|  | import inspect | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  | from torchvision import transforms | 
					
						
						|  | from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import ( | 
					
						
						|  | AutoencoderKL, | 
					
						
						|  | DDIMScheduler, | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | DPMSolverMultistepScheduler, | 
					
						
						|  | LMSDiscreteScheduler, | 
					
						
						|  | PNDMScheduler, | 
					
						
						|  | UNet2DConditionModel, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | PIL_INTERPOLATION, | 
					
						
						|  | deprecate, | 
					
						
						|  | randn_tensor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ``` | 
					
						
						|  | from io import BytesIO | 
					
						
						|  |  | 
					
						
						|  | import requests | 
					
						
						|  | import torch | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from transformers import CLIPFeatureExtractor, CLIPModel | 
					
						
						|  |  | 
					
						
						|  | feature_extractor = CLIPFeatureExtractor.from_pretrained( | 
					
						
						|  | "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" | 
					
						
						|  | ) | 
					
						
						|  | clip_model = CLIPModel.from_pretrained( | 
					
						
						|  | "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | guided_pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "CompVis/stable-diffusion-v1-4", | 
					
						
						|  | # custom_pipeline="clip_guided_stable_diffusion", | 
					
						
						|  | custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py", | 
					
						
						|  | clip_model=clip_model, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | guided_pipeline.enable_attention_slicing() | 
					
						
						|  | guided_pipeline = guided_pipeline.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece" | 
					
						
						|  |  | 
					
						
						|  | url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" | 
					
						
						|  |  | 
					
						
						|  | response = requests.get(url) | 
					
						
						|  | init_image = Image.open(BytesIO(response.content)).convert("RGB") | 
					
						
						|  |  | 
					
						
						|  | image = guided_pipeline( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | num_inference_steps=30, | 
					
						
						|  | image=init_image, | 
					
						
						|  | strength=0.75, | 
					
						
						|  | guidance_scale=7.5, | 
					
						
						|  | clip_guidance_scale=100, | 
					
						
						|  | num_cutouts=4, | 
					
						
						|  | use_cutouts=False, | 
					
						
						|  | ).images[0] | 
					
						
						|  | display(image) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def preprocess(image, w, h): | 
					
						
						|  | if isinstance(image, torch.Tensor): | 
					
						
						|  | return image | 
					
						
						|  | elif isinstance(image, PIL.Image.Image): | 
					
						
						|  | image = [image] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image[0], PIL.Image.Image): | 
					
						
						|  | image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | 
					
						
						|  | image = np.concatenate(image, axis=0) | 
					
						
						|  | image = np.array(image).astype(np.float32) / 255.0 | 
					
						
						|  | image = image.transpose(0, 3, 1, 2) | 
					
						
						|  | image = 2.0 * image - 1.0 | 
					
						
						|  | image = torch.from_numpy(image) | 
					
						
						|  | elif isinstance(image[0], torch.Tensor): | 
					
						
						|  | image = torch.cat(image, dim=0) | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MakeCutouts(nn.Module): | 
					
						
						|  | def __init__(self, cut_size, cut_power=1.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.cut_size = cut_size | 
					
						
						|  | self.cut_power = cut_power | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values, num_cutouts): | 
					
						
						|  | sideY, sideX = pixel_values.shape[2:4] | 
					
						
						|  | max_size = min(sideX, sideY) | 
					
						
						|  | min_size = min(sideX, sideY, self.cut_size) | 
					
						
						|  | cutouts = [] | 
					
						
						|  | for _ in range(num_cutouts): | 
					
						
						|  | size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) | 
					
						
						|  | offsetx = torch.randint(0, sideX - size + 1, ()) | 
					
						
						|  | offsety = torch.randint(0, sideY - size + 1, ()) | 
					
						
						|  | cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size] | 
					
						
						|  | cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) | 
					
						
						|  | return torch.cat(cutouts) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def spherical_dist_loss(x, y): | 
					
						
						|  | x = F.normalize(x, dim=-1) | 
					
						
						|  | y = F.normalize(y, dim=-1) | 
					
						
						|  | return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_requires_grad(model, value): | 
					
						
						|  | for param in model.parameters(): | 
					
						
						|  | param.requires_grad = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CLIPGuidedStableDiffusion(DiffusionPipeline): | 
					
