataset includes:
156
+
157
+ - **Public Policy Information**: Federal student aid regulations and procedures
158
+ - **No Personal Data**: No student records, SSNs, or individual information
159
+ - **No Sensitive Content**: Standard government procedural documentation
160
+
161
+ ## Bias, Risks, and Limitations
162
+
163
+ ### Technical Limitations
164
+
165
+ - **Processing Year**: Reflects 2025-26 guidelines which may become outdated
166
+ - **Extraction Accuracy**: PDF text extraction may contain formatting artifacts
167
+ - **Scope**: Limited to four handbook volumes, not comprehensive FSA guidance
168
+ - **Language**: English-only content
169
+
170
+ ### Content Considerations
171
+
172
+ - **Policy Changes**: Federal student aid policies evolve; this represents a snapshot
173
+ - **Interpretation**: Documents reflect official policy but may require expert interpretation
174
+ - **Completeness**: Does not include all FSA guidance documents or updates
175
+
176
+ ### Recommendations
177
+
178
+ Users should:
179
+ - Verify current regulations when using for research
180
+ - Understand this is educational data, not authoritative guidance
181
+ - Consider potential extraction errors when analyzing content
182
+ - Use official FSA sources for actual student aid decisions
183
+
184
+ ## Educational Value
185
+
186
+ This dataset demonstrates:
187
+
188
+ ### Document Processing Concepts
189
+ - **LangChain Integration**: Practical use of document loaders
190
+ - **Metadata Management**: Systematic tracking of document provenance
191
+ - **Workflow Orchestration**: Using Prefect for pipeline management
192
+
193
+ ### Real-World Applications
194
+ - **Government Document Processing**: Handling official publications
195
+ - **RAG System Development**: Preparing documents for retrieval systems
196
+ - **Text Analytics**: Analyzing structured government content
197
+
198
+ ## Citation
199
+
200
+ **APA:**
201
+ dwb2023. (2025). Federal Student Aid Document Loader Dataset [Data set]. Hugging Face. https://huggingface.co/datasets/dwb2023/document-loader-jul2025
202
+
203
+ **BibTeX:**
204
+ ```bibtex
205
+ @dataset{dwb2023_federal_student_aid_2025,
206
+ title={Federal Student Aid Document Loader Dataset},
207
+ author={dwb2023},
208
+ year={2025},
209
+ publisher={Hugging Face},
210
+ url={https://huggingface.co/datasets/dwb2023/document-loader-jul2025}
211
+ }
212
+ ```
213
+
214
+ ## More Information
215
+
216
+ ### Related Resources
217
+ - [LangChain Document Loaders](https://python.langchain.com/docs/integrations/document_loaders/)
218
+ - [Federal Student Aid Handbook](https://fsapartners.ed.gov/knowledge-center/fsa-handbook)
219
+ - [RAG Development Guide](https://www.promptingguide.ai/research/rag)
220
+
221
+ ### Learning Path
222
+ 1. Explore the [source repository](https://github.com/user/langchain-dataset-loaders)
223
+ 2. Run the document loading pipeline
224
+ 3. Experiment with RAG applications using this dataset
225
+ 4. Extend to other document types and sources
226
+
227
+ ## Dataset Card Authors
228
+
229
+ **Primary:** Educational demonstration project (dwb2023)
230
+ **Contributors:** LangChain + Prefect learning community
231
+
232
+ ## Dataset Card Contact
233
+
234
+ For questions about this educational dataset or the document loading pipeline, please refer to the [source repository issues](https://github.com/user/langchain-dataset-loaders/issues).