|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL.Image | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel | 
					
						
						|  | from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | PIL_INTERPOLATION, | 
					
						
						|  | is_accelerate_available, | 
					
						
						|  | is_accelerate_version, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import numpy as np | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from PIL import Image | 
					
						
						|  | >>> from diffusers import ControlNetModel, UniPCMultistepScheduler | 
					
						
						|  | >>> from diffusers.utils import load_image | 
					
						
						|  |  | 
					
						
						|  | >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") | 
					
						
						|  |  | 
					
						
						|  | >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | 
					
						
						|  |  | 
					
						
						|  | >>> pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | 
					
						
						|  | "runwayml/stable-diffusion-v1-5", | 
					
						
						|  | controlnet=controlnet, | 
					
						
						|  | safety_checker=None, | 
					
						
						|  | torch_dtype=torch.float16 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | >>> pipe_controlnet.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config) | 
					
						
						|  | >>> pipe_controlnet.enable_xformers_memory_efficient_attention() | 
					
						
						|  | >>> pipe_controlnet.enable_model_cpu_offload() | 
					
						
						|  |  | 
					
						
						|  | # using image with edges for our canny controlnet | 
					
						
						|  | >>> control_image = load_image( | 
					
						
						|  | "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/vermeer_canny_edged.png") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | >>> result_img = pipe_controlnet(controlnet_conditioning_image=control_image, | 
					
						
						|  | image=input_image, | 
					
						
						|  | prompt="an android robot, cyberpank, digitl art masterpiece", | 
					
						
						|  | num_inference_steps=20).images[0] | 
					
						
						|  |  | 
					
						
						|  | >>> result_img.show() | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_image(image): | 
					
						
						|  | if isinstance(image, torch.Tensor): | 
					
						
						|  |  | 
					
						
						|  | if image.ndim == 3: | 
					
						
						|  | image = image.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(dtype=torch.float32) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, (PIL.Image.Image, np.ndarray)): | 
					
						
						|  | image = [image] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | 
					
						
						|  | image = [np.array(i.convert("RGB"))[None, :] for i in image] | 
					
						
						|  | image = np.concatenate(image, axis=0) | 
					
						
						|  | elif isinstance(image, list) and isinstance(image[0], np.ndarray): | 
					
						
						|  | image = np.concatenate([i[None, :] for i in image], axis=0) | 
					
						
						|  |  | 
					
						
						|  | image = image.transpose(0, 3, 1, 2) | 
					
						
						|  | image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_controlnet_conditioning_image( | 
					
						
						|  | controlnet_conditioning_image, | 
					
						
						|  | width, | 
					
						
						|  | height, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | device, | 
					
						
						|  | dtype, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | ): | 
					
						
						|  | if not isinstance(controlnet_conditioning_image, torch.Tensor): | 
					
						
						|  | if isinstance(controlnet_conditioning_image, PIL.Image.Image): | 
					
						
						|  | controlnet_conditioning_image = [controlnet_conditioning_image] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet_conditioning_image[0], PIL.Image.Image): | 
					
						
						|  | controlnet_conditioning_image = [ | 
					
						
						|  | np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] | 
					
						
						|  | for i in controlnet_conditioning_image | 
					
						
						|  | ] | 
					
						
						|  | controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0) | 
					
						
						|  | controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0 | 
					
						
						|  | controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2) | 
					
						
						|  | controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image) | 
					
						
						|  | elif isinstance(controlnet_conditioning_image[0], torch.Tensor): | 
					
						
						|  | controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0) | 
					
						
						|  |  | 
					
						
						|  | image_batch_size = controlnet_conditioning_image.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size == 1: | 
					
						
						|  | repeat_by = batch_size | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | repeat_by = num_images_per_prompt | 
					
						
						|  |  | 
					
						
						|  | controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0) | 
					
						
						|  |  | 
					
						
						|  | controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2) | 
					
						
						|  |  | 
					
						
						|  | return controlnet_conditioning_image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline): | 
					
						
						|  | """ | 
					
						
						|  | Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/ | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _optional_components = ["safety_checker", "feature_extractor"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is None and requires_safety_checker: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
						