						
						|  | """CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000 | 
					
						
						|  | - https://github.com/Jack000/glid-3-xl | 
					
						
						|  | - https://github.dev/crowsonkb/k-diffusion | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | clip_model: CLIPModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], | 
					
						
						|  | feature_extractor: CLIPFeatureExtractor, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | clip_model=clip_model, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) | 
					
						
						|  | self.cut_out_size = ( | 
					
						
						|  | feature_extractor.size | 
					
						
						|  | if isinstance(feature_extractor.size, int) | 
					
						
						|  | else feature_extractor.size["shortest_edge"] | 
					
						
						|  | ) | 
					
						
						|  | self.make_cutouts = MakeCutouts(self.cut_out_size) | 
					
						
						|  |  | 
					
						
						|  | set_requires_grad(self.text_encoder, False) | 
					
						
						|  | set_requires_grad(self.clip_model, False) | 
					
						
						|  |  | 
					
						
						|  | def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | 
					
						
						|  | if slice_size == "auto": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | slice_size = self.unet.config.attention_head_dim // 2 | 
					
						
						|  | self.unet.set_attention_slice(slice_size) | 
					
						
						|  |  | 
					
						
						|  | def disable_attention_slicing(self): | 
					
						
						|  | self.enable_attention_slicing(None) | 
					
						
						|  |  | 
					
						
						|  | def freeze_vae(self): | 
					
						
						|  | set_requires_grad(self.vae, False) | 
					
						
						|  |  | 
					
						
						|  | def unfreeze_vae(self): | 
					
						
						|  | set_requires_grad(self.vae, True) | 
					
						
						|  |  | 
					
						
						|  | def freeze_unet(self): | 
					
						
						|  | set_requires_grad(self.unet, False) | 
					
						
						|  |  | 
					
						
						|  | def unfreeze_unet(self): | 
					
						
						|  | set_requires_grad(self.unet, True) | 
					
						
						|  |  | 
					
						
						|  | def get_timesteps(self, num_inference_steps, strength, device): | 
					
						
						|  |  | 
					
						
						|  | init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | t_start = max(num_inference_steps - init_timestep, 0) | 
					
						
						|  | timesteps = self.scheduler.timesteps[t_start:] | 
					
						
						|  |  | 
					
						
						|  | return timesteps, num_inference_steps - t_start | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | 
					
						
						|  | if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | batch_size = batch_size * num_images_per_prompt | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(generator, list): | 
					
						
						|  | init_latents = [ | 
					
						
						|  | self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | init_latents = torch.cat(init_latents, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = self.vae.encode(image).latent_dist.sample(generator) | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.vae.config.scaling_factor * init_latents | 
					
						
						|  |  | 
					
						
						|  | if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | 
					
						
						|  |  | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | 
					
						
						|  | " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | 
					
						
						|  | " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | 
					
						
						|  | " your script to pass as many initial images as text prompts to suppress this warning." | 
					
						
						|  | ) | 
					
						
						|  | deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | additional_image_per_prompt = batch_size // init_latents.shape[0] | 
					
						
						|  | init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | 
					
						
						|  | elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = torch.cat([init_latents], dim=0) | 
					
						
						|  |  | 
					
						
						|  | shape = init_latents.shape | 
					
						
						|  | noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | 
					
						
						|  | latents = init_latents | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | @torch.enable_grad() | 
					
						
						|  | def cond_fn( | 
					
						
						|  | self, | 
					
						
						|  | latents, | 
					
						
						|  | timestep, | 
					
						
						|  | index, | 
					
						
						|  | text_embeddings, | 
					
						
						|  | noise_pred_original, | 
					
						
						|  | text_embeddings_clip, | 
					
						
						|  | clip_guidance_scale, | 
					
						
						|  | num_cutouts, | 
					
						
						|  | use_cutouts=True, | 
					
						
						|  | ): | 
					
						
						|  | latents = latents.detach().requires_grad_() | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latents, timestep) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): | 
					
						
						|  | alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) | 
					
						
						|  |  | 
					
						
						|  | fac = torch.sqrt(beta_prod_t) | 
					
						
						|  | sample = pred_original_sample * (fac) + latents * (1 - fac) | 
					
						
						|  | elif isinstance(self.scheduler, LMSDiscreteScheduler): | 
					
						
						|  | sigma = self.scheduler.sigmas[index] | 
					
						
						|  | sample = latents - sigma * noise_pred | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"scheduler type {type(self.scheduler)} not supported") | 
					
