|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import Callable, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL | 
					
						
						|  | import torch | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers.models import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline | 
					
						
						|  | from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_transparency_mask(size, overlap_pixels, remove_borders=[]): | 
					
						
						|  | size_x = size[0] - overlap_pixels * 2 | 
					
						
						|  | size_y = size[1] - overlap_pixels * 2 | 
					
						
						|  | for letter in ["l", "r"]: | 
					
						
						|  | if letter in remove_borders: | 
					
						
						|  | size_x += overlap_pixels | 
					
						
						|  | for letter in ["t", "b"]: | 
					
						
						|  | if letter in remove_borders: | 
					
						
						|  | size_y += overlap_pixels | 
					
						
						|  | mask = np.ones((size_y, size_x), dtype=np.uint8) * 255 | 
					
						
						|  | mask = np.pad(mask, mode="linear_ramp", pad_width=overlap_pixels, end_values=0) | 
					
						
						|  |  | 
					
						
						|  | if "l" in remove_borders: | 
					
						
						|  | mask = mask[:, overlap_pixels : mask.shape[1]] | 
					
						
						|  | if "r" in remove_borders: | 
					
						
						|  | mask = mask[:, 0 : mask.shape[1] - overlap_pixels] | 
					
						
						|  | if "t" in remove_borders: | 
					
						
						|  | mask = mask[overlap_pixels : mask.shape[0], :] | 
					
						
						|  | if "b" in remove_borders: | 
					
						
						|  | mask = mask[0 : mask.shape[0] - overlap_pixels, :] | 
					
						
						|  | return mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def clamp(n, smallest, largest): | 
					
						
						|  | return max(smallest, min(n, largest)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def clamp_rect(rect: [int], min: [int], max: [int]): | 
					
						
						|  | return ( | 
					
						
						|  | clamp(rect[0], min[0], max[0]), | 
					
						
						|  | clamp(rect[1], min[1], max[1]), | 
					
						
						|  | clamp(rect[2], min[0], max[0]), | 
					
						
						|  | clamp(rect[3], min[1], max[1]), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def add_overlap_rect(rect: [int], overlap: int, image_size: [int]): | 
					
						
						|  | rect = list(rect) | 
					
						
						|  | rect[0] -= overlap | 
					
						
						|  | rect[1] -= overlap | 
					
						
						|  | rect[2] += overlap | 
					
						
						|  | rect[3] += overlap | 
					
						
						|  | rect = clamp_rect(rect, [0, 0], [image_size[0], image_size[1]]) | 
					
						
						|  | return rect | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def squeeze_tile(tile, original_image, original_slice, slice_x): | 
					
						
						|  | result = Image.new("RGB", (tile.size[0] + original_slice, tile.size[1])) | 
					
						
						|  | result.paste( | 
					
						
						|  | original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC).crop( | 
					
						
						|  | (slice_x, 0, slice_x + original_slice, tile.size[1]) | 
					
						
						|  | ), | 
					
						
						|  | (0, 0), | 
					
						
						|  | ) | 
					
						
						|  | result.paste(tile, (original_slice, 0)) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def unsqueeze_tile(tile, original_image_slice): | 
					
						
						|  | crop_rect = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) | 
					
						
						|  | tile = tile.crop(crop_rect) | 
					
						
						|  | return tile | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def next_divisible(n, d): | 
					
						
						|  | divisor = n % d | 
					
						
						|  | return n - divisor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionTiledUpscalePipeline(StableDiffusionUpscalePipeline): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for tile-based text-guided image super-resolution using Stable Diffusion 2, trading memory for compute | 
					
						
						|  | to create gigantic images. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`StableDiffusionUpscalePipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | low_res_scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler used to add initial noise to the low res conditioning image. It must be an instance of | 
					
						
						|  | [`DDPMScheduler`]. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | low_res_scheduler: DDPMScheduler, | 
					
						
						|  | scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | 
					
						
						|  | max_noise_level: int = 350, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | low_res_scheduler=low_res_scheduler, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | max_noise_level=max_noise_level, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _process_tile(self, original_image_slice, x, y, tile_size, tile_border, image, final_image, **kwargs): | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | crop_rect = ( | 
					
						
						|  | min(image.size[0] - (tile_size + original_image_slice), x * tile_size), | 
					
						
						|  | min(image.size[1] - (tile_size + original_image_slice), y * tile_size), | 
					
						
						|  | min(image.size[0], (x + 1) * tile_size), | 
					
						
						|  | min(image.size[1], (y + 1) * tile_size), | 
					
						
						|  | ) | 
					
						
						|  | crop_rect_with_overlap = add_overlap_rect(crop_rect, tile_border, image.size) | 
					
						
						|  | tile = image.crop(crop_rect_with_overlap) | 
					
						
						|  | translated_slice_x = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] | 
					
						
						|  | translated_slice_x = translated_slice_x - (original_image_slice / 2) | 
					
						
						|  | translated_slice_x = max(0, translated_slice_x) | 
					
						
						|  | to_input = squeeze_tile(tile, image, original_image_slice, translated_slice_x) | 
					