						|  | " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
						
						|  | " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
						
						|  | " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
						
						|  | " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
						
						|  | " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is not None and feature_extractor is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | 
					
						
						|  | " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, (list, tuple)): | 
					
						
						|  | controlnet = MultiControlNetModel(controlnet) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | controlnet=controlnet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | 
					
						
						|  | steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def enable_sequential_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | 
					
						
						|  | text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a | 
					
						
						|  | `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | 
					
						
						|  | Note that offloading happens on a submodule basis. Memory savings are higher than with | 
					
						
						|  | `enable_model_cpu_offload`, but performance is lower. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate import cpu_offload | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("Please install accelerate via `pip install accelerate`") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]: | 
					
						
						|  | cpu_offload(cpu_offloaded_model, device) | 
					
						
						|  |  | 
					
						
						|  | if self.safety_checker is not None: | 
					
						
						|  | cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | 
					
						
						|  |  | 
					
						
						|  | def enable_model_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | 
					
						
						|  | to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | 
					
						
						|  | method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | 
					
						
						|  | `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | 
					
						
						|  | from accelerate import cpu_offload_with_hook | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | hook = None | 
					
						
						|  | for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | 
					
						
						|  | _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | 
					
						
						|  |  | 
					
						
						|  | if self.safety_checker is not None: | 
					
						
						|  |  | 
					
						
						|  | _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cpu_offload_with_hook(self.controlnet, device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.final_offload_hook = hook | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def _execution_device(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns the device on which the pipeline's models will be executed. After calling | 
					
						
						|  | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | 
					
						
						|  | hooks. | 
					
						
						|  | """ | 
					
						
						|  | if not hasattr(self.unet, "_hf_hook"): | 
					
						
						|  | return self.device | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(module, "_hf_hook") | 
					
						
						|  | and hasattr(module._hf_hook, "execution_device") | 
					
						
						|  | and module._hf_hook.execution_device is not None | 
					
						
						|  | ): | 
					
						
						|  | return torch.device(module._hf_hook.execution_device) | 
					
						
						|  | return self.device | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | """ | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is not None: | 
					
						
						|  | safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  | image = self.vae.decode(latents).sample | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds): | 
					
						
						|  | image_is_pil = isinstance(image, PIL.Image.Image) | 
					
						
						|  | image_is_tensor = isinstance(image, torch.Tensor) | 
					
						
						|  | image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | 
					
						
						|  | image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | 
					
						
						|  |  | 
					
						
						|  | if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list: | 
					
						
						|  | raise TypeError( | 
					
						
						|  | "image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if image_is_pil: | 
					
						
						|  | image_batch_size = 1 | 
					
						
						|  | elif image_is_tensor: | 
					
						
						|  | image_batch_size = image.shape[0] | 
					
						
						|  | elif image_is_pil_list: | 
					
						
						|  | image_batch_size = len(image) | 
					
						
						|  | elif image_is_tensor_list: | 
					
						
						|  | image_batch_size = len(image) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("controlnet condition image is not valid") | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | prompt_batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | prompt_batch_size = len(prompt) | 
					
						
						|  | elif prompt_embeds is not None: | 
					
						
						|  | prompt_batch_size = prompt_embeds.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("prompt or prompt_embeds are not valid") | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size != 1 and image_batch_size != prompt_batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | image, | 
					
						
						|  | controlnet_conditioning_image, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | strength=None, | 
					
						
						|  | controlnet_guidance_start=None, | 
					
						
						|  | controlnet_guidance_end=None, | 
					
						
						|  | controlnet_conditioning_scale=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if (callback_steps is None) or ( | 
					
						
						|  | callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, ControlNetModel): | 
					
						
						|  | self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds) | 
					
						
						|  | elif isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | if not isinstance(controlnet_conditioning_image, list): | 
					
						
						|  | raise TypeError("For multiple controlnets: `image` must be type `list`") | 
					
						
						|  |  | 
					
						
						|  | if len(controlnet_conditioning_image) != len(self.controlnet.nets): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "For multiple controlnets: `image` must have the same length as the number of controlnets." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for image_ in controlnet_conditioning_image: | 
					
						
						|  | self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, ControlNetModel): | 
					
						
						|  | if not isinstance(controlnet_conditioning_scale, float): | 
					
						
						|  | raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | 
					
						
						|  | elif isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | 
					
						
						|  | self.controlnet.nets | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | 
					
						
						|  | " the same length as the number of controlnets" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, torch.Tensor): | 
					
						
						|  | if image.ndim != 3 and image.ndim != 4: | 
					
						
						|  | raise ValueError("`image` must have 3 or 4 dimensions") | 
					
						
						|  |  | 
					
						
						|  | if image.ndim == 3: | 
					
						
						|  | image_batch_size = 1 | 
					
						
						|  | image_channels, image_height, image_width = image.shape | 
					
						
						|  | elif image.ndim == 4: | 
					
						
						|  | image_batch_size, image_channels, image_height, image_width = image.shape | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  | if image_channels != 3: | 
					
						
						|  | raise ValueError("`image` must have 3 channels") | 
					
						
						|  |  | 
					
						
						|  | if image.min() < -1 or image.max() > 1: | 
					
						
						|  | raise ValueError("`image` should be in range [-1, 1]") | 
					
						
						|  |  | 
					
						
						|  | if self.vae.config.latent_channels != self.unet.config.in_channels: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received" | 
					
						
						|  | f" latent channels: {self.vae.config.latent_channels}," | 
					
						
						|  | f" Please verify the config of `pipeline.unet` and the `pipeline.vae`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if strength < 0 or strength > 1: | 
					
						
						|  | raise ValueError(f"The value of `strength` should in [0.0, 1.0] but is {strength}") | 
					
						
						|  |  | 
					
						
						|  | if controlnet_guidance_start < 0 or controlnet_guidance_start > 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The value of `controlnet_guidance_start` should in [0.0, 1.0] but is {controlnet_guidance_start}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if controlnet_guidance_end < 0 or controlnet_guidance_end > 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The value of `controlnet_guidance_end` should in [0.0, 1.0] but is {controlnet_guidance_end}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if controlnet_guidance_start > controlnet_guidance_end: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "The value of `controlnet_guidance_start` should be less than `controlnet_guidance_end`, but got" | 
					
						
						|  | f" `controlnet_guidance_start` {controlnet_guidance_start} >= `controlnet_guidance_end` {controlnet_guidance_end}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def get_timesteps(self, num_inference_steps, strength, device): | 
					
						
						|  |  | 
					
						
						|  | init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | t_start = max(num_inference_steps - init_timestep, 0) | 
					
						
						|  | timesteps = self.scheduler.timesteps[t_start:] | 
					
						
						|  |  | 
					
						
						|  | return timesteps, num_inference_steps - t_start | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | 
					
						
						|  | if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | batch_size = batch_size * num_images_per_prompt | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(generator, list): | 
					
						
						|  | init_latents = [ | 
					
						
						|  | self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | init_latents = torch.cat(init_latents, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = self.vae.encode(image).latent_dist.sample(generator) | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.vae.config.scaling_factor * init_latents | 
					
						
						|  |  | 
					
						
						|  | if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = torch.cat([init_latents], dim=0) | 
					
						
						|  |  | 
					
						
						|  | shape = init_latents.shape | 
					
						
						|  | noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | 
					
						
						|  | latents = init_latents | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def _default_height_width(self, height, width, image): | 
					
						
						|  | if isinstance(image, list): | 
					
						
						|  | image = image[0] | 
					
						
						|  |  | 
					
						
						|  | if height is None: | 
					
						
						|  | if isinstance(image, PIL.Image.Image): | 
					
						
						|  | height = image.height | 
					
						
						|  | elif isinstance(image, torch.Tensor): | 
					
						
						|  | height = image.shape[3] | 
					
						
						|  |  | 
					
						
						|  | height = (height // 8) * 8 | 
					
						
						|  |  | 
					
						
						|  | if width is None: | 
					
						
						|  | if isinstance(image, PIL.Image.Image): | 
					
						
						|  | width = image.width | 
					
						
						|  | elif isinstance(image, torch.Tensor): | 
					
						
						|  | width = image.shape[2] | 
					
						
						|  |  | 
					
						
						|  | width = (width // 8) * 8 | 
					
						
						|  |  | 
					
						
						|  | return height, width | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | image: Union[torch.Tensor, PIL.Image.Image] = None, | 
					