						
						|  |  | 
					
						
						|  | sample = 1 / self.vae.config.scaling_factor * sample | 
					
						
						|  | image = self.vae.decode(sample).sample | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | if use_cutouts: | 
					
						
						|  | image = self.make_cutouts(image, num_cutouts) | 
					
						
						|  | else: | 
					
						
						|  | image = transforms.Resize(self.cut_out_size)(image) | 
					
						
						|  | image = self.normalize(image).to(latents.dtype) | 
					
						
						|  |  | 
					
						
						|  | image_embeddings_clip = self.clip_model.get_image_features(image) | 
					
						
						|  | image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | if use_cutouts: | 
					
						
						|  | dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip) | 
					
						
						|  | dists = dists.view([num_cutouts, sample.shape[0], -1]) | 
					
						
						|  | loss = dists.sum(2).mean(0).sum() * clip_guidance_scale | 
					
						
						|  | else: | 
					
						
						|  | loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale | 
					
						
						|  |  | 
					
						
						|  | grads = -torch.autograd.grad(loss, latents)[0] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.scheduler, LMSDiscreteScheduler): | 
					
						
						|  | latents = latents.detach() + grads * (sigma**2) | 
					
						
						|  | noise_pred = noise_pred_original | 
					
						
						|  | else: | 
					
						
						|  | noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads | 
					
						
						|  | return noise_pred, latents | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | height: Optional[int] = 512, | 
					
						
						|  | width: Optional[int] = 512, | 
					
						
						|  | image: Union[torch.FloatTensor, PIL.Image.Image] = None, | 
					
						
						|  | strength: float = 0.8, | 
					
						
						|  | num_inference_steps: Optional[int] = 50, | 
					
						
						|  | guidance_scale: Optional[float] = 7.5, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | clip_guidance_scale: Optional[float] = 100, | 
					
						
						|  | clip_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_cutouts: Optional[int] = 4, | 
					
						
						|  | use_cutouts: Optional[bool] = True, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_input = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | 
					
						
						|  |  | 
					
						
						|  | text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | extra_set_kwargs = {} | 
					
						
						|  | if accepts_offset: | 
					
						
						|  | extra_set_kwargs["offset"] = 1 | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.timesteps.to(self.device) | 
					
						
						|  |  | 
					
						
						|  | timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device) | 
					
						
						|  | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = preprocess(image, width, height) | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, self.device, generator | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if clip_guidance_scale > 0: | 
					
						
						|  | if clip_prompt is not None: | 
					
						
						|  | clip_text_input = self.tokenizer( | 
					
						
						|  | clip_prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ).input_ids.to(self.device) | 
					
						
						|  | else: | 
					
						
						|  | clip_text_input = text_input.input_ids.to(self.device) | 
					
						
						|  | text_embeddings_clip = self.clip_model.get_text_features(clip_text_input) | 
					
						
						|  | text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | max_length = text_input.input_ids.shape[-1] | 
					
						
						|  | uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") | 
					
						
						|  | uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | 
					
						
						|  |  | 
					
						
						|  | uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) | 
					
						
						|  | latents_dtype = text_embeddings.dtype | 
					
						
						|  | if latents is None: | 
					
						
						|  | if self.device.type == "mps": | 
					
						
						|  |  | 
					
						
						|  | latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( | 
					
						
						|  | self.device | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) | 
					
						
						|  | else: | 
					
						
						|  | if latents.shape != latents_shape: | 
					
						
						|  | raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | 
					
						
						|  | latents = latents.to(self.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps): | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if clip_guidance_scale > 0: | 
					
						
						|  | text_embeddings_for_guidance = ( | 
					
						
						|  | text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings | 
					
						
						|  | ) | 
					
						
						|  | noise_pred, latents = self.cond_fn( | 
					
						
						|  | latents, | 
					
						
						|  | t, | 
					
						
						|  | i, | 
					
						
						|  | text_embeddings_for_guidance, | 
					
						
						|  | noise_pred, | 
					
						
						|  | text_embeddings_clip, | 
					
						
						|  | clip_guidance_scale, | 
					
						
						|  | num_cutouts, | 
					
						
						|  | use_cutouts, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  | image = self.vae.decode(latents).sample | 
					
						
						|  |  | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).numpy() | 
					
						
						|  |  | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, None) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | 
					
						
						|  |  |