						
						|  | orig_input_size = to_input.size | 
					
						
						|  | to_input = to_input.resize((tile_size, tile_size), Image.BICUBIC) | 
					
						
						|  | upscaled_tile = super(StableDiffusionTiledUpscalePipeline, self).__call__(image=to_input, **kwargs).images[0] | 
					
						
						|  | upscaled_tile = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC) | 
					
						
						|  | upscaled_tile = unsqueeze_tile(upscaled_tile, original_image_slice) | 
					
						
						|  | upscaled_tile = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC) | 
					
						
						|  | remove_borders = [] | 
					
						
						|  | if x == 0: | 
					
						
						|  | remove_borders.append("l") | 
					
						
						|  | elif crop_rect[2] == image.size[0]: | 
					
						
						|  | remove_borders.append("r") | 
					
						
						|  | if y == 0: | 
					
						
						|  | remove_borders.append("t") | 
					
						
						|  | elif crop_rect[3] == image.size[1]: | 
					
						
						|  | remove_borders.append("b") | 
					
						
						|  | transparency_mask = Image.fromarray( | 
					
						
						|  | make_transparency_mask( | 
					
						
						|  | (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=remove_borders | 
					
						
						|  | ), | 
					
						
						|  | mode="L", | 
					
						
						|  | ) | 
					
						
						|  | final_image.paste( | 
					
						
						|  | upscaled_tile, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), transparency_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | image: Union[PIL.Image.Image, List[PIL.Image.Image]], | 
					
						
						|  | num_inference_steps: int = 75, | 
					
						
						|  | guidance_scale: float = 9.0, | 
					
						
						|  | noise_level: int = 50, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | tile_size: int = 128, | 
					
						
						|  | tile_border: int = 32, | 
					
						
						|  | original_image_slice: int = 32, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`): | 
					
						
						|  | The prompt or prompts to guide the image generation. | 
					
						
						|  | image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`): | 
					
						
						|  | `Image`, or tensor representing an image batch which will be upscaled. * | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
						
						|  | if `guidance_scale` is less than `1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator`, *optional*): | 
					
						
						|  | A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
						
						|  | deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | tile_size (`int`, *optional*): | 
					
						
						|  | The size of the tiles. Too big can result in an OOM-error. | 
					
						
						|  | tile_border (`int`, *optional*): | 
					
						
						|  | The number of pixels around a tile to consider (bigger means less seams, too big can lead to an OOM-error). | 
					
						
						|  | original_image_slice (`int`, *optional*): | 
					
						
						|  | The amount of pixels of the original image to calculate with the current tile (bigger means more depth | 
					
						
						|  | is preserved, less blur occurs in the final image, too big can lead to an OOM-error or loss in detail). | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that take a callback function with a single argument, a dict, | 
					
						
						|  | that contains the (partially) processed image under "image", | 
					
						
						|  | as well as the progress (0 to 1, where 1 is completed) under "progress". | 
					
						
						|  |  | 
					
						
						|  | Returns: A PIL.Image that is 4 times larger than the original input image. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | final_image = Image.new("RGB", (image.size[0] * 4, image.size[1] * 4)) | 
					
						
						|  | tcx = math.ceil(image.size[0] / tile_size) | 
					
						
						|  | tcy = math.ceil(image.size[1] / tile_size) | 
					
						
						|  | total_tile_count = tcx * tcy | 
					
						
						|  | current_count = 0 | 
					
						
						|  | for y in range(tcy): | 
					
						
						|  | for x in range(tcx): | 
					
						
						|  | self._process_tile( | 
					
						
						|  | original_image_slice, | 
					
						
						|  | x, | 
					
						
						|  | y, | 
					
						
						|  | tile_size, | 
					
						
						|  | tile_border, | 
					
						
						|  | image, | 
					
						
						|  | final_image, | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | num_inference_steps=num_inference_steps, | 
					
						
						|  | guidance_scale=guidance_scale, | 
					
						
						|  | noise_level=noise_level, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | eta=eta, | 
					
						
						|  | generator=generator, | 
					
						
						|  | latents=latents, | 
					
						
						|  | ) | 
					
						
						|  | current_count += 1 | 
					
						
						|  | if callback is not None: | 
					
						
						|  | callback({"progress": current_count / total_tile_count, "image": final_image}) | 
					
						
						|  | return final_image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  |  | 
					
						
						|  | model_id = "stabilityai/stable-diffusion-x4-upscaler" | 
					
						
						|  | pipe = StableDiffusionTiledUpscalePipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) | 
					
						
						|  | pipe = pipe.to("cuda") | 
					
						
						|  | image = Image.open("../../docs/source/imgs/diffusers_library.jpg") | 
					
						
						|  |  | 
					
						
						|  | def callback(obj): | 
					
						
						|  | print(f"progress: {obj['progress']:.4f}") | 
					
						
						|  | obj["image"].save("diffusers_library_progress.jpg") | 
					
						
						|  |  | 
					
						
						|  | final_image = pipe(image=image, prompt="Black font, white background, vector", noise_level=40, callback=callback) | 
					
						
						|  | final_image.save("diffusers_library.jpg") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |