|  | from typing import Callable, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import PIL | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import ( | 
					
						
						|  | CLIPImageProcessor, | 
					
						
						|  | CLIPSegForImageSegmentation, | 
					
						
						|  | CLIPSegProcessor, | 
					
						
						|  | CLIPTextModel, | 
					
						
						|  | CLIPTokenizer, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | from diffusers.configuration_utils import FrozenDict | 
					
						
						|  | from diffusers.models import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | 
					
						
						|  | from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | 
					
						
						|  | from diffusers.utils import deprecate, is_accelerate_available, logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TextInpainting(DiffusionPipeline): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text based inpainting using Stable Diffusion. | 
					
						
						|  | Uses CLIPSeg to get a mask from the given text, then calls the Inpainting pipeline with the generated mask | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | segmentation_model ([`CLIPSegForImageSegmentation`]): | 
					
						
						|  | CLIPSeg Model to generate mask from the given text. Please refer to the [model card]() for details. | 
					
						
						|  | segmentation_processor ([`CLIPSegProcessor`]): | 
					
						
						|  | CLIPSeg processor to get image, text features to translate prompt to English, if necessary. Please refer to the | 
					
						
						|  | [model card](https://huggingface.co/docs/transformers/model_doc/clipseg) for details. | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | 
					
						
						|  | feature_extractor ([`CLIPImageProcessor`]): | 
					
						
						|  | Model that extracts features from generated images to be used as inputs for the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | segmentation_model: CLIPSegForImageSegmentation, | 
					
						
						|  | segmentation_processor: CLIPSegProcessor, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | 
					
						
						|  | f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | 
					
						
						|  | "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | 
					
						
						|  | " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | 
					
						
						|  | " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | 
					
						
						|  | " file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | new_config = dict(scheduler.config) | 
					
						
						|  | new_config["steps_offset"] = 1 | 
					
						
						|  | scheduler._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"The configuration file of this scheduler: {scheduler} has not set the configuration" | 
					
						
						|  | " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" | 
					
						
						|  | " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" | 
					
						
						|  | " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" | 
					
						
						|  | " Hub, it would be very nice if you could open a Pull request for the" | 
					
						
						|  | " `scheduler/scheduler_config.json` file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | new_config = dict(scheduler.config) | 
					
						
						|  | new_config["skip_prk_steps"] = True | 
					
						
						|  | scheduler._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is None: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
						
						|  | " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
						
						|  | " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
						
						|  | " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
						
						|  | " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
						
						|  | " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | segmentation_model=segmentation_model, | 
					
						
						|  | segmentation_processor=segmentation_processor, | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced attention computation. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the attention module will split the input tensor in slices, to compute attention | 
					
						
						|  | in several steps. This is useful to save some memory in exchange for a small speed decrease. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | 
					
						
						|  | When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | 
					
						
						|  | a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | 
					
						
						|  | `attention_head_dim` must be a multiple of `slice_size`. | 
					
						
						|  | """ | 
					
						
						|  | if slice_size == "auto": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | slice_size = self.unet.config.attention_head_dim // 2 | 
					
						
						|  | self.unet.set_attention_slice(slice_size) | 
					
						
						|  |  | 
					
						
						|  | def disable_attention_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | 
					
						
						|  | back to computing attention in one step. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | self.enable_attention_slicing(None) | 
					
						
						|  |  | 
					
						
						|  | def enable_sequential_cpu_offload(self): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | 
					
						
						|  | text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | 
					
						
						|  | `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate import cpu_offload | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("Please install accelerate via `pip install accelerate`") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device("cuda") | 
					
						
						|  |  | 
					
						
						|  | for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: | 
					
						
						|  | if cpu_offloaded_model is not None: | 
					
						
						|  | cpu_offload(cpu_offloaded_model, device) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def _execution_device(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns the device on which the pipeline's models will be executed. After calling | 
					
						
						|  | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | 
					
						
						|  | hooks. | 
					
						
						|  | """ | 
					
						
						|  | if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | 
					
						
						|  | return self.device | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(module, "_hf_hook") | 
					
						
						|  | and hasattr(module._hf_hook, "execution_device") | 
					
						
						|  | and module._hf_hook.execution_device is not None | 
					
						
						|  | ): | 
					
						
						|  | return torch.device(module._hf_hook.execution_device) | 
					
						
						|  | return self.device | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | image: Union[torch.FloatTensor, PIL.Image.Image], | 
					
						
						|  | text: str, | 
					
						
						|  | height: int = 512, | 
					
						
						|  | width: int = 512, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`): | 
					
						
						|  | The prompt or prompts to guide the image generation. | 
					
						
						|  | image (`PIL.Image.Image`): | 
					
						
						|  | `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | 
					
						
						|  | be masked out with `mask_image` and repainted according to `prompt`. | 
					
						
						|  | text (`str``): | 
					
						
						|  | The text to use to generate the mask. | 
					
						
						|  | height (`int`, *optional*, defaults to 512): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to 512): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
						
						|  | if `guidance_scale` is less than `1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator`, *optional*): | 
					
						
						|  | A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
						
						|  | deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
						
						|  | When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
						
						|  | list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
						
						|  | (nsfw) content, according to the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inputs = self.segmentation_processor( | 
					
						
						|  | text=[text], images=[image], padding="max_length", return_tensors="pt" | 
					
						
						|  | ).to(self.device) | 
					
						
						|  | outputs = self.segmentation_model(**inputs) | 
					
						
						|  | mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() | 
					
						
						|  | mask_pil = self.numpy_to_pil(mask)[0].resize(image.size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inpainting_pipeline = StableDiffusionInpaintPipeline( | 
					
						
						|  | vae=self.vae, | 
					
						
						|  | text_encoder=self.text_encoder, | 
					
						
						|  | tokenizer=self.tokenizer, | 
					
						
						|  | unet=self.unet, | 
					
						
						|  | scheduler=self.scheduler, | 
					
						
						|  | safety_checker=self.safety_checker, | 
					
						
						|  | feature_extractor=self.feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  | return inpainting_pipeline( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | image=image, | 
					
						
						|  | mask_image=mask_pil, | 
					
						
						|  | height=height, | 
					
						
						|  | width=width, | 
					
						
						|  | num_inference_steps=num_inference_steps, | 
					
						
						|  | guidance_scale=guidance_scale, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | eta=eta, | 
					
						
						|  | generator=generator, | 
					
						
						|  | latents=latents, | 
					
						
						|  | output_type=output_type, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | callback=callback, | 
					
						
						|  | callback_steps=callback_steps, | 
					
						
						|  | ) | 
					
						
						|  |  |