						
						|  | controlnet_conditioning_image: Union[ | 
					
						
						|  | torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image] | 
					
						
						|  | ] = None, | 
					
						
						|  | strength: float = 0.8, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | 
					
						
						|  | controlnet_guidance_start: float = 0.0, | 
					
						
						|  | controlnet_guidance_end: float = 1.0, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | image (`torch.Tensor` or `PIL.Image.Image`): | 
					
						
						|  | `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | 
					
						
						|  | be masked out with `mask_image` and repainted according to `prompt`. | 
					
						
						|  | controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`): | 
					
						
						|  | The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If | 
					
						
						|  | the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can | 
					
						
						|  | also be accepted as an image. The control image is automatically resized to fit the output image. | 
					
						
						|  | strength (`float`, *optional*): | 
					
						
						|  | Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | 
					
						
						|  | will be used as a starting point, adding more noise to it the larger the `strength`. The number of | 
					
						
						|  | denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | 
					
						
						|  | be maximum and the denoising process will run for the full number of iterations specified in | 
					
						
						|  | `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | 
					
						
						|  | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0): | 
					
						
						|  | The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added | 
					
						
						|  | to the residual in the original unet. | 
					
						
						|  | controlnet_guidance_start ('float', *optional*, defaults to 0.0): | 
					
						
						|  | The percentage of total steps the controlnet starts applying. Must be between 0 and 1. | 
					
						
						|  | controlnet_guidance_end ('float', *optional*, defaults to 1.0): | 
					
						
						|  | The percentage of total steps the controlnet ends applying. Must be between 0 and 1. Must be greater | 
					
						
						|  | than `controlnet_guidance_start`. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
						
						|  | When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
						
						|  | list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
						
						|  | (nsfw) content, according to the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | height, width = self._default_height_width(height, width, controlnet_conditioning_image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | image, | 
					
						
						|  | controlnet_conditioning_image, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | strength, | 
					
						
						|  | controlnet_guidance_start, | 
					
						
						|  | controlnet_guidance_end, | 
					
						
						|  | controlnet_conditioning_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | 
					
						
						|  | controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self._encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = prepare_image(image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, ControlNetModel): | 
					
						
						|  | controlnet_conditioning_image = prepare_controlnet_conditioning_image( | 
					
						
						|  | controlnet_conditioning_image=controlnet_conditioning_image, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=self.controlnet.dtype, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | controlnet_conditioning_images = [] | 
					
						
						|  |  | 
					
						
						|  | for image_ in controlnet_conditioning_image: | 
					
						
						|  | image_ = prepare_controlnet_conditioning_image( | 
					
						
						|  | controlnet_conditioning_image=image_, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=self.controlnet.dtype, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | controlnet_conditioning_images.append(image_) | 
					
						
						|  |  | 
					
						
						|  | controlnet_conditioning_image = controlnet_conditioning_images | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  | timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | 
					
						
						|  | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | image, | 
					
						
						|  | latent_timestep, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | current_sampling_percent = i / len(timesteps) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | current_sampling_percent < controlnet_guidance_start | 
					
						
						|  | or current_sampling_percent > controlnet_guidance_end | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples = None | 
					
						
						|  | mid_block_res_sample = None | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples, mid_block_res_sample = self.controlnet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | controlnet_cond=controlnet_conditioning_image, | 
					
						
						|  | conditioning_scale=controlnet_conditioning_scale, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | down_block_additional_residuals=down_block_res_samples, | 
					
						
						|  | mid_block_additional_residual=mid_block_res_sample, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | callback(i, t, latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
						
						|  | self.unet.to("cpu") | 
					
						
						|  | self.controlnet.to("cpu") | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | if output_type == "latent": | 
					
						
						|  | image = latents | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | elif output_type == "pil": | 
					
						
						|  |  | 
					
						
						|  | image = self.decode_latents(latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | image = self.decode_latents(latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
						
						|  | self.final_offload_hook.offload() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